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Abstract— This paper deals with the positive-definite comple-
tion of partially specified (block-) circulant covariance matrices.
In the absence of any constraint other than positivity, the
maximal-determinant completion of a partially specified covari-
ance matrix (i.e., the so-called maximum entropy completion)
was shown by Dempster to have an inverse with zero-values at
all locations where the original matrix was unspecified–this will
be referred to as the Dempster property. In earlier work, Carli
etal. [2] showed that even under the constraint of a covariance
being block-circulant, as long as the unspecified elements are
in a single band, the maximum entropy completion has the
Dempster property. The purpose of the present paper is to prove
that circulant, block-circulant, or Hermitian constraints do not
interfere with the Dempster property of the maximum entropy
completion. I.e., regardless of which elements are specified,
the completion has the Dempster property. This fact is a
direct consequence of the invariance of the determinant to the
group of transformations that leave circulant, block-circulant,
or Hermitian matrices invariant. A description of the set of all
positive extensions is discussed and connections between this set
and the factorization of certain polynomials in many variables,
facilitated by the circulant structure, is highlighted.

I. INTRODUCTION

The subject of the present paper is the maximum en-
tropy completion of partially-specified circulant positive-
definite matrices. Such matrices are covariances of wide-
sense stationary periodic or reciprocal processes [15], [16],
[2], [4], [14]. In turn, the completion problem is equivalent
to identifying a consistent power spectrum from incomplete
data. Since finite observation records of general stationary
processes are often treated as records of periodic ones, the
circulant-completion problem is relevant in spectral analysis
of stationary time-series in general as it brings Fourier
techniques to bear [2].

Maximum entropy completion of partially specified circu-
lant matrices has been recently studied in [2] where it has
been shown that, when only a single band centered along
the main diagonal is specified, the constraint that enforces
the circulant structure becomes redundant and thereby the
maximizer shares the property of maximizers for more
general problems. This property which we refer to as the
Dempster property is that the inverse of the completion is
zero at all unspecified elements of the original matrix ([6];
see also [12], [7]).

The main contribution of the present paper is to provide
a simple, independent argument that explains the result of
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Carli etal. [2] and at the same time shows that, in general,
the circulant, block-circulant, or Hermitian constraints do not
interfere with the Dempster property. That is, the maximum
entropy circulant, block-circulant and Hermitian completion
of any partially-specified covariance matrix has the Dempster
property. Our result is a direct consequence of the invariance
of the matrix-determinant to transformations that leave cir-
culant, block-circulant, and Hermitian matrices invariant.

The paper goes on to describe the structure of the set
of all positive completions for partially specified circu-
lant matrices. Certain connections between completions and
the factorization of polynomials in many variables is also
highlighted. More specifically, since every block-circulant
matrix can be diagonalized by a Fourier transformation, the
positivity of a partially-specified (n× n) m-block circulant
matrix gives rise to n, m-order curves, that delineate the
admissible competion set. These curves can be obtained
by factorization of the determinant as a polynomial in the
unspecified coefficients. Thus, Fourier techniques can be
efficiently used to factor polynomials written as determinants
of circulant matrices with variable entries.

In section II some useful facts about circulant matrices are
introduced. Section III discusses the Dempster property for
general covariance matrices and then presents our main result
for matrices with a circulant structure. Finally in section
IV we present a couple of examples that give some insight
into the structure of the completion-set, and we highlight
connections with the factorization of certain polynomials in
many variables.

II. TECHNICAL PRELIMINARIES & NOTATION

Let {x`, ` ∈ Z} be a wide-sense stationary periodic
process on Z of period n or, equivalently, a wide-sense
stationary process on the cyclic group Z/(nZ). This is
possibly vector-valued with x` ∈ Cm, thought of as column
vectors. Obviously the process can be identified with the
vector

(
x′0, . . . , x

′
n−1
)′

of values over one period. Let R
denote the covariance matrix of such a restriction. The
assumption of (second-order) stationarity together with the
periodicity imply that R has the following structure

R :=



R0 R1 R2 . . . R∗2 R∗1
R∗1 R0 R1 R∗3 R∗2
R∗2 R∗1 R0 R∗4 R∗3
...

. . .
...

R2 R3 R4 R0 R1

R1 R2 R3 . . . R∗1 R0


, (1)

i.e. R is a block-circulant matrix [5], [11]. We now introduce
some notations and briefly review some facts about circulant
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matrices which will be useful in the sequel.
Evidently, a (block-) circulant matrix is completely spec-

ified by its first row (or, column) entries. In particular a
generic circulant matrix is Hermitian if its first row entries,
say ai, satisfy a0 = a∗0 as well as

ak = a∗n−k for k = 1, . . .
⌊n
2

⌋
.

where a∗ denotes the complex-conjugate-transpose. Thus,
when n is even, both a0 and abn2 c need to be Hermitian
for the matrix to be Hermitian. Let S denote the circulant
(up) (n× n)-shift

S :=


0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 0 1
1 0 0 . . . 0

 ,
and In the (n×n)-identity matrix. Clearly Sn = In and, as
is well-known [5] and easy to check, Sk has the (eigenvalue-
eigenvector) decomposition

SkU = UW k,

where U is the Fourier-matrix with elements Up,q = wpq for
j :=

√
−1, w := e−j

2π
n and

W := diag{1, w, w2, . . . , wn−1}.

where diag{·} denotes a diagonal (or, possibly, block-
diagonal) matrix with its entries listed within the brackets.
We are now ready to intoduce the following two spaces. Let
Cn denote the space of (n× n)-circulant matrices,

Cn :=

{
a(S) :=

n−1∑
k=0

Skak | ak ∈ C

}
,

and Cn;m the space of (n× n)-circulant m-block matrices,

Cn;m :=

{
a(S) :=

n−1∑
k=0

Sk ⊗ ak | ak ∈ Cm×m
}
.

where ⊗ denotes the Kronecker product. Moreover let C+n
and C+n;m be the cones of Hermitian non-negative elements
in the two spaces Cn and Cn;m, respectively, i.e.

C+n := {a(S) ≥ 0 | a(S) ∈ Cn}
C+n;m := {a(S) ≥ 0 | a(S) ∈ Cn;m} .

The following facts about circulant/block-circulant matrices
hold. We refer the reader to [3] for the proofs.

Proposition 1: The matrix M ∈ Cnm×nm is in Cn;m if
and only if

(S ⊗ Im)M(S∗ ⊗ Im) =M. (2)

Proposition 2: The matrix a(S) ∈ Cn;m is invertible if
and only if the determinant of the polynomial-matrix

a(x) =

n−1∑
k=0

xkak

does not vanish at the n-th roots of unity {wk | k =
0, 1, . . . , n − 1}. Moreover, if a(S) ∈ Cn;m is invertible,
then its inverse is also in Cn;m.
An immediate consequence of Proposition 2 is the following.

Corollary 3: A Hermitian matrix a(S) ∈ Cn;m is positive
semidefinite if and only if the m×m matrices

a(e−j2π`/n) =
n−1∑
k=0

e−j2π`k/nak

are positive semidefinite for ` = 0, . . . , n− 1.
Finally, we introduce a useful characterization of circulant

Hermitian matrices. Let Mn denote the set of all n × n
matrices over C and Hn ⊂Mn the subset of all Hermitian
matrices. Consider the pair G := ({conj, shift} , ◦) where
conj and shift are the maps

conj :Mn −→Mn

M 7−→M∗

shift :Mn −→Mn

M 7−→ (S ⊗ Im)M(S∗ ⊗ Im)

and ◦ denote the usual composition of maps. It is easy
to check that the pair G is a commutative group and the
following characterization of circulant Hermitian matrices
holds.

Proposition 4: Let M ∈ Mmn. Then M ∈ Cn;m ∩ Hmn
if and only if the orbit of M under the action of G is M
itself.

That is, M ∈ Cn;m ∩Hmn if and only if M stay invariant
under the action of the group G and the orbit contains no
additional elements.

III. THE COVARIANCE COMPLETION PROBLEM

Let M ∈ Hn be a partially specified matrix and consider
the problem

max
{
det(M) |M ∈ H+

n

}
(3a)

subject to
ekMe∗` = mk,` for (k, `) ∈ S and mk,` ∈M, (3b)

where H+
n ⊂ Hn denotes the cone of positive-definite n×n

matrices, ek is the row-vector with a 1 at the kth entry

ek := [

k︷ ︸︸ ︷
0, . . . 0, 1, 0, . . . 0],

S is a symmetric selection of pairs of indices (i.e., if (k, `) ∈
S, then (`, k) ∈ S), and the data

M := {mk,` | (k, `) ∈ S}

is consistent with the hypothesis that M is Hermitian, i.e.,
mk,` = m∗`,k for all entries in M. Clearly as long as
a positive-definite completion for M is at all possible,
and as long as the set of such positive completions is
bounded, a completion with maximal determinant is uniquely
determined since the determinant is a strictly log-concave
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function of its argument. Let us denote by Mme this unique
maximizer, i.e.

Mme := argmax{det(M) |M ∈ H+
n satisfies (3b)}.

For ease of notation, we also introduce the subspace

Ln := {M ∈ Hn | (3b) holds}

which contains matrices with the specified elements.
Theorem 5 (Dempster): Consider an index set S and a

corresponding data set M consistent with the hypothesis
M ∈ Hn. Assume that H+

n ∩ Ln 6= ∅ and bounded. Then

ekM
−1
me e

∗
` = 0 for (k, `) 6∈ S.

Proof: By hypothesis Mme exists and it is uniquely
defined. Moreover, if Mme maximizes detM , it also maxi-
mizes log detM . Computing the Lagrangian

L(M,λk,`) := log det(M) +
∑

(k,`)∈S

λk,`(mk,` − ekMe∗` )

(4)
and setting the derivative of L with respect to the entries of
M equal to zero, we readily obtain

M−1 =
∑

(k,`)∈S

λk,`e
∗
ke`. (5)

Therefore, the inverse of the maximizer has the claimed zero-
pattern, i.e., the Dempster property.

The above result goes back to Dempster [6]. Conditions
on partially-specified matrices to have a positive-definite
completion (i.e., conditions for H+

n ∩Ln 6= ∅) are addressed
in [12] and analogous questions for multivariable moment
problems are being discussed in [8].

Remark 1: When additional restrictions are placed on M
then, in general, this property of Mme no longer holds.
Suppose, for instance, that M , besides satisfying (3b), is
required to have a Toeplitz structure. In this case, an ad-
ditional set of Lagrange multipliers (k, `) 6∈ S is needed
to enforce the Toeplitz structure via terms of the form
λk,`(e

∗
kMe`−e∗k+1Me`+1). As a consequence, the statement

of Theorem 5 fails in such cases.
A noticeable exception is when the additional constraint

on M requires this to be circulant. In such a case, in
fact, M−1me still has the zero-pattern of Proposition 4, as
shown by a direct algebraic verification in Carli etal. [2].
Theorem 6 below gives an independent proof and, at the
same time, explains how this generalizes to appropriate sets
of interpolation conditions on the circulant structure.

Let M ∈ Cn;m be a partially specified block-matrix and
consider again Problem (3a)-(3b) where now the index set
S and the data-set M are chosen to be consistent with the
Cn;m-circulant Hermitian structure, i.e. S is such that

(k, `) ∈ S ⇒ (`, k) ∈ S, (6a)
(k, `) ∈ S ⇒ ((`+m)modnm, (k +m)modnm) ∈ S. (6b)

and the values mk,` in M satisfy

mk,` = m∗`,k (7a)

mk,` = m∗(`+m)modnm,(k+m)modnm
(7b)

for all pairs of indices.

Theorem 6: Let S,M be sets of indices and correspond-
ing values consistent with the Cn;m-circulant structure and
assume that there exists a positive completion, i.e., that
H+
nm ∩ Lnm 6= ∅, and that this set is bounded. Then

i) there is positive completion in Cn;m, i.e., Cn;m∩H+
nm∩

Lnm 6= ∅,
ii) the (maximum entropy) completion Mme over H+

n is an
element in Cn;m,

iii) ekM
−1
me e

∗
` = 0 for (k, `) 6∈ S.

Clearly ii) implies i) as well as, by Theorem 5, iii). Thus the
only thing to be proven is that Mme is indeed circulant.

Proof: Both the objective function and the constraints
(3b) are invariant under the group G generated by {conj,
shift}. Thus also the maximizer has to be invariant under
the group G, for otherwise, there would be multiple maxima.
By Corollary 4, this implies that Mme is in Cn;m, which
concludes the proof.

Remark 2: The above argument applies to maximizers
that may be restricted further to lie in a convex set in a
way that is consistent with the circulant structure. Thus, the
essence of this result is a rather general invariance principle
that the maximizer of a concave functional when restricted
to points that individually remain invariant under the action
of a certain group, it is identical to the unconstrained one
– assuming that the domain of the functional is convex and
invariant under the group.

IV. STRUCTURE OF SOLUTIONS AND FACTORIZATION OF
POLYNOMIALS IN SEVERAL VARIABLES

In this last section we provide insight into the shape of
the set of all positive-definite block-circulant completions
of a partially specified covariance matrix. An immediate
consequence of Corollary 3 is the following.

Corollary 7: Let M be a partially specified n × n m-
block circulant matrix. The set of all positive-definite block-
circulant completions of M is delineated by the intersection
of the m-order surfaces defined by the non-negativity of the
matrices a(e−j2π`/n), for ` = 0, 1, . . . , n− 1.
Let us consider the following clarifying examples.

Example 1: Let a(S) =
∑3
k=0 S

k ⊗ ak ∈ C4;2, with

a0 =

[
2 1

2
1
2 2

]
, a1 = a>3 =

[
1 1
0 1

]
,

while the block

a2 =

[
x y
y z

]
is left completely unspecified. The maximum entropy solu-
tion, computed using a general semi-definite programming
solver (e.g., SDPT, SeDuMi, etc. ) by means of the in-
terface in cvx [9], [10], results to have x = z = 0.4853,
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y = 0.4789 and its inverse, say λ(S), is given by

λ0 =

[
1.1707 −0.0163
−0.0163 1.1707

]
, (8a)

λ1 =

[
−0.4469 −0.4394
0.3335 −0.4469

]
= λ>3 , (8b)

λ2 =

[
0 0
0 0

]
, (8c)

i.e. λ2 is the 2× 2 zero matrix, as claimed.
In order to characterize the set of all positive-definite

solutions, we consider the 2× 2 polynomial matrices

a(w0) =

[
4 + x 3

2 + y
3
2 + y 4 + z

]
,

a(w1) =

[
2− x

(
1
2 − i

)
− y(

1
2 + i

)
− y 2− z

]
= a(w3)>,

a(w2) =

[
x − 1

2 + y
− 1

2 + y z

]
, (9)

whose eigenvalues are

eig
{
a(w0)

}
= 4 +

x

2
+
z

2
±
√

9 + (x− z)2 + 4y(3 + y)

4
,

eig
{
a(w1)

}
= 2− x

2
− z

2
±
√

5 + (x− z)2 − 4y(1− y)
4

,

eig
{
a(w2)

}
=
x

2
+
z

2
±
√

1 + (x− z)2 − 4y(1− y)
4

.

These are positive on the feasible set shown in Figure 1.

Fig. 1. Feasible set {(x, y, z) | a(S) ≥ 0}.

Example 2: Let now m = 1 and a(S) =
∑6
k=0 akS

k ∈
C7, with a0 = 2, a1 = a6 = 1, while the coefficients
a2 = a5 = x and a3 = a4 = y are left unspecified. The

eigenvalues of a(S) are

a(w0) = 2(2 + x+ y) (10a)

a(w1) = 2− 2y cos
π

7
− 2x sin

π

14
+ 2 sin

3π

14
(10b)

a(w2) = −2
(
−1 + x cos

π

7
+ sin

π

14
− y sin 3π

14

)
(10c)

a(w3) = −2
(
−1 + cos

π

7
+ y sin

π

14
− x sin 3π

14

)
(10d)

and its determinant

det(a(S)) = 4 + 42x+ 56x2 − 294x3 + 140x4 + 84x5

− 28x6 + 2x7 − 14y − 28xy + 350x2y

− 196x3y − 112x4y − 84x5y + 14x6y

− 168xy2 + 56x2y2 + 238x3y2 + 112x4y2

+ 14x5y2 + 28y3 − 238x2y3 − 28x3y3

− 42x4y3 + 98xy4 − 14y5 + 28x2y5

− 14xy6 + 2y7. (11)

Thus, the determinant is a polynomial of degree 7 in x
and y. Factorization of the determinant over the ring of
polynomials with rational coefficients (.e.g., using Matlab
or Mathematica) gives

det a(S) =2(2 + x+ y)
(
1 + 5x− 8x2 + x3 − 2y

+ 5xy + 3x2y − y2 − 4xy2 + y3
)2

However, in view of (10a-10d), we already know that

det a(S) = 2(2 + x+ y)[
2− 2y cos

π

7
− 2x sin

π

14
+ 2 sin

3π

14

]2
[
−2
(
−1 + x cos

π

7
+ sin

π

14
− y sin 3π

14

)]2
[
−2
(
−1 + cos

π

7
+ y sin

π

14
− x sin 3π

14

)]2
.

I.e. det a(S) readily factors, whereas this is impossible using
standard methods [1] without the prior knowledge of a
suitable field extension of Q containing the coefficients of the
factors (such as, Q[cos

(
π
7

)
, sin

(
π
14

)
, etc.]). Finding such an

extension, in general, is a challenging problem. Of course, on
the other hand, expressing a given rational polynomial as the
determinant of a circulant matrix with rational coefficients
may, in general, be an equally challenging one. The point of
the example is not to suggest a general procedure, unless the
multivariable polynomial is easily seen to be, or originates
as, the determinant of a circulant matrix.

V. CONCLUDING REMARKS

The main contribution in this paper is the proof and
insight that has been gained into the problem of completion
of circulant covariance matrices by Theorem 6 and Remark
2. Although such matrices have been widely used in the
signal processing literature [5], [11], the case for completion
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problems has only been brought forth in [2]. The present
work builds on [2] and exposes the finer structure of the
feasible set of such completions in a general setting (see
Remark 2).
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