MARY HESSE

An Inductive Logic of Theories

1. Theoretical Inference

In their contributions to this volume, Professors Hempel and Feigl have
both discussed the “layer-cake” model of scientific theories from the point
of view of the meaning and interpretation of theoretical language. The
problem of interpretation has also concerned Professor Maxwell, and he
has in addition mentioned the problem of confirmation of theories, but
only to assert that this is wholly independent of and irrelevant to the prob-
lem of meaning. It is this last assertion of independence that I wish to
question in this paper. I believe that the problem of theoretical inference
or confirmation is insoluble in terms of a deductive model of theories, and
indeed in terms of any analysis which makes a radical epistemological and
semantic distinction between theoretical and observation predicates. It
follows that an analysis of the meaning of theoretical terms such as that
given by Maxwell will be insufficient to support an adequate confirmation
theory of theories, and that the questions of what a theory means and how
it comes to be confirmed are not after all independent. The argument of
this paper will be of reductio ad absurdum form: first developing expres-
sions for a deductive theoretical system and its models in the usual way,
and then showing how they fail to allow for inductive inferences of a kind
generally regarded as justifiable.

The problems of induction and confirmation have been given a new

lease of life in recent discussions, but little has yet been done toward a
logic of inductive inference in relation to scientific theories. Nevertheless,
among those who still hold that there is such a thing as inductive logic,
I suppose it would be generally agreed that there ought, in principle, to be
some way of explicating inductive inferences to theories, and to the fur-
ther observational consequences of theories. Putnam? has given a striking

*H. Putnam, “ ‘Degree of Confirmation’ and Inductive Logic,” in P. A. Schilpp,

ed., The Philosophy of Rudolph Carnap (LaSalle, Ill.: Open Court, 1963), pp.
761-793.
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example of the kind of inference involved here, which would surely be
regarded by most scientists as inductively justifiable. In an attempt to show
that any confirmation theory of Carnap’s type is bound to be inadequate
for theoretical inference, he considers inferences of the kind that were
made when the first atomic bomb explosion was predicted and subse-
quently tested with success. Here there was a body of evidence drawn from
physics and chemistry which supported the nuclear theory, and from this
theory were derived in great detail, and with very great confidence, pre-
dictions about what would occur in an experimental situation so far wholly
unrealized in any previous experience, namely the slamming together of
two subcritical masses of uranium to produce an explosion of given magni-
tude. Schematically the situation is this: Given total initial evidence e;,
we use this to support a theory t in which we have sufficient confidence to
deduce future predictions ep, namely the results of the atom bomb test.
Putnam’s own argument to the effect that no confirmation theory can
explicate this inference seems to me insufficiently general, but there is a
perfectly general argument which shows that no probabilistic confirma-
tion theory of any type yet developed will allow us to infer with higher
than prior confirmation from e, to e, merely in virtue of the fact that both
are deductive consequences of some theory, where “theory” is understood
in the deductive-model sense. This theorem has, in fact, already been men-
tioned by Carnap,? in his discussion of some points in Hempel’s paper
“Studies in the Logic of Confirmation.”3

In this paper, Hempel expresses a principle which seems to underlie the
kind of inference Putnam exemplifies. The principle is what Hempel calls
the consequence condition for confirmation, namely “If some evidence e
confirms a hypothesis t, then e confirms every L-consequence of t” (C,).
If this condition were satisfied it would cover Putnam’s example, because
e would then be confirmed by e; which confirms t. Consider the case in
which t — e; - €. This is the situation we have when we say that t explains
the data e; and predicts e.. If we now add a further condition C,, “If t
L-implies e;, then e; confirms t,” which Hempel calls the converse conse-
quence condition, it is easy to show that C; and C, taken together are

?R. Carnap, Logical Foundations of Probability (Chicago: University of Chicago
Press, 1950), especially pp. 471-472.

*C. G. Hempel, “Studies in the Logic of Confirmation,” Mind, 54 (1945), 1-26,
97-121. Hempel has modified some of these points in his addendum to a reprint of

the paper in C. G. Hempel, Aspects of Scientific Explanation (New York: Free Press,
1965), p. 50.
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counterintuitive. Suppose t = e, * e,. Then certainly t — €, * €;, and using
C; and C, we conclude that €; confirms e,. But this is absurd, because e
may be any statement whatever. If t is produced just by arbitrarily con-
joining any other statement e, to €;, we should certainly not want a con-
firmation theory in general to allow e; to confirm e,. Some further condi-
tions must be imposed upon admissible e; and e, and either C; or C; or
both must be modified.

This argument is very general, and concerns any confirmation theory
which satisfies C; and Cs. In particular, any probabilistic c-theory satisfies
C., but Carnap* has shown that in his probabilistic c-theory, confirmation
does not satisfy C,. Therefore he avoids the counterintuitive inference,
but apparently at the cost of being unable to explicate inferences of Put-
nam’s type. In general, in a probabilistic c-theory we cannot have
(1) c(ezed) > cofe)
unless there is some probabilistic dependence between e; and e,, and such
dependence is not guaranteed by the fact that e, and e; are both implied
by some t, because in the absence of further conditions upon t, this is
trivially the case for every pair of statements e, e,. I have suggested else-
where? a method of rescuing Putnam-type inferences within a probabilistic
c-theory, which involves specifying a relation between €; and e, that en-
sures the satisfaction of (1) only in case e, is intuitively relevant to the
confirmation of e,. The relation which constitutes such relevance between
e: and e, I suggest, is a relation of analogy. I cannot discuss in detail here
how this would be defined, but I will describe the conception briefly by
taking an example which I develop more fully in the other paper.

2. The Analogical Character of Theories
Consider the inference made by means of Newton’s theory of gravita-

tion (t) from some initial data (e;) which we will suppose comprise Kep-

ler’s laws, to the prediction (e;) that a falling body will fall in the neigh-

borhood of the earth with a certain acceleration. We suppose that the

historical situation is that we accept Kepler’s laws, but do not yet know the

acceleration relation for falling bodies. This is not too far from the actual

case, because, as has been pointed out many times, Galileo’s law is contra-
4 Carnap, Logical Foundations of Probability, p. 471.

5M. B. Hesse, “Consilience of Inductions,” in I. Lakatos, ed., The Problem of
Inductive Logic (Amsterdam: North-Holland, 1968), pp. 232-257.
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dicted by Newton'’s theory, and we do in fact have more confidence in the
relation e, predicted by that theory than in Galileo’s earlier empirical ap-
proximation to it. This confidence seems to come from the support given
to Newton’s theory by the other data entailed and explained by it, which
support we take to be in some way passed on to the prediction. But in
general, as I have shown, this is not a justified inference. Unless more is
said about the relation between e; and e; we shall not have the desirable
increase of c(e, €;) compared with co(e2). When the condition (1) is
satisfied I shall say that the corresponding inductive inference is justifiable.

Let us express Kepler's laws and the predicted acceleration relation very
schematically as
(2) e (x)(F(x)-G(x): 2 P(x) -Q(x))

e: (x)(G(x) *H(x): D Q(x) *R(x))

Here a relation of “analogy” has been assumed between e€; and e; in the
following sense: The predicates F, G represent properties of the planets
asserted by Kepler's laws to have certain motions which we denote by the
conjunction of predicates P, Q. (It would of course be necessary to use
metric predicates if this were a realistic reconstruction, but we simplify
drastically for purposes of exposition by considering only monadic predi-
cates.) Expressed in similar fashion is e,, for the bodies referred to in e
share some properties with those referred to in e;, but not all. All these
bodies are solid, massive, opaque, and so on; but bodies near the earth
differ from planets in size, shape, chemical composition, and so on. In the
same way, Kepler’s laws can be thought of as describing motions which
are in some respects the same as and in some respects different from the
motions described in e,: All the orbits are ideally conic sections, but they
are traversed at different speeds, and about different foci.

My suggestion is that the confidence we have in the prediction of e, is
due to the relation of analogy between e; and e, which is constituted by
the repetition of predicates G and Q in the expressions of €; and e;. We
regard ¢, as confirmed by e; because the bodies described by e; are suffi-
ciently similar in some respects to those described by e, to justify the in-
ference that their behavior will also be similar. Explication of this infer-
ence therefore requires a c-theory which will yield the inequality (1) in
particular when e, and e are as specified in (2), and in comparable cases.
There is an example of such a c-theory (the 5-theory) in Carnap and Steg-
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miiller,® where Carnap’s earlier theory is developed in such a way that this
condition is satisfied. Explication of analogical inference of this kind has
therefore been shown to be possible within a probabilistic confirmation
theory, although the 5-theory itself is not wholly satisfactory in other
respects.

It is not necessary here to go into the question of how this relation of
analogy would be defined in general. It is sufficient to say that the best
tactics do not seem to be to try antecedently to define what we would
mean in all cases by the analogy between two objects or two systems in
virtue of the inferences we regard as intuitively justified. Such a procedure
is liable to strain intuition too far. Rather, we should take some simple
cases, such as the one just discussed, in which it is clear that the inference
would generally be regarded as justified, find what conditions these cases
would impose upon a c-theory, and then use the weakest possible c-theory
satisfying these conditions to define the analogy relation in cases which
are too complex to give much help to intuition. That is to say, whenever
the inequality c(e., e1) > co(e2) is satisfied for observation statements in
such a c-theory, we shall say that there is necessarily a relation of analogy
in the sense intended between e, and e,. This relation of course has to be
consistent with an assertion of analogy or its absence in cases where we do
intuitively recognize the existence of analogy and the justifiability of ana-
logical argument, or their absence.

The question that immediately arises, however, concerns the place of
the theory t in this explication. We have not needed to mention t either
in the expressions of e, or e;, or in the statement of inequality of c-func-
tions. Is t then wholly redundant? Further inspection of (2) reveals that
this is not the case, for it is implied in (2) that there is a theory, indeed
more than one theory, which has the traditional relation to the data and
prediction of entailing their conjunction. In particular, if t is

(3)  (®)(F(x) 2 P(x)) - (G(x) 2 Q(x)) - (H(x) > R(x))
then t — e; - €;. Furthermore, t has the desirable characteristic of “saying
more than” e, - e, since it is not the case that e; - e, — t. What t does in
effect is to pick out from e; and e, the predicates G, Q which are in com-
mon between them, and to assert that the essential correlation in both
cases is that bodies which are G are also Q, and that the properties of the
two domains of phenomena which are different are due to two other laws,

°R. Carnap and W. Stegmiiller, Induktive Logik und Wahrscheinlichkeit (Vien
na: Springer, 1959), Appendix B.

168

AN INDUCTIVE LOGIC OF THEORIES

one of which (relating F and P) applies only to the e;-domain, and the
other (relating H and R) only to the e,-domain.

It might be noted at this point that when we speak of Newton’s theory
as “explaining” Kepler’s laws and the law of falling bodies, we do not as a
rule claim that Newton’s theory includes a deductive explanation of all
the differences between planets and falling bodies, that is, we do not in-
clude in the explanatory theory laws (x) (F(x) D P(x)) and (x) (H(x)
D R(x)) which mention all the properties the bodies do not share. New-
ton’s theory contains laws explaining why some features of the motions of
planets are different from those of falling bodies, but not all such features
are mentioned in the theory; for example, their different chemical com-
positions do not appear in the antecedent of any law of Newton’s theory,
nor do their different initial velocities appear in the consequent of any
such law. Kepler’s laws, on the other hand, if they are considered as data
to be explained, do not imply any distinction between properties which
are in the later light of Newton’s theory “relevant” or “irrelevant” to the
search for explanation. Kepler's own understanding of planets in the as-
sertion “All planets move in ellipses” certainly included for example the
assumption that planets have magnetic properties, which he considered
specially relevant to explanation of their motions. This aspect of the ex-
planandum is, however, not mentioned in Newton’s “explanation” even
in the initial conditions for Kepler’s laws. It follows that the expression
(3) for t which was used above in deference to the requirement that the
explanandum be deducible from the explanans plus initial conditions is
too strong to reproduce the real situation, in which an “explanation” is
not required to entail the explanandum as that was originally formulated,
but is already the result of assumptions of relevance and irrelevance which
are rarely made explicit in deductivist accounts of theories. Before the
deductive account can be made to work at all, irrelevant features must in
fact be dropped from the explanandum as unexplainable by that theory
(although they may of course be explained by another theory). The ana-
logical account of theories which has just been suggested has the merit of
making these assumptions of irrelevance explicit from the beginning. Ac-
cording to this account, we should regard the theory t, not as in expression
(3), but rather as (x) (G(x) D QO(x)), together with the statements of
initial condition which differentiate the e;-domain as an application of t
from the c,-domain.

T'he pattern of theoretical inference we have been studying now takes
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on a different aspect. We are no longer concerned with a dubious induc-
tive inference from e; up to t and down to e,, but with a direct analogical
inference from e; to e;. And t does not provide the upper layer of the cake,
but rather, as it were, extracts the jam from e; and e, that is to say it re-
veals in these laws the relevant analogies in virtue of which we pass from
one to the other inductively.

3. The Function of Models

In the light of these confirmation conditions for theoretical inference,
let us investigate the adequacy of a typically deductivist construal of theo-
ries and their interpretive models. In particular, I want to consider how
the use of models for theories provides examples of inference in which we
need stronger logical relations between e; and e, than can be included in
the usual deductivist scheme.

Consider an expression of a theoretical system for a domain of entities,
in which all the constant theoretical terms (T, Tz, . . .) whose “mean-
ings” are problematic have been replaced by the variables 1, 7o, . ...

4) () .. (%% ... S)d(rura - . . 0u0s . . .)

This is a representation of the theoretical calculus, together with a set of
observation predicates Oy, Os, . . ., so that at this stage it is only a par-
tially interpreted system, the ’s remaining uninterpreted. Now there will
be a model of this system (let us call it the Q-model) which is represented
by replacing the +'s again by the problematic theoretical terms T;, Ty,

. . ,although it is rather difficult to see that this is in the ordinary sense
an interpretation, because the problem of the meaning of theoretical terms
arises precisely from the fact that we do not know what constant predicates
the T’s are, and so do not know what domain of entities and predicates
satisfies this model. However, if we knew this, then in the usual logician’s

sense the Q-model would be a model of the system (4). In what follows -

“model” will be used of linguistic entities (systems of laws, theories, etc.)
not of the sets of entities and predicates which satisfy these systems.

It seems to me that what the physicist normally means by a model for a
theory is not the Q-model, but rather a system of laws satisfied by a set of
entities and predicates different from the set of entities and predicates
which were to be explained when he set up his theory. When he refers to
a set of Newtonian particles as a model for gas theory, this is a set of en
tities different from the gases whose behavior he is endeavoring to explain
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by the gas theory. When the crystallographer builds a structure of colored
balls and steel rods on the laboratory bench, this is a set of entities differ-
ent from the organic molecules he is attempting to construct a theory for.
So it is necessary to talk in terms of two domains of entities: S will now be,
not a universal domain, but what I shall call the domain of entities of the
O-model, and I shall denote by S* the domain of entities of the P-model,
where the P-model is a model in the physicist’s sense just indicated.

Let us elaborate expression (4) in order to take account of the relation
of the O-model to the P-model. We shall suppose that there are two sets
of observation predicates, O;, Os, . . . ,and Oy, Oy’, . . ., where the
first set enters into laws known to be true in S and S*, and the second into
laws known to be true only in S*, and not yet examined in S. We shall
suppose the Q- and P-models to have an analogical relation in the follow-
ing sense: They share the O- and O’- predicates, and the Q-model involves
also predicates M, . . . not applicable to S*, and the P-model involves
predicates Ny, . . ., not applicable to S (the “negative analogy” of the
two models). We assume that the laws known to be true of S* and S are
respectively

(5)  e® (x)(y) ... [(xy ... S*)Y(NLOy, . . )]
6) e (X)(y) ... [(xy,...S)¢(M,Oy ...)]

and the laws known to be true of $* and unexamined in S are respectively

(7) e*: (x)(y) ... [(xy ... Sy (N,O, .. .)]
(8) . e (X)(Y) «« « [(BY « v » )P (MO - « )]

The P- and Q-models can be expressed as
(9) t*: (x)(y) ... [(®y ... eS*)p(P,N,0,0/, . . )]
(10)  t (x)(y) ... [(xy, . .. S)p(T1,M,0,,0/, . . )]
where the P-model is a true interpretation of the partially interpreted ex-
pression corresponding to (4), and we have
(11)  (x)(y) . .. [¢(PL,N3,O0,0¢, . . .) > ¢(Ny,Oy, . . ) -
¢ (N,Of, . . )]
All predicates in these expressions are constants.

The problem is to show that there is a justified analogical inference, in
the type of confirmation theory we have discussed, from e;* - €, - €,* to e..
But before considering this, there is an obscurity about the notion of ob-
scrvability which ought to be cleared up at this point. There is not only the
very important distinction between observable predicates and observable
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entities but there is also a distinction concerning observability of predi-
cates in different domains. It may very well be the case that in the P-model
we have predicates (the P’s), such as “mass,” “velocity,” “radius,” which
are observable in the domain of macroscopic physical objects, but not in
that of microscopic objects. Where the P-model is used as a model for the
theory about gases, the corresponding predicates in the Q-model (the T’s)
are not observable in any domain, and are only given as it were courtesy
titles when we refer to them as “mass,” “velocity,” etc. If we are to use
these adjectives at all in relation to the O-model, we must at least recog-
nize that they name properties unobservable in the domain S, though ob-
servable in S*. The domains of both Q-model and P-model, however, con-
tain the O-predicates, and these are observable in both domains. (The O’-
predicates may not be observable in S*, as we shall see presently.) In S*
the O’s will include the average pressure of a cloud of macroscopic par-
ticles hitting a surface, such as hailstones striking a wall horizontally. In
S they will include the pressure of the gas measured by manometers. “Pres-
sure” is the same predicate, observable in both domains.

The difference between the deductivist’s construal and my own emerges
when we consider the T-predicates. He generally wishes to say that these
are entirely undetermined except by the Q-model, whose status as an in-
terpretation is, as we have seen, highly problematic. Although there may
be another model, the P-model, of the same calculus, there is for the de-
ductivist no relation between the Q- and P-models other than that they
are models of the same calculus and share the same O-predicates. There-
fore, in this view, if we do use the words “mass,” “velocity,” etc., in rela-
tion to the T’s, this is an equivocal use when compared with their use in
relation to the P’s. We cannot know whether for God the T’s are the same
predicates as the P’s or not. Talk of the T’s therefore seems to me at best
to define a class of models of the partially interpreted system (4), and it is

?” &

not clear that replacing the variable +’s by constant T’s has added anything

to the content of (4), because we do not know what these putative con-
stants are and have in principle no means of finding out (unless of course
the T’s later become observable, but in the deductivist’s view this could
not be a general solution to the problem of the interpretation of theoreti-
cal terms, because not all such terms will become observable—if they did
his problem would dissolve).

If we consider the deductivist construal in the light of the considera
tions about theoretical inference in the preceding sections, it is not clear
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that it has any resources for explicating this kind of inference. Even if we
waive the difficulties about interpretation for the moment, and suppose
that the Q-model is an interpreted theory in the usual sense, we have
shown above that inferences from one subset of observable consequences
of this model to another subset are not in general inductively justifiable.
In particular there would be no justifiable prediction from a set of experi-
mental laws about gases, say Boyle’s and Charles’s laws, by way of the
kinetic theory to other laws about gases if the kinetic theory is understood
asa Q-model, that is, if there is no more than an equivocal sense in which
we can speak of its being “about” masses and velocities of molecules. Sup-
pose, however, we now bring in the P-model. In the gas example this is a
model of Newtonian particles whose laws of motion are known to be true,
or at least accepted for purposes of exploitation in the theory of gases. We
suppose the models expressed as in (9) and (10), and that ¢ entails the
known experimental laws shared by both models as in (11). It should in-
cidentally be noticed that since ¢/ (N;,Oy, . . .) is entailed by ¢, it is
known to be true in S* even if it has not been directly examined, or even
if it is for all practical purposes unobservable in S*. For example, it is un-
likely that the analogue of Boyle’s law in Newtonian particle mechanics
has ever been observed to be true; nevertheless it is believed because New-
ton’s laws are believed in that domain.

Ina confirmation theory of the type described in section 2 we may have
a relation of analogy between e;* and e; as expressed in (5) and (6).
(Compare the e, e of section 2 (2), where Ny, . . ., stand for F, P;
M,, . . . ,stand for H, R;and Oy, . . ., stand for G, Q.) It is very im-
portant to be clear at this point that the relation of analogy here spoken
of is not only the formal analogy in virtue of the fact that both models are
models of the same calculus, but includes what I have elsewhere” called a
material analogy in virtue of the sharing of the O-predicates. Similarly, we
may have material and formal analogies between e;* and e, expressed in
(7) and (8), in virtue of the sharing of O’-predicates and their relations
expressed in y’. Since e;* is true, and if the negative analogy between S
and S* is not too strong, there will then be a justifiable analogical infer-
ence to ¢., which is strengthened by the truth of both e;* and e;. More-
over, the same argument yields a justifiable inference to

" M. B. Tesse, Models and Analogies in Science (London: Sheed, 1963; Notre Dame,
Ind.: University of Notre Dame Press, 1966).
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(12) (X)) - - [®xy . - . S)$(PLuM,0,01, . . )]

where the P-predicates are observable in S* but unobservable in S.

Comparing (12) with (10), we see that the analogical inference leads
to the suggestion that the T-predicates should be identified with the P-
predicates, rather than being regarded as problematic constants whose
reference is in principle unknown. Although their referents in S are un-
observable, their “meaning” is derived from the observables of S*, that is,
they mean the same as they do in the P-model, and satisfy the same laws.
With any construal of the T’s not involving some identification of this
kind, it is not clear that there can be justifiable analogical inference to T-
statements in S. (We shall return to this point in the next section.) With
the identification, however, the inference to predictions can be made even
stronger, for as was remarked above, it is not necessary that the O’-predi-
cates should be observable in $*, only that the P’s should be. In such a
case it is clear that the inference to e, depends essentially upon knowing
the truth of t* empirically, and making an analogical inference to the
probable truth of t and hence e, and that this depends upon the identifi-
cation of the P-and T-predicates in S.

Diagrams may help to elucidate the structure of these inferences and to
relate them to what has been said in section 1 about the status of the
theory in predictive inference. In the diagrams arrows on the lines indicate
alleged justifiable inferences and dotted lines relations of analogy. In the
case of the deductive construal, we have seen that these are illusory, and
that there is no justifiable inference from e, to e, unless there is an ana-
logical relation between these laws independent of t. If there is no such
relation, however, we may be able to make the inference if we can find a
P-model as represented in the right-hand diagram. Here broken lines in-
dicate analogical relations, and the inductive inference depends on the
analogy between the laws €;, e,* in the two domains, and the assertion of
the truth of t*. Then there is a justifiable inference to t, and hence to e,,
since t — e,. Truth is, as it were, fed into the theory of S from the P-model,

Domain S t Domain S* t- —~ - —t Domain$
t—serre /\\ t*—e* / \—w,-w
€; given t* given ¢, given
€ €2 - - = - —¢ Ca
Deductive construal Analogical construal
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and so passed on to e,, whereas in the deductive construal there is no jus-
tifiable inference through the theory of S because this theory acquires no
probable truth from any source other than its own entailments. Theories
cannot be pulled up by their own bootstraps, but only by support from
external models.

It will immediately be objected to this account that there are many
examples for which analogical inferences of the kind described not only
would be unjustified in the light of further evidence, but would never be
regarded as justifiable even before further evidence is collected. Analogical
arguments are notoriously weak and liable to failure and must generally be
treated with extreme caution. This of course is true, but it must be borne
in mind that the examples above have presupposed the principle of total
evidence. If all the evidence we have is summarized as in t* and e,, then
the inferences may be intuitively reasonable. But if we have other evidence
to the effect, for example, that S and S* differ from each other in many
further characteristics, or if we know of other domains in which the infer-
ence to y” breaks down, then such information may well weaken the in-
ferences to the point of disconfirmation. I suspect that when apparent
counterexamples to these inferences are produced, they will be found to
involve one or other of these types of additional evidence. In principle an
adequate confirmation theory must be capable of dealing with such com-
plexities, and must explicate the weakness as well as the strength of ana-
logical arguments.

4. Identification of Theoretical Predicates

In the absence of a detailed and adequate confirmation theory it is not
possible to be precise in reply to objections of the kind just mentioned.
But it is perhaps permissible to speculate a little further upon the charac-
teristics which an adequate c-theory might exhibit. In particular, it may
be possible to suggest some compromise between the position outlined
here and the deductive account, though still within the framework of a
confirmation theory. There are two ways in which my position has been
opposed too sharply to deductivism and should now be modified.

First, it may be doubted whether we wish to identify a theoretical predi-
cate such as “mass” of a molecule or electron with “mass” of a macro-
scopic particle. On the other hand I think it has been correct to say that
“mass” cannot be simply equivocal without destroying the possibility of
theoretical inference. What we need to reconstruct is a notion of analogi-
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cal meaning of the word “mass” in the two domains, where “analogical”
is used as a middle term between “univocal” and “equivocal,” as in some
Thomist philosophy. “Mass” is not always used “in the same sense” when
predicated of different systems, but it is not on the other hand a pun when
it is used of positrons, neutrons, quasars, and the like.® The problem of
determining how far the meaning of “mass” can be extended analogically
and the problem of deciding what analogical inferences are justifiable are
closely related. Predicates can be stretched just as far as analogical argu-
ment remains justifiable, and conversely. How far this is would have to be
decided by looking at the whole complex of evidence in all domains in
which the predicate is applied. If, for example, the difference in domain
is only one of scale, we shall probably be quite satisfied simply to identify
the P- and T-predicates, but when the difference of scale is accompanied
by other differences as radical as those between, say, the macroscopic and
the nuclear domains, we may become increasingly unwilling to allow any
analogical extension of meaning from one to the other.

The second respect in which my account might be modified in the
direction of deductivism is in regard to the attributes of the S- and S*-
domains which are allowed to weigh in analogical inference. It is con-
venient here to refer to a discussion by Sellars® in which he argues that to
identify the theoretical predicates with the P-predicates from an ante-
cedent observation language is to fall into the “myth of the given,” and to
misrepresent the novelty which may be introduced by using P-models in
connection with theories. To the construal of T-predicates favored by
Nagel'? Sellars objects that it makes the T’s new but not meaningful, and
to my construal in my Models and Analogies in Science he objects that
it makes them meaningful but not new.

If T have understood Sellars correctly, his proposal for the resolution of

*1 have discussed analogy, context meaning, and related questions in my “Aristotlc’s
Logic of Analogy,” Philosophical Quarterly, 15 (1965), 328-340; “The Explanatory
Function of Metaphor,” in Y. Bar-Hillel, ed., Logic, Methodology and Philosophy
of Science (Amsterdam: North-Holland, 1965), pp. 249-259; “A Self-Correcting
Observation Language,” in B. Van Rootselaar and J. F. Staal, eds., Logic, Method-
ology and Philosophy of Science, vol. III (Amsterdam: North-Holland, 1968), pp.
297-309; and “Theory and Observation,” to appear in the forthcoming vol. 4 of the
University of Pittsburgh series in the philosophy of science edited by R. G. Colodny.

® W. Sellars, “Scientific Realism or Irenic Instrumentalism,” in R. S. Cohen and
M. W. Wartofsky, eds., Boston Studies in the Philosophy of Science, vol. 111 (New
York: Humanities, 1965), pp. 171-204.

“E. Nagel, The Structure of Science (New York: Harcourt, Brace and World,
1961).
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this dilemma is as follows. Not all analogy is analogy of particulars in virtue
of their sharing identical attributes, as has been assumed in the discussion
of analogy in section 2 above. Attributes themselves may be similar or
analogous, that is, first-order predicates may themselves be predicated by
second-order predicates, and may be analogous in virtue of sharing such
second- or even higher-order predicates. Sellars gives as examples the
second-order predicate “perceptible,” which applies to first-order predi-
cates, and the second-order predicate “transitive,” which applies to first-
order relations such as “before,” “to the left of.” Either such second-order
attributes can be mentioned, as in “ ‘transitivity’ is true of before,” or they
can be shown, as by exhibiting the transitivity postulate satisfied by “be-
fore.” The function of a P-model is to introduce second- and higher-order
predicates which are shared with the Q-model, and thus to convey some
interpretation to the T-predicates: “Thus as a first approximation, it can
be said that models are used in theory construction to specify new at-
tributes as the attributes which share certain higher order attributes with
attributes belonging to the model, fail to share certain others (the nega-
tive analogy) —and which satisfy, in addition, the conditions laid down by
the relevant correspondence rules.”** Thus, Sellars claims, both meaning
and novelty are allowed for in the relation of Q- and P-models, and the P-
model remains heuristically useful at least so long as its higher-order at-
tributes remain implicit. When they are themselves formalized, presum-
ably the P-model can be abandoned, and postulates representing higher-
order attributes can be explicitly added to the Q-model and corresponding
calculus.

I confess that many features of this suggestion remain obscure to me.
In the first place, if the higher-order attributes can be referred to by in-
tensional expressions such as “transitive,” “perceptible,” it is not clear
that we have escaped the “myth of the given.” These expressions are al-
ready in the descriptive language, and a more sophisticated analysis of
“analogy,” involving a type logic, could presumably take account of anal-
ogies depending on the sharing of these predicates, as it can of first-order
predicates. If novelty depends on introduction of new predicates, there is
no novelty here. If, on the other hand, the introduction of novelty de-
pends essentially on the P- and O-models merely exhibiting analogy of
higher-order attributes, it is not clear that anything other than formal
analogy has been introduced. Each model of a calculus “exhibits” such

" Scllars, “Scientific Realism or Irenic Instrumentalism,” p. 181.
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analogy with every other model of the same calculus; indeed once the
calculus has been fully expressed, mention of models other than the O-
model is wholly redundant to this kind of analogy, since the higher-order
attributes of the Q-model are already shown by the calculus itself. And in
this case the construal of the T’s as “the attributes which share certain
higher-order attributes with attributes belonging to the [P-Jmodel” does
not seem to differ in principle from Nagel’s account, which Sellars rejects,
or from the deductivist’s which we have seen reason to reject above. For
in both these accounts it follows from the status of the Q- and P-models
that there are some second- or higher-order attributes that they share,
namely the relations exhibited in the calculus of which they are models.

It is possible, however, that Sellars has in mind a situation which is
somewhere between the two extremes just mentioned, namely a P-model
which tacitly introduces higher-order attributes in virtue of which we
vaguely accept an “analogy” between it and the explanandum, but which
have so far been unanalyzed, and for which we may not have names in the
language. For example, we may recognize an analogy between a loud noise
and a bright flash, and may exploit it in a P-model for light drawn from the
phenomena of sound, without necessarily having in our language a con-
cept “intensity” which applies to both noise and flash. However, the ques-
tion now arises whether the P-model is introduced here because of ante-
cedent recognition of an analogy, even though this was inexpressible in
the existing language, or whether the adoption of this P-model itself in-
troduces a new higher-order attribute which sound and light phenomena
share.’? The answer to this question is, surely, “six of one and half a dozen
of the other.” But such liberality must not be taken to the point of ad-
mitting any model as a candidate for the P-model. Unless some analogy
of predicates, whether first or higher order, is recognized, which is not
merely the relation of isomorphism between two models of some same
calculus, use of a P-model in theoretical inference becomes vacuous, as 1
shall now try to show.

Lying behind Sellars’s attempt to reconcile the meaningfulness of theo-
retical concepts with the possibility of novelty is some obscurity about the
function of models in inference. Sellars has not given sufficient weight to
the fact that my plea in Models and Analogies in Science for recognition
of the logical role of models depends essentially upon taking predictive

A closely related question is discussed in M. Black, Models and Metaphors
(Tthaca, N.Y.: Comell University Press, 1962), pp. 37-38.
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power as a necessary condition for theories. From this point of view, ac-
ceptance of his shared higher-order predicates as ingredients in the role of
models in relation to theories will depend upon whether or not we regard
such shared predicates as justifying analogical inference. Take the example
of transitivity, and assume that the P-model contains the first-order rela-
tion “before,” and that the Q-model contains a relation R which is either
said or shown to be transitive. According to Sellars we need know nothing
about R except that it satisfies the postulates of the theory and is transi-
tive. Waiving now the question of what relation R is, we must neverthe-
less ask how the P-model helps us to make analogical inferences in the
theory. The answer is, surely, not at all. For suppose we risk an analogical
inference from P-statements involving “before” to Q-statements involving
R. There is a large class of relations all members of which are consistent
with what is known about R, but clearly the analogical inference will not
be valid for all of them. Suppose R is, in God’s private eye, “larger than,”
then an analogical inference involving R would be equally as justifiable or
unjustifiable as a similar inference involving “smaller than,” but the con-
clusion cannot be true in both cases. Any analogical inference may of
course lead to false conclusions for empirical reasons, but in this case one
or the other conclusion must be false for logical reasons. On the other
hand, if R is known to be a particular transitive relation having other af-
finities with “before,” such as “to the left of,” there might very well be a
justifiable inference from the P-model to the O-model if the theory were
concerned, for example, with a geometry of space-time. In other words,
whether higher-order predicates can function to justify analogical infer-
ence i$ a question only to be decided by examining particular predicates,
and the possibility of doing this presupposes either that the predicates are
already in the language or that they can be coined as required to name
particular attributes in virtue of which an analogy is suspected. It cannot
be the case that every shared higher-order predicate is sufficient to gener-
ate a justifiable analogical inference, for this would certainly lead to in-
consistency, as in the “transitivity” example above, and would even be
vacuous, if it could be shown that any system shares some higher-order
attributes with every other system, a proposition which should not be too
difficult to prove if our ontology is generous enough.

IFinally, a remark about novelty and the myth of the given. Sellars’s ob-
jection to identifying the predicates of the Q- and P-models seems to
follow from his rejection (page 184) of the assumption (which he ascribes
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