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Abstract. We have studied Locally Rotationally Symmetry (LRS) Bianchi
type-I space-time filled with perfect fluid in the Hoyle-NarlikarC-field cos-
mology. The solutions have been studied when the creation fieldC is a function
of timet only. The geometrical and physical aspects for models are also studied.

PACS number: 98.80 Jk, 04.00

1 Introduction

The observation of the cosmic microwave background (CMB) radiation indi-
cates that our Universe is globally isotropic to a very high degree of precision.
Therefore, our Universe is usually assumed to be described by the Friedmann-
Robertson-Walker (FRW) metric in most of the literatures. The Bianchi cos-
mologies which are spatially homogeneous and anisotropic play an important
role in theoretical cosmology and have been studied since the 1960s. For simpli-
fication and description of the large scale behavior of the actual universe, LRS
Bianchi models have great importance. Lidsey [1] showed that these models
are equivalent to a flat Friedmann-Robertson-Walker (FRW) universe. We know
that close to the big bang singularity, neither the assumption of spherical sym-
metry nor of isotropy can be strictly valid. In order to studyproblems like the
formation of galaxies and the process of homogenization andisotropization of
the universe, it is necessary to study problems relating to inhomogeneous and
anisotropic space-time [2]. Hence, we consider LRS Bianchitype-I space-time
which is less restrictive than the spherical symmetry and provide an opportunity
for the study of inhomogeneity. LRS Bianchi type-I space-time has been widely
studied by many researchers [3–16].

The phenomenon of expanding universe, primordial nucleon-synthesis and the
observed isotropy of cosmic microwave background radiation (CMBR) were
supposed to be successfully explained by big-bang cosmology based on Ein-
stein’s field equations. However, Smootet al. [17] has revealed that the earlier
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predictions of the Friedman-Robertson-Walker type of models do not always
exactly meet our expectations. Some puzzling results regarding the red shifts
from the extra galactic objects continue to contradict the theoretical explana-
tions given from the big bang type of the model. Also, CMBR discovery did
not prove it to be an outcome of big bang theory. In fact, Narlikar et al. [18]
have proved the possibility of non-relic interpretation ofCMBR. To explain such
phenomenon, many alternative theories have been proposed from time to time.
Hoyle [19], Bondi and Gold [20] have proposed steady state theory in which
the universe does not have singular beginning nor an end on the cosmic time
scale. Moreover, they have shown that the statistical properties of the large scale
features of the universe do not change. Further, the constancy of the mass den-
sity has been accounted by continuous creation of matter going on in contrast
to the one time infinite and explosive creation of matter att = 0 as in the ear-
lier standard model. But the principle of conservation of matter was violated in
this formalism. To overcome this difficulty Hoyle and Narlikar [21] adopted a
field theoretic approach by introducing a massless and chargeless scalar fieldC
in the Einstein-Hilbert action to account for the matter creation. In theC-field
theory introduced by Hoyle and Narlikar there is no big bang type of singularity
as in the steady state theory of Bondi and Gold [20]. A solution of Einstein’s
field equations admitting radiation with negative energy massless scalar creation
fieldsC was obtained by Narlikar and Padmanabhan [22]. The study of Hoyle
and Narlikar theory [21, 23, 24] to the space-time of dimensions more than four
was carried out by Chatterjee and Banerjee [25]. RajBali andTikekar [26] stud-
iedC-field cosmology with variableG in the flat Friedmann-Robertson-Walker
model. Whereas,C-field cosmological models with variableG in FRW space-
time have been studied by RajBali and Kumawat [27]. The solutions of Ein-
stein’s field equations in the presence of creation field havebeen obtained for
Bianchi type universes by Singh and Chaubey [28].

In the present paper, we have considered a spatially homogeneous and
anisotropic LRS Bianchi type-I cosmological model in Hoyleand NarlikarC-
field cosmology. We have assumed that the creation fieldC is a function of time
t only, i.e.C(x, t) = C(t).

2 Hoyle and Narlikar C-field Cosmology

Einstein’s field equations are modified by introducing a massless scalar field
called as creation fieldviz. C-field [21,23,24]. (HereG = 1 andc = 1).

The modified field equations are

Rij −
1

2
gijR = −8π (mTij + cTij) , (1)

wheremTij is the matter tensor of Einstein theory andcTij is the matter tensor
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due to theC-field which is given by

cTij = −f
(

CiCj −
1

2
gijC

kCk

)

, (2)

wheref > 0 is a coupling constant andCi =
∂C

∂xi
.

Because of the negative value ofT 00
(

T 00 < 0
)

, theC-field has negative energy
density producing repulsive gravitational field which causes the expansion of the
universe. Hence, the energy conservation equation reducesto

mT ij;j = −cT ij;j = fCiCj;j . (3)

Here the semicolon (;) denotes covariant differentiation,i.e. the matter creation
through non-zero left hand side is possible while conserving the over all energy
and momentum.

The above equation is similar to

mgij
dxi

ds
− Cj = 0. (4)

which implies that the 4-momentum of the created particle iscompensated by
the 4-momentum of theC-field. In order to maintain the balance, theC-field
must have negative energy. Further, theC-field satisfies the source equation

fCi;i = J i;i and J i = ρ
dxi

ds
= ρvi,

whereρ is homogeneous mass density.

3 Metric and Field Equations

The spatially homogeneous and anisotropic LRS Bianchi-type-I space-time is
described by the line element

ds2 = dt2 −A2dx2 −B2
(

dy2 + dz2
)

, (5)

whereA(t)andB(t) are the cosmic scale factors and the functions of the cosmic
time t only (non-static case).

The matter tensor for perfect fluid is

mT ij = diag (ρ,−p,−p,−p) , (6)

whereρ is the homogeneous mass density andp is the isotropic pressure.

We have assumed that the creation fieldC is function of time t only, i.e.
C(x, t) = C(t).
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Now, the Einstein’s field equations (1) modified by Hoyle-Narlikar for metric
(5) with the help of Eqs. (2), (3), and (6) can be written as

(

Ḃ

B

)2

+ 2
ȦḂ

AB
= 8π

(

ρ− 1

2
fĊ2

)

, (7)

(

Ḃ

B

)2

+ 2
B̈

B
= 8π

(

−p+
1

2
fĊ2

)

, (8)

Ä

A
+
B̈

B
+
ȦḂ

AB
= 8π

(

−p+
1

2
fĊ2

)

, (9)

ρ̇+

(

Ȧ

A
+ 2

Ḃ

B

)

(ρ+ p) = fĊ

[

C̈ +

(

Ȧ

A
+ 2

Ḃ

B

)

Ċ

]

, (10)

where dot(·) indicates the derivative with respect tot.

The spatial volume is given by

V = a3 = AB2, (11)

wherea is the mean scale factor.

The above equation (10) can be written in the form

d

dV
(V ρ) + p = fĊ (V )

d

dV

[

V Ċ (V )
]

. (12)

In order to obtain a unique solution, one has to specify the rate of creation of
matter-energy (at the expense of the negative energy of theC-field). Without
loss of generality, we assume that the rate of creation of matter energy density
is proportional to the strength of the existingC-field energy-density,i.e. the rate
of creation of matter energy density per unit proper-volumeis given by

d

dV
(V ρ) + p = α2Ċ2 ≡ α2g2 (V ) , (13)

whereα is proportionality constant and we have definedĊ(V ) ≡ g(V ).

Substituting it in Eq. (12), we get

d

dV
(V ρ) + p = fg (V )

d

dV
(V g) . (14)

Comparing right hand sides of equations (13) and (14), we get

g (V )
d

dV
(gV ) =

α2

f
g2 (V ) . (15)

Integrating, we obtain

g (V ) = c1V

“

α2

f
−1

”

, (16)
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wherec1 is the arbitrary constant of integration.

We consider the equation of state of matter as

p = γρ . (17)

Hereγ varies between the interval0 6 γ 6 1, whereasγ = 0 describes the dust
universe,γ = 1/3 presents the radiation universe,1/3 < γ < 1 ascribes the
hard universe andγ = 1 corresponds to the stiff matter.

Substituting Eqs. (16) and (17) in Eq. (14), we get

d

dV
(V ρ) + γρ = α2c21V

2
“

α2

f
−1

”

. (18)

Further which yields

ρ =
α2c21

(

2α
2

f − 1 + γ
)V

2
“

α2

f
−1

”

. (19)

Subtracting Eq. (8) from Eq. (9), we get

d

dt

(

Ȧ

A
− Ḃ

B

)

+

(

Ȧ

A
− Ḃ

B

)(

Ȧ

A
+ 2

Ḃ

B

)

= 0. (20)

Now, from Eqs. (11) and (20), we get

d

dt

(

Ȧ

A
− Ḃ

B

)

+

(

Ȧ

A
− Ḃ

B

)

V̇

V
= 0 .

Integrating, this gives

A

B
= d1 exp

(

x1

∫

dt

V

)

, d1 = const, x1 = const. (21)

From Eqs. (11) and (21), we obtain the scale factors as

A(t) = d
2/3
1 V

1/3 exp

[

2
x1

3

∫

dt

V

]

, (22)

B(t) = d
−1/3
1 V

1/3 exp

[

−x1

3

∫

dt

V

]

. (23)

Adding two times Eqs. (9), (8) and 3 times Eq. (7), we get
(

Ä

A
+ 2

B̈

B
+ 4

ȦḂ

AB
+ 2

Ḃ

B

)

=
32

2
π (ρ− p) . (24)
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From Eq. (11), we have

V̈

V
=

(

Ä

A
+ 2

B̈

B
+ 4

ȦḂ

AB
+ 2

Ḃ

B

)

. (25)

From Eqs. (24), (25) and (17), we get

V̈

V
= 12π (1 − γ) ρ. (26)

Substituting Eq. (19) in Eq. (26), we get

V̈

V
=

12π (1 − γ)α2c21
(

2α
2

f − 1 + γ
) V

2
“

α2

f
−1

”

. (27)

This further gives

V =

{

c1(f − α2)

[

12(1 − γ)

(2α2 − f + γf)

]
1/2
}

f

f−α2

t
f

f−α2 . (28)

Substituting Eq. (28) in Eq. (16), we get

g =
1

(f − α2)

[

12π (1 − γ)

(2α2 − f + γf)

]−1/2 1

t
. (29)

Also, from equationĊ (V ) = g (V ) , we get

C =
1

(f − α2)

[

12π (1 − γ)

(2α2 − f + γf)

]−1/2

log t . (30)

Substituting Eq. (28) in Eq. (19), the homogeneous mass density becomes

ρ =
α2f

12π (1 − γ) (f − α2)
2

1

t2
. (31)

Using Eq. (17), the pressure becomes

p =
α2γf

12π(1 − γ)(f − α2)2
1

t2
. (32)

From Eqs. (31) and (32), it is observed that

(i) when timet → ∞, we get, density and pressure tending to zero,i.e., the
model reduces to vacuum;
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(ii) whenf = α2, there is singularity in density and pressure;

(iii) there is also singularity in density and pressure forγ = 1 (stiff fluid).

Now, substituting Eq. (28) in Eqs. (22) and (23), we get

A(t) = d
2/3
1 K

1/3t
f

3(f−α2) exp

[

2x1

3K

(

1 − f

α2

)

t
α2

α2
−f

]

, (33)

B(t) = d
−1/3
1 K

1/3t
f

3(f−α2) exp

[−x1

3K

(

1 − f

α2

)

t
α2

α2
−f

]

, (34)

where

K =

{

c1
(

f − α2
)

[

12π (1 − γ)

(2α2 − f + γf)

]
1/2
}

f

f−α2

.

4 Physical Properties

The expansion scalarθ is defined byθ = 3H and is found as

θ =

(

f

f − α2

)

1

t
. (35)

The mean anisotropy parameter is defined by∆ = 1
3

3
∑

i=1

(

∆Hi

H

)

and is found

as

∆ =
2x2

1

K2

(

f − α2

f

)2

t
2

“

α2

α2
−f

”

. (36)

The shear scalarσ2 is defined byσ2 = 1
2

(

3
∑

i=1

H2
i − 4H2

)

= 1
2AH

2 and is

found as

σ2 =
x2

1

9K2
t
2

“

f

α2
−f

”

. (37)

The deceleration parameterq is defined byq =
d

dt

(

1

H

)

− 1 and is found as

q = 2 − 3α2

f
, (38)

where∆Hi = Hi −H.

HereH is the Hubble parameter andHi are the directional Hubble parameter.

If f > α2 then for larget, the model tends to isotropic case.
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Case I: γ = 0 (Dust Universe)

In this case, we obtain the values of various parameters as

g =
1

f − α2

[

(

2α2 − f
)

12π

]j12
1

t
,

C =
1

f − α2

[

(

2α2 − f
)

12π

]j12

log t,

ρ =
α2f

12π (f − α2)
2

1

t2
,

A(t) = d
2/3
1 K

1/3
1 t

f

3(f−α2) exp

[

2x1

3K1

(

1 − f

α2

)

t
α2

α2
−f

]

,

B(t) = d
−1/3
1 K

1/3
1 t

f

3(f−α2) exp

[−x1

3K1

(

1 − f

α2

)

t
α2

α2
−f

]

,

where

K1 =

{

c1(f − α2)

[

12π (1 − γ)

(2α2 − f)

]
1/2
}

f

f−α2

.

In this case, the expansion scalarθ is given by

θ =

(

f

f − α2

)

1

t
.

The mean anisotropy parameter is given by

∆ =
2x2

1

K2
1

(

f − α2

f

)2

t
2

“

α2

α2
−f

”

.

The shear scalarσ2 is given by

σ2 =
X2

9K2
1

t
2

“

f

α2
−f

”

.

The deceleration parameterq is given by

q = 3 − 4α2

f
,

If f > α2, this model tends to isotropy for larget.
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Case II: γ =
1/3 (Disordered Radiation Universe)

In this case, we obtain the values of various parameters as

g =
1

f − α2

[

3
(

α2 − f
)

32π

]
1/2

1

t
,

C =
1

f − α2

[

(

3α2 − f
)

12π

]
1/2

log t,

ρ =
3α2f

4π (f − α2)
2

1

t2
,

p =
α2f

4π (f − α2)
2

1

t2
,

A(t) = d
2/3
1 K

1/3
2 t

f

3(f−α2) exp

[

2x1

3K2

(

1 − f

α2

)

t
α2

α2
−f

]

,

B(t) = d
−1/3
1 K

1/3
2 t

f

3(f−α2) exp

[−x1

3K2

(

1 − f

α2

)

t
α2

α2
−f

]

,

where

K2 =

{

c1
(

f − α2
)

[

12π (1 − γ)

(3α2 − f)

]
1/2
}

f

f−α2

.

HereD1,D2,D3,D4 andX1,X2,X3,X4 are constants of integration, satisfy-
ing the relationsD1D2D3D4 = 1 andX1 +X2 +X3 +X4 = 0 .

In this case, the expansion scalarθ is given by

θ =

(

f

f − α2

)

1

t
.

The mean anisotropy parameter is given by

∆ =
4X2

K2
2

(

f − α2

f

)2

t
2

0

@

α2

α2 − f

1

A

.

The shear scalarσ2 is given by

σ2 =
X2

2K2
2

t
2

“

f

α2
−f

”

.

The deceleration parameterq is given by

q = 2 − 3α2

f
.

Forf > α2, this model also tends to isotropy for larget.
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5 Conclusion

In this paper, we have considered the space-time geometry corresponding to LRS
Bianchi type-I in Hoyle-Narlikar [21,23,24] creation fieldtheory of gravitation.

Here, we have observed that the ratiolim
t→∞

(σ

θ

)2

= 0, [for α2 < f or2f < 3α2]

hence, the model approaches to isotropy for a large value oft.

The deceleration parameterq = 2 − 3α2

f
< 0 [for 2f < 3α2] and we get the

accelerating universe. Also in this case we get negative deceleration parameter
indicating that the universe is accelerating which is consistent with the present
day observation. Pertmutteret al. [29, 30] and Riesset al. [31] have shown that
the decelerating parameter of the universe is in the range−1 6 q 6 0 and the
present day universe is undergoing accelerated expansion.

All results obtained by us are similar to the results obtained by Singh and
Chaubey [28].
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