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Data Integration for Open Data on the Web

Sebastian Neumaier1, Axel Polleres1,2, Simon Steyskal1, and Jürgen Umbrich1

1 Vienna University of Economics and Business, Austria
2 Complexity Science Hub Vienna, Austria

Abstract. In this lecture we will discuss and introduce challenges of
integrating openly available Web data and how to solve them. Firstly,
while we will address this topic from the viewpoint of Semantic Web
research, not all data is readily available as RDF or Linked Data, so
we will give an introduction to different data formats prevalent on the
Web, namely, standard formats for publishing and exchanging tabular,
tree-shaped, and graph data. Secondly, not all Open Data is really com-
pletely open, so we will discuss and address issues around licences, terms
of usage associated with Open Data, as well as documentation of data
provenance. Thirdly, we will discuss issues connected with (meta-)data
quality issues associated with Open Data on the Web and how Semantic
Web techniques and vocabularies can be used to describe and remedy
them. Fourth, we will address issues about searchability and integration
of Open Data and discuss in how far semantic search can help to over-
come these. We close with briefly summarizing further issues not covered
explicitly herein, such as multi-linguality, temporal aspects (archiving,
evolution, temporal querying), as well as how/whether OWL and RDFS
reasoning on top of integrated open data could be help.

1 Introduction

Over the last decade we have seen the World Wide Web being populated more
and more by “machines”. The world wide Web has evolved from its original
form as a network of linked Documents, readable by humans to more and more
a Web of data and APIs. That is, nowadays, even if we interact as humans
with Web pages, in most cases (i) the contents of Web pages are generated
from Databases in the backend, (ii) the Web content we see as humans contains
annotations readable by machines, and even (iii) the way we interact with Web
pages generates data (frighteningly, even often without the users being aware
of), collected and stored again in databases around the globe. It is therefore
valid to say that the Web of Data has become a reality and – to some extent –
even the vision of the Semantic Web. In fact, this vision of the Semantic Web has
itself evolved over the decades, starting with Berners-Lee et al.’s seminal article
in 2001 [13] that already envisioned the future Web as “federating particular
knowledge bases and databases to perform anticipated tasks for humans and
their agents”. Based on these ideas a lot of effort and research has been devoted



to the World Wide Web Consortium (W3C) Semantic Web activity,3 which in
2013 has been subsumed by – i.e., renamed to – “Data Activity”.4

In many aspects, the Semantic Web has not necessarily evolved as expected,
and the biggest success stories so far do less depend on formal logics [37] than
we may have expected, but more on the availability of data. Another recent
article by Bernstein et al. [14] takes a backwards look on the community and
summarizes successes of the Semantic Web community such as the establish-
ment of lightweight annotation vocabularies like Schema.org on Web pages, or
praising the uptake of large companies such as Google, Yahoo!, Microsoft, and
Facebook who are developing large knowledge graphs, which however, so far
these companies mostly keep closed.

Thus, if Web researchers outside of these companies want to tap into the rich
sources of Data available now on the Web they need to develop their own data
workflows to find relevant and usable data. To their help, more and more Open
Data is being published on the Web, that is, data that is made freely available
by mostly public institutions (Open Government Data) both for transparency
reasons and with the goal to “fuel” a Data Economy, pushed both by the EU [29]
and the G8 [72].

The present lecture notes may be viewed as partially an experience report
as well as – hopefully – a guide through challenges arising when using (Open)
data from the Web. The authors have been involved over the past view years
in several projects and publications around the topic of Open Data integration,
monitoring, and processing. The main challenges we have come across in all these
projects are largely overlapping and therefore we decided to present them in the
present chapter:

1. Where to find Open Data? (Section 2) Most Open Data nowadays can
be found on so called Open Data Portals, that is, data catalogs, typically
allowing API access and hosting dataset descriptions and links to actual data
resources.

2. “Low-level” data heterogeneity (Section 3) As we will see, most of the
structured data provided as Open Data is not readily available as RDF or
Linked Data – the preferred formats for semantic data access described in
other chapters of this volume. Different formats are much more prevalent,
plus encoding issues make it difficult to access those datasets.

3. Licenses and Provenance (Section 4) Not all Open Data is really com-
pletely open, since most data on the Web is attached to different licences,
terms and conditions, so we will discuss how and whether these licenses can
be interpreted by machines, or, respectively how the provenance of different
integrated data sources can be tracked.

4. Quality issues (Section 5) A major challenge for data – also often related
to its provenance – is quality; on the one hand the re-use of poor quality
data is obviously not advisable, but on the other hand different applications
might have different demands/definitions of quality.

3https://www.w3.org/2001/sw/, last accessed 30/03/2017
4https://www.w3.org/2013/data/, last accessed 30/03/2017



5. How to find data – Searchability? (Section 6) Last, but not least, we
will look into current solutions for search in Open Data, which we pose as a
major open research challenge: whereas crawling and (keyword-based search)
of human readable websites work well, this is not yet the case for structured
data on the Web; we will discuss why and sketch some routes ahead.

Besides these main questions, we will conclude with summarizing issues and
open questions around integrating Open Data from the Web not covered explic-
itly herein in Section 7, such as multi-linguality, temporal aspects (archiving,
evolution, temporal querying), as well as how/whether OWL and RDFS reason-
ing on top of integrated open data could be help.

2 Where to find Web Data?

If we look for sources of openly available data that is widely discussed in the
literature, we mainly can identify three starting points, which are partially over-
lapping:

– User-created open data bases
– The Linked Open Data “Cloud”
– Webcrawls
– Open Data Portals

User-created open data bases, through efforts such as Wikipedia, are large amounts
of data and data-bases that have been co-created by user communities dis-
tributed around the globe; the most important ones being listed as follows:

– DBpedia [44] is a community effort that has created one of the biggest
and most important cross-domain dataset in RDF [19] in the focal point
of the so called Linked Open Data (LOD) cloud [6]. At its core is a set of
declarative mappings extracting data from Wikipedia infoboxes and tables
into RDF and it is accessible as well as through dumps also through an open
query interface supporting the SPARQL [33] query language. DBpedia can
therefore be well called one of the cornerstones of Semantic Web and Linked
Data research being the subject and center of a large number of research pa-
pers over the past few years. Reported numbers vary as DBpedia is modular
and steadily growing with Wikipeda, e.g. in 2015 DBpedia contained overall
more than 3B RDF Statements 5, whereof the English DBpedia contributed
837M statements (RDF triples). Those 837M RDF triples alone amount to
4.7GB when stored in the compressed RDF format HDT [30] 6. However, as
we will see there are many, indeed far bigger other openly accessible data
sources, that yet remain to be integrated, which are rather in the focus of
the present chapter.

5http://wiki.dbpedia.org/about/facts-figures, last accessed 30/03/2017
6http://www.rdfhdt.org/datasets/, last accessed 30/03/2017



– Wikidata [74] a similar, but conceptually different effort has been started in
2012 to bring order into data items in Wikipedia, with the idea to – instead
of extracting data from semi-structured Wikipages – build a database for
data observations with fixed properties and datatypes, mainly with the idea
to avoid extraction errors and provide means to record provenance directly
with the data, with likewise 100s of millions of facts in the meantime: exact
numbers are hard to give, but [71] report some statistics of the status of
2015, when Freebase was included into Wikidata; we note that counting RDF
triples7 is only partially useful, since the data representation of Wikidata is
not directly comparable with the one from DBpedia [35, 36].

– OpenStreetmap as another example of an openly available data base that
has largely been created by users contains a vast amount of geographic
features to obtain an openly available and re-usable map; with currently
739.7GB (uncompressed) data in OSM’s native XML format (and still 33GB
compressed).8

The Linked Open Data “Cloud” – already mentioned above – is a manually
curated collection of datasets that are published on the Web openly, adhering
to the so-called Linked Data principles, defined as follows [12] (cf. chapters of
previous editions of the Reasoning Web book series for good overview articles):

LDP1: use URIs as names for things;
LDP2: use HTTP URIs so those names can be dereferenced;
LDP3: return useful – herein we assume RDF – information upon dereferencing

of those URIs; and
LDP4: include links using externally dereferenceable URIs.9

The latest iteration of the LOD Cloud [1] contains – with DBpedia in its center –
hundreds of datasets with equal or even larger sizes than DBpedia, documenting
a significant growth of Linked Data over the past years. Still, while often in the
Semantic Web literature the LOD cloud and the “Web of Data” are implicitly
equated, there is a lot of structured data available on the Web (a) either, while
using RDF, not being linked to other datasets, or (b) provided in other, popular
formats than RDF.

Running Web crawls is the only way to actually find and discover structured
Web Data, which is both resource intensive and challenging in terms of respect-
ing politeness rules when crawling. However, some Web crawls have been made
openly available, such as the Common Crawl corpus which contains “petabytes
of data collected over the last 7 years”10. Indeed the project has already been
used to collect and analyse the availability (and quality) of structured data on
the Web, e.g. in the Web Data Commons Project [50, 51].

7Executing the SPARQL query SELECT (count(*) as ?C ) WHERE {?S ?P ?O }
on https://query.wikidata.org/ gives 1.7B triples, last accessed 30/03/2017.

8http://wiki.openstreetmap.org/wiki/Planet.osm, last accessed 30/03/2017
9That is, within your published RDF graph, use HTTP URIs pointing to other

dereferenceable documents, that possibly contain further RDF graphs.
10http://commoncrawl.org/, last accessed 30/03/2017



Table 1: Top-10 portals, ordered by datasets.

domain of portal URL Origin Software |D| |R|

data.gov US CKAN 192,738 170,524
www.data.gc.ca Canada CKAN 147,364 428,141
transparenz.hamburg.de Germany CKAN 69,147 101,874
data.noaa.gov US CKAN 57,934 148,343
geothermaldata.org US CKAN 56,388 59,804
data.gov.au Australia CKAN 42,116 77,900
data.gov.uk UK CKAN 41,615 80,980
hubofdata.ru Russia CKAN 28,393 62,700
openresearchdata.ch Switzerland CKAN 20,667 161,259
govdata.de Germany CKAN 19,334 55,860

Open Data portals are collections or catalogs that index metadata and link to
actual data resources which have become popular over the past few years through
various Open Government Data Initiatives, but also in the private sector. Apart
from all the other sources mentioned so far, most of the data published openly
is indexed in some kind of Open Data Portal. We therefore will discuss these
portals in the rest of this paper in more detail.

Open Data portals

Fig. 1: High-level structure of
a Data Catalog.

Most of the current “open” data form part of a
dataset that is published in Open Data portals
which are basically catalogues similar to digi-
tal libraries (cf. Figure 1): in such catalogues,
a dataset aggregates a group of data files (re-
ferred to as resources or distributions) which
are available for access or download in one or
more formats (e.g., CSV, PDF, Microsoft Excel,
etc.). Additionally, a dataset contains metadata
(i.e., basic descriptive information in structured
format) about these resources, e.g. authorship,
provenance or licensing information. Most of
these portals rely on existing software frame-

works, such as CKAN11 or Socrata,12 that offer UI, search, and API functionali-
ties. CKAN is the most prominent portal software framework used for publishing
Open Data and is used by several governmental portals including data.gov.uk

and data.gov.
For example, the Humanitarian Data Exchange13 (see Figure 2) is a portal by

the United Nations. It aggregates and publishes data about the context in which

11https://ckan.org/, last accessed 30/3/2017
12https://socrata.com/, last accessed 30/3/2017
13https://data.humdata.org/, last accessed 27/3/2017



a humanitarian crisis is occurring (e.g., damage assessments and geospatial data)
and data about the people affected by the crisis. The datasets on this portal are
described using several metadata fields, and the metadata description can be
retrieved in JSON format using the Web API of the data portal (cf. Figure 2).

The metadata description of these datasets provide download links for the
actual content. For instance, the particular dataset description in Figure 2 –
a dataset reporting the amounts paid by refugees to facilitate their movement
to Europe – holds a URL which refers to a table (a CSV file) containing the
corresponding data, displayed in Table 2.

{
"name":"amounts -paid -by-refugees -...",
"title": "Amounts paid by refugees...",
"license": "Creative Commons Attribution",
"tags": [

"europe",
"mediterranean",
"refugee"

],
"resources": [

{
"format": "CSV",
"name": "The Money Trail - South - Prices",
"created": "2015 -10 -28T21:20:40.006453",
"url": "https :// docs.google.com/...",

}
],
...

}

Fig. 2: Example dataset description from the Humanitarian Data Exchange portal.

Table 2: The tabular content of the dataset in Figure 2

Route Period Ref crossing Total in EUR 2014
Central Med 2010-2015 285,700 3,643,000,000
East Borders 2010-2015 5,217 72,000,000
East Med Land 2010-2015 108,089 1,751,000,000
East Med Sea 2010-2015 61,922 1,053,000,000
West African 2010-2015 1,040 4,000,000
West Balkans 2010-2015 74,347 1,589,000,000
West Med 2010-2015 29,487 251,000,000

3 Data Formats on the Web

When we discuss different available data on the Web, we already emphasized
that – despite being subject of a lot of research – RDF and Linked Data are not



necessary the prevalent formats for published data on the Web. An analysis of
the datasets systematically catalogued in Open Data portals will confirm this.
Likewise, we will have to discuss metadata formats on these portals.

Data formats on Open Data portals. Table 3 shows the top used formats and the
number of unique resources together with their number of portals they appear,
adapted from [58], where we analysed and crawled metadata from 260 Open
Data Portals for cues to the data formats in which different datasets are pro-
vided. Note, that these numbers are based on available metadata information of
the datasets and can be higher due to varying spellings, misspellings, and miss-
ing metadata. Therefore, these numbers should be considered as a lower bound
for the respective formats. Bold highlighted values indicate that the format is
considered as open as per the Open Definition [12]:14 the open definition sets out
several guidelines of which data formats are to be considered “open”, according
to which we have analysed assessed openness by a list of compliant formats,
cf. [58].

Table 3: Most frequent formats.

format |resources| % |portals|

1 HTML 491,891 25 74
2 PDF 182,026 9.2 83
3 CSV 179,892 9.1 108
4 XLS(X) 120,703 6.1 89
5 XML 90,074 4.6 79
6 ZIP 50,116 2.5 74

. . .
11 JSON 28,923 1.5 77
16 RDF 10,445 0.5 28

A surprising observation is that ∼10% of all the resources are published as
PDF files. This is remarkable, because strictly speaking PDF cannot be consid-
ered as an Open Data format: while PDFs may contain structured data (e.g. in
tables) there are no standard ways to extract such structured data from PDFs
- or general-purpose document formats in general. Therefore, PDFs cannot be
considered as machine-readable, nor as a suitable way for publishing Open Data.
As we also see, RDF does not appear among the top-15 formats for Open Data
publishing.15 This underlines the previously stated hypothesis that – especially
in the area of Open Government Data – openly available datasets on data portals
are mostly not published as RDF or Linked Data.

14http://opendefinition.org/ofd/, last accessed 30/03/2017
15The numbers for the RDF serializations JSON-LD (8 resources) and TTL (55) are

vanishingly small.



Also, JSON does not appear among the top ten formats in terms of numbers
of published data resources on Open Data portals. Still, we include those main
formats in our discussion below, as

– particularly JSON and RDF play a significant role in metadata descriptions,

– JSON is the prevalent format for many Web APIs,

– RDF, as we saw, is apart from the Linked Data cloud prevalent in Web pages
and crawls through its support as an annotation format by popular search
engines.

In the following we introduce some of these popular, well known, data formats
on the Web and categorize them by their structure, namely, graph-based, tree-
shaped, and tabular formats.

3.1 Graph-based formats

RDF, W3C recommendation since 2004 [41] and “refurbished” in 2014 [23, 19],
was originally conceived as a metadata model language for describing resources
on the web. It evolved (also through deployment) to a universal model and
format to describe arbitrary relations between resources identified, typically, by
URIs, such that they can be read and understood by machines.

RDF itself consists of statements in the form of subject, predicate, object
triples. RDF triples can be displayed as graphs where the subjects and objects
are nodes and the predicates are directed edges. RDF uses vocabularies to define
the set of elements that can be used in an application. Vocabularies are similar
to schemas for RDF datasets and can also define the domain and range of pred-
icates. The graph in Figure 3 represents the metadata description of the dataset
in Figure 2 in the DCAT (Data Catalog) vocabulary [48].16

There exist several formats to serialize RDF data. Most prominent is RD-
F/XML, the XML serialization first introduced in the course of 1999 W3C spec-
ification of the RDF data model, but there are also a more readable/concise
textual serialization formats such as the line-based N-Triples [21] and the ”Terse
RDF Language” TURTLE [10] syntax. More recent, in 2014, W3C released the
first recommendation for JSON-LD [68]. JSON-LD is an extension for the JSON
format (see below) mostly allowing to specify namespaces for identifiers and
support of URIs (supporting Linked Data principles natively in JSON) which
allows the serialization of RDF as JSON, or vice versa, the transformation of
JSON as RDF: conventional JSON parser and databases can be used; users of
JSON-LD which are mainly interested in conventional JSON, are not required
to understand RDF and do not have to use the Linked Data additions.

16DCAT is a vocabulary commonly used for describing general metadata about
datasets. See Section 5.2 for mapping and homogenization of metadata descriptions
using standard vocabularies.



Fig. 3: RDF graph of DCAT metadata mapping of Figure 2

3.2 Tree-shaped formats

The JSON file format [18] is a so-called semi-structured file format, i.e., where
documents are loosely structured without a fixed schema (as for example data
in relational databases) as attribute–value pairs where values can be primitive
(Strings, numbers, Booleans), arrays (sequences of values enclosed in square
brackets ’[’,’]’), or nested JSON objects (enclosed in curly braces ’{’,’}’), thus –
essentially – providing a serialization format for tree-shaped, nested structures.
For an example for JSON we refer to Figure 2.

Initially, the JSON format was mainly intended to transmit data between
servers and web applications, supported by web services and APIs. In the context
of Open Data we often find JSON as a format to describe metadata but also
to publish the actual data: also raw tabular data can easily be transformed into
semi-structured and tree-based formats like JSON17 and, therefore, is often used
as alternative representation to access the data. On the other hand, JSON is the
de facto standard for retrieving metadata from Open Data portals.

XML. For the sake of completeness, due to its long history, and also due to
its still striking prevalence as a data exchange format of choice, we shall also
mention some observations on XML. This prevalence is not really surprising
since many industry standards and tools export and deliver XML, which is then
used as the output for for many legacy applications or still popular for many
Web APIs, e.g., in the area of geographical information systems (e.g. KML,18

17For instance, see Converter Tools on https://project-open-data.cio.gov/, last
accessed 24/03/2017

18https://developers.google.com/kml/documentation/, last accessed
24/03/2017



GML,19 WFS,20 etc.). Likewise, XML has a large number of associated stan-
dards around it such as query, navigation, transformation and schema languages
like XQuery,21 XPath,22 XSLT23, and XML Schema24 which are still actively de-
veloped, supported by semi-structured database systems, and other tools. XML
by itself has been subject to extensive research, for example in the fields of
data exchange [4, Part III] or query languages [8]. Particularly, in the context
of the Semantic Web, there have also been proposals to combine XQuery with
SPARQL, cf. for instance [15, 26] and references therein. The issue of interoper-
ability between RDF and XML indeed is further discussed within the W3C in
their recently started ”RDF and XML Interoperability Community Group” 25

see also [16] for a summary. So, whereas JSON has probably better support
in terms of developer-friendliness and recent uptake particularly through Web
APIs, there is still a strong community with well-established standards behind
XML technologies. For instance, schema languages or query languages for JSON
exist as proposals, but their formal underpinning is still under discussion, cf.
e.g. [63, 17]. Another approach would be to adopt, reuse and extend XML tech-
nologies to work on JSON itself, as for instance proposed in [26]. On an abstract
level, there is not much to argue about JSON and XML just being two syntactic
variants for serializing arbitrary, tree-shaped data.

3.3 Tabular data formats

Last but not least, potentially driven also by the fact that the vast majority
of Open Data on the Web originates from relational databases or simply from
spreadsheets, a large part of the Web of Open Data consists of tabular data. This
is illustrated by the fact that two of the most prominent formats for publishing
Open Data in Table 3 cover tabular data: CSV and XLS. Note particularly that
both of these formats are present on more Open Data portals than for instance
XML.

While XLS (the export format of Microsoft Excel) is obviously a proprietary
open format, CSV (comma-separated values) is a simple, open format with a
standard specification allowing to serialize arbitrary tables as text (RFC4180) [67].
However, as we have shown in a recent analysis [54], compliance with this stan-
dard across published CSVs is not consistent: in Open Data corpus containing
200K tabular resources with a total file size of 413GB we found out that out of
the resources in Open Data portals labelled as a tabular only 50% can be con-
sidered CSV files. In this work we also investigated different use of delimiters,
the availability of (multiple) header rows or cases where single CSV files actually
contain multiple tables as common problems.

19http://www.opengeospatial.org/standards/gml, last accessed 24/03/2017
20http://www.opengeospatial.org/standards/wfs, last accessed 24/03/2017
21https://www.w3.org/TR/xquery-30/, last accessed 24/03/2017
22https://www.w3.org/TR/xpath-30/, last accessed 24/03/2017
23https://www.w3.org/TR/xslt-30/, last accessed 24/03/2017
24https://www.w3.org/XML/Schema, last accessed 24/03/2017
25https://www.w3.org/community/rax/, last accessed 24/03/2017



Last, but not least, as opposed to tabular data in relational databases, which
typically adhere to a fixed schema and constraints, these constraints, datatype
information and other schema information is typically lost when being exported
and re-published as CSVs. This loss can be compensated partially by adding this
information as additional metadata to the published tables; one particular format
for such kind of metadata has been recently standardized by the W3C [65]. For
more details on the importance of metadata we refer also to Section 5 below.

3.4 Data Formats – Summary

Overall, while data formats are often only considered syntactic sugar, one should
not underestimate the issues about conversions, scripts parsing errors, stability
of tools, etc. where often significant amounts of work incurs. While any data can
be converted/represented in principle into a CSV, XML, or RDF serialization,
one should keep in mind that a canonical, ”dumb” serialization in RDF by itself,
does not ”add” any ”semantics”.

For instance, a naive RDF conversion (in Turtle syntax) of the CSV in Table 2
could look as follows in Fig. 4, but would obviously not make the data more
“machine-readbable” or easier to process.

@prefix : <http://www.example.org/> .

:c1 rdfs:label "Route".
:c2 rdfs:label "Period".
:c3 rdfs:label "Ref_crossing".
:c4 rdfs:label "Total in EUR 2014".

[:c1 "Central Med"; :c2 "2010-2015", :c3 "285,700"; :c4 "3,643,000,000"].
[:c1 "East Borders"; :c2 "2010-2015"; :c3 "5,217"; :c4 "72,000,000" ].
[:c1 "East Med Land" ; :c2 "2010-2015"; :c3 "108,089" ; :c4 "1,751,000,000"].
[:c1 "East Med Sea"; :c2 "2010-2015" ; :c3 "61,922"; :c4"1,053,000,000"].
[:c1 "West African"; :c2 "2010-2015"; :c3 "1,040"; :c4 "4,000,000"].
[:c1 "West Balkans"; :c2 "2010-2015"; :c3 "74,347"; :c4 "1,589,000,000"].
[:c1 "West Med"; :c2 "2010-2015"; :c3 "29,487"; :c4 "251,000,000"].

Fig. 4: Naive conversion of tabular data into RDF

We would leave coming up with a likewise naive (and probably useless) con-
version to XML or JSON to the reader: the real intelligence in mapping such
data lies in finding suitable ontologies to describe the properties representing
columns c1 to c4, recognizing the datatypes of the column values, linking names
such as ”East Med Sea” to actual entities occurring in other datasets, etc. Still,
typically, in data processing workflows more than 80% of the the effort to data
conversion, pre-processing and cleansing tasks.

Within the Semantic Web, or to be more precise, within the closed scope of
Linked Data this problem and the steps involved have been discussed in depth
in the literature [7, 60]. A partial instantiation of a platform which shall provide
a cleansed and integrated version of the Web of Linked Data is presented by the



LOD-Laundromat [11] project: here, the authors present a cleansed unified store
of Linked Data as an experimental platform for the whole Web of Linked Data,
mostly containing the all datasets of the current LOD cloud, are made available.
Querying this platform efficiently and investigating the properties of this subset
of the Web of Data is a subject of active ongoing research, despite only Linked
RDF data has been considered: however, building such a platform for the scale
of arbitrary Open Data on the Web, or even only for the data accumulated in
Open Data portals would demand a solution at a much larger scale, handling
more tedious cleansing, data format conversion and schema integration problems.

4 Licensing and Provenance of Data

Publishing data on the Web is more than just making it publicly accessible.
When it comes to consuming publicly accessible data, it is crucial for data con-
sumers to be able to assess the trustworthiness of the data as well as being able
to use it on a secure legal basis and to know where the data is coming from,
or how it has been pre-processed. As such, if data is to be published on the
Web, appropriate metadata (e.g., describing the data’s provenance and licensing
information) should be published alongside with it, thus making published data
as self-descriptive as possible (cf. [34]).

4.1 Open Data Licensing in Practice

While metadata about terms and conditions under which a dataset can be re-
used are essential for its users, according to the Linked Open Data Cloud web
page, only less than 8% of the linked data datesets provide license information26

Within Open data portals, the situation seems slightly better overall: more
than 50% of the monitored datasets in the Open Data portals in the Portalwatch
project (see Section 5 below) announce somehow in the metadata some kind of
license information [58]. The most prevalent license keys used in Open Data
portals [58] are listed in Table 4.

While most of the provided license definitions lack a machine-readable de-
scription that would allow automated compatibility checks of different licenses
or alike, some are not even compliant with Open Definition conformant data
licenses (cf. Table 5).

In order to circumvent these shortcomings, different RDF vocabularies have
been introduced to formally describe licenses as well as provenance information
of datasets, two of which (ODRL and PROV) we will briefly introduce in the
next two subsections.

26http://lod-cloud.net/state/state_2014/#toc10, last accessed 01/05/2017.
27http://open-data.europa.eu/kos/licence/EuropeanCommission, last accessed

24/03/2017



Table 4: Top-10 licenses.

license id |datasets| % |portals|

ca-ogl-lgo 239662 32.3 1
notspecified 193043 26 71
dl-de-by-2.0 55117 7.4 7
CC-BY-4.0 49198 6.6 84
us-pd 35288 4.8 1
OGL-UK-3.0 33164 4.5 18
other-nc 27705 3.7 21
CC0-1.0 9931 1.3 36
dl-de-by-1.0 9608 1.3 6
Europ.Comm.27 8604 1.2 2

others 80164 10.8

Table 5: Open Definition conformant data licenses [40]

License

Creative Commons Zero (CC0)
Creative Commons Attribution 4.0 (CC-BY-4.0)
Creative Commons Attribution Share-Alike 4.0 (CC-BY-SA-4.0)
Open Data Commons Attribution License (ODC-BY)
Open Data Commons Public Domain Dedication and Licence (ODC-PDDL)
Open Data Commons Open Database License (ODC-ODbL)

4.2 Making Licenses machine-readable

The Open Digital Rights Language (ODRL) [39] is a comprehensive policy ex-
pression language (representable with a resp. RDF vocabulary) that has been
demonstrated to be suitable for expressing fine-grained access restrictions, access
policies, as well as licensing information for Linked Data as shown in [20, 69].

An ODRL Policy is composed of a set of ODRL Rules and an ODRL Conflict
Resolution Strategy, which is used by the enforcement mechanism to ensure that
when conflicts among rules occur, a system either grants access, denies access or
generates an error in a non-ambiguous manner.

An ODRL Rule either permits or prohibits the execution of a certain action
on an asset (e.g. the data requested by the data consumer). The scope of such
rules can be further refined by explicitly specifying the party/parties that the
rule applies to (e.g. Alice is allowed to access some dataset), using constraints
(e.g. access is allowed until a certain date) or in case of permission rules by
defining duties (e.g. a payment of 10 euros is required).

Listing 1.1 demonstrates how ODRL can be used to represent the Cre-
ativeCommons license CC-BY 4.0.

Listing 1.1: CC-BY 4.0 represented in ODRL



<http://purl.org/NET/rdflicense/cc-by4.0>

a odrl:Policy ;

rdfs:label "Creative Commons CC-BY" ;

rdfs:seeAlso

<http://creativecommons.org/licenses/by/4.0/legalcode> ;

dct:source <http://creativecommons.org/licenses/by/4.0/> ;

dct:hasVersion "4.0" ;

dct:language <http://www.lexvo.org/page/iso639-3/eng> ;

odrl:permission [

odrl:action cc:Distribution,

cc:Reproduction, cc:DerivativeWorks ;

odrl:duty [

odrl:action cc:Notice, cc:Attribution

]

] .

Policy Conflict Resolution A rule that permits or prohibits the execution of
an action on an asset could potentially affect related actions on that same asset.
Explicit relationships among actions in ODRL are defined using a subsumption
hierarchy, which states that an action α1 is a broader term for action α2 and
thus might influence its permission/prohibition (cf. Figure 5). On the other hand
implicit dependencies indicate that the permission associated with an action α1

requires another action α2 to be permitted also. Implicit dependencies can only
be identified by interpreting the natural language description of the respective
ODRL Actions (cf. Figure 6). As such, when it comes to the enforcement of
access policies defined in ODRL, there is a need for a reasoning engine which is
capable of catering for both explicit and implicit dependencies between actions.

odrl:useodrl:distribute odrl:reproduce

odrl:presentodrl:display odrl:play

odrl:print

narrower narrower

narrower

narrower narrower

narrower

broader broader

broader

broader broader

broader

Fig. 5: Example of explicit dependencies in
ODRL.

odrl:aggregate

odrl:extract odrl:read

odrl:use

requires requires

requires

Fig. 6: Example of implicit dependencies in
ODRL.



4.3 Tracking the Provenance of Data

In order to handle the unique challenges of diverse and unverified RDF data
spread over RDF datasets published at different URIs by different data publish-
ers across the Web, the inclusion of a notion of provenance is necessary. The W3C
PROV Working Group [49] was chartered to address these issues and developed
an RDF vocabulary to enable annotation of datasets with interchangeable prove-
nance information. On a high level PROV distinguishes between entities, agents,
and activities (see Figure 7). A prov:Entity can be all kinds of things, digital

Fig. 7: The core concepts of PROV. Source: Taken from [49]

or not, which are created or modified. Activities are the processes which create
or modify entities. An prov:Agent is something or someone who is responsible
for a prov:Activity (and indirectly also for an entity).

Listing 1.2 illustrates a PROV example (all other triples removed) of two ob-
servations, where observation ex:obs123 was derived from another observation
ex:obs789 via an activity ex:activity456 on the 1st of January 2017 at 01:01.
This derivation was executed according to the rule ex:rule937 with an agent
ex:fred being responsible. This use of the PROV vocabulary models tracking of
source observations, a timestamp, the conversion rule and the responsible agent
(which could be a person or software component). The PROV vocabulary could
thus be used to annotated whole datasets, or single observations (data points)
within such dataset, or, respectively any derivations and aggregations made from
open data sources re-published elsewhere.

Listing 1.2: PROV example

ex:obs123 a prov:Entity ;

prov:generatedAtTime "2017-01-01T01:01:01"^^xsd:dateTime;

prov:wasGeneratedBy ex:activity456 ;

prov:wasDerivedFrom ex:obs789 .

ex:activity456 a prov:Activity;

prov:qualifiedAssociation [



a Association ;

prov:wasAssociatedWith ex:fred ;

prov:hadPlan ex:rule397 .

] .

5 Metadata Quality Issues and Vocabularies

The Open Data Portalwatch project [58] has originally been set up as a frame-
work for monitoring and quality assessment of (governmental) Open Data por-
tals, see http://data.wu.ac.at/portalwatch. It monitors data from portals
using the CKAN, Socrata, and OpenDataSoft software frameworks, as well as
portals providing their metadata in the DCAT RDF vocabulary.

Currently, as of the second week of 2017, the framework monitors 261 portals,
which describe in total about 854k datasets with more than 2 million distribu-
tions, i.e., download URLs (cf. Table 6). As we monitor and crawl the metadata
of these portals in a weekly fashion, we can use the gathered insights in two
ways to enrich the crawled metadata of these portals: namely, (i) we publish
and serve the integrated and homogenized metadata descriptions in a weekly,
versioned manner, (ii) we enrich these metadata descriptions by assessed quality
measures along several dimensions. These dimensions and metrics are defined
on top of the DCAT vocabulary, which allows us to treat and assess the content
independent of the portal’s software and own metadata schema.

Table 6: Monitored portals and datasets in Portalwatch

total CKAN Socrata OpenDataSoft DCAT

portals 261 149 99 11 2
datasets 854,013 767,364 81,268 3,340 2,041
URLs 2,057,924 1,964,971 104,298 12,398 6,092

The quality assessment is performed along the following dimensions: (i) The
existence dimension consists of metrics checking for important information, e.g.,
if there is contact information in the metadata. (ii) The metrics of the confor-
mance dimension check if the available information adheres to a certain format,
e.g., if the contact information is a valid email address. (iii) The open data di-
mension’s metrics test if the specified format and license information is suitable
to classify a dataset as open. The formalization of all quality metrics currently
assessed on the Portalwatch platform and implementation details can be found
in [58].



5.1 Heterogeneous metadata descriptions

Different Open Data portals use different metadata keys to describe the datasets
they host, mostly dependent on the software framwwork under which the portal
runs: while the schema for metadata descriptions on Socrata and OpenDataSoft
portals are fixed and predefined (they use their own vocabulary and metadata
keys), CKAN provides a higher flexibility in terms of own, per portal, metadata
schema and vocabulary. Thus, overall, the metadata that can be gathered from
Open Data Portals show a high degree of heterogeneity.

In order to provide the metadata in a standard vocabulary, there exists a
CKAN-to-DCAT extension for the CKAN software that defines mappings for
datasets and their resources to the corresponding DCAT classes dcat:Dataset

and dcat:Distribution and offers it via the CKAN API. However, in general
it cannot be assumed that this extension is deployed for all CKAN portals: we
were able to retrieve the DCAT descriptions of datasets for 93 of the 149 active
CKAN portals monitored by Portalwatch [59].

Also, the CKAN software allows portal providers to include additional meta-
data fields in the metadata schema. When retrieving the metadata description
for a dataset via the CKAN API, these keys are included in the resulting JSON.
However, it is neither guaranteed that the CKAN-to-DCAT conversion of the
CKAN metadata contains these extra fields, nor that these extra fields, if ex-
ported, are available in a standardized way.

We analysed the metadata of 749k datasets over all 149 CKAN portals and
extracted a total of 3746 distinct extra metadata fields [59]. Table 7 lists the
most frequently used fields sorted by the number of portals they appear in;
most frequent spatial in 29 portals. Most of these cross-portal extra keys are
generated by widely used CKAN extensions. The keys in Table 7 are all generated
by the harvesting28 and spatial extension.29

We manually selected mappings for the most frequent extra keys if they
are not already included in the mapping; the selected properties are listed in
the “DCAT key” column in Table 7 and are included in the homogenized, re-
exposed, metadata descriptions, cf. Section 5.2. In case of an ?-cell, we were not
able to choose an appropriate DCAT core property.

5.2 Homogenizing metadata using DCAT and other metadata
vocabularies

The W3C identified the issue of heterogeneous metadata schemas across the
data portals, and proposed an RDF vocabulary to solve this issue: The meta-
data standard DCAT [48] (Data Catalog Vocabulary) describes data catalogs
and corresponding datasets. It models the datasets and their distributions (pub-
lished data in different formats) and re-uses various existing vocabularies such
as Dublin Core terms [75], and the SKOS [52] vocabulary.

28http://extensions.ckan.org/extension/harvest/, last accessed 24/03/2017
29http://docs.ckan.org/projects/ckanext-spatial/en/latest/, last accessed

24/03/2017



Table 7: Most frequent extra keys

Extra key Portals Datasets Mapping

spatial 29 315,652 dct:spatial

harvest object id 29 514,489 ?

harvest source id 28 486,388 ?

harvest source title 28 486,287 ?

guid 21 276,144 dct:identifier

contact-email 17 272,208 dcat:contactPoint

spatial-reference-system 16 263,012 ?

metadata-date 15 265,373 dct:issued

The recent DCAT application profile for data portals in Europe (DCAT-
AP)30 extends the DCAT core vocabulary and aims towards the integration of
datasets from different European data portals. In its current version (v1.1) it
extends the existing DCAT schema by a set of additional properties. DCAT-
AP allows to specify the version and the period of time of a dataset. Further,
it classifies certain predicates as “optional”, “recommended” or “mandatory”.
For instance, in DCAT-AP it is mandatory for a dcat:Distribution to hold a
dcat:accessURL.

An earlier approach, in 2011, is the the VoID vocabulary [3] published by
W3C as an Interest Group Note. VoID – the Vocabulary for Interlinked Datasets
– is an RDF schema for describing metadata about linked datasets: it has been
developed specifically for data in RDF representation and is therefore comple-
mentary to the DCAT model and not fully suitable to model metadata on Open
Data portals (which usually host resources in various formats) in general.

In 2011 Fürber and Hepp [32] proposed an ontology for data quality manage-
ment that allows the formulation of data quality, cleansing rules, a classification
of data quality problems and the computation of data quality scores. The classes
and properties of this ontology include concrete data quality dimensions (e.g.,
completeness and accuracy) and concrete data cleansing rules (such as whites-
pace removal) and provides a total of about 50 classes and 50 properties. The
ontology allows a detailed modelling of data quality management systems, and
might be partially applicable and useful in our system and to our data. How-
ever, in the Open Data Portalwatch we decided to follow the W3C Data on the
Web Best Practices and use the more lightweight Data Quality Vocabulary for
describing the quality assessment dimensions and steps.

More recently, in 2015 Assaf et al. [5] propose HDL, an harmonized dataset
model. HDL is mainly based on a set of frequent CKAN keys. On this basis,
the authors define mappings from other metadata schemas, including Socrata,
DCAT and Schema.org.

30https://joinup.ec.europa.eu/asset/dcat_application_profile/

description, last accessed 24/03/2017



Metadata mapping by the Open Data Portalwatch framework. In order to offer
the harvested datasets in the Portalwatch project in a homogenized and stan-
dardised way, we implemented a system that re-exposes data extracted from
Open Data portal APIs such as CKAN [59]: the output formats include a subset
of W3C’s DCAT with extensions and Schema.org’s Dataset-oriented vocabu-
lary.31 We enrich the integrated metadata by the quality measurements of the
Portalwatch framework available as RDF data using the Data Quality Vocab-
ulary32 (DQV). To further describe tabular data in our dataset corpus we use
simple heuristics to generate additional metadata using the vocabulary defined
by the W3C CSV on the Web working group [65], which we likewise add to
our enriched metadata. We use the PROV ontology (cf. Section 4.3) to record
and annotate the provenance of our generated/published data (which is par-
tially generated by using heuristics). The example graph in Figure 8 displays
the generated data for the DCAT dataset, the quality measurements, the CSV
metadata, and the provenance information.

Fig. 8: The mapped DCAT dataset is further enriched by three additional datasets
(indicated by the bold edges): (i) each DCAT dataset is associated to a set of quality
measurements; (ii) there is additional provenance information available for the gener-
ated RDF graph; (iii) in case the corresponding distribution is a table we generated
CSV specific metadata such as the delimiter and the column headers.

6 Searchability and Semantic Annotation

The popular Open Data portal software frameworks (e.g., CKAN, Socrata) offer
search interfaces and APIs. However, the APIs typically allow only search over

31Google Research Blog entry, https://research.googleblog.com/2017/01/

facilitating-discovery-of-public.html, last accessed 27/01/2017.
32https://www.w3.org/TR/vocab-dqv/, last accessed 24/03/2017



the metadata descriptions of the datasets, i.e., the title, descriptions and tags,
and therefore rely on complete and detailed meta-information. Nevertheless, if
an user wants to find data for a specific entity this search might be not success-
ful. For instance, a search for data about “Vienna” at the Humanitarian Data
Exchange portal gives no results, even though there are relevant datasets in the
portal such as “World – Population of Capital Cities”.

6.1 Open Data Search: state of the art

Overall, to the best of our knowledge, there is not much substantial research
in the area of search and querying for Open Data. A straightforward approach
to offer search over the data is to index the documents as text files into typi-
cal keyword search systems. Keyword search is already addressed and partially
solved by full-text search indices, as they exist by search engines such as Google.
However, these systems do not exploit the underlying structure of the dataset.
For instance, a default full-text indexer considers a CSV table as a document
and the cells get indexed as (unstructured) tokens. A search query for tables
containing the terms “Vienna” and “Berlin” in the same column is not possible
using these existing search systems. In order to enable such a structured search
over the content of tables an alternative data model is required.

In a current table search prototype33 we enable these query use-cases while
utilizing existing state-of-the-art document-based search engines. We use the
search engine Elasticsearch34 and index the rows and columns of a table as
separated documents, i.e., we add a new document for each column and for each
row containing all values of the respective row/column. By doing so we store
each single cell twice in the search system. This particular data model enables
to define multi-keyword search over rows and columns. For instance, queries for
which the terms “Vienna” and “Berlin” appear within the same column.

Recently, the Open Data Network project35 addresses the searchability issue
by providing a search and query answering framework on top of Socrata por-
tals. The UI allows to start a search with a keyword and suggested matching
datasets or already registered questions. However, the system relies on the ex-
isting Socrata portal ecosystem with its relevant data API36. This API allows
to programmatically access the uploaded data and apply filters on columns and
rows.

The core challenge for search & query over tabular data is to process and and
build an index over a large corpus of heterogeneous tables. In 2016, we assessed
the table heterogeneity for over 200k Open Data CSV files [54]. We found that a
typical Open Data CSV file has less than 100kB (the biggest with over 25GB) and
consists of 14 columns and 379 rows. An interesting observation was that ∼50%
of the inspected header values were composed of camel case, suggesting that the

33http://data.wu.ac.at/csvengine, last accessed 24/03/2017
34https://www.elastic.co/products/elasticsearch, last accessed 24/03/2017
35https://www.opendatanetwork.com, last accessed 24/03/2017
36https://dev.socrata.com, last accessed 24/03/2017



table was exported from a relation table. Regarding the data types, roughly half
of the columns consists of numerical data types. As such, Open Data CSV tables
have different numbers of columns and rows and column values can belong to
different data types. Some of the CSV files contain multiple tables and the tables
itself can be non well-formed, meaning that there exists multiple-headers or the
rows with aggregated values over the previous rows.

To the best of our knowledge, the research regarding querying over thousands
of heterogeneous tables is fairly sparse. One of the initial work towards search
and query over tables was the work by Das Sarma et. al. in 2012[25]. The authors
propose a system to find for a given input table a set of related Web tables. The
approach relies on the assumptions that tables have an ”entity” column (e.g.
the player column in a table about tennis players) and introduces relatedness
metrics for tables (either for joining two tables or appending one table to the
other). the authors propose a set of high-level features for grouping tables to
handle the large amount of heterogeneous tables and to reduce the search space
for a given input table. Eventually, the system itself returns tables which either
can be joined with the input table (via the entity column) or can be append to
the input table (adding new rows).

The idea of finding related tables is also closely relate to the research of find-
ing inclusion dependencies (IND), that are relation such as columnA ⊆ columnB.
A core application for these dependencies is the discovery of foreign key relations
across tables, but they are also used in data integration [53] scenarios, query op-
timization, and schema redesign [62]. The task of finding INDs gets harder with
the number of tables and columns and the scalable and efficient discovery of in-
clusion dependencies across several tables is a well-known challenge in database
research [9, 62, 43]. The state of the art research combines probabilistic and exact
data structures to approximate the INDs in relational datasets. The algorithm
guarantees to correctly find all INDs and only adds false positives INDs with a
low probability [42].

Another promising direction is the work of Liu et. al. in 2014 which inves-
tigates the fundamental differences between relation data and JSON data man-
agement [46]. Consequently, the authors derive three architectural principles to
facilitate a schema-less development within traditional relation database man-
agement systems. The first principle is to store JSON as JSON in the RDBMS.
The second principle is to use the query language SQL as a Set-oriented Query
Language rather than a Structured Query Language. The third principle is to
use available partial schema-aware indexing methods but also schema agnostic
indexing. While this work focuses on JSON and XML, it would be interesting
to study and establish similar principles for tabular data and how this can be
applied and benefit for search and querying.

Enabling search and querying over Open Data could benefit from many in-
sights from the research around semantic search systems. The earlier semantic
search systems such as Watson [24], Swoogle [27] or FalconS [22] provided search
and simple querying over collections of RDF data. More advanced systems, such
as SWSE [38] or Sindice.com [61] focused on indexing RDF document at web-



Portal Tables cols num.cols w/o Header Num. H. Mapped

AT 968 13 8 154 6,482 1,323
EU 357 20 4 223 1,233 349

Table 8: Header mapping of CSVs in Open Data portals

scale. SWSE is a scalable entity lookup system operating over an integrated data,
while Sindice.com provided keyword search and entity lookups using an inverted
document index. Surprisingly, published research around semantic search slowed
down. However, the big search engine players on the market such as Google or
Bing utilise semantic search approaches to provide search over their internal
knowledge graph.

6.2 Annotation, labelling, and integration of tabular data

Text-based search engines such as Elasticsearch, however, do not integrate any
semantic information of the data sources and therefore do not enable search
based on concepts, synonyms or related content. For instance, to enable a search
for the concept “population” over a set of resources (that do not contain the
string “population”), it is required that the tables (and their columns, respec-
tively) are labelled and annotated correctly.

There exists an extensive body of research in the Semantic Web community
in semantic annotation and linking of tabular data sources. The majority of these
approaches [2, 28, 45, 55, 66, 70, 73, 76] assume well-formed relational tables and
try to derive semantic labels for attributes in these structured data sources (such
as columns in tables) which are used to (i) map the schema of the data source
to ontologies or existing semantic models or (ii) categorize the content of a data
source.

Given an existing knowledge base, these approaches try to discover concepts
and named entities in the table, as well as relations among them, and link them
to elements and properties in the knowledge base. This typically involves finding
potential candidates from the knowledge base that match particular table com-
ponents (e.g., column header, or cell content) and applying inference algorithms
to decide the best mappings.

However, in typical Open Data portals many data sources exist where such
textual descriptions (such as column headers or cell labels) are missing or cannot
be mapped straightforwardly to known concepts or properties using linguistic ap-
proaches, particularly when tables contain many numerical columns for which we
cannot establish a semantic mapping in such manner. Indeed, a major part of the
datasets published in Open Data portals comprise tabular data containing many
numerical columns with missing or non human-readable headers (organisational
identifiers, sensor codes, internal abbreviations for attributes like “population
count”, or geo-coding systems for areas instead of their names, e.g. for districts,
etc.) [47].

In [57] we verified this observation by inspecting 1200 tables collected from
the European Open Data portal and the Austrian Government Open Data



Portal and attempted to map the header values using the BabelNet service
(http://babelnet.org): Table 8 lists our findings; an interesting observation is
that the AT portal has an average number of 20 columns per table with an
average of 8 numerical columns, while the EU portal has larger tables with an
average of 4 out of 20 columns being numerical. Regarding the descriptiveness
of possible column headers, we observed that 28% of the tables have missing
header rows. Eventually, we extracted headers from 7714 out of around 10K nu-
merical columns and used the BabelNet service to retrieve possible mappings.
We received only 1472 columns mappings to BabelNet concepts or instances,
confirming our assumption that many headers in Open Data CSV files cannot
easily be semantically mapped.

Therefore, we propose in [57] an approach to find and rank candidates of
semantic labels and context descriptions for a given bag of numerical values, i.e.,
the numerical data in a certain column. To this end, we apply a hierarchical clus-
tering over information taken from DBpedia to build a background knowledge
graph of possible “semantic contexts” for bags of numerical values, over which
we perform a nearest neighbour search to rank the most likely candidates. We
assign different labels/contexts with different confidence values and this way our
approach could potentially be combined with the previous introduced textual
labelling techniques for further label refinement.

7 Conclusions, including Further Issues and Challenges

In this chapter we gave a rough overview over the still persisting challenge of
integrating and finding data on the Web. We focused on Open Data and provided
some starting points for finding large amounts of nowadays available structured
data, the processing of which still remains a major challenge: on the one hand,
because the introduction of Semantic Web Standards such as RDF and OWL
did not yet find adoption and there is still a large variety in terms of formats to
publish structured data on the Web. On the other hand, even the use of such
standard formats alone would not alleviate the issue of findability of said data.
Proper search and indexing techniques for structured data and its metadata
need to be devised. Moreover, metadata needs to be self-descriptive, that is, it
needs to not only describe what published datasets contain, but also how the
data was generated (provenance) or under which terms it can be used (licenses).
Overall, one could say that despite the increased availability of data on the
Web, (i) there are still a number of challenges to be solved before we can call it
a Semantic Web, and (ii) one often needs to be ready to manually pre-process
and align data before automated reasoning techniques can be applied. Projects
such as the Open Data Portalwatch, a monitoring framework for Open Data
portals worldwide, from which most of our insights presented in this paper were
derived, are just a starting point in the direction of making this Web of data
machine-processable: there is a number of aspects that we did not cover herein,
such as monitoring the evolution of datasets, archiving such evolving data, or
querying Web data over time, cf. [31] for some initial research on this topic.



Nor did we discuss attempts to reason over Web data “in the wild” using OWL
and RDFS, which we had investigated on the narrower scope of Linked Data
some years ago [64], but which will impose far more challenges when taking into
account the vast amounts of data not yet linked to the so called Linked Data
cloud, but available through Open Data Portals. Lastly, another major issue we
did not discuss in depth is multi-linguality: data (content) as well as metadata
associated with Open Data is published in different languages with different
language descriptions and thereby a lot of “Open” information is only accessible
to speakers of the respective languages, leave aside impossible to integrate for
machines: still recent progress in machine translation or multi-lingual Linked
Data corpora like Babelnet [56] could contribute to solving this puzzle.

You will find further starting points in these directions in the present volume,
or also previous editions of the Reasoning Web summer school. We hope these
starting points serve as an inspiration for further research on making machines
understand openly available data on the Web and thus bringing us closer to the
original vision of the Semantic Web, an ongoing journey.
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well with wikidata? In Proceedings of the 11th International Workshop on Scalable
Semantic Web Knowledge Base Systems co-located with 14th International Seman-
tic Web Conference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015., pages
32–47, 2015.

36. Daniel Hernández, Aidan Hogan, Cristian Riveros, Carlos Rojas, and Enzo Zerega.
Querying wikidata: Comparing sparql, relational and graph databases. In The
Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe,
Japan, October 17-21, 2016, Proceedings, Part II, pages 88–103, 2016.

37. Pascal Hitzler, Jens Lehmann, and Axel Polleres. Logics for the semantic web.
In Dov M. Gabbay, Jörg H. Siekmann, and John Woods, editors, Computational
Logic, volume 9 of Handbook of the History of Logic, pages 679–710. Elesevier,
2014.

38. Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel Polleres, and
Stefan Decker. Searching and browsing Linked Data with SWSE: The Semantic
Web Search Engine. J. Web Sem., 9(4):365–401, 2011.

39. Renato Iannella and Serena Villata. Odrl information model. W3C Working Draft,
2017. https://www.w3.org/TR/odrl-model/.

40. Open Knowledge International. Open Definition Conformant Licenses, April 2017.
From http://opendefinition.org/licenses/; retr. 2017/04/28.

41. Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. Technical report, 2004.

42. Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz Finke,
Manuel Hegner, Martin Zabel, Christian Zöllner, and Felix Naumann. Fast ap-
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