
Mariusz Kleć
Danijel Koržinek

PRE-TRAINED DEEP NEURAL NETWORK
USING SPARSE AUTOENCODERS
AND SCATTERING WAVELET TRANSFORM
FOR MUSICAL GENRE RECOGNITION

Abstract Research described in this paper tries to combine the approach of Deep Neural

Networks (DNN) with the novel audio features extracted using the Scatter-

ing Wavelet Transform (SWT) for classifying musical genres. The SWT uses

a sequence of Wavelet Transforms to compute the modulation spectrum coef-

ficients of multiple orders, which has already shown to be promising for this

task. The DNN in this work uses pre-trained layers using Sparse Autoencoders

(SAE). Data obtained from the Creative Commons website jamendo.com is

used to boost the well-known GTZAN database, which is a standard bench-

mark for this task. The final classifier is tested using a 10-fold cross validation

to achieve results similar to other state-of-the-art approaches.

Keywords Sparse Autoencoders, deep learning, genre recognition, Scattering Wavelet

Transform

Citation

2015/08/24; 20:17 str. 1/12

Computer Science • 16 (2) 2015 http://dx.doi.org/10.7494/csci.2015.16.2.133

Computer Science 16 (2) 2015: 133–144

133

http://journals.agh.edu.pl/csci/

1. Introduction

Genre recognition has been a staple of Music Information Retrieval (MIR) since the

very beginning. Initial approaches relied mostly on Data Mining and Natural Lan-

guage Processing, but audio analysis became popular when Machine Learning tech-

niques improved to a substantial degree. MIR, as a concept, involves many diverse

fields of study: classification, analysis, organization, recommendation, and various

areas of research: signal processing, music theory, linguistics, sociology, psychology,

and others. Many tasks that involve MIR will concentrate on a single problem by

utilizing a particular method, but we are more often faced with projects that involve

a variety of concepts spanning a couple of different domains.

If we take music recommendation as an example, it is clear that taking a single

criterion into account most likely will not suffice to meet our goals, whether they be

measured in terms of commercial success or user satisfaction. Problems like this have

to be viewed from different angles and utilize several approaches to find a solution.

The goal of finding the right music for the customer should consider not only the

musical piece, but also the user and his needs. Additionally, both the music and the

user have to be considered in context. The context of the music can be extracted from

its acoustic features (genre, style, tempo, emotion, etc.) and meta-information (band,

language, historic, social, etc.), while the user will have its own internal context (social,

psychological, emotional), but also external context (environmental, situational). All

of these can affect the quality of the system to a certain degree.

Even though genre recognition is not the best feature when it comes to MIR

problems, it is still very popular among researchers. This comes as a consequence of

its simplicity, both as a computational problem and a topic that is easy to understand

by someone without a deep technical or music background. Everyone has heard of

music genres, and it is very simple to construct the task as a classification problem

with various types of inputs and a set of discrete classes as the output. In reality, genre

recognition is a quite difficult and poorly defined problem. Not only is it difficult to

assign a single class to any random musical piece, but even the classification taxonomy

can not be defined without dissension. This has not stopped people from trying, and

several standard benchmarks have been created to tackle this particular problem.

One of the most popular is the GTZAN [22] database, which is available for

free and very easy to use. It consists of 1000 tracks (each 30 seconds in length) and

organized into 10 classes (each consisting of 100 tracks). Initial experiments relied on

simple musical descriptors (rhythm, pitch, timbre) as well as classic music analysis

features like the Mel-Frequency Cepstral Coefficients (MFCC) and, less frequently,

the Wavelet transform [8]. In [22], Tzanetakis utilized Gaussian Mixture Models

on MFCCs, to achieve 61% baseline accuracy in the first ever GTZAN experiment.

The authors in [19] reported 83% accuracy using Deep Neural Networks and spectral

features. A breakthrough in feature quality was presented in the paper about the

Scattering Wavelet Features (SWT) [1], where a simple SVM classifier achieved 89.3%

accuracy. Later, the same features were utilized in a better Sparse Representation

2015/08/24; 20:17 str. 2/12

134 Mariusz Kleć, Danijel Koržinek

Classifier [6], improving the result slightly with a reported accuracy of 91.2%. Other

experiments on GTZAN utilized Wavelets [14] to achieve 78.5% accuracy, Deep-Belief

Networks [9] for 84.3% accuracy, various representation based on the properties of

the auditory cortex [17] for 92.4% accuracy and Compressive Sampling techniques [5]

reporting 92.7% accuracy.

It is worth noting that the margin of error between these results is quite wide, and

the difference at the high end becomes quite negligible due to the fairly small size of the

corpus, compounded by the numerous reported inconsistencies within the database

[21]. Ultimately, as mentioned in the previous paragraph, the genre taxonomy cannot

be too objective, and individual sample track classification can often be fuzzy. As

an example, many of the experiments mentioned above used voting to determine the

final class; but, if the distribution of classes for individual frames gives, for example,

49% to one class and 51% to another, it may be difficult to say that either class is

more relevant.

The goal of this paper is to combine the SWT described in [1] with the power of

a Deep Neural Network (DNN) consisting of multiple layers of Sparse Autoencoders

(SAE). To improve the Unsupervised Pre-training phase, a much larger database (ac-

quired from the jamendo.com website) was prepared to match the GTZAN database.

Jamendo is a music-sharing platform which publishes music on a Creative Commons

license. A publicly-available API allowed the authors to download more than 80,000

musical tracks, nearly 10,000 of which were selected according to the GTZAN genres.

2. Background

This section includes background information of various components used in the ex-

periments described in this paper.

2.1. Scattering Wavelet Transform

Most of the research behind MIR relies on Mel-Frequency Cepstral Coefficients

(MFCCs), which are a Fourier-based feature set designed specifically for analyzing

speech and music. MFCCs are calculated as the Fourier transform of the logarithm

of the Fourier transform of the signal that was partitioned using standard window-

ing techniques (like in the STFT). The resulting features can be used to estimate

a smoothed spectral envelope that is robust to small intra-class changes, but loses

information [15].

Unlike the Fourier transform (which decomposes the signal into sinusoidal waves

of infinite length), the Wavelet Transform (WT) encodes the exact location of the

individual components. The Fourier transform encodes the same information as the

phase component, but this is usually discarded in the standard MFCC feature set.

This means that Fourier-based methods are very good at modeling harmonic signals,

but are very weak at modeling sudden changes or short-term instabilities of the signal

– something that the WT seems to deal with very well. The WT begins by defining

2015/08/24; 20:17 str. 3/12

Pre-trained deep neural network using sparse autoencoders (. . .) 135

a family of dilated signals known as wavelets. A single mother wavelet ψ(t) is ex-

panded to a dictionary of wavelets ψu,s, translated to u and scaled by s, using the

formula:

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
(1)

These wavelets are then used to decompose the input signal by using a convolution

operator (denoted by < · >):

Wf(u, s) =< f, ψu,s >=

∫
f(t)

1√
s
ψ

(
t− u
s

)
dt (2)

The Scattering Wavelet Transform (SWT) [15] works by computing a series of

Wavelet decompositions iteratively (the output of one decomposition is decomposed

again), producing a transformation which is both transformation invariant (like the

MFCC) and experiences no information loss (proven by producing an inverse trans-

form – something which cannot be done using MFCC without loss).

In [1], the SWT is used in the problem of phoneme classification and musical

genre recognition. The paper also points out a similarity between the multilayer

structure of the SWT and other deep structures, such as the Convolutional Neural

Network [12]. This would hint at a certain level of redundancy of using DNNs with

SWT features, but [6] demonstrates that certain improvements can still be achieved

using better classifiers, and this paper intends to explore this.

2.2. Unsupervised feature learning

Training an Artificial Neural Network (ANN) with multiple layers (i.e., more than 2

or 3 hidden layers) using backpropagation does not fully utilize its theoretical capa-

bilities. This is caused by the weakness of the gradient descent optimization method,

where gradients that are computed by backpropagation rapidly diminish in magni-

tude as the depth of the network increases. As a result, the final layers don’t receive

meaningful training data [7]. This problem was well known and has been studied for

decades. It was especially troubling that a Multi-Layer Perceptron often performed

worse than its shallow counterparts (e.g., SVM) even though its expressiveness was

theoretically more powerful.

A breakthrough happened in 2006 when G. E. Hinton introduced a fast-learning

algorithm for training, which he named Deep Belief Networks [10]. This method uses

a greedy layer-wise training to train one layer at a time in an unsupervised manner.

This step is called pre-training, and its aim is to prepare the weights of the model

in such a way that they better represent local feature states. Following this, the

final fine-tuning of the weights using labeled data creates a model which performs far

better than one that is trained on randomly-initialized weights alone.

This unsupervised pre-training approach started a new research trend called

“deep learning.” Deep learning takes advantage of unlabeled data to learn a good

representation of the features space [2] – each layer representing another abstraction

2015/08/24; 20:17 str. 4/12

136 Mariusz Kleć, Danijel Koržinek

of the features pre-trained from a previous layer. Layer-wise, bottom-up pre-training

(one layer at a time) is possible by incorporating Restrictive Boltzman Machines

(RBM) or Autoencoders (AE) [3]. Stacking RBMs or AEs (as features detectors)

forms a “deep structure” which can be fine-tuned using gradient-based optimization

methods with respect to labeled data (i.e., supervised training).

2.3. Sparse Autoencoders

An Autoencoder (AE) is an ANN with an odd number of hidden layers, where the

number of units in the output layer is set to be equal to the number of units in the

input. In other words, AEs try to reconstruct the input at the output passing data

through hidden layers. To ensure that the mapping is non-trivial, various constraints

can be used to force the network to learn useful representations of the data. When

the number of units in the hidden layer is smaller than the input, the AE learns

a compressed form of the data, similar to the Principle Component Analysis (PCA).

Unlike PCA, however, the learned compression is non-linear and more robust. If we

use more hidden than input units, the AE can still learn meaningful representations

of the data [3], provided it uses proper constraints.

One of the constraints that can be applied to AE training is trying to reconstruct

the input from its corrupted version. This is the basic idea behind Denoising Autoen-

coders [23]. Another type of AE (used in this paper) is the Sparse Autoencoder (SA).

[18, 13]. The idea behind it is to enforce activations of hidden units to be close to zero

for most of the time during training. This can be achieved by applying the measure

of Kullback-Liebler Divergence (KL) to the cost function:

KL = ρ log
ρ

ρ̂
+ (1− ρ) log

(
1− ρ
1− ρ̂

)
(3)

Jsparse(W, b) = J(W, b) + β ·KL(ρ||ρ̂) (4)

KL measures the difference between the two distributions: ρ̂, which represents

the average activations of hidden units over the training set, and ρ, which represents

the target distribution. Jsparse(W, b) denotes the sparse cost function with respect to

weights W and biases b. Because we want to keep hidden units inactive most of the

time, the target distribution should be set close to zero. In our experiments (described

below), the target distribution ρ was always set to 0.1. In other words, we wanted

to enforce ρ̂ = ρ. In order to penalize an average activation of hidden units which

deviates too much from its target value of ρ, a special penalty term β is introduced

to control the weight of the sparsity term.

2.4. DNN implementation

A neural network with mini-batch stochastic gradient descent (SGD) was developed

in Matlab. The core of the code was written according to the guidelines presented in

CS294A Lecture notes [16]. Additionally, the part of the code responsible for gradi-

ent calculation is compatible with the minFunc function that uses the L-BFGS [20]

2015/08/24; 20:17 str. 5/12

Pre-trained deep neural network using sparse autoencoders (. . .) 137

optimization algorithm. This algorithm uses a limited amount of computer memory,

and was used in this paper for training the Autoencoders to improve training speed.

The code, besides having an implemented square-error cost function, was extended

to operate on cross entropy error [4] and to use momentum. The regularization term

of ‖W‖2 was added to the cost error function, for the purpose of decreasing the mag-

nitude of the weights and help to prevent overfitting. As a weight initialization for

training AEs and NNs (in the case of experimenting without pre-training phase), we

used a random uniform distribution U from the range described by formula 5, as it is

recommended in [7]. The nvisible and nhidden denote the number of visible and hidden

units in a given layer.

Winit = U

[
−
√

6

nvisible + nhidden
,

√
6

nvisible + nhidden

]
(5)

3. Data preparation

Two databases were used in the experiments. First is the well-known GTZAN dataset

[22], consisting of 1000 musical files that are each 30 seconds long. They are cate-

gorized into 10 genres with 100 musical pieces per category (rock, blues, classical,

country, disco, hip-hop, jazz, metal, pop, reggae). The second data collection was

obtained from the jamendo.com website, which offers music ready to download for

free due to the Creative Commons license. A publicly-available API allowed us to

download over 80,000 musical tracks, together with meta-data in an XML format.

The meta-data contains, among other features, a genre association of each file. There

are three attributes containing this information: “album genre”, “track genre”, and

“tags”. The “album genre” and “track genre” contain ID3 genre names, and “tags”

can contain genres and other information (without restrictions) as annotated by users.

The goal was to create a much bigger database than GTZAN yet organized in

the same manner. From the 80,000 files, only those that belonged to one of the 10

musical genres were taken into consideration. To avoid ambiguities, all of the files

were passed through a couple of filters. Initially, files that had the same values in all

attributes were immediately accepted. This assumption gave the highest probability

that a particular file belonged to the given genre. For the genres that thusly resulted

in less than 1000 musical files (this occurred with blues, country and reggae which are

more specific than pop or rock), the filter was made less restrictive. First, only “track

genre” and “album genre” had to be equal to choose a song (ignoring the tags); if

there were still too few songs, only “track genre” was considered, ignoring the rest of

the attributes. This generated a list of 9966 musical files organized into 10 musical

genres with nearly 1000 track per genre.

Out of each file, a 30-second fragment starting at 30 seconds from the beginning of

the file (to skip the potential problems which occur in the beginnings of some tracks)

was extracted and down-sampled to 22,050 Hz (to match the GTZAN format).

The features were extracted from the files using the ScatNet toolbox. The SWT

transform was computed to the depth of 2, as this was shown as the optimal setting

2015/08/24; 20:17 str. 6/12

138 Mariusz Kleć, Danijel Koržinek

in [1]. The first layer contained 8 wavelets per octave of the Gabor kind, and the

second had 2 wavelets per octave of the Morlet type. The window length was set

to 740 ms. After the transformation, we obtained 81,052 training examples from

GTZAN and 802,925 training examples from the JAMENDO database – each with

747 features. The resulting databases can be acquired by contacting the authors.

4. Experiments

One of the goals of the experiments was to determine if the JAMENDO database could

be used as an additional source of data for pre-training the DNN. We assumed that

this data was completely independent from that in GTZAN, which was used for fine-

tuning. In the first step, each SAE was trained using the songs from JAMENDO. The

SAEs were trained with the L-BFGS optimizer for 300 epochs. When the training of

the first SAE finished, the new data representation was derived by feeding the original

data through the SAE’s hidden layer. This representation was used for pre-training

the second SAE and so on, until the whole DNN was pre-trained. This process of NN

pre-training is illustrated in Figure 1.

1000

X (747)

X’ (747)

1000

747

X (747)

10

W1

W1’

W1

W2

W2’

W2

Pre-training layer-by-layer Fine-tuning with backpropagation

1000

747

1000

Figure 1. The process of pre-training the two hidden layers is illustrated. Two SAEs are

trained. The weights from the encoder parts (W1 and W2) are used to initialize the final

NN. Finally, the whole structure is fine-tuned using backpropagation, with the cross-entropy

cost function.

To estimate the strength of the sparsity constraint β for the SAE, logistic regres-

sion was trained on the SAE representation derived from the GTZAN. The highest

accuracy in this test determined the parameter β for the final SAE training. In each

case, the target distribution of hidden activation ρ was set to 0.1.

Our experiments were based on pre-training and fine-tuning different topologies

of neural networks. The GTZAN songs were randomly shuffled and divided into

10 folds for cross-validation (CV) tests. During CV, one fold was always reserved

for validation and didn’t take part in training. Its error rate was monitored during

2015/08/24; 20:17 str. 7/12

Pre-trained deep neural network using sparse autoencoders (. . .) 139

training to determine the early stopping criterion. The training was terminated when

the cost value on the validation set didn’t decrease by more than 1e− 4.

Before training, the data was standardized to achieve zero mean and a standard

deviation of 1. The mean and standard deviation were calculated once in each fold

and then used to standardize a test and validation set. Maximum voting was used to

predict the label (genre) of the whole track in the test set. Classification error rates

were averaged over all 10 folds. The final DNN had a topology consisting of 1,000,

747, 625, and 1,000 units in individual hidden layers respectively (see Table 1). The

input vector had 747 dimensions. A log-sigmoid transfer functions were used in the

DNNs and SAEs.

Table 1

Results after performing 10 fold CV on different topologies of DNNs pre-trained using SAEs.

The results were determined by early-stopping. The experiment with the asterisk used

momentum and a larger batch size.

Topology Error %

747/1000/747/625/1000/10 11.1

747/1000/747/625/1000/10* 10.8

747/1000/747/625/10 10.9

747/1000/747/10 9.8

747/1000/10 12.1

Some additional experiments were also performed. A single fold of data was

trained through 200 epochs. We plotted the changes of cost values for different topolo-

gies of NNs. Figure 2 presents the NNs with no pre-training whilst Figure 3 shows

NNs with pre-training using SAEs. The experiments were performed with the fol-

lowing settings in both cases: learning rate: 3e−2; batch size: 80, momentum: 0.5,

regularization: 1e−4.

0 20 40 60 80 100 120 140 160 180 200

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

1 hidden val. cost

2 hidden val. cost

3 hidden val. cost

4 hidden val. cost

Figure 2. Validation set cost value of the network without pre-training on one fold of data.

2015/08/24; 20:17 str. 8/12

140 Mariusz Kleć, Danijel Koržinek

Epoch

0 20 40 60 80 100 120 140 160 180 200

C
ro

s
s
 e

n
tr

o
p

y
 v

a
lu

e

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

1 hidden val. cost

2 hidden val. cost

3 hidden val. cost

4 hidden val. cost

Figure 3. Validation set cost value of the network with pre-training on one fold of data.

Experiments were performed on a computer with 8 CPU threads (Intel i7 3820

3.6 Ghz) and also on an NVidia GeForce GTX TITAN Black GPU. The experiments

used about 3 GBs of memory. Moving the calculation on the GPU improved the

calculation slightly, but further code optimization is required for more significant

improvements.

5. Conclusions and discussion

In our previous paper, we showed that adding more layers to the MLP does not

improve the accuracy of genre recognition, and may even diminish it if the number

of parameters becomes too high [11]. Using a hidden layer that was pre-trained with

an SAE did improve the accuracy, however.

The purpose of the experiments in this paper was to examine whether pre-training

using SAE improved the genre recognition in more than one hidden layer. This is

the basic principle for building a DNN that has been proven to work for many tasks,

including genre recognition [9]. The difference in our work is the utilization of SWT,

which already outperforms many of the other approaches, including the DBN men-

tioned earlier.

The fine-tuning by using gradient descent didn’t always improve the final network

error rate. The best result was obtained with two hidden layers (9.8% error rate),

but we weren’t able to reproduce this improvement for other topologies with higher

number of layers.

The graphs in Figures 2 and 3 demonstrate this problem very well. The network

that didn’t use pre-training achieved its minimum cost very early in the training

(around 20–30 epochs) and didn’t improved that score after that. It seems to over-fit

quickly and converges to a worse value than achieved in 20–30 epochs. The shape

of the cost for the network with pre-trained weights, however, has a much different

2015/08/24; 20:17 str. 9/12

Pre-trained deep neural network using sparse autoencoders (. . .) 141

shape. Not only is the over-fitting much less pronounced, but the network seems to

generally improve much better than its randomly-initialized counterpart.

One of the reasons for our results may be the early stopping strategy that we

employed in our experiments. The problem with having such a small corpus is that

small differences in training can cause large jumps in the test error rate, and the error

rate is poorly correlated with the network loss. Some initial experiments showed that

training the network for much longer than the early stopping suggested could improve

the error rate significantly, but we are not sure about the objectivity of such a result.

Nevertheless, even if the end result could be improved in individual layers, it

seems that when comparing the results between layers, adding more layers to the

DNN simply doesn’t improve either the network cost or the error rate in any of the

training, validation, or test sets. It is not clear whether this is the consequence of

using the SWT features or an issue with the training methodology.

More tests are planned for this problem, especially with respect to the early stop-

ping issue mentioned above. Different methods of pre-training also need to be tested;

for example, de-noising AE and RBMs. Finally, attempts at studying the feature-

space in a spatio-temporal manner could enable completely different approaches to

this problem. The current system models the problem in the feature-space of indi-

vidual frames describing the spectral content of the sound at a certain point in time,

completely disregarding the temporal aspects of the signal (i.e the change of frequen-

cies in time). It is likely that analysing several samples at once will allow the system

to recognize certain temporal patterns in the signal. Furthermore, such methods as

Convolutional Neural Networks have shown very promising in analysing 2-D signals

and would be worth investigating here as well.

Acknowledgements

We would like to thank prof. Krzysztof Marasek, Thomas Kemp, and Christian Schei-

ble for their support. This work was funded by a grant agreement no. ST/MN/

MUL/2013 at the Polish-Japanese Academy of Information Technology.

References

[1] Andén J., Mallat S.: Deep Scattering Spectrum. CoRR, vol. abs/1304.6763, 2013,

http://arxiv.org/abs/1304.6763.

[2] Bengio Y.: Learning Deep Architectures for AI. Foundations Trends Machine

Learning, vol. 2(1), pp. 1–127, http://dx.doi.org/10.1561/2200000006.

[3] Bengio Y., Lamblin P., Popovici D., Larochelle H., et al.: Greedy layer-wise

training of deep networks. Advances in Neural Information Processing Systems,

vol. 19, p. 153, 2007.

[4] Bishop C. M.: Neural Networks for Pattern Recognition. Oxford University Press,

Inc., New York, NY, USA, 1995.

[5] Chang K. K., Jang J. S. R., Iliopoulos C. S.: Music Genre Classification via Com-

pressive Sampling. In: ISMIR, pp. 387–392, 2010.

2015/08/24; 20:17 str. 10/12

142 Mariusz Kleć, Danijel Koržinek

[6] Chen X., Ramadge P. J.: Music genre classification using multiscale scattering

and sparse representations. In: Information Sciences and Systems (CISS), 2013

47th Annual Conference on, pp. 1–6, IEEE, 2013.

[7] Glorot X., Bengio Y.: Understanding the difficulty of training deep feedforward

neural networks. In: International conference on artificial intelligence and statis-

tics, pp. 249–256, 2010.

[8] Grimaldi M., Cunningham P., Kokaram A.: A wavelet packet representation of

audio signals for music genre classification using different ensemble and feature

selection techniques. In: Proceedings of the 5th ACM SIGMM international work-

shop on Multimedia information retrieval, pp. 102–108, ACM, 2003.

[9] Hamel P., Eck D.: Learning Features from Music Audio with Deep Belief Net-

works. In: ISMIR, pp. 339–344, Utrecht, The Netherlands, 2010.

[10] Hinton G., Osindero S., Teh Y. W.: A fast learning algorithm for deep belief nets.

Neural Computation, vol. 18(7), pp. 1527–1554, 2006.

[11] Kleć M., Koržinek D.: Unsupervised Feature Pre-training of the Scattering

Wavelet Transform for Musical Genre Recognition. Procedia Technology, vol. 18,

pp. 133–139, 2014.

[12] LeCun Y., Bengio Y.: The Handbook of Brain Theory and Neural Networks.

chap. Convolutional Networks for Images, Speech, and Time Series, pp. 255–258,

MIT Press, Cambridge, MA, USA, 1998, http://dl.acm.org/citation.cfm?

id=303568.303704.

[13] Lee H., Ekanadham C., Ng A.Y.: Sparse deep belief net model for visual area

V2. In: Advances in neural information processing systems, pp. 873–880, MIT

Press, 2008.

[14] Li T., Ogihara M., Li Q.: A comparative study on content-based music genre

classification. In: Proceedings of the 26th annual international ACM SIGIR con-

ference on Research and development in informaion retrieval, pp. 282–289, ACM,

2003.

[15] Mallat S.: Group invariant scattering. Communications on Pure and Applied

Mathematics, vol. 65(10), pp. 1331–1398, 2012.

[16] Ng A.: Sparse autoencoder. CS294A Lecture Notes, vol. 72, pp. 1–19, 2011.

[17] Panagakis Y., Kotropoulos C., Arce G. R.: Music Genre Classification Using Lo-

cality Preserving Non-Negative Tensor Factorization and Sparse Representations.

In: ISMIR, pp. 249–254, 2009.

[18] Poultney C., Chopra S., Cun Y.L., et al.: Efficient learning of sparse representa-

tions with an energy-based model. In: Advances in neural information processing

systems, pp. 1137–1144, 2006.

[19] Sigtia S., Dixon S.: Improved music feature learning with deep neural networks.

In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International

Conference on, pp. 6959–6963, IEEE, 2014.

[20] Skajaa A.: Limited memory BFGS for nonsmooth optimization. Master’s thesis,

Courant Institute of Mathematical Science, New York University, 2010.

2015/08/24; 20:17 str. 11/12

Pre-trained deep neural network using sparse autoencoders (. . .) 143

[21] Sturm B.L.: The GTZAN dataset: Its contents, its faults, their effects on evalu-

ation, and its future use. arXiv preprint arXiv:1306.1461, 2013.

[22] Tzanetakis G., Cook P.: Musical genre classification of audio signals. Speech and

Audio Processing, IEEE transactions on, vol. 10(5), pp. 293–302, 2002.

[23] Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P. A.: Stacked de-

noising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. The Journal of Machine Learning Research, vol. 11,

pp. 3371–3408, 2010.

Affiliations

Mariusz Kleć
Polish-Japanese Academy of Information Technology, Warsaw, Poland, mklec@pjwstk.edu.pl

Danijel Koržinek
Polish-Japanese Academy of Information Technology, Warsaw, Poland,
danijel@pjwstk.edu.pl

Received: 19.01.2015

Revised: 09.03.2015

Accepted: 17.03.2015

2015/08/24; 20:17 str. 12/12

144 Mariusz Kleć, Danijel Koržinek

