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Considering Software Protection for Embedded
Systems
The authors examine the nature of adversarial reverse-engineering
attacks on reconfigurable computing technologies—such as
field-programmable gate arrays—and provide protection measures.
by Dr. Yong C. Kim and Lt. Col. J. Todd McDonald, Ph.D. 

Resilient Mixed-Criticality Systems
Sha’s article examines the design principles and architecture patterns of
cyber physical systems and shows their resilience against software design
faults, hardware failures, and physical hazards.
by Dr. Lui Sha

Software Survivability:Where Safety and Security
Converge
This article looks at how security- and safety-critical software can be
resilient by successfully “fighting through” and avoiding hazards and
attacks.
by Karen Mercedes Goertzel

Investing in Software Resiliency
What is software resiliency? How is it achieved? What are the costs and
measurable benefits? Is it a worthwhile investment? Axelrod answers
these questions.
by Dr. C. Warren Axelrod

Making Security Measurable and Manageable
This article outlines one organization’s methodology in meeting
increased demands for accountability, efficiency, resiliency, and
interoperability of information systems—without increased constraints.
by Robert A. Martin

Meeting the Challenge of Assuring Resiliency Under
Stress
In systems of systems, assuring resiliency under stress is an imperative
needing immediate attention, and O’Neill provides an accountable and
transparent framework.
by Don O’Neill
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Simply stated, absent secure and resilient software at the core of our
cyber defenses, the nation’s critical infrastructure is at risk.

Everything we do as a nation—from national defense to re-energizing
the economy—depends on secure information technology systems
and networks.

Increasingly, however, these software controlled and enabled sys-
tems are vulnerable to exploitation by those that seek to do our nation

harm, steal our intellectual capital, or simply collect our personal information.
Making critical software assets secure and resilient is a necessary part of the
nation’s defense-in-depth approach to cybersecurity.

The DHS, and more specifically the Office of Cybersecurity and
Communications, has the lead role in securing the civilian side of those critical networks and
systems. A vital component of that effort is the National Cybersecurity Division’s Software
Assurance Program. The program works with its partners in the federal government, private
sector, and international community to reduce software vulnerabilities, minimize exploitations,
and develop secure and trustworthy software products. In short, it works to protect vital net-
works and systems by applying sound software supply-chain risk management.

With that in mind, two points merit emphasis. First, developing secure and resilient software
alone is not enough. Increasingly, our critical cyber networks and systems are vulnerable to
exploitation by a variety of actors. That means that unless the systems and networks controlled
by the software in question are also protected, cybersecurity will remain an elusive goal. These
factors are inexorably intertwined and must remain so in order to support mission requirements
across enterprises and critical infrastructures. Sound cybersecurity practices must be overlap-
ping, integrated, and supportive. In other words, they must be a “system-of-systems” that
encompass all the people, activities, processes, and technologies that together promote and
define a comprehensive national cybersecurity strategy.

Second, the DHS accomplishes its mission by working closely and collaboratively with the
private sector. The government is best at developing policy objectives, identifying requirements,
and facilitating the achievement of those objectives. The private sector specializes in finding
ways to meet those objectives and requirements through technology innovation, experimenta-
tion, and innovative product development. Working separately, we will only get half of the job
done. Working together, however, we can develop the necessary products to safeguard our crit-
ical systems.

So join us in our mission and be part of the software assurance solution. Visit our Web sites
<https://buildsecurityin.us-cert.gov/swa/> and <http://www.us-cert.gov/>. Learn more
about the Cross Sector Cybersecurity Working Group and the Software Assurance Forum.
Better yet, become part of the public-private effort and learn how to participate in these impor-
tant efforts. Together we can build a trusted and resilient information and communications
infrastructure based on secure and resilient software.

I hope everyone appreciates the articles in this issue of CrossTalk that explore the mul-
tifaceted dimensions of software resiliency. I thank the authors for their important contribu-
tions. More importantly, the DHS continues to seek input and feedback on collaborative efforts
to advance software assurance.

Fortifying Our Cyber Defenses

Michael A. Brown
Rear Admiral, USN

Deputy Assistant Secretary for Cybersecurity and Communications
U.S. Department of Homeland Security
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Resilient Software

In our modern world, the meaning of a
word can change quite often. Even the

term computer previously referred to a
human operator who crunches numbers
while today we relate this term clearly to a
machine. With the emergence of new
reconfigurable computing technologies
such as FPGAs, the definitions of soft-
ware and hardware have become less clear.
As Vahid suggests [1], we should stop call-
ing circuits hardware and start broadening
what we consider software.

In the traditional sense, software
referred to the bits (1s and 0s) represent-
ing language statements that could be exe-
cuted on hardware processors. Today,
embedded systems utilizing FPGAs real-
ize circuits merely by downloading a
sequence of bits that instantiate gates,
controllers, arithmetic logic units, crypto
circuits, and even processors. Thus, a cir-
cuit implemented on embedded systems
utilizing an FPGA is essentially software.

Considering the proliferation of
embedded systems with reprogrammable

hardware components in both commercial
and military sectors, we can readily show
the impact of malicious activity geared to
reverse engineer, tamper, or copy critical
technologies residing in those systems. In
this article, we delineate protective trans-
formations for such embedded logic and
present a brief survey of reverse engi-
neering attacks in this realm.

Characterizing Circuit
Protection
Both the DoD and the commercial sector
have an interest in describing and measur-
ing candidate protective measures,
whether they derive from hardware anti-
tamper realizations or software-based
techniques. Adequately defining criteria
for successful software protection in prac-
tice remains elusive mainly because full
protection may not be possible, at least
theoretically [2]. Collberg and Thombor-
son [3] describe three practical means of
protecting software against copying,
reverse-engineering, and malicious tam-

pering; these include, respectively, water-
marking, obfuscation, and tamper-proof-
ing. In terms of analyzing protection
mechanisms, they suggest measuring
obfuscating transformations based on
their obscurity (how much time is
increased for understanding and reverse
engineering), resilience (difficulty for
reversing the transformation), stealth (the
natural context of the transformation),
and cost (overhead).

Though embedded systems may
encompass a wide variety of custom
processors and components, our discus-
sion focuses on more fundamental logic
programs represented as combinations of
gate-level logic. In describing such cir-
cuits, we use two primary analysis para-
digms: how they behave, and how they are
constructed. We express the black-box
behavior of a circuit by enumeration of
all inputs, subsequent evaluation and
propagation of signals on all intermediate
gates, and the recording of the corre-
sponding output. Figure 1 illustrates an
input/output representation of a small
combinational logic circuit with three
inputs (X1, X2, X3), four intermediate
gates (4, 5, 6, 7), and two distinguished
intermediate gates (Y6, Y7) known as out-
puts.

We define a signal as a vertical reading
of a column in the truth table (a fully enu-
merated input/output behavior, based on
canonical ordering of inputs) and call the
signature of a circuit the collection of its
output signals. Given the full truth table
of a circuit, we define its gray-box behav-
ior as signals of all intermediate logic
gates based on the enumeration of all
possible inputs.

The white-box structure of a circuit
may be represented by textual description
languages (Bench, Verilog, VHDL, etc.),
which are regular grammars that support
expression of gates, electrical signals,
components, and gate interconnections.
Textual representations translate into
graphical forms, which are referred to as

Considering Software Protection
for Embedded Systems

Software in modern embedded systems is often realized by using prefabricated reconfigurable computing devices such as Field
Programmable Gate Arrays (FPGAs). Such devices support the use of portable hardware description languages and, as a
result, have vulnerabilities consistent with normal software applications. In this article, we consider the nature of adversarial
reverse-engineering attacks in this environment and measures of protection. 

Dr. Yong C. Kim and Lt. Col. J. Todd McDonald, Ph.D1

The Air Force Institute of Technology

Figure 1: Black-Box and Gray-Box Circuit Behavior
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the circuit topology. Figure 2 illustrates
the circuit seen in Figure 1 in correspond-
ing graphical representation and a Bench
textual description [4]. We define a com-
ponent within the circuit as a collection of
lower-level elements (such as gates) that
form a distinct sub-circuit.

The semantics (or black-box behavior)
of a circuit consists of only the input and
output signal pairs (the X and Y signals
seen in Figure 1). Intuitively, one way to
think of circuit protection is the act hiding
all intermediate transitions that transform
input to output. The collection of these
transitions, in essence, represents the
intellectual property of a circuit. Without
knowledge of the original intermediate
transitions, no human or automated
process may derive other information
about the original circuit such as topology,
signal definitions, or component defini-
tions. Many define the essence of circuit
reverse engineering as the ability to cor-
rectly identify topology or components of
the original circuit [4, 5].

To protect a circuit, replace the origi-
nal circuit with a semantically equivalent
version (one which does the same func-
tion) that hides the intellectual property of
the original in some definable or measur-
able way. For the circuit in Figures 1 and
2, a replacement circuit would have iden-
tical signals for inputs and outputs (X1,
X2, X3, Y6, Y7), but would have some
other internal white-box construction
(represented by gates 4 and 5 in Figures 1
and 2).

This formulation restates the essence
of a virtual black box [2] because it
defines full protection as a replacement
circuit that does not leak any more infor-
mation relative to an original circuit (other
than its input/output characteristics). In
more practical settings [3], the goal of
using a replacement circuit becomes
obscuring the original circuit in some way
so that the cost of reverse engineering is
maximized while operation characteristics
of the circuit are not degraded beyond an
acceptable level. Next, we delineate the
permissible transformations on a circuit
when obfuscation is in view.

Characterizing Circuit
Transformations
We define an obfuscating transformation
O(·) as an efficient, terminating program
that takes circuit P as input and returns
another circuit P’: O(P) = P’. Of this asser-
tion, all theoreticians and practitioners
(that we are aware of) would agree.
Beyond that, the majority of theoretical
and practical models for obfuscation have

at least two other requirements for the
obfuscating program O(·): semantic equiv-
alence and security.

We believe security may be provable in
some circumstances if we are allowed to
expand the semantic equivalence require-
ment (in other words, if an obfuscator can
change the [white-box] structure of a cir-
cuit so that [black-box] input/output rela-
tionships of the original circuit P are also
changed). We refer to black-box transfor-
mation with this meaning in mind.
Likewise, the obfuscator may change
(white-box) structure in such a way so that
semantic equivalence with P is preserved.
We refer to white-box transformation
with this meaning in view.

Black-Box Transformations
Sander and Tschudin [6] were one of the
first to recognize the value of a black-box
transformation as a means to hide func-
tional intent. In discussing black-box
changes to P, we assume there are certain
programmatic environments where the
output of the obfuscated circuit P’ is con-
ducive for off-line analysis and, therefore,
open to the possibility of recovering the
intended output of the original circuit P.
In certain environments, this may not be

possible. Black-box transformations,
however, may be necessary to achieve
stronger guarantees of security. In order
to achieve a useful black-box transforma-
tion by some specific white-box changes
to the structure of a circuit, an obfuscat-
ing operation must meet two require-
ments:
1. Change in Black-Box Behavior.

The functional behavior changes for
some majority of values in the domain
x, P(x) ≠ P’(x). This leaves open the
possibility that some transformations
may produce equivalent values for cer-
tain values of x.

2. Recovery of Black-Box Intent. In
order to recover the original functional
output of P, some function S(·) must
allow inversion: V(x):P(x)=S(P’(x)).
One way of hiding or masking

input/output relationships is to do so
through transformation that keeps the
input/output values hidden in plain sight.
We refer to such techniques as a black-box
refinement of the original circuit P and
present its algorithmic description in
Figure 3. From the viewpoint of a circuit
and its corresponding truth table, we can
visualize at least five distinct operations
that may be a part of a black-box refine-

Figure 2: White-Box Circuit Description

Program p Program p’

Input xx ' X

Input x’ x’ ' X’

Output yy '

Y Output y’ y’ '

Y’

Transformation
s(p,k,X,Y)=
q,p’ X’,Y’

Resolution
y=q(y’,k)

Figure 3: Black-Box Refinement
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ment. We envision that all five would be
applied in a probabilistic manner based on
configurable properties found in a (secret)
key. If we let X represent the domain of
the original P and confine it to a fixed
number of bits, a black-box refinement
may do any of the following:
1. Add input bits so that a new domain

with a larger possible bit string X’ is
created.

2. Randomly permute the input bits
themselves, resulting in a virtual
reordering of the bits.

3. Introduce intermediate gates that
would result in new truth table
columns for P’.

4. Introduce a random number of out-
put gates.

5. Randomly permute any of the output
bits themselves.
Changing the full input/output rela-

tionships of a circuit may truly hide the
original black-box intent of a circuit. By
composing a circuit with a semantically
strong data encryption algorithm, the

resulting program exhibits input/output
relationships with desirable cryptographic
properties. Figure 4 depicts this black-box
change, known as semantic transformation.

White-Box Transformations
We define a structural white-box change
to a circuit as a change to the topology of
the underlying directed acyclic graph,
which represents the circuit. Topological
changes may involve textual renaming of
signals or gates, changing the Boolean
function type of particular gates, reorder-
ing input or output signals, introducing
additional inputs, introducing additional
outputs, concatenating the serial compo-
sition of the entire circuit with another
circuit, merging the parallel composition
of the circuit with another circuit, or
replacing one or more gates within the
circuit with a functionally equivalent set
of gates.

Figure 5 shows the traditional mean-
ing of obfuscation as understood in both
theoretical and practical study: A trans-

formation w(P, k) = P’ takes as input a cir-
cuit P with some (possibly) probabilistic
information embodied in key k. We con-
sider any random choices made by an
obfuscation process to be part of this
key. The output of w(·) is a circuit P’ that
remains functionally equivalent to the
original circuit P and represents a differ-
ent version of the original. Current
obfuscation research centers on the
transformation algorithm and defining
the security that is achieved by its use.

Reverse-Engineering Attacks
In the world of real circuit analysis, the
typical goal of a reverse engineer is to
recover the input/output of the circuit in
question by some method less than full
exponential enumeration. As we have
already alluded to with black-box refine-
ment or semantic transformation, such
transformations would (at a minimum)
prevent this form of reverse engineering
while simultaneously introducing the need
for output recovery in order to maintain
functional utility. There are a number of
different ways to discover and alter the
functionality of a circuit. The term tamper-
ing refers to broad categories of circuit
exploitation, including subversion, modifi-
cation, and reverse engineering. Reverse
engineers typically target reproduction of
a circuit’s functionality, usually for capital
gain or malicious intent. Specific attacks
can be roughly categorized as brute force,
white-box/gray-box, side-channel, and
fault injection.

Brute Force Attacks
Brute force attacks are based on black-box
circuit behavior and are performed either
while the circuit is in its natural environ-
ment or standalone in a simulator. Such
attacks can be categorized as either general
or passive.
• General black-box attacks. Tra-

ditionally, black-box attacks are the
first and simplest means to reverse
engineer a circuit. Adversaries glean
black-box behavior by enumerating all
possible input combinations and
recording corresponding outputs.
Using a large truth table, data analysis
algorithms—or in some cases visual
inspection—the adversary may re-cre-
ate the underlying Boolean equations
that define the circuit’s logic; this type
of attack works well on circuits with
well-defined inputs and outputs.

There exists potentially 2n input
combinations to fully characterize any
combinational circuit and potentially
2n + m or more input combinations
for sequential circuits with m sequen-

Program p Program p’

Input x

Output y Output y’

Transformation
t(p,k)= r, p’

Recovery
y’=r(y’,k1)

Figure 4: Semantic Transformation

Input x

Output y

Program p Program p’Transformation
w(p,k)=p’

Figure 5: White-Box Transformation
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tial elements. For a typical circuit with
100 or more inputs, a conventional
black-box attack is not practical due to
an enormously large search space. For
example, a simple 64-bit adder with a
carry-in pin has a total of 129 input
pins and 65 output pins. If the reverse
engineer, with no prior knowledge of
the circuit applies the inputs, it would
take 2129 attempts or 299 seconds,
roughly 2 x 1022 years, using a state-of-
the-art 1 gigahertz automatic test
equipment costing well over $1 mil-
lion.

• Passive attacks. In passive attacks,
adversaries examine circuits in their
native environment (i.e., while they are
being used in an actual circuit). Input
and output pins are monitored, using
either an oscilloscope or logic analyzer,
and data is recorded giving a good pic-
ture of the chip’s functionality. Typi-
cally, adversaries use passive attacks to
provide focus for later black-box
attacks that require a smaller distribu-
tion of input values.

White-Box/Gray-Box Attacks
In physical realizations, white-box attacks
focus on the structure of a circuit. An
adversary attempts to gain access to the
internal nodes of a circuit without having
to go through input/output evaluation,
allowing a better functional understand-
ing. Even though adversaries may risk
destroying delicate circuit internals, these
techniques are the only way to get direct
access to the underlying white-box struc-
ture of a circuit in the real world. In order
to extract white-box descriptions, adver-
saries focus attention on silicon character-
istics using specific technologies such as
ion beams and optical equipment:
• Focused Ion Beam. The focused ion

beam is a semiconductor fabrication
device similar to the scanning electron
microscope (SEM), but it uses gallium
ions instead of electrons. Unlike the
SEM, it has a destructive effect as the
gallium ions are implanted into the
sample surface. This method allows an
adversary to set specific intermediate
nodes to specific values (0 or 1),
including modifying existing connec-
tions to bypass normal input signal
propagation. Likewise, an adversary
does not have to rely on the actual out-
put of the circuit in order to examine
intermediate propagation values.

• Optical Equipment. Optical attacks
rely on the interaction of photons with
silicon devices and take two forms:
optical probe and optical attack.
Optical probing focuses on circuit

examination by looking at transistor
states. Adversaries essentially use pic-
tures to observe signals that are propa-
gated by means of applied input values.

Side-Channel Attacks
We observe that even circuits that may be
provably secure according to a theoretical
model—based on static white-box and
dynamic black-box behavior—may still
leak critical information relative to the cir-
cuit’s function (based on real-world imple-
mentation issues). Rather than use brute
force (to glean black-box behavior) or
physically probe the internals of a circuit
(to glean white-box and gray-box behav-
ior), side-channel attacks use secondary
information to create a picture of circuit
functionality. Side channels are areas of a
circuit that leak unintended information.
They include power consumption and
timing analysis:
• Power Consumption. Power con-

sumption attacks mainly focus on
breaking cryptographic schemes. The
concept is that through an examina-
tion of the power used by a circuit, the
underlying encryption algorithm can
be found. This approach gives an
attacker insight into the data values
that are being manipulated on a chip. It
is possible to then correlate this col-
lected data to known functions in
order to see exactly what is happening.

• Timing Analysis. With brute force
attacks, synchronous circuits add addi-
tional complexity in the reverse-engi-
neering process due to the timing con-
straints that are introduced. Timing
attacks focus on taking the circuit out-
side of normal parameters by modify-
ing the speed of the clock, either
speeding it up or slowing it down.
Because timing is linked directly to
real-world physical implementations of
various circuit technologies, our exist-
ing obfuscation framework requires
additional information regarding
structural characteristics of the circuit
implementation.

Fault Injection
Fault injection is a generic term describing
the injection of faults into digital systems
using a variety of attacks: raising voltage
higher or lower than system tolerances,
inducing voltage spikes, or introducing
clock glitches. An adversary may use any
of these methods to cause the system to
malfunction with intentions of revealing
information useful in further attacks. The
adversary performs fault injection dynam-
ically at circuit run-time combined with
power analysis techniques. Encryption

algorithms, such as the Advanced
Encryption Standard (AES), provide
strength against brute-force key discovery
from black-box behavioral analysis.
However, an adversary may use fault injec-
tions with realized AES circuits in order to
reduce encryption strength via key-space
reduction. This exploit requires internal
circuit access and reduces the goal of the
adversary from using brute-force methods
to interrupt the successful encryption/
decryption process itself.

Conclusion
Given the current trend of reprogramma-
ble embedded devices within the DoD
and industry, attention needs to be refo-
cused on the benefits or measurability of
software protection applied to this
domain. Modern reconfigurable embed-
ded systems now require us to consider
circuits as software and the tamper meth-
ods applicable to physical circuits as new
threats to a broadened definition of soft-
ware. This article has presented a brief
overview of the characteristics, transfor-
mations, and attacks possible in the realm
of software implemented as circuits on an
embedded system. Ultimately, we must
turn our attention to the protection of
critical technology resident in such an
embedded system, mindful of the possible
threats and techniques at our disposal.u
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Complex CPSs are typically mixed-crit-
icality systems. They have to be

resilient against not only faults and failures
in a cyber subsystem but also hazards in a
physical subsystem (plant, or device)
under software control. Consider the fol-
lowing examples:

Controlling Human Errors
and Hazards
After a major surgery, the patient is allowed
to operate an infusion pump (patient-con-
trolled analgesia [PCA]) with potentially
lethal painkillers such as morphine sulfate.
When pain is severe, the patient can push a
button to get more pain-relieving medica-
tion. This is an example of a safety-critical
device controlled by an error-prone opera-
tor (the patient). Nevertheless, the PCA sys-
tem as a whole needs to be certifiably safe in
spite of mistakes made by the patient. To
solve this problem, medical instruments
(sensors) are used to monitor the vital signs.
An important element to the sensors is this:
A safe dosage, with respect to the patient’s
conditions, will be delivered for a fixed dura-
tion only if all vital signs are within thresh-
olds. Otherwise, an alarm sounds and the
infusion stops.

In this example, the cyber subsystem is
the computing hardware and software, the
plant is the patient, the infusion pump is the
safety-critical actuator device, and the vital
signs are the states of the device (or plant)
being monitored by sensors. Finally, a CPS is
said to be certifiably safe if we can verify
that the plant can remain in a safe state (the
pain-killer concentration in patient’s blood is
below a dangerous threshold) with respect
to a given set of internal system faults and
external safety hazards including a patient’s
incorrect commands, power failure, and the
loss of vital signs signals due to sensor
and/or connection failures.

Dangers of Implicit Assumptions and
the Need for Both Worst and Average
Case Analysis
The safety certification procedure includes
the assumptions and specifications of the
operational environment, the set of devices
and their configurations, the software, and

the faults and hazards model. Note that a
common cause of system failures in the
field is that environmental assumptions
embedded in software are implicit.

For example, the Ariane 5 rocket (also
known as Flight 501) reused Ariane 4’s soft-
ware, which had correctly assumed that the
rocket’s (Ariane 4’s) horizontal velocity
could not overflow a 16-bit variable.
Unfortunately, this was not true for Ariane 5
and led to its explosion during its maiden
flight [1]. Making assumptions explicit and
preferably machine-checkable is an impor-
tant aspect of building resilient systems. In
the development of a system of systems,
the new integrated system typically contains
many reused subsystems with implicit
assumptions embedded in the software.

In addition to safety, the manufacturer
of a resilient system must demonstrate the
effectiveness of the system under nominal
operational conditions. Note that safety is a
worst-case analysis, while effectiveness is an
average-case analysis. For example, if all
components work normally, the PCA pump
should deliver the painkiller according to the
prescription. Furthermore, it should never
overdose the patient even if the patient
pushes the deliver button too many times,
sensors fail and/or disconnect, and/or there
is power failure.

Impractical Correctness
In a typical flight-control system, the autopi-
lot is classified at DO-178B, Level A—the
highest safety-critical level—while the flight
guidance system (FGS), because of its com-
plexity, is only certified to Level C [2].
Nevertheless, the Level C guidance system
issues commands to steer the Level A

autopilot. This is an example of safely using
a component whose correctness is impracti-
cal to verify under current technologies. The
overall flight control has to be certified to
Level A again.

To solve this problem, the control
authority of the FGS is  first constrained so
that the dynamics of the airplane cannot be
changed abruptly. This gives the pilot
enough time to detect the problem(s) and to
take control in time. In addition, a Level A
monitor can be used to 1) monitor stability
margin in the control of the plane, and to 2)
monitor if the plane closely follows the
flight path. If any one of the thresholds is
violated, an alarm will be sounded and the
control is transferred to the pilot.

The following section reviews useful
architecture patterns and tools to build
resilient systems against software faults and
hazards in the physical plants under soft-
ware control. We (that is, organizations
using these methods) begin with software
design and/or implementation faults.

Architecture Patterns for
Resiliency
Logical complexity is a major driver of
software defects. I begin with a simple
example to illustrate the idea of “using
simplicity to control complexity” to build
resilient applications [3]. Consider the
problem of sorting. In sorting, the safety
property is to sort items correctly. The
effectiveness property is to sort them fast.
Suppose that we could formally verify a
Bubble Sort program but were unable to
verify a ComplexFastSort program. Can
we safely use the unverified ComplexFast-
Sort for effectiveness? Yes, we can.

Resilient Mixed-Criticality Systems

Most complex cyber-physical systems (CPSs) are mixed-criticality systems that have to be resilient against software design
faults, hardware failures, and physical hazards under software control. This article reviews useful design principles and archi-
tecture patterns for the development of such systems.
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As illustrated in Figure 1 (on the previ-
ous page), to guard against all possible faults
of ComplexFastSort, these two programs
are put into two virtual machines. In addi-
tion, a verified object called permute is devel-
oped that will: 1) allow ComplexFastSort to
perform all the list operations that are use-
ful in sorting related operations, but not to
modify, add, or delete any list item; and 2)
check in linear time that the output of
ComplexFastSort is indeed sorted. Finally, a
timer is set based on the promised speed of
ComplexFastSort that is supposed to be
faster than the Bubble Sort. If Com-
plexFastSort does finish in time and the
answer checked is correct, then the result is
given as output; if it does not finish in time
or does so with an incorrect answer, then
Bubble Sort sorts the data items. Note that
if ComplexFastSort works with time com-
plexity n log(n), the system has the same time
complexity n log(n). That is, the lion’s share
of the effectiveness offered by unverified
ComplexFastSort is captured with a small
amount overhead when ComplexFastSort
works. In addition, we guarantee the safety
(items sorted correctly) with respect to the
given set of specified safety hazards and
faults, namely arbitrary application software
errors. So far, there is no protection against
virtual machine and/or hardware failures.
Such limitations must be noted explicitly. If
the application requires the tolerance of
hardware failures, then fault-tolerant hard-
ware must be used.

The moral of this story is that we can
safely exploit the features and performance
of complex components, even if it may
have residual defects, as long as we can
guarantee the critical properties by simple
software and an appropriate architecture
pattern. This is the idea of using simplicity
to control complexity, which is the guiding
principle of building resilient mixed-criti-

cality systems. We want an architecture that
can safely utilize the features and perfor-
mance of lower-criticality components that
are impractical to fully verify.

Checking the correctness of an output
before using it—such as in the sorting
example—belongs to a fault-tolerant ap-
proach known as a recovery block [4].
However, in CPS applications, it is often
not possible to determine if every com-
mand from a complex controller is correct
(meeting the specifications).

Simplex Architectures
A Simplex Architecture [3] is an architecture
pattern for resilient control systems. As
illustrated in Figure 2, a Simplex Architec-
ture consists of 1) a safety core with a sim-
ple and verifiable high assurance controller
and decision logic, and 2) a complex high
performance system that cannot be fully
verified. There are many failure modes of
software. To protect the safety core, it
should be run in a different real-time virtual
machine.

To guard against real-time operating sys-
tems failures and/or security attacks that
may breach the firewalls, we can put the
safety core into a field programmable gate
array (FPGA), a programmable hardware
device. For protection purposes, FPGA
devices should not be allowed to be repro-
grammed during runtime. To ensure the
correctness of the FPGA programming, we
first perform model checking on the safety
core design and then directly generate very
high-level hardware description code to
program the FPGA.

As shown in Figure 3, this hardware and
software co-design approach is known as
System-Level Simplex Architecture [5],
which was developed for the design of a
prototype pacemaker for patients with heart
diseases. Pacemakers are also mixed-critical-

ity systems. The safety core is a simple timer
for rest rate pacing. If heartbeat is detected,
the timer is reset. Otherwise, it sends out a
pulse. This simple safety core can be done
directly in hardware but it must be safely
interfaced with microprocessor-based adap-
tive pacing, which will pace the heart faster
if built-in sensor and motion detection soft-
ware detects that a patient is exercising.
Additional effectiveness features may
include the detection and storage of the
most important abnormal heartbeats. The
rest rate pacing must work even if the
microprocessor and its software fail. This is
an example of discrete control of a plant (in
this case, a human heart). The following will
illustrate how a Simplex Architecture han-
dles incorrect control commands from the
complex high-performance controller for
continuous dynamics.

Operational Constraints
In the operation of a plant with continuous
dynamics, there is a set of state constraints
called operational constraints that represent
the safety, device physical limitations, envi-
ronmental, and other operational require-
ments. Consider the example of controlling
an inverted pendulum mounted on a cart
that runs on a track (see Figure 4). The con-
troller must actively move the cart left or
right to keep the rod balanced in the upright
position. The safety constraint is that it can-
not fall down. That is, the angle of the rod
must be always less than 90 degrees from
the upright position. Device constraints
include the length of the track and the lim-
ited torque of the motor that runs the cart.
Intuitively—to keep the pendulum balanced
near the center of the track—the angle
should be kept so it doesn’t deviate too far
from the upright position, and the cart
doesn’t veer too far from the center of the
track. In addition, we need to keep the
angular velocity and cart velocity limited.
Otherwise, the cart may hit the end of the
track, or the rod may fall down with too
large of an angle and too large of an angu-
lar velocity, such that the inverted pendulum
mounted on the cart becomes impossible to
keep from falling down.

In control theory, this intuition is repre-
sented by the notion of a stability envelope
within all of the operational constraints.
This envelope represents a subset of the
plant states in control of the pendulum.
They are: angle, angular velocity, track posi-
tion, and track velocity, within which the
controller can keep the rod upright without
violating any of the operational constraints.
This envelope is a function of the plant
model, the controller design, and the opera-
tional constraints. It can be computed by
following the steps outlined next.
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The operational constraints are repre-
sented as a normalized polytope in the N-
dimensional state space of the system
under control (as shown in Figure 5). Each
line on the boundary represents a con-
straint. The states inside the polytope are
called admissible states because they obey the
operational constraints. We must ensure
that the system states are always admissi-
ble. This means that we must be able to: 1)
take the control away from a faulty control
subsystem and give it to the high assurance
control subsystem before the system state
becomes inadmissible; 2) ensure that the
system is controllable by the high assur-
ance control subsystem after the switch;
and 3) keep the future trajectory of the
system state, after the switch, within the
set of admissible states. Note that we can-
not use the boundary of the polytope as
the switching rule just as we cannot stop
an out-of-control car, inches from a wall,
from colliding with it. Physical systems,
just like a moving car, have inertia.

The Recovery Region
A subset of the admissible states that satis-
fies these three conditions is called a recov-
ery region. The recovery region is repre-
sented by a Lyapunov function1 within the
admissible states. Geometrically, a
Lyapunov function defines an N-dimen-
sional ellipsoid in the N-dimensional sys-
tem state space. The boundary of this ellip-
soid corresponds to the system’s stability
envelope. A two-dimensional example is
illustrated in Figure 5. A Lyapunov func-
tion has the important property that as
long as the system state is inside the ellip-
soid associated with a controller, the sys-
tem states under that controller will stay
within the ellipsoid and converge to the set
point. The largest ellipsoid inside a poly-
tope can be found by using the Linear
Matrix Inequality method [6]. The inner
ellipsoid is the recovery region used for
operation. The shortest distance between
the outer and inner ellipsoids is the stabili-
ty margin. The stability margin allows us to
compensate for approximation errors in
the plant model, measurement errors in
sensing, actuation errors during operation,
and disturbance to the plant (e.g., such as
wind gusts against an airplane in a storm).

Controllers
During runtime, the plant is normally under
the control of a high-performance-control
subsystem. The high-assurance controller is
a simple and well-understood classical con-
troller. It is executing in parallel to the high-
performance controller (HPC). A typical
design is to run the two controllers at the
same rate, for example, at 100 hertz.

Schedulability analysis is performed to
ensure that both can finish before the end
of the period. As a further precaution, the
safety controller is run first. Should the
HPC not finish by its deadline, it will be ter-
minated and the command from the safety
controller is used. Otherwise, for each com-
mand from the HPC, the decision logic esti-
mates the next state if the command was
used. If the next state is within the recovery
region, the command will be executed.
Otherwise, the high-assurance controller
takes over and the HPC is terminated (a
small number of restarts are typically per-
mitted). In addition, the operator may ter-
minate the HPC for other reasons such as
certain features not being suitable for the
current operation.

Switching from one controller to the
other (hybrid control) may introduce tran-
sient errors in the control. A common
example is the transient jump of a car’s
velocity when the transmission shifts gears.
In the stability analysis, such transient errors
must add to the fault and hazard model.
That is, in the design of stability margin, it
is assumed that when the plant state is at the
boundary of the inner-recovery region, the
HPC fails and the system switches to the
safety controller and the control error, due
to switching, reaches its maximal value. As
well, the plant model approximation error is
maximal, and the actuation errors and exter-
nal environment disturbances such as wind
gusts against the plane are also maximal. In
a storm, for example, wind gusts reach a
maximal value according to a storm model.
The safety controller and the stability mar-
gin are designed to accommodate the worst-

case scenarios with respect to the fault and
hazard model. As a result, a Simplex
Architecture tolerates concurrent software
faults and disturbance to the physical plant.

A Real-World Example
A noteworthy example of using simplicity
to control complexity is the flight control
system of the Boeing 777 [7]. It uses triple-
triple redundancy for hardware reliability.
At the software application level, it uses
two controllers. The sophisticated control
software, specifically developed for the
Boeing 777, is the normal controller
because it has many new effectiveness fea-
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tures such as highly effective automatic sta-
bilization against wind gusts, advanced fuel-
savings, and reduced wear-and-tear to
mechanical actuators.

As a result, the 777 controller software
is much larger and complex than the 747
controller software. The secondary con-
troller is based on the control laws devel-
oped for the Boeing 747, which have been
used for decades. It is a mature technolo-
gy: simple, reliable, and well understood.
It is a simple component since it has low
residual complexity2. It should be noted
that the 777 control software was certified
to meet safety-critical requirements.

The use of the simpler 747 controller-
based software as backup is a precaution-
ary measure for added reliability. This is a
best practice because it is uncertain if the
process-oriented DO-178B can remain
effective when used with increasingly
complex software that cannot be exhaus-
tively tested. And while formal model-
checking technologies can be scaled up to
practice systems and are effective in
detecting many types of software defects
in a design, it is not formal proof of soft-
ware meeting all of the specifications—
nor is it a verification of the software
implementation that flies an airplane.

Formalized Architecture
Patterns 
Since architecture patterns often need to be
adapted for new application requirements,
we need to not only verify a collection of
commonly used architectural patterns, but
also provide computer-aided verification for
the adaptation of architectural patterns.
Furthermore, model-based approaches are
the most common way of capturing archi-
tectural designs and architectural patterns; it
is important to provide formal verification
support for architectural patterns expressed
in software modeling languages. The fol-
lowing example illustrates the use of:
• Complexity control architectures and

design rules for a medical system.
• A formalized SAE International Archi-

tecture Analysis and Design Language
(AADL) [8] subset to specify these
architectures. AADL is a standard archi-
tecture analysis and description lan-
guage.

• AADL models automatically trans-
formed into algebraic expressions in
Real-Time Maude [9] for formal analy-
sis. Real-Time Maude is a model-check-
ing language that supports the checking
of hard real-time constraints in addition
to temporal logic expressions.

Prevention Through Automation
One example comes from the Anesthesia
Patient Safety Foundation:

A 32-year-old woman was having a
laparoscopic cholecystectomy (sur-
gical removal of the gall bladder)
performed under general anesthesia.
During that procedure and at the
surgeon’s request, a plain film X-ray
was shot during a cholangiogram.
The anesthesiologist stopped the
ventilator for the X-ray. The X-ray
technician was unable to remove the
film because of its position beneath
the table. The anesthesiologist
attempted to help the technician, but
found it difficult because the gears
on the table had jammed. Finally, the
X-ray was removed, and the surgical
procedure recommenced. At some
point, the anesthesiologist glanced at
the EKG and noticed severe brady-
cardia. He realized he had never re-
started the ventilator. This patient
ultimately died. [10]

This accident could have been prevented by
automation. However, there are two candi-
date configurations:
• Configuration 1. As illustrated in

Figure 6, the X-ray machine and ventila-

Figure 8: AADL to Real-Time Maude Translation
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tor are networked together with a con-
trol station. The control station could
command the ventilation to pause, the
X-ray machine to take a picture, and
then command the ventilator to resume.
In addition, two watchdog timers are
added to the control station. The first
one limits the maximum duration of
each pause. The second one ensures that
pauses are separated by the minimum
duration. Both of them are configura-
tion time constants set by medical per-
sonnel. However, such a design is unac-
ceptable because if either the network
or the control station fail—after com-
manding the ventilator to pause—the
ventilator will be stuck at the pause state.
This is known as dependency inversion: The
safety-critical component ventilator
depends on less critical components,
such as the network and operator con-
sole. Potential dependency inversion is
easily detected by automated analysis of
AADL design.

• Configuration 2. As illustrated in
Figure 7, a better design is to put these
two timers inside the ventilator. From an
architecture perspective, this design min-
imizes the safety dependency tree into a
single node: the ventilator. Under this
design, as long as the ventilator is verifi-
ably safe, the overall system is safe in
spite of the faults and failures in the net-
work, the command station, and the X-
ray machine. From a safety perspective,
we can now safely integrate the ventila-
tor into different networks with differ-
ent but interoperable consoles and X-ray
machines without recertifying the safety
of the system. This is because the net-
work, X-ray machine, and console are
not part of the safety dependency tree.
From the perspective of the Simplex

Architecture in Configuration 2, the ventila-
tor is required to be verifiably safe. Once
this is done, it can safely collaborate with
non-safety critical devices such as the net-
work and a command station. The com-
mand station and network should be indus-
trial grade, not certifiably safe, because cer-
tifying the operating system and the net-
work is prohibitively expensive. Further-
more, if they were certified, any change in
the operating system and/or network would
trigger recertification. As well, any non-
safety critical device or network information
flows connected with this certified network
would trigger recertification. Minimizing
the use of certifiably safe components—
especially the infrastructure components
such as the operating system and/or the
network—is critical to the economics of
medical device networks.

Under the Simplex Architecture, non-

safety critical devices can be added, modi-
fied, and replaced without jeopardizing
safety invariance—provided that architec-
ture design rules are followed. This is done
by ensuring that the safety invariants are sat-
isfied by the set of safety-critical compo-
nents. In this example, the safety invariants
of the ventilator are the limit on the maxi-
mal duration of each pause and the limit on
the minimal duration of separation between
pauses. These invariants are specified by
means of a configuration time constant set
by medical personnel and enforced by the
two timers at runtime. Assuming that med-
ical personnel set the constants correctly
and the timers embedded in the ventilator
design work, the ventilator is safe for all
possible inputs from the command station
because the timeouts are not a function of
inputs from the commands.

The ventilator pause is instantiated from
the command station and the command
goes through the network. Thus, we say that
the architecture employs the network, X-ray,
and command station, but the safety does
NOT depend on them. The idea of employ
but not depend is a key principle of the
Simplex Architecture, which minimizes the
use of safety-critical components while
maximizing the safe utilization of non-criti-
cal components. When critical components
employ but do not depend on less critical
components, the system safety dependency
tree is defined as well-formed. Otherwise, it is
defined as a (safety) dependency inversion.

Checking to see if a candidate configu-
ration is well-formed is done by first devel-
oping a model of the composition in
AADL with a behavior specification. The
AADL model is then translated into Real-
Time Maude (as illustrated in Figure 8)
using its rewriting logic semantics. The fault
model is a specification of possible incor-
rect state transitions. Using the Real-Time
Maude models of faulty transitions in
unverified components and systems, we are
able to verify (by model-checking) that the
AADL model of the ventilator operation
satisfies the two safety invariants on maxi-
mum pause time and on minimum time
between pauses and is, therefore, verifiably
safe for such invariants. Furthermore, the
effectiveness of the system (liveness prop-
erty)—wherein the X-ray will be taken dur-
ing the pause of the ventilator in the
absence of faults—was also verified.

Conclusion
The convergence of sensing, control, com-
munication, and coordination in CPS—
such as with modern airplanes, power grids,
transportation systems, and medical device
networks—poses an enormous challenge
because of its complexity. Work in all of the

areas mentioned in this article is certainly
relevant and useful. However, to address the
hard challenges of CPS system design, the
focus is on a synergistic combination of
specific technologies to support the model-
based design of highly reliable CPS systems.
These combined technologies include:
architectural patterns, fault-tolerant tech-
niques, model-based software engineering,
object-based formal specification, and the
verification of real-time systems.u

Acknowledgements
The works described in this article are spon-
sored in part by the Office of Naval
Research, the National Science Foundation,
Lockheed Martin, Rockwell Collins, and the
SEI. Many have contributed to this work,
and I thank all of our collaborators in devel-
oping these ideas and case studies, including
Artur Boronat, Darren Cofer, Peter Feiler,
Steve Miller, Peter Ölveczky, Joe Hendrix,
Minyoug Nam, and Xiaokang Qiu.

References
1. “Ariane 5 Flight 501.” Wikipedia

<http://en.wikipedia.org/wiki/Ariane
_5_Flight_501>.

2. Tribble, Alan C., and Steven P. Miller
Software Safety Analysis of a Flight Guidance
System <http://shemesh.larc.nasa.gov/
fm/papers/Tribble-SW-Safety-FGS
-DASC.pdf>.

3. Sha, Lui. “Using Simplicity to Control
Complexity.” IEEE Software. July/Aug.
2001 <https://agora.cs.illinois.edu/
download/a t t achments/10581/
IEEESoftware.pdf>.

4. Tyrrell, A.M. Recovery Blocks and
Algorithm-Based Fault Tolerance. Proc. of
the 22nd EU-ROMICRO Conference.
Prague, Czech Republic: 2-5 Sept. 1996.

5. Bak, Stanley, et al. The System-Level
Simplex Architecture for Improved Real-Time
Embedded System Safety. Proc. of the 15th
IEEE Real-Time and Embedded
Technology and Applications Sympo-
sium. San Francisco: 13-16 Apr. 2009.

6. Boyd, S., et al. “Linear Matrix Inequal-
ity in Systems and Control Theory.”
Studies in Applied Mathematics. 1994.

7. Yeh, Y.C. Dependability of the 777 Primary
Flight Control System. Proc. of the
Dependable Computing for Critical

Software Defense
Application

Many defense systems are mixed critical-
ity systems with a high level of com-
plexity. The reduced complexity archi-
tecture patterns provide an effective
approach to address this challenge.

Resilient Mixed Criticality Systems



14 CROSSTALK The Journal of Defense Software Engineering September/October 2009

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

FEB2008 o SMALL PROJECTS, BIG ISSUES

MAR2008 o THE BEGINNING

APR2008 o PROJECT TRACKING

MAY2008 o LEAN PRINCIPLES

SEPT2008 o APPLICATION SECURITY

OCT2008 o FAULT-TOLERANT SYSTEMS

NOV2008 o INTEROPERABILITY

DEC2008 o DATA AND DATA MGMT.

JAN2009 o ENG. FOR PRODUCTION

FEB2009 o SW AND SYS INTEGRATION

MAR/APR09 o REIN. GOOD PRACTICES

MAY/JUNE09  o RAPID & RELIABLE DEV.

JULY/AUG09o PROCESS REPLICATION

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

Applications Conference. Los Alamitos,
CA: 1995.

8. SEI. “Model-Based Engineering with
SAE AADL.” 2009 <www.sei.cmu.
edu/products/courses/p52.html>.

9. Ölveczky, Peter C., and Jose Meseguer.
“Semantics and Pragmatics of Real-
Time Maude.” Higher-Order and Symbolic
Computation 20(1-2): 161-196 (June
2007).

10. Lofsky, Ann S. “Turn Your Alarms
On!” ASPF Newsletter 19.4:43. Winter
2004-2005 <www.apsf.org/assets/docu
ments/winter2004.pdf>.

Notes 
1. The Lyapunov function is a sufficient

but not necessary condition to improve
the stability of an equilibrium in an
autonomous system. For details, see
<http://mathworld.wolfram.com/Lyap
unovFunction.html>.

2. The logical complexity of a software sys-
tem can be measured by the number of
states that we need to check. A program
could have high logical complexity ini-
tially. However, if it has been formally
verified and can be used as is, then its
residual logical complexity is zero.
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Software security and software safety
share the need to assure that software

will remain dependable under extraordinary
conditions. Extraordinary conditions—
those which software was not intended to
gracefully tolerate—will either cause it to
behave unpredictably or fail outright.
What distinguishes software safety from
software security is what constitutes an
extraordinary condition for that software,
and what is at stake if it fails as a result.

Extraordinary conditions that threaten
software safety are termed hazards, reflect-
ing the perception that such conditions
are accidental. By contrast, extraordinary
conditions that threaten software security
are termed attacks or exploits, indicating
their intentionality. The objective of most
attacks on software is to sabotage or sub-
vert the software’s operation by exploiting
one or more weaknesses in the software’s
execution environment (e.g., failure of the
application firewall that blocks malicious
input from entering the system), design
(e.g., accepting input from unrecognized
entities), implementation (e.g., accepting
input in a fixed-length buffer without first
validating that input’s length), operation
(e.g., a failure of user interface software,
thereby exposing the system’s command
line), or development process (e.g., poor
configuration control, peer review, and
testing practices that allow a disgruntled
programmer to surreptitiously embed
malicious logic).

Intentional Threats to
Safety-Critical Systems 
Software failures that result from safety
hazards can have dire, even fatal, conse-
quences due to the extremely strong link-
age between the software and the physical
system that it is supposed to control.
Whether the software constitutes the sin-
gle small, closely contained embedded
program that controls an automobile’s
anti-lock braking system, or several dozen

modules dispersed throughout a distrib-
uted supervisory control and data acquisi-
tion (SCADA) system controlling an
entire region’s wastewater treatment, the
functions performed by the physical com-
ponents are what determine whether the
system (including its software) is safety-
critical. If a system failure results in dam-
age to the physical environment in which
people live, physical maiming, damage to
health, or death of one or more humans,
the system is safety-critical. The failure of
software in such a system can have cata-
strophic results.

Safety hazards tend to be straightfor-
ward and accidental. By contrast, security
threats are intentional: the result of
human creativity and perspicacity absent
from safety hazards (although a hazard
may introduce a vulnerability that an
attacker can intentionally exploit). Because
they are guided by human intelligence,
security threats are usually less predictable,
more complex, more numerous, and more
persistent than safety hazards. The same
system may be repeatedly targeted by a
variety of simultaneous and sequential
attacks, some aimed at the interface level,
others at the application components, and
still others at the execution environment
level—all orchestrated to accumulate and
intensify until they collectively produce
the critical failure(s), enabling the attacker
to achieve his objective.

Google “Ariane 5 Flight 501,”
“Therac-25 accidents,” or “Toyota Prius
software bug” to read about some dramat-
ic instances of safety-critical systems that
failed as a result of design flaws or imple-
mentation errors in their software. These
were unintentional flaws and errors,
caused by developer inadvertence, negli-
gence, or misapprehension, but their
impact was dramatic. How much more
disastrous might they have been had their
cause been intentional exploitation or
implanted malicious logic? 

Now Google “trans-Siberian gas
pipeline” + “software bug.” What you’ll
get are reports of the 1982 technology
coup. The CIA, having learned that Soviet
spies planned to secretly acquire a gas
pipeline controller developed in Canada,
planted a Trojan horse (logic bomb) in the
controller’s software. Once installed on
the trans-Siberian pipeline, the controller
ran a test of the pipeline’s pressure gauges
during which the logic bomb reset those
gauges to double gas pressure in the
pipeline. The resulting explosion was, up
to that time, the largest non-nuclear explo-
sion ever photographed from space [1].

In the 25-plus years since that incident,
attacks on safety-critical systems involving
the embedding of malicious code or direct
penetrations have proliferated, several of
which have been perpetrated by the sys-
tems’ own disgruntled developers or
administrators. Such attacks are proliferat-
ing due in part to opportunity: More safe-
ty-critical systems are built from or hosted
on commodity software, the vulnerabili-
ties of which are widely publicized and
well understood by attackers, then
exposed on semi- or fully open networks
(including the Internet). The increasing
software intensiveness of safety-critical
systems means more of their critical func-
tions are performed by software than by
hardware, and that software is necessarily
larger and more complex, making its vul-
nerabilities harder to predict and detect.

As with safety hazards, the impact of
software failures resulting from attacks
and exploits depends on the nature of the
targeted system. A threat to a safety-criti-
cal system can have the same dire conse-
quences as a hazard. Even in non-safety-
critical systems, the consequences of fail-
ure can be catastrophic: Insider sabotage
of an intelligence database application
may enable an attacker to steal the names
of undercover operatives in an adversari-
al country and sell it to that country’s

Software Survivability:
Where Safety and Security Converge

As safety-critical software moves from closed environments to open and commodity technologies, security threats will
inevitably increase. Organizations dependent on mission-critical systems and networks are recognizing that the traditional
“protect-detect-react” (PDR) strategy for countering intrusions and attacks is ineffective. A new information assurance and
cybersecurity strategy is needed that augments PDR with the ability of systems and networks to “fight through” attacks.
This article examines techniques that both security- and safety-critical software developers can leverage to increase their soft-
ware’s survivability.
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counterintelligence service, which then
has them captured and executed. The sub-
version of software in a military logistics
system that calculates the number of bio-
chemical suits may result in a shortage of
protection for forward-deployed forces
during a chemical weapons attack.

Embedded, Not Isolated 
Many safety-critical systems are embed-
ded. Until recently, that meant they were
small, relatively simple, and isolated from
direct interaction with humans (they even
lacked means for such interaction).
Today’s embedded systems are different.
They both benefit and become vulnerable
from the increased power of the proces-
sors on which they are hosted. These are
processors that enable the use of com-
modity operating systems, such as
Microsoft CE, which share security prob-
lems with non-embedded operating sys-
tems sharing the same kernel code1.

The less proprietary and more con-
nected embedded systems become, the
less specialized expertise attackers need to
target them. Systems from temperature
controls to medical devices to on-board
automobile computers and sensors are
now accessible via wireless Radio
Frequency Identification (RFID), cellular,
and satellite links that use standard com-
munications protocols. Implanted medical
devices are increasingly accessible via
RFID [2]. A DoD telemedicine applica-
tion enables surgeons in U.S. military hos-
pitals to issue commands, via a satellite
uplink, to a software-controlled robot in
Iraq, thereby performing laser surgery on
wounded soldiers in theater [3, 4].

But where there is a wireless network,
one can almost guarantee there will be an
attacker attempting to locate, intercept,
and tamper with the signals transmitted
between the systems at either end of the
wireless link. Consider telematic systems
such as GM’s OnStar, Ford’s remote
emergency satellite cellular unit and vehi-
cle emergency messaging system, Volvo’s
On Call, BMW’s Assist, and Mercedes-
Benz’s Tele Aid and COMAND. They all
use cellular or satellite connections to
allow their call center representatives to
perform remote diagnostics on the
onboard computers of subscribers’ vehi-
cles. Privacy concerns about certain data
collected by these telematic services are
well documented, but a recent addition to
OnStar is even more worrying. Owners of
1.7 million OnStar-equipped 2009 GM
vehicles can allow their engines to be
“remotely switched off through the
OnStar mobile communications system”
[5] at the behest of the police. The goal is

to stop stolen GM vehicles in their tracks
during high-speed police car chases, there-
by reducing the number of fatal accidents
associated with such chases. The implica-
tions of OnStar’s transition from a passive
monitoring and diagnostics system to an
active controller of a safety-critical
embedded system (the engine) have been
noted:

[Some] automotive communication
networks have access to crucial
components of the vehicle, like
brakes, airbags, and the engine con-
trol. Cars that are equipped with
driving aid systems allow deep
interventions in the driving behav-
ior of the vehicle .... Malicious
attackers are not to be underesti-
mated. [6]

The next logical step—remote updates
via telematic links to embedded software
and firmware—would create an ideal con-
duit for insertion of malicious logic into
embedded computers or causing denial-
of-service by injecting “garbage bits” into
telematic data streams [7].

Security of Safety-Critical
Infrastructure
Along with embedded systems, another
type of safety-critical system never origi-
nally intended to support publicly discov-
erable/accessible wireless network con-
nections is the industrial control system.
Both the SCADA and distributed control
systems (DCSs), along with air traffic con-
trol systems, are safety-critical hybrids of
information systems, command and con-
trol systems, and physical process control
systems. They support the same open net-
working protocols, remote accessibility,
and even Internet connectivity typically
found in information and command and
control systems. Like those systems, safe-
ty-critical control systems are being built
from commodity and open components
and hosted on mobile devices running
commodity and open operating systems.

A sobering example of where such
advances can lead occurred in the
Maroochy wastewater treatment facility in
Queensland, Australia [8, 9]. The DCS that
controlled the facility included remote
administration software that ran on
Microsoft Windows and provided remote
wireless network access to the facility’s
physical control functions (including open-
ing and shutting valves). Vitek Boden, a
former contractor who helped install the
system, later submitted a job application
that was rejected. The vengeful engineer

applied his expert knowledge: Over the
next four months, on more than 40 sepa-
rate occasions, he parked his car near the
water treatment plant and, with a laptop
that had a wireless radio transmitter, used
a stolen copy of the DCS’s remote admin-
istration software to identify himself to the
DCS as “Pumping Station 4,” then issued
commands that suppressed the DCS’s
alarms and changed its settings to place
excessive back-pressure on the valves.

By the time the plant’s operators final-
ly figured out that the series of inexplica-
ble failures in the plant were caused by
sabotage of its DCS and notified police,
Boden was in the midst of his 46th incur-
sion into the system. In the end, he man-
aged to release between 264,000 and 1.18
million gallons of raw sewage (including
human waste): The Maroochy River tribu-
taries turned black, marine life was poi-
soned, and the air reeked.

Not only does the Maroochy incident
vividly illustrate the danger of the insider
threat, it shows how vulnerable remote-
controlled safety-critical systems can be2.
As the Washington Post observed:

… like thousands of utilities
around the world, Maroochy Shire
allowed technicians operating
remotely to manipulate its digital
controls. Boden learned how to use
those controls as an insider, but the
software he used conforms to
international standards, and the
manuals are available on the Web.
Nearly identical systems run oil
and gas utilities and many manu-
facturing plants. [7]

Secure Development of
Safety-Critical Software
Software engineering for safety-critical
systems is impressively scientific and disci-
plined. It is driven by heightened quality
and fault-tolerance imperatives and has
careful, thorough hazard analyses, fault-
tolerant designs, and rigorous testing. As
well, safe subsets of programming lan-
guages are used and formal specification,
modeling, and verification is utilized. As a
result, most safety-critical systems can tol-
erate and continue operating dependably
in the presence of the unintentional faults
and failures associated with safety hazards.

But safety-critical software must be
equally intolerant of failures caused by
intentional threats and keep operating
dependably even under attack. This means
eliminating weaknesses, bugs, flaws, errors,
etc., that don’t necessarily lead to failures,
but which can be exploited by attackers.



Software Survivability: Where Safety and Security Converge

September/October 2009 www.stsc.hill.af.mil 17

Security for safety-critical systems—
and indeed for all software-based sys-
tems—must be achieved at the functional,
data, and environmental levels. At the
functional level, the software must be able
to withstand threats to its own integrity
and availability; these include threats of
denial-of-service, intentional corruption
or tampering with the software’s executa-
bles and/or control files, and embed-
ding/insertion of malicious logic. At the
data level, inputs received and outputs
produced by the software may be tam-
pered with or intentionally corrupted. If
the system stores, manipulates, or trans-
mits information, that information is also
subject to the same threats, plus the threat
of inappropriate disclosure. The soft-
ware’s execution environment is subject to
threats to its availability and integrity,
along with a further threat of hijacking or
theft of computing resources (memory,
disk space, computing power) by illicit
processes that make those resources
unavailable to valid processes.

Software security focuses on specify-
ing software’s internal workings to remain
dependable in the presence of potentially
hostile external interactions. Moreover,
the software must not contain design
weaknesses or implementation errors that,
if intentionally or accidentally escalated,
could lead to a failure (i.e., any incorrect or
unpredictable behavior) that could leave
the software exposed and vulnerable to
direct attack. Such failures may result from
a hostile input to the software itself, or
from a fault triggered by an attack on the
software’s environment.

Secure = Survivable
To date, the established paradigm for sys-
tem security has combined proactive PDR
strategies (which includes recovery).
Protection is often achieved through
defense-in-depth layering of security
mechanisms, controls, and procedures at
the functional, data, and environmental
levels of the system. Detection of threats
(or more accurately, their manifestation as
intrusions and attacks) is achieved by a
combination of intrusion detection, event
logging, and usage auditing and monitor-
ing. Reaction to intrusions and attacks
focuses on minimizing the extent, intensi-
ty, and duration of the incidents’ impact
and the likelihood of their recurrence.
Reaction often comes at the expense of
dependability because it requires rejecting
certain types of inputs (some of which
may in fact be valid), terminating some
user sessions, shutting down some or all
functions, or disconnecting the system

from the network (to disengage it from
the suspected attack source).

In the DoD, practitioners of informa-
tion assurance, computer network
defense, and cybersecurity have begun to
admit that this PDR paradigm is essential-
ly flawed. Attackers have become too
skilled, too expert, too flexible, and too
ingenious for countermeasures that rely
on the ability to recognize the threat to
keep up. Information and cyber warfare
fought on current terms is not just being
lost, it is unwinnable.

The DoD and numerous other organi-
zations now recognize the need for a para-
digm shift to enable their systems to survive
high-intensity intrusions and attacks.
Survivability (also referred to as
resilience), which has always been required
for safety-critical systems, must become
the norm for mission- and security-critical
software as well.

Designing for survivability means
including redundancy and rapid recovery
features at the system level (e.g., automat-
ed backups and hot-sparing with automat-
ic swap-over of high-consequence compo-
nents and modularized designs that enable
those components to be decoupled and
replicated on hot spare platforms). It means
implementing significantly more error and
exception-handling functionality than pro-
gram functionality: error and exception
handling that is purpose-built, not generic,
to minimize the possibility of faults esca-
lating into failures. If possible, rather than
failing, the software should be able to keep
running at a degraded level of operation
(i.e., reduced performance, termination of
lower-priority functions, rejection of new
inputs/connections). If it must fail, its
exception handler should prevent the fail-
ure from placing the software into an inse-
cure state, dumping core memory, or
exposing the content of its caches, tempo-
rary files, and other transient data stores.
For safety-critical software—in which
there is no threshold of tolerance for the
delays typically involved in post-failure
recovery and restoration—survivability
measures must prevent failures, full stop.
This is true whether the failure was acci-
dental or intentionally induced.

Engineering for Survivability
Survivability has become the subject of
research, as demonstrated by the Survivable
Systems Engineering program at Carnegie
Mellon University’s Computer Emergency
Response Team Coordination Center (see
<www.cert.org/sse>), the Willow Surviva-
bility Architecture developed by University
of Virginia’s Dependability Research
Group (see <http://dependability.cs.virg
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inia.edu/research/willow>), and Mithril,
developed by the National Center for
Supercomputing Applications (see
<http://security.ncsa.uiuc.edu/research/
mithril/>). These efforts combine tech-
niques for engineering high-confidence and
safety-critical software with software securi-
ty assurance principles and practices, and
generate methodologies and tools for pro-
ducing software that can remain survivable
in the face of intentional threats as well as
accidental hazards.

Emerging survivability techniques, as
well as more established high-confidence
and safety engineering techniques, meth-
ods, and tools can benefit developers of
software-based systems with strong secu-
rity imperatives, including systems that are
larger, more complex, more interactive,
and more extensively networked than
most safety-critical systems, high-confi-
dence embedded systems, cryptosystems,
and so forth.

Software Practices that Aid
Security and Safety
Just as developers of security-critical soft-
ware can benefit from safety engineering
practices, safety-critical software develop-
ment needs to undergo its own paradigm
shift to account for intentional hazards.

Researchers in both the safety and securi-
ty communities are adopting and adapting
software assurance principles, practices,
and tools from the other community to
aid them in producing software that is safe
and secure. Among these efforts, three
significant trends stand out:

Simplification of Formal Methods
Tool-supported modeling and proofs of
security properties in large, complex soft-
ware systems is made possible by semi-for-
mal methods, such as: 1) Praxis High
Integrity Systems’ Correctness-by-Con-
struction, which is a structured develop-
ment methodology into which formalisms
have been selectively incorporated; and 2)
tools that automate formal activities so
they can be performed by non-experts.
Examples include Correctness-by-Con-
struction’s supporting tools, Munich
University of Technology’s Autofocus and
Quest, Jean-Raymond Abrial’s B-Method,
and (to some extent) the Object Manage-
ment Group’s Model-Driven Architecture.

Hybrid Assurance Cases
Hybrid assurance case standards, tem-
plates, and processes (including both safe-
ty and security arguments and evidence)
are emerging. Examples include the SafSec

standard developed by Praxis High
Integrity Systems for the United
Kingdom’s Ministry of Defense and
ISO/IEC 15026, System and Software
Engineering–System and Software Assur-
ance. Also noteworthy are the safety and
security extensions defined for the inte-
grated CMM® and CMMI® by the Federal
Aviation Administration and the DoD
[10]. Their objective: extend processes
defined by and validated under those
CMMs to include safety and security engi-
neering practices.

Biological Models and Computer
Immunology
Biological models and computer
immunology are being applied to software
resilience/survivability to achieve diversity
and evolution/adaptation through: 1) cre-
ation of different instantiations of soft-
ware programs whereby the computation-
al results are identical but the architec-
tures, source code, and/or binary images
diverge and thus are not all equally sus-
ceptible to the same threats and 2) use of
pseudo-genetic algorithms to gradually
evolve executables over time within the
acceptable bounds of the software’s func-
tional specifications, thus enabling them
to continue operating correctly despite the
transformation. Specific techniques
include: dynamic software composition,
N-version programming, and code filter-
ing. Other biological metaphors have
resulted in software rejuvenation, phylogenet-
ic trees for predicting vulnerabilities, and
techniques for nature-based modeling of
software systems.

Conclusion 
Survivability as an adjunct to the PDR
model of information assurance and
cybersecurity is expected to be embraced
more fully by DoD and by other commu-
nities that operate mission-critical, safety-
critical, and life-critical systems. To the
extent that software safety engineering
minimizes or eliminates implementation
errors and environment faults, it con-
tributes to the security of that software. It
cannot, however, achieve security on its
own because it does not consider design
weaknesses that can be exploited as vul-
nerabilities or exploitable errors and faults
that are not expected to result in failures.
Adding software security principles and
practices to software safety engineering
can bridge the gap between producing
software that remains dependable in the
presence of unintentional hazards and
software that remains dependable in the
® CMM and CMMI are registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University.
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presence of both hazards and intentional
threats.u

Resources
Information on secure software develop-
ment practices, methodologies, and tools
is proliferating in print and on the
Internet. Three resources of particular
value (both for their own content and for
the extensive lists of references they con-
tain) are:
1. The DHS’ “Build Security In” Web

site at <https://buildsecurityin.us
-cert.gov/>.

2. The Information Assurance Technol-
ogy Analysis Center and the Data and
Analysis Center for Software’s (DACS)
“Software Security Assurance: A State-
of-the-Art Report,” is available online
at <http://iac.dtic.mil/iatac/down
load/security. pdf>.

3. The DHS (sponsor) and DACS (pub-
lisher) document, “Enhancing the
Development Life Cycle to Produce
Secure Software,” is available online at
<https://www.thedacs.com/techs/en
hanced_life_cycles>.
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Notes
1. Granted, additional processor power

also makes computing resources avail-
able for security countermeasures,
such as input validation and sophisti-
cated exception handling.

2. In the 1990s, the Nuclear Regulatory
Commission prohibited remote con-
trol of industrial control systems at
nuclear power plants. See Scott
Berinato’s article for CIO entitled:
“Cybersecurity – The Truth About
Cyberterrorism” <www.cio.com/arti
c l e / 3 0 9 3 3 / C Y B E R S E C U R
ITY_The_Truth_About_Cyberterror
ism>. Serious efforts to improve
SCADA and DCS security increased
after Sept. 11, notably in the
Departments of Homeland Security
and Energy and their counterparts in
other countries. Most of these efforts
have focused on system-level and
cybersecurity threats; few are attempt-
ing to address software vulnerabilities
or malicious code embedded during
software’s development.

DoD developers of weapons systems,
avionic systems, surgical robots, and other
safety-critical systems should find this
article helpful in clarifying the security
threats such systems face as they are
increasingly networked and, thus, exposed
not only to safety hazards but to inten-
tional attacks and exploits by nation states
and cyberterrorists. DoD developers of
classified information systems, security
controls, cryptosystems, and other securi-
ty-critical software-based systems should

benefit from the discussion of safety engi-
neering techniques that can increase the
survivability of those systems. Finally, sur-
vivability (as a concept) provides a shared
point reference from which developers of
safety-critical and security-critical defense
systems can establish an ongoing dialogue
to share the contributions each of their
communities can make, in terms of engi-
neering methods, techniques, and tools, to
advancing the state-of-the-art of software
survivability engineering.
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What is software resiliency? How can
it be achieved? What does it cost?

What are its benefits and how can they be
measured? Is an investment in software
resiliency worthwhile? These questions
might appear simple, but none of them
have an easy answer.

The very concept of software resilien-
cy is frequently ambiguous. For example,
are we talking about the inherent or intrin-
sic resiliency of the software itself, the
resiliency that the software imparts upon
other components of the system, or both?
There is a significant difference in require-
ments based upon how one defines soft-
ware resiliency. There is even a question as
to what software to include (e.g., end-user
applications, system software, embedded
firmware) and what to exclude. In this
article, I will define software resiliency,
examine how it fits into the overall
resiliency agenda, and show how one
might determine an appropriate level of
investment in it.

Background 
According to [1], 57 percent of about
1,200 responding organizations experi-
ence one or more application failures per
month, resulting in user inconvenience or
business disruptions. Interestingly, the sur-
vey shows that larger organizations tend
to have more failures on average, which is
thought to be due to the greater complex-
ity in larger environments.

Application failures resulted in
decreasing order from software compo-
nent failure, failure or reduced perfor-
mance of networks, and physical compo-
nent failures through power outages and
brownouts. Major reasons for application
failures include inadequate configuration
or change management, system sizing or
capacity planning problems, IT staff
errors, patch management issues, and
security breaches. Another finding was
that (for the most part) expenditures on
resiliency are not made early enough in the
application development life cycle. By
delaying consideration of resiliency until

late in the cycle, the costs are much higher
and there are often insufficient funds to
do the job.

For the purposes of this article, soft-
ware includes any programs that are devel-
oped through a regular development life
cycle, such as the software development
life cycle. This applies whether the end
product is a set of soft computer program
code, firmware (which is program code
etched into hardware), or even pro-
grammed hardware1.

Resiliency
In [2], the authors define a resilient system
as one that can take a hit to a critical com-
ponent and recover and come back for
more in a known, bounded, and generally
acceptable period of time.

This definition raises as many ques-
tions as it answers. Taking a hit can result
from accidental activities or intentional
attacks: It is when unauthorized damaging
activities cause the system to fail notice-
ably and invoke some form of recovery-
and-repair process. A hit can be as simple
as a PC freezing and having to reboot it to
a complex event that may take a long time

and many resources to examine forensical-
ly and respond appropriately.

From a more general perspective (par-
ticularly when it comes to economic eval-
uations), one is interested in both how
resistant the system is to events that
threaten to cause it to fail, and how quick-
ly the system can be brought back to an
acceptable level of functioning.

In order to evaluate software resiliency
sufficiently, one must always include the
environment in which the software oper-
ates. The resilience of systems containing
a particular piece of software will vary
considerably within a particular context.

User View of Availability 
There are a number of situations in which
a system can be considered not to be avail-
able. Unavailable time is defined in [3] as the
time during which any of the following
takes place:
• The system fails to operate.
• The system fails to operate in accor-

dance with formal specifications.
• The system operates inconsistently or

erratically.
• The system is in the process of being

maintained or repaired.
• A hardware or software component of

the system is inoperative, which ren-
ders the entire system useless for user
purposes.

• The system is not operated because
there is a potential danger from opera-
tion of the system to employers or
employees.

• There is a defect in software supplied
by the manufacturer.
This is a more realistic view of avail-

ability since there are frequently arguments
between the user population and the sup-
port technologists as to the real status and
usability of a system. Therefore, it pays to
be as specific as possible.

Software Resiliency
We now consider resiliency as it specifical-
ly pertains to software, as I have defined.
First we look at those factors which

Investing in Software Resiliency

Software is inherently error-prone and such errors can lead to failure of those systems of which the software is part. On the
other hand, with software being only one of many components of a system, there are many choices in regard to attaining a
particular level of system resiliency, not all of which are software-related. It is important to consider software resiliency in
relation to the resiliency of the entire system, including the human and operational components. The goal of this article is to
help those who develop, implement, and operate computer networks and systems in determining the factors to include when
investing in software resiliency.
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reduce resiliency. We then look at specific
design and development attributes that
affect software resiliency.

Factors Working Against Software
Resiliency 
The introduction of [4] provides a num-
ber of factors and trends that impact soft-
ware trustworthiness. Many of these fac-
tors also affect software resiliency. What
follows are some of the broader issues
from [4] as well as some additional factors
to consider:

Complexity
The size and complexity of software sys-
tems is increasing, thus the ways in which
a system can fail also increases. It is fair to
assume that the increase in failure possi-
bilities does not bear a linear or additive
relationship to system complexity. For
example, combining two or more systems
leads to a greater level of complexity than
the combination of the complexities of
the individual systems. Thus, if System A
has a complexity of 5 and System B a
complexity of 7, the combination of
Systems A and B will be significantly
greater than 12—perhaps in the 20 range.

This complexity attribute makes it
increasingly difficult to incorporate
resiliency routines that will respond effec-
tively to failures in the individual systems
and in their combined system. The cost of
achieving an equivalent level of resiliency
due to the complexity factor should be
added to that of the individual systems.

Interdependency and Interconnectivity
Interdependency or interconnectivity via
ever-larger networks adds to complexity in
that as systems become increasingly inter-
connected and interdependent, achieving
resiliency becomes a greater task. Another
aspect of interconnectivity is the growth
in infrastructures that contain systems
belonging to different organizations.
Thus, the resiliency of an entity’s systems
is increasingly dependent on the resiliency
of systems over which the entity has no
control. This means that a failure of
another party’s systems can have a ripple
effect on your systems.

In order to protect against this situa-
tion, an entity must develop routines that
preserve the integrity and operational con-
tinuity of its systems even if the systems
of business partners, service providers,
and customers were to fail.

Net-Centricity
This is somewhat similar to the interde-
pendency case, except that it focuses on
systems that include the Internet or other

public/private network as part of its
design. For example, service-oriented
architecture and software as a service fall
into this category, as do a whole range of
so-called Web 2.0 applications and ser-
vices. Again, the issue is whether the sys-
tems and networks not under the direct
control of the customer organization can
be trusted, and what evidence is available
to verify such trust. In such situations,
there is a need to ensure that software
components can be trusted to interact
securely without supervision [4]. It should
also be noted that security assurance has
to cover resiliency and integrity as well as
confidentiality.

Globalization
With the growth in increasingly extended
software development supply chains, the
concern is that the focus will be more on
functionality and low cost rather than
resistance to attack and resiliency. The
challenge is to spread the knowledge as to
how to design and build more secure and

resilient systems to the far reaches of the
development universe and to enforce stan-
dards. It is essential to introduce mecha-
nisms that reward such aspects as security,
resiliency, and integrity rather than only
functionality and speed to market.

Open Source Software
To some extent, open source products are
the software equivalent of the intercon-
nectivity and net-centricity aspects of net-
working in that there is not necessarily a
specific group to go to in order to ensure
trustworthiness and resiliency and resolve
any failures. It is true that there are commu-
nities that are responsible for the evolving
and fine-tuning of the software (and some
of the open source software that is sup-
ported by commercial enterprises).
However, as shown in a recent study by
application security firm Fortify, these
groups may not be responsive [5].

Another challenge raised in [4] is the fund-
ing of evaluations of such software. There
has been some movement in regard to the
latter, such as the Software Assurance
Initiative being conducted for the banking
and finance sector by the Financial
Services Technology Consortium in col-
laboration with the Financial Services
Roundtable2.

Hybridization
Hybridization relates to the increasing
trend of combining into single systems
software of different origins, and subject
to different development methodologies,
time and cost constraints, and so on. Thus
commercial and government off-the-shelf
software, custom and proprietary soft-
ware, and open-source software may be
combined in various ways in the ultimate
realization of a particular system. One
could argue that such a system is, as a
result, only as resilient or secure as its
weakest component. This aspect of con-
text is key when attempting to evaluate the
combined resiliency or security of a com-
plex system.

Rapid Change
The common belief that change is the
only certainty is particularly true in the
software arena, where new versions of
existing software and frequent releases of
new software make for a very dynamic and
highly complex environment. Such rapid
change creates innumerable problems
with software security and resiliency.
There is often not the time to test one ver-
sion of a software product before a new
one appears, making the tests on the orig-
inal software obsolete. A frequently held
criticism of Common Criteria testing is
that, by the time the results are available,
there is a good chance that the tested soft-
ware has already been replaced.

The danger here is that the new soft-
ware may contain new vulnerabilities that
may not have existed in prior versions.
Thus, determining that an obsolete piece
of software is sufficiently resilient is not
particularly indicative of the state of the
newest version and, therefore, is not very
useful.

Reuse in Different Contexts
As organizations are being driven by eco-
nomic and speed-to-market considera-
tions, there is a tendency to increase the
use of off-the-shelf and open-source soft-
ware. While such systems may have been
designed to operate in a specific environ-
ment, they are being increasingly used in
situations for which they were not
designed. As a result, they may not meet

“The time that it takes
to recover depends

mostly on the degree of
preparation made
through business

continuity and disaster
recovery plans.”
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the security and resiliency requirements of
the new environments.

While one might be cynical in inter-
preting the standard software use agree-
ment (that protects the software vendor
against virtually any liability if the soft-
ware doesn’t do as intended), there is a
valid argument about it not working when
used inappropriately. This is particularly
true of lightweight software applied to
critical large operations uses.

Specific Design and
Development Issues 
There are many situations in which systems
fail because they do not even incorporate
necessary resiliency routines, or the ones
that are inserted do not perform as needed
or have not been tested thoroughly
enough.

Poor Design
Regarding the absence of resiliency rou-
tines, I recall a development manager
expressing amazement at the general lack
of understanding—both by the presenters
of a new product and the audience—of
the need to design-in the ability to restart a
program from a prior status. The develop-
ers were relatively new to the profession.

Inadequate Testing
In another situation, I was about to imple-
ment a leading-edge digital telephone turret
on a newly built trading floor. The only
other installation to date was experiencing

intermittent crashes. After weeks of
research, the turret vendor determined that
the reason for failure was an untested error
routine. Apparently, in the pristine and
carefully engineered test version at the ven-
dor’s testing laboratory, the system did not
invoke this particular routine because of
the high quality of the installation. Out in
the real world, the less well-engineered cable
runs began generating errors that forced
the software into the untested error rou-
tines leading to the consequential crashes.

Inappropriate Use
Another resiliency issue arises when the
software is used incorrectly or is inappro-
priate for a particular purpose. Software
for the PC is generally not as reliable and
does not have the same fail-safe design as
software intended to be used in a demand-
ing production environment—yet such
unreliable software regularly becomes
incorporated into critical production or
financial systems. These systems are not
held to the same standards for testing and
documentation as are major production
systems and, as a result, can be the Achilles
heel of the overall system.

Ineffective Change Management
In order to maintain a high level of appli-
cation security, integrity, and resiliency, it is
necessary to carefully control the software
change process. There are many instances
where programming errors can result in
major failures.

As an example, on January 15, 1990,
AT&T’s long-distance network failed and
was down for nine hours. The failure
occurred when a system-wide software
upgrade was installed on 4ESS digital cir-
cuit switches. It was reported that the fail-
ure began when a switch in New York City
suffered a minor hardware glitch, which
caused it to go offline [6].

While scheduled changes can clearly
cause problems, unscheduled or emer-
gency changes represent an even greater
danger to the integrity and continuing
operation of software.

Fault Tolerance and Failure
Recovery
Anderson points out that “... failure recov-
ery is often the most important aspect of
security engineering, yet it is one of the
most neglected” [7].

Fault tolerance is the ability of the soft-
ware to resist damage or destruction from
errors. Thus, if there is an error condition,
the software has the capability of recog-
nizing the error and correcting it according
to some pre-specified set of rules. The tol-
erance level is only as good as the rules.
Therefore, the software, on recognizing an
error, will correct it with the most likely
correct condition. There is, of course, a
possibility that the correction is not appro-
priate, in which case either the integrity of
the system is called into question or a sub-
sequent test will reveal that the attempted
correction was inappropriate.

In other cases, if the fault is thought by
the system to be a component failure, the
fault tolerance results in automatic switch-
ing to a backup component or software
routine. The system continues processing
in backup mode while the faulty compo-
nent is being fixed. This latter situation is
failure recovery within the primary system.

Fail-Over to Other Systems 
Fail-over can also be to an on-site or off-
site backup system. While fail-over within
a system usually assumes operational con-
tinuity, fail-over to backup systems can be
hot, warm, or cold.

If hot, the backup system is running in
parallel with the primary system and auto-
matically detects a failure in the primary
system and switches to the backup, which
may be on-site or off-site. If off-site, it can
be in-region, out-of-region, or in the cloud.
There are often technology restrictions on
the allowable distance between sites for hot
backup. One common limitation comes
from the technical feasibility of maintain-
ing data current at two or more sites via
disk shadowing or similar technologies.

Type of Event Protection Costs Benefits

Component failure

System failure

Site down

Regional disaster

National or
global catastrophe

All off-site backup

• Hardening
• Fault tolerance
• Redundant

components

• Additional components
• Software overhead
• Hardware overhead
• Increased complexity
• Maintenance and support

• Increased availability
• Reduced downtime

• Fail-over
• Redundant systems

• Off-site backup
• Hot
• Warm
• Cold
• White-wall

• Facilities
• Systems
• Networks
• Staffing
• Utilities

Ability to restore
operation when primary
facility inoperable with
minimal downtime• Out-of-region backup

• Hot
• Warm
• Cold
• White-wall

• Out-of-country facility
• Catastrophe

contingency planning
and backup

As for regional disaster Ability to recover
from a disastrous event
affecting large regions
of the country or
the world.

• Backup in the cloud As for some on-site and
all off-site

• Ability to purchase
amount of resources
for backup as needed
• Largely independent
of location

Table 1: Protection, Costs, and Benefits for Different Types of Events
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Recovery and Restoration 
The ability to resist attacks—and to recov-
er quickly to an acceptable level of perfor-
mance after failure due to successful
exploits, unintended damaging actions, or
accidents—is crucial for the systems run-
ning in most organizations.

The time that it takes to recover
depends mostly on the degree of prepara-
tion made through business continuity and
disaster recovery plans. There are escalat-
ing levels of backup and recovery, each
costing more but enabling improving
recovery from increasingly destructive
events. These levels are shown in Table 1.
The table also shows the various forms of
protection that can be instituted and their
respective costs and benefits.

In the commercial world, unavailabili-
ty costs might include loss of productivi-
ty for internal users and business partners,
loss of business in the form of failure to
attract new customers or retain existing
customers, and so forth. In the govern-
ment sector, lack of availability might
result in military compromise or a reduc-
tion in safety. While difficult, it is neces-
sary to come up with cost estimates relat-
ed to unavailability of critical systems.
These costs will typically not be easy to
estimate. They will also typically not be
linear, but more in the form of exponen-
tially increasing costs.

In terms of recovery costs, these are
usually minimal when recovery involves a
hot backup system or facility where switching
or fail-over to the backup system—
whether on-site or at another facility—is
virtually instantaneous and there is no loss
of data or processing availability. Such a
transition is effectively transparent to end-
users and business partners. Of course, a
hot backup is considerably more expen-
sive to design, implement, and maintain
than other forms of backup.

Warm backup is where the backup sys-
tem or facility is up and running and on
standby and can be brought into opera-
tion within a short time, typically minutes.
The recovery time usually consists of a
process for bringing the backup system up
and synchronizing it to the point in pro-
cessing at which the primary system
failed. The activation of such a process
usually takes from minutes to hours to
accomplish and the time when the
switchover takes place (i.e., whether the
system is in use or idle at the time of fail-
ure) can have a significant impact on end-
users and business partners.

It is interesting to note that hot back-
up is not always better than warm backup
from operational and availability perspec-

tives. I recall a situation in which two sis-
ter organizations had taken different
approaches to achieving high availability
for critical financial systems. The larger,
wealthier organization had both hot back-
up and warm backup, and a process
whereby the warm backup system was
activated to hot status if the primary sys-
tem failed over to the hot backup. The
smaller, less affluent organization ran two
separate systems in parallel and, in the
event of a failure of the primary system,
physically switched to the backup system.
This resulted in having to reenter the few
missed transactions that were lost in the
switchover. It turned out that the highly
automated larger systems were consider-
ably more expensive and far less reliable
than the simpler manually operated sys-
tems. This was because, in the highly auto-
mated case, an error occurred in common
memory resources, which brought down
all three systems for an extended period.
The lesson learned was that one has to be
aware of single points of failure and how
they might impact the recovery process.

With regard to backup sites, there are
a number of lower-cost options. One
option is to have a cold site, which will gen-
erally have power, cabling, communica-
tions, and some systems installed. Either
all necessary equipment will be on a site

but not necessarily powered up or an
arrangement with a vendor will be in place
for the rapid shipment of standard equip-
ment, such as PCs. The timeframe for
activating a cold site can range from hours
to days of elapsed time, depending on fac-
tors such as the time it takes for required
staff to travel to the backup site, the time
to deliver additional equipment and soft-
ware, and the time to initiate and synchro-
nize systems. I recall a personal experi-
ence where a Florida company declared a
disaster due to a major storm soon after
the Sept. 11 terrorist attacks, but was
delayed several days in effecting its back-
up plan because the backup facility was in
Chicago and there were no planes flying.
The need to use land-based transportation
to move people and resources (such as
physical data media) significantly extend-
ed the recovery time.

A white-wall facility3 is an extreme form
of a cold site. It is essentially an empty
space that the organization has previously
obtained for its use in a disaster. It gener-
ally offers little more than the bare walls,
with a minimum of power, heating, and
cooling utilities, and perhaps some mini-
mal telecommunications, installed. Such a
site must be built out on demand. This
generally means that the organization
must order, receive, and install necessary
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Figure 1: Various Degrees of Backup at Application, System, and Facility Levels
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equipment, software, and other resources
at the time of an incident.

Organizations are well advised to at
least have previously negotiated arrange-
ments and agreements with vendors and
service providers for the rapid delivery
and installation of required resources.
Experience has shown that vendors and
service providers are usually very respon-
sive in the face of an emergency, giving
the affected organization priority service
in order to minimize downtime. Of
course, it is also in the self-interest of ven-
dors to do what they can to enable the
customer organization to survive a disas-
ter. While setting up a white-wall facility
can take weeks, it is a big step ahead of
having no facility at all4.

If no backup system or facility has
been provided, the choice (depending on
the nature of the failure) is to fix and
recover the primary system or facility, or
to build a new system from available
resources. Here, a good practice is to take
snapshots of the system and data at pre-
determined intervals and go through a
restart process. Depending on the level of
recovery and reconstruction necessary,
this type of recovery can be an extremely
expensive endeavor in and of itself and
the consequential financial losses due to
lost productivity, damaged reputation,
fleeing customers, and the like can be
enormous.

Another option that should be men-
tioned is a one-way or two-way agreement
with another party. One can subscribe to
commercial disaster recovery services and

pay a monthly fee to have the right to use
their facilities and additional fees if a dis-
aster is declared. Such facilities can be
very effective as they are often staffed
and run continuously. One issue to be
aware of is that when disaster recovery
facilities are shared among a number of
customers within a given region, the
amount of backup services might not be
available to the degree expected if a dis-
aster were to be regional in scope. The
level of services provided can range from
hot backup to white-wall, with corre-
sponding charges.

Another option is to institute a recip-
rocal arrangement with another nearby
company, often in the same or similar
business. However, they can be difficult to
implement since there is no guarantee that
the reciprocating partner will be able to
provide the facilities when needed. I recall
a situation in which my company needed
to invoke such an arrangement at 6 a.m.
one day. However, my staff could not get
into the other company’s facility since the
persons familiar with the arrangement
were in transit and the building guards had
not been informed about the arrangement
and would not let the operators into the
building. Ironically, when the other party
needed to invoke the arrangement a few
months after the unsuccessful attempt by
my company to use their facilities, they
needed to invoke the mutual backup
arrangement. In contrast, however, my
company was able to provide the
resources on demand. As seen by this
example, such arrangements may be very

low cost, but they are also unreliable and
difficult to enforce.

The use of cloud computing is similar to
the disaster recovery services model
except that cloud computing services
might not require a monthly fee if the
arrangement is only to pay for cloud ser-
vices actually used.

Figure 1 (see previous page) illustrates
the various backup relationships previous-
ly discussed. It also shows that other par-
ties—such as customers, service
providers, and business partners—need to
be included. In particular, it is highly
advisable to test connectivity and oper-
ability between backup facilities and third
parties. More recently, there have been
calls for backup-to-backup testing
between organizations and third parties.

Table 2 shows, for various failure sce-
narios and types of backup, the relative
costs of setting up and operating the
backup capabilities, how much (on a rela-
tive basis) it might cost to recover if an
incident occurs, as well as what the com-
bined costs might be.

Please note that these are very rough
ordinal assessments that do not allow for
essential characteristics of systems (such
as their criticality to the business and their
technical complexity) nor do they account
for the frequency and magnitude of
events. The assessments are provided as
guidance as to what one might find in a
typical business or government situation.

The Economics of Resiliency
It is clear that there is a need to balance

Type of Event Protection Costs Benefits

Component failure

System failure

Site down

Regional disaster

National or
global catastrophe

All off-site backup

• Hardening
• Fault tolerance
• Redundant

components

• Additional components
• Software overhead
• Hardware overhead
• Increased complexity
• Maintenance and support

• Increased availability
• Reduced downtime

• Fail-over
• Redundant systems

• Off-site backup
• Hot
• Warm
• Cold
• White-wall

• Facilities
• Systems
• Networks
• Staffing
• Utilities

Ability to restore
operation when primary
facility inoperable with
minimal downtime• Out-of-region backup

• Hot
• Warm
• Cold
• White-wall

• Out-of-country facility
• Catastrophe

contingency planning
and backup

As for regional disaster Ability to recover
from a disastrous event
affecting large regions
of the country or
the world.

• Backup in the cloud As for some on-site and
all off-site

• Ability to purchase
amount of resources
for backup as needed
• Largely independent
of location

Table 2. Costs of Backup, Response and Recovery by Scope of Event and Type of Backup

Component Hot fail-over High High Seconds/Minutes Low Moderate Low

Component Warm fail-over Moderate Moderate Hours Moderate Moderate Low

Component No fail-over Low Low Days Very high Moderate Extremely high

System Hot backup High High Seconds/Minutes Low Moderate/High Moderate

System Warm backup Moderate Moderate Hours Moderate Moderate/High High

System No backup Low Low Days Very high Moderate/High Extremely high

Site (Facility) Hot site Very high Very high Seconds/Minutes Low Moderate Moderate

Site (Facility) Warm site High High Hours Moderate Moderate High

Site (Facility) Cold site Moderate Moderate Days Very high Moderate Very high

Site (Facility) White wall Low Low Weeks/months Extremely high Moderate Extremely high

Regional Hot site Extremely high Extremely high Seconds/Minutes Low Low/Moderate Low

Regional Warm site High High Hours Moderate Low/Moderate Moderate

Regional Cold site Moderate Moderate Days Very high Low/Moderate Very high

Regional White wall Low Low Weeks/months Extremely high Low/Moderate Extremely high

National/Global Hot site Extremely high Extremely high Seconds/Minutes Low Low Low

National/Global Warm site High High Hours Moderate Low Moderate

National/Global Cold site Moderate Moderate Days Very high Low Very high

National/Global White wall Low Low Weeks/months Extremely high Low Extremely high

* Note that the frequency of events, other than those outside the control of the organization, can be influenced by those responsible for designing and setting up systems, facilities, and infrastructures. The levels shown are for frequency are based on
experience, but may not be applicable to a particular case.

Scope of
Failure or
Event

Type of
Backup Put in
Place (if any)

Cost of
Setting Up
Backup

Ongoing
Costs of

Maintenance
and Support

Typical Time
to Respond
and Recover

Cost of
Incident
Response

and Recovery

Probable
Frequency of
Event per
Period*

Incident Cost
per Period
(Magnitude x
Frequency)

Table 2: Costs of Backup, Response, and Recovery by Scope of Event and Type of Backup
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the cost and effectiveness of backup and
recovery capabilities against the expecta-
tions of damaging and destructive events.
The mentioned scenarios and costs relate
to recovery from successful attacks or
damaging events. These costs may be
reduced if the expectation of failure or
compromise is lowered through preventa-
tive measures, deterrence, or avoidance.

There is a trade-off between protec-
tive measures and investments in surviv-
ability. The determination of the opti-
mum level of backup is based on the
expectations of damaging events, the
impact of these events, and the ability to
recover quickly and return to acceptable
operation.

It should also be noted that the differ-
ent levels of backup are not independent.
Hence, if one has a hot backup system
installed in a within-region backup facility,
it may not be cost-effective to have an on-
site backup system. Conversely, if one
installs a highly resilient primary system
with various degrees of internal redun-
dancy, it is less likely that a backup system
will be required and thus a warm off-site
backup system may be adequate.

This suggests that a number of com-
binations need to be evaluated, depending
on the resiliency of the primary systems,
the criticality of the application, and the
options as to backup systems and facili-
ties. Thus, it is up to the analyst to deter-
mine which options and which combina-
tions make the most sense for a particular
environment and then to cost out  the
preferred options.

Summary
The topic of software resiliency is not
addressed at a level appropriate to its
impact on organizations. This article has
examined the factors that affect software
resiliency and the contexts in which appli-
cations might run, particularly in regard to
the wide choice of backup options.

Further work is needed—particularly
with respect to running some numbers for
a variety of cases and reviewing the
results. It may be that the realistic options
are much more limited than expected.
Also, the growing availability of cloud
computing may completely change the
results of disaster backup analyses in favor
of backup in the cloud. At the same time,
cloud computing introduces its own issues
in regard to resiliency and recovery.u
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Notes
1. Such a technology is described in the

article, “Soft Hardware for a Flexible
Chip,” which is available at <http://
cordis.europa.eu/ictresults/index.cfm
?section=news&tpl=article&id=90
572>.
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Assurance Initiative and other projects
of the Financial Services Technology
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3. A white-wall facility is a term that I
heard while developing disaster recov-
ery plans for a major financial institu-
tion. The term does not appear to be
in the literature and a search for its
particular use in the context of disaster
recovery did not produce any results.

4. It is necessary to begin looking for a
building and then negotiating a lease
or purchase, which can take weeks or
months.

As software and its implementation
become increasingly complex and depen-
dent on diverse infrastructures, it has
become essential for those designing and
developing computer applications to be
aware of, and allow for, the evermore
challenging environments into which
software is installed. This article provides
those in the DoD responsible for soft-
ware design and development, infrastruc-
ture support, data center operations, dis-
aster recovery planning, and incident
response with the necessary guidance,

concepts, techniques, and methodologies
to provide the overall level of resiliency
required for specific systems. As cyber
attacks grow in their capabilities and
effectiveness, those developing and
deploying DoD systems must enhance
their understanding of the impact of fail-
ures from attacks, inadvertent actions,
and natural events on the availability of
computer systems and networks. They
need to take steps so that systems can
rapidly and accurately be recovered from
failures and outages, whatever their cause.
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Since 1999, The MITRE Corporation
and others have developed a number of

information security standards that are
increasingly being adopted by vendors and
form the basis for security management
and measurement activities across wide
groups of industry and government. This
article explores how these standards are
facilitating the use of automation to assess,
manage, and improve the security posture
of enterprise security information infra-
structures while also fostering resiliency
and effective security process coordination
across the adopting organizations.

The basic premise of the MSM effort
is that for any enterprise to measure and
manage the security of their cyber assets,
they are going to have to employ automa-
tion. For an enterprise of any reasonable
size, the automation will have to come
from multiple sources. To make the find-
ing and reporting issues consistent and
composable across different tools, there
has to be a set of standard definitions of
the things that are being examined, report-
ed, and managed by those different tools.
That standardization is what comprises
the core of the MSM efforts.

Information security measurement
and management—as currently prac-
ticed—is complex, expensive, and fraught
with unique activities and tailored
approaches. Solving the variety of chal-
lenges currently facing enterprises with
regards to incident and threat manage-
ment, patching, application security, and
compliance management requires funda-
mental changes in the way vendor tech-
nologies are adopted and integrated.
These changes include the way enterprises
organize and train to utilize these capabil-
ities. Likewise, to support organizational
discipline and accountability objectives
while enabling innovation and flexibility,
the security industry needs to move to a
vendor-neutral security management and
measurement strategy. The strategy must

be neutral to the specific solution
providers while also being flexible enough
to work with several different solutions
simultaneously. Finally, the new approach
should enable the elimination of duplica-
tive and manual activities as well as
improve both the resiliency and organiza-
tional ability to leverage outside resources
and collaborate with other organizations
facing the same threats and risks.

These objectives can be met by bring-
ing architecturally driven standardization
to the scoping and organization of the
information security activities that our
enterprises practice. By acknowledging the
natural groupings of activities or domains
that all information security organizations
address—independent of the tools and
techniques they use—a framework can be
established within which organizations
can organize their work independent of
their current technology choices and flex-
ible enough to adapt to future offerings.
Likewise, by examining these domain
groupings and the types of practices of
coordination and cooperation that persist
across and between them, it is possible to
improve the interoperability and indepen-
dence of these groups by standardizing
common concepts in the information that
flows across and between them. These
shared concepts are sometimes referred to
as boundary objects and are a phenomenon
known to those who study inter-commu-
nity communications1, but have not been
leveraged explicitly for information securi-
ty standardization.

Using Architecture and
Systems Engineering
Principles
By leveraging the practices of systems
engineering [1], an organization can recast
current cybersecurity solutions into a
launching point for standard functional
decomposition-based security architec-
tures. These architectures will provide a

flexible, logical, and expandable approach
to building and operating cybersecurity
solutions for the enterprise—one that
improves resiliency and is more support-
ive of security measurement, manage-
ment, and sharing goals.

In this article, I will examine the col-
lection of cybersecurity-related activities
that most enterprises practice including:
inventorying assets; analysis of system
configurations; analysis of systems for
vulnerabilities; analysis of threats; study of
intrusions; reporting and responding to
incidents; change management; systems
development assessment; integration and
sustainment activities; and certification
and accreditation of systems being
deployed into the enterprise2.

I will also examine the different types
of information that have been identified
to support these activities. Finally, I will
identify the key activities and information
that need to be sharable and unambiguous
in and amongst the different functions of
today’s cybersecurity environment.
Identifying and collecting these functional
components as standard reusable con-
cepts illustrates one of the major benefits
that architecture brings to the study of
security in the enterprise information
technology landscape.

Architecting Security
We can lay the foundation for architecting
measurable security by looking at security
measurement and management as an
architecture issue and using a systems
engineering approach to functionally
decompose it, identifying the basic func-
tions and activities that need to be done,
and then getting the appropriate technolo-
gy to support the functions and activities.

Through the development and adop-
tion of standard enumerations, the estab-
lishment of languages and interface stan-
dards for conveying information amongst
tools and organizations, and by the shar-

Making Security Measurable and Manageable

The security, integrity, and resiliency of information systems is a critical issue for most organizations. Finding better ways to
address the topic is the objective of many in industry, academia, and government. One popular approach is the use of stan-
dard knowledge representations, enumerations, exchange formats and languages, and a sharing of standard approaches to key
compliance and conformance mandates. By standardizing and segregating the interactions among their operational, develop-
ment, and sustainment tools and processes, organizations gain great freedom in selecting technologies, solutions, and vendors.
These “Making Security Measurable” (MSM) initiatives provide the foundation for answering today’s increased demands for
accountability, efficiency, resiliency, and interoperability without artificially constraining an organization’s solution options.
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ing guidance and measurement goals with
others by encoding them into these stan-
dard languages and concepts, organiza-
tions around the world can dramatically
change the options available to address the
enterprise’s cyber environment security.

Both the U.S. government and com-
mercial enterprises are already starting to
deploy new approaches to security mea-
surement and management that leverage
interoperability standards and enable
enterprise-wide security measurement and
policy compliance efforts. These security
architecture-driven measurement and
management standards [2] are already pro-
viding ways for these organizations to cre-
ate test rules about their minimum secure
configurations, mandatory patches, and/
or unacceptable coding practices that can
be assessed, reported, and any subsequent
remediation steps planned, executed, and
confirmed using commercial tools. At the
same time, these standards also provide a
basis for repeatable, trainable processes
and sharing along with enabling automa-
tion-based testing methods for deploy-
ment validation and regression testing
throughout the operational lifetime of the
systems.

Maybe more importantly, the estab-
lishment of architectural methods within
the cybersecurity community will help
open the doors to more resilient, faster,
and better-coordinated approaches to
dealing with the next set of security prob-
lems. There is little doubt that each of the
current solutions being implemented to
fight today’s threats will be attacked in-
turn by advances in how systems and
enterprises are attacked. But with a more
consistent basis for considering these new
threats and methods, solutions can be
leveraged faster and applied in more pre-
dictable timeframes and with more under-
standing for the risks that remain.

Building Blocks for
Architecting Measurable
Security
I believe there are four basic building
blocks for architecting measurable security:
• Standardized enumerations of the

common concepts that need to be
shared.

• Languages for encoding high-fidelity3

information about how to find the
common concepts and communicat-
ing that information from one human
to another human, from a human to a
tool, from one tool to another tool,
and from a tool to a human.

• Sharing the information through con-
tent repositories4 in languages for use in

broad communities or individual organi-
zations in a way that minimizes loss of
meaning when content is being ex-
changed between tools, people, or both.

• Uniformity of adoption achieved
through branding and vetting pro-
grams to encourage the tools, interac-
tions, and content remain standardized
and conformant.
The following sections discuss these

building blocks in more detail.

Enumerations
Enumerations catalog the fundamental
entities and concepts in information
assurance, cybersecurity, and software
assurance that need to be shared across
the different disciplines and functions of
these practices. The June 2007 National
Academies report on the state of cyber-
security and cybersecurity research,
“Towards a Safer and More Secure
Cyberspace” [3], highlighted that metrics
and measurements particularly rely on
enumerations. As an example, the report
cited the Common Vulnerabilities and
Exposures (CVE) [4] list—run by MITRE
under funding from the National Cyber-

Security Division of the Department of
Homeland Security—as an enumeration
that enables all kinds of measurement by
providing unique identifiers for publicly
known vulnerabilities in software. There
are a number of enumerations in the
information assurance, cybersecurity, and
software assurance space. Some examples
are shown in Table 1.

Languages
Standardized languages and formats allow
uniform encoding of the enumerated con-
cepts and other high-fidelity information
for communication from human to
human, human to tool, tool to tool, and
tool to human. For example, a configura-
tion benchmark document written in the
XML Configuration Checklist Data
Format (XCCDF) and Open Vulnerability
and Assessment Language (OVAL) lan-
guages [5, 6] would be readable by a human
and it would be consumable by an assess-
ment tool, in that the tool would be able to
directly import the tests and checks that are
expressed in the document. As with the
enumerations, there are a number of infor-
mation assurance, cybersecurity, software

Name Topic

CVE Standard identifiers for publicly known
vulnerabilities.

Common Weakness
Enumeration (CWE)

Standard identifiers for the software weakness
types in architecture, design, or
implementation that lead to vulnerabilities.

Common Attack Pattern
Enumeration and
Classification (CAPEC)

Standard identifiers for attacks.

Common Configuration
Enumeration (CCE)

Standard identifiers for configuration issues.

Common Platform
Enumeration (CPE)

Standard identifiers for platforms, operating
systems, and application packages.

The SANS Institute
Top 20 Security Risks

Consensus list of the most critical vulnerabilites
that require immediate remediation.

Open Web Application
Security Project’s Top 10

List of the 10 most critical Web application
security flaws.

Web Application Security
Consortium’s Threat
Classification

List of Web security attack classes.

CWE/SANS Top 25
Most Dangerous
Programming Errors

Consensus list of the most dangerous types
of programming errors that require immediate
attention.

Table 1: Enumerations

T

Table 1: Enumerations
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assurance measurement, and management-
oriented languages and formats. Some
examples are shown in Table 2.

Repositories
Repositories allow common, standardized
content to be used and shared, whether
across broad communities or within indi-
vidual organizations. The sharing of con-
tent has been done for some time but
doing so in standard machine-consumable
languages and formats using standard
enumerated concepts is fairly recent. Most
of the listed repositories are in the midst
of converting their content into machine-
consumable form. Examples are shown in
Table 3.

These are all examples of very public
repositories with a variety of types of
content that will be recast into standard-
ized machine-consumable form using
some of the languages identified in Table
2 and the enumerations in Table 1.
However, there are also closed reposito-
ries where, for instance, a company may
write a tailored set of policies about what
they want to do to comply with the
Sarbanes-Oxley Act or something similar.

They don’t necessarily want to share this
with the world, but they do want to be
standard across all of the different ele-
ments of their company and they want
their policies available for their auditors
and possibly their partners.

Uniformity of Adoption
Uniform adoption of standards by the
community is best achieved through
branding/vetting programs that can help
the tools, interactions, and content remain
conformant with the accepted standards.

MITRE’s CVE project employs a high-
ly successful CVE Compatibility Program
that has vetted numerous information
security products and services to ensure
they are CVE Compatible; that is, they can
interoperate with other compatible prod-
ucts that each have correctly mapped their
capabilities concept of a particular vulner-
ability to the correct CVE Identifier for
that vulnerability. Similarly, OVAL em-
ploys an OVAL Compatibility Program
and CWE has begun a CWE Compatibil-
ity Program. The National Institute of
Standards and Technology (NIST) has
also initiated a Security Automation

Validation Program (SCAP) for those ven-
dors that currently provide (or intend to
provide) SCAP-validated tools.

All of these programs—and others
that may be developed in the future—will
help ensure consistency within the securi-
ty community regarding the use and
implementation of the standards. They
also assure users that the tools, services,
and information from those organizations
adopting the standards are doing so cor-
rectly and that there is a high confidence
that they will work correctly when the
tools and services are used together.

How the Architectural
Building Blocks Come Together
The building blocks of architecting for
measurable security are already in use in
the enterprise security areas of configura-
tion compliance assessment, vulnerability
assessment, system assessment, and threat
assessment.

Configuration Guidance, IT Change
Management, and Centralized
Reporting
An Office of Management and Budget
(OMB) memorandum [7] references the
content in NIST’s National Vulnerability
Database (NVD). This guidance is also
referred to as part of the Federal Desktop
Core Configuration (FDCC) [8] and is
intended to bring consistency in the spe-
cific secure system software configuration
of Microsoft Windows XP and Vista in
use by the federal government. The part of
the memo that is directed at Vista directly
points to a set of content that uses the
XCCDF and OVAL languages along with
the CPE and CCE enumerations [9, 10].
This is a fairly public example of bench-
mark documents in a repository using
standard languages and enumerations.

Figure 1 shows how an organization
can utilize a tool-consumable benchmark
document from a knowledge repository
for configuration guidance. The bench-
mark provides the checking logic for a
commercial tool that is used by the orga-
nization to conduct their configuration
guidance analysis for assessing the config-
uration compliance of the organization’s
computer systems. OMB’s Vista Guidance
from the NVD is an example of this.

As shown in Figure 1, the results of
the benchmark examination are also pro-
vided in standard language and enumera-
tion terms as it is fed to the enterprise’s IT
change management and central reporting
processes. Figure 1 also shows how secu-
rity measurement and management activi-
ties can be abstracted through a systems

vulnerabilities.

Common Weakness
Enumeration (CWE)

Standard identifiers for the software weakness
types in architecture, design, or
implementation that lead to vulnerabilities.

Common Attack Pattern
Enumeration and
Classification (CAPEC)

Standard identifiers for attacks.

Common Configuration
Enumeration (CCE)

Standard identifiers for configuration issues.

Common Platform
Enumeration (CPE)

Standard identifiers for platforms, operating
systems, and application packages.

The SANS Institute
Top 20 Security Risks

Consensus list of the most critical vulnerabilites
that require immediate remediation.

Open Web Application
Security Project’s Top 10

List of the 10 most critical Web application
security flaws.

Web Application Security
Consortium’s Threat
Classification

List of Web security attack classes.

CWE/SANS Top 25
Most Dangerous
Programming Errors

Consensus list of the most dangerous types
of programming errors that require immediate
attention.

Name Topic

XCCDF An XML specification language for writing
security checklists, benchmarks, and related
documents.

OVAL An XML state expression language for writing
assessment tests about the current state of
an asset and expressing the results.

Common Vulnerability
Scoring System (CVSS)

A method for conveying vulnerability-related
risk and risk measurements.

Common Result Format
(CRF)

A standardized IT asset assesment result
format that facilitates the exchange and
aggregation of assessment results.

Semantics of Business
Vocabulary and
Business Rules (SBVR)

A vocabulary and rules for documenting the
semantics of an area of a business’ vocabulary,
facts, and processes.

Common Event
Expression (CEE)

A language and syntax for describing computer
events, how the events are logged, and how
they are exchanged.

Malware Attribute
Enumeration and
Characterization (MAEC)

A language for decribing malware in terms of
its attack patterns, detritus, and actions.

Common Announcement
Interchange Format
(CAIF)

An XML-based format for storing and
exchanging security announcements.

Table 2: Languages

Name

DoD Computer Emergency
Response Team (CERT)

Informatio
(IAVAs) an
Agency’s (
Implement

The Center for Internet
Security (CIS)

CIS Secur

National Security Agency
(NSA)

NSA Secu

National Vulnerability
Database (NVD)

US-CERT
CVE and C
OVAL defi
Security A
Security C
(SCAP) co

Red Hat Repository OVAL Patc
Red Hat E

OVAL Repository OVAL Vuln
inventory,

Table 3: Repositories

Table 2: Languages
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engineering analysis view to establish the
security activities of configuration guid-
ance analysis, enterprise IT change man-
agement, and centralized reporting as
functional areas that can be managed.

Vulnerability alerts (e.g., those refer-
enced in the NVD) are another case in
point. Sometimes these are standardized
already, depending which source they
come from. Figure 2 (see next page)
shows how an organization can utilize a
tool-consumable vulnerability assessment
document from a knowledge repository: It
will provide the checking logic for a com-
mercial tool that is used by the organiza-
tion to conduct their vulnerability analysis
for assessing the vulnerability remediation
compliance status of the organization’s
computer systems. One example is errata
from Red Hat, Inc., which are regularly
posted with CVEs, OVAL definitions, and
CVSS scores. As shown in Figure 2, the
results of the vulnerability assessments are
fed to the enterprise’s IT change manage-
ment and central reporting processes.

Figure 2 also shows how vulnerability
assessment and analysis can be abstracted
through a systems engineering analysis
view as a functional area that can be man-
aged.

System Assessment
System assessments and certifications are
not currently standardized. This is an area
where standardization is being pursued
through the development of efforts like
CWE and CAPEC to address the devel-
oped components of a system along with
the vulnerability and configuration assess-
ment illustrated in Figures 1 and 2.

Figure 3 (see next page) shows how an
organization could utilize a tool-consum-
able body of certification requirements
from a knowledge repository for system
certification guidance in order to capture
the criteria for assessing the status of an
organization’s computer systems. One
example is the Enterprise Mission
Assurance Support Service effort being
developed within the DoD. As shown in
Figure 3, the results of the certification and
accreditation examination is fed to the
enterprise’s IT change management and
central reporting processes.

Figure 3 also shows how certification
activities can be abstracted through a sys-
tems engineering analysis view as a func-
tional area that can be managed.

Threat Assessment
Threat alerts and assessment is another
area that has not yet been fully standard-
ized. Imagine how an organization could
utilize tool-consumable information from a

knowledge source (about new and existing
threats) that provided an efficient way of
comparing threat information such as tar-
geted platforms, vulnerabilities, or weak-
ness against the enterprise’s information
about their assets and their status. One
example is the commercial threat reports
that several security service providers offer.
Imagine that results of analyzing new
threat information can be fed to the enter-
prise’s IT change management and central
reporting processes. In this vision, threat
analysis would be abstracted to a vendor

and tool-neutral activity through a systems
engineering analysis view.

This same process of abstraction can
be used to identify and define the other
security measurement and management
activities that an organization conducts.

Figure 4 (on page 31) contains our cur-
rent cut at abstracting and decomposing
the overall security management and mea-
surement activities of an enterprise (as
described so far in this article), along with
the other enterprise security management
processes of an inventory asset activity,

Figure 1: Assessment of Configuration Compliance Using Standards Vulnerability Assessment
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Table 2: Languages

Name Topic

DoD Computer Emergency
Response Team (CERT)

Information Assurance Vulnerability Alerts
(IAVAs) and Defense Information Systems
Agency’s (DISA) Security Technical
Implementation Guides (STIGS)

The Center for Internet
Security (CIS)

CIS Security Configuration Benchmarks

National Security Agency
(NSA)

NSA Security Guides

National Vulnerability
Database (NVD)

US-CERT advisories, US-CERT Vuln Notes,
CVE and CCE Vulnerabilities, checklists,
OVAL definitions, and U.S. Information
Security Automation Program (ISAP) and
Security Content Automation Protocol
(SCAP) content.

Red Hat Repository OVAL Patch Definitions for
Red Hat Errata security advisories

OVAL Repository OVAL Vulnerability, compliance,
inventory, and patch definitions.

Table 3: Repositories

Table 3: Repositories
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studying incidents, assessment of systems
development, integration, and sustainment
activities.

Furthermore, Figure 4 illustrates how
the different security measurement and
management activities are tied together
through standards-based data interfaces
that utilize the standard enumerations and
standard languages discussed earlier. By
utilizing these abstracted activities and
enforcing the use of the standards-based
interactions between them, an organiza-
tion can bring commercially available tech-
nologies and tools to bear on their securi-

ty problems while still keeping control of
the processes and activities5.

Standard repositories of governance
and guidance can help drive the business
value of these standard measurement and
management activities. As shown in the
OMB guidance example, the information
about how systems should be configured
is captured by OVAL, XCCDF, CCE, and
CPE.

The configuration guidance analysis,
enterprise IT change management, and
centralized reporting activities depicted in
Figures 1 through 3 are several of the secu-

rity measurement and management activi-
ties abstracted by taking a systems engi-
neering analysis view of some of the dif-
ferent security activities of an organization.

Reusable and Shared Repositories
Similarly, as shown on the left side of
Figure 4, these same standards can be
used to capture how an organization has
configured and set up a new system when
it has been approved for use in an enter-
prise. By using these standards, this infor-
mation can go right into operational net-
work management so that an organization
can make sure the new system continues
to be configured in the way that it was
approved. Standard guidance can also be
included about what weaknesses from
CWE [11] should be reviewed in an orga-
nization’s or supplier’s development activ-
ities. In addition, the common attack pat-
terns from CAPEC [12] can be used to
define and document the types of pene-
tration testing and attack scenarios a
development team thought about defend-
ing against when they were doing their
development and penetration testing.

For asset inventory, standards-based
information utilizing CPE and OVAL will
let an organization know exactly what
assets they have in a manner that is tool-
independent and usable in the other stan-
dard activities (such as configuration
analysis). Similarly, if an organization
knows exactly how their assets are config-
ured, it is much easier to perform vulner-
ability analysis based on CVE, CWE,
OVAL, and CVSS. Likewise, if an organi-
zation knows what they have, how it is
configured, and what it is vulnerable to,
that will change the context and frame-
work of how the threat analysis is done.

As mentioned earlier, vulnerability
alerts are sometimes standardized already,
depending which source they come from.
Red Hat errata, for example, are regularly
posted with CVEs, OVAL definitions, and
CVSS scores. In this area particularly, the
standards have already been adopted by
industry.

Since threat alerts are not as of yet
standardized, this is an area where stan-
dardization could happen, and efforts like
MAEC are aimed at enabling that.
Similarly, there are a lot of different ideas
in incident reporting regarding what
should be standardized and to what extent
those areas should be standardized.

There are many aspects of usage that
are still evolving, including the correct
approach to managing changes, updates,
or new content for shared repositories.
The question of whether the repositories
should be enabled as services, as static col-

Figure 2: Assessment of Vulnerability Remediation Status Using Standards 

Figure 3: System Certification and Accreditation Using Standards
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lections, or both is also open. Similarly, as
new insights are made with respect to vul-
nerabilities, weaknesses, threats, and
attacks, there certainly will be changes
needed in how the different aspects of
these types of information are woven
together and used. By bringing the various
aspects of cybersecurity, information
assurance, and software assurance into a
consistent security architecture frame-
work, there will be many new opportuni-
ties and much faster responses to new
threats and new information. A com-
pelling use of the enumerations, lan-
guages, and repositories can be found in
the new “Consensus Audit Guidelines”
[13], offered by the Center for Strategic
and International Studies to advance key
recommendations from the report on
Cybersecurity for the current 44th
Presidency [14]. The guidelines incorpo-
rate many of the items described in this
article as an approach to clearly and con-
cisely communicate what needs to be done
and what needs to be audited.

Conclusion
Measurable security and automation can
be achieved by having government and
public efforts:
• Address information security during

the creation, adoption, operation, and
sustainment—in a holistic manner.

• Use common, standardized concepts.
• Communicate this information in

standardized languages.
• Share the information in standardized

ways.
• Adopt tools that adhere to the stan-

dards.
Much has already been done to trans-

form the way security measurement and
management is conducted, but there is still
plenty of work that needs to be addressed.
The use of architecture and systems engi-
neering principles has been shown to be
effective and enabling. Ongoing efforts to
address and evolve all of the activities in
this arena will greatly benefit from the
continued application of this methodolo-
gy. Like most architecture efforts today,
the true value of architecture is not appar-
ent or appreciated until its enabling prop-
erties start to manifest themselves. This
article has outlined the changes in security
practices and technologies and has shown
specific and measurable changes that are
directly related to the use of architectural
methods on security of information technologies
in government and private industry. This
article also showed the benefits in sharing
that standardized information.

By creating and evolving these types of
standards and new approaches to security

measurement and management, each of
us will need to step away from the tradi-
tional focus on local and enterprise issues.
We must realize that much more powerful
and productive solutions to these issues
can be fostered through an emphasis on
community-wide examinations of each of
the technical areas where a multitude of
concerns and needs are balanced and con-
sidered. The increased insights, resiliency,
and ability to leverage the collective
knowledge and first-hand experience of
what vulnerabilities and attacks affect us
are valuable benefits to trading off local
versus community-wide concerns.

To further the goal of making security
measurable and encouraging the participa-
tion and adoption of the different aspects
of this work, MITRE has established a
public MSM Web site <http://making
securitymeasurable.mitre.org> that infor-
mally collects all of the efforts listed in
this article, as well as others that are
known about, which together are helping
or will help in making security more mea-
surable.u
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Notes 
1. To learn more about inter-community

communications, see “Sorting Things
Out: Classification and Its Conse-
quences” by Geoffrey C. Bowker and
Susan Leigh Star, MIT Press, 1999.

2. This is an integrated list that includes
activities tied to the operation of sys-
tems in the enterprise as well as those
they create, deploy, and update.

3. High fidelity refers to the level of
detail of the information encoded in a
language that is sufficient to convey
the understanding and knowledge of
the one encoding the information to
the one who decodes the information.
If a person writes a test for how to

check a configuration setting in a lan-
guage, then that language needs to be
able to convey the specifics of the test
so that another person or a tool read-
ing the check as written in the language
understands enough about the check
to actually perform the test that was
intended by the original author. If a
language cannot retain the fidelity of
the information to support this, then it
is not of sufficient fidelity.

4. Content repositories are currently
envisioned to be collections of tests to
verify settings, patches, and installed
software on systems to comply with
organizational policies regarding their
information technology systems and
processes. Repositories are typically
meant to be understandable by
humans but are used by tools to auto-
mate checking for compliance with the
tests in the repository. Many different
organizations are hosting public and
private repositories already and this is
anticipated to continue and expand as
the need to share grows.

5. The unwanted alternative is ending up
with activities that are defined by the
scope of the tools being used and that
are coupled together by proprietary
mechanisms.
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The security, integrity, and resiliency of
cyber systems is critical within the DoD
and is essential for its mission and sup-
port capabilities. This article describes
and defines how the use of standard
knowledge representations, enumera-
tions, exchange formats and languages,
and a sharing of standard approaches is
helping transform key compliance and
conformance mandates for the DoD,
such as the Information Assurance
Vulnerability Management process, the
Security Technical Implementation

Guidelines, and systems development.
By adopting standards and segregating
the interactions amongst their opera-
tional, development, and sustainment
tools and processes, the DoD is and will
gain greater freedom in selecting tech-
nologies, solutions, and vendors while
also obtaining deeper insights into the
current operational security and integrity
of mission systems. These MSM initia-
tives answer today’s increased process
demands without artificially constraining
the solution options of the DoD.
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Next generation software engineering
faces many challenges [1], and the

impacts of these challenges are being
encountered every day by acquisition
agents, software developers, and operating
commands alike:
1. Acquisition agents need to deliver

more with less ... fast.
2. Software developers need to shorten

software development life cycles in
producing trustworthy software sys-
tems composed of existing compo-
nents.

3. Both acquisition agents and software
developers need to exhibit better user
domain awareness.

4. Operating commands need to field
and sustain resilient systems of sys-
tems composed of legacy systems.
The industry has been grappling with

many of these issues for years [2, 3].
Persistent acquisition challenges and
chronic software development cost and
schedule overruns frequently obscure the
needs of the user. Despite this past
neglect and unfinished business, the chal-
lenge of assuring resiliency under stress in
systems of systems has emerged as an
imperative that needs attention now.

In managing the investment needed to
meet these objectives, capability portfolio
investments are organized by manage-
ment, process, and engineering. To receive
results, utilize the objective (shown in
Table 1) from top to bottom. In this way,
user domain awareness, shortened life
cycles, systems from parts, and systems of
systems from systems provide a natural
spiral of incremental activities where cur-
rent work in progress builds on preceding
work accomplished.

Resiliency Defined
The attribute of resiliency is an emerging
property of large complex software-inten-
sive systems. Accordingly, the base defini-
tion of resiliency is:

... the ability to anticipate, avoid,
withstand, minimize, and recover
from the effects of adversity,

whether natural or manmade,
under all circumstances of use. [4]

The base definition of resiliency is not
limited as to scale, does not preclude the
possibility for avoiding the condition or
situation that brings impact or shock, does
not limit the focus to a means like risk
management, and does not limit the focus
to enumerated outcomes like cost effec-
tive or timely restoration. However, in

applying the base definition to a particular
situation, it is permissible and even
required to constructively instantiate it for
targeted scale, impact expected, means
employed, and outcome anticipated [5, 6].

Claiming Resiliency Assurance
The purpose of assurance assertion man-
agement is to reason about the emergent
properties of large complex software-
intensive systems in order to steer acquisi-

Meeting the Challenge of Assuring Resiliency Under Stress

An emerging issue, especially critical to the DoD and DHS, is that of managing network security, assuring the continuity
of operations for critical defense missions and the resiliency of the private sector’s critical infrastructure. Making systems of
systems resilient requires accountability and transparency. This article provides a framework for assuring resiliency under
stress expressed in terms of the management, process, and engineering indictors useful in asserting resiliency assurance claims,
validating assurance arguments, and verifying assurance evidence. 

Don O’Neill
Independent Consultant

Objective Management Action Process NGSE Technology

Objective 1:
Drive user domain
awareness towards
more harmonious
cooperation among
people and machines.

Strategic Measures:
1. User satisfaction.
2. Trustworthiness.

Integrate needs of
systems, software,
and user:
• Synthesize mission

needs in terms of
systems, software,
and user.

• Apply team innovation
management.

User domain
awareness maturity:
• Assessment of user

domain awareness.

• Simulation.
• Virtual user

experience.

Objective 2:
Simplify and produce
systems and software
using a shortened
development life
cycle.

Strategic Measures:
1. Speed.
2. Trustworthiness.

Eliminate bottlenecks:
• Automation of

labor-intensive
activities.

Accelerate delivery:
• Wiki-based

requirements.
• Incremental

development.
• Agile approaches.

• Formality in
requirements
expression.

• Smart compilers.
• Correctness by

construction.

Objective 3:
Compose and field
trustworthy
applications and
systems from parts.

Strategic Measures:
1. Frequency of

release.
2. Trustworthiness.

Rapid Release:
• Aspect-based

commitment
management.

• Fact-based aspect
and attribute assurance.

• Real-time risk
management.

Supplier Assurance:
• Process maturity.
• Global supply chain

management.
• Configuration

management.

• Attribute-based
architecture.

• Smart middleware.
• Interoperability.
• Intrusion detection,

protection, and
tolerance.

Objective 4:
Compose and operate
resilient systems of
systems from systems.

Strategic Measures:
1. Control.
2. Resilience.

Control:
• Exercise control.

Awareness:
• Intelligent

middlemen.
• Information sharing.
• Situation awareness.

• Coordinated
recovery time
objectives.

• Distributed
supervisory control.

• Operation sensing
and monitoring.

Overall Goal: Drive systems and software engineering to do more with less ... fast.

Table 1: Practical Next-Generation Software Engineering (NGSE)
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tion, development, and operational com-
mitment towards their assurance and to
guide users in setting the appropriate level
of confidence in these systems and sys-
tems of systems [7].

An assurance assertion is a statement
designed to inspire confidence. These
emergent product properties transcend
the rigorous and precise methods of
assessing essential compliance beyond
those used in process conformance [8, 9]
and product testing. Some attribute and
aspect examples of emergent properties
associated with software products, sys-
tems, and system of systems include safe-
ty, security, resiliency, privacy, and trust-
worthiness [10].

The assurance claim for assuring
resilience under stress in an enterprise is
organized around five arguments
expressed as questions:
1. Is there no demonstrated inability to

advance enterprise security assurance?

2. Is there demonstrated enterprise com-
mitment to security assurance through
strategic management, internal
processes, and defense-in-depth?

3. Is there demonstrated business conti-
nuity assurance through compliance
management, external processes, and
product engineering?

4. Is there demonstrated achievement of
system survivability through the man-
agement of faults and failures, sustain-
ability processes, and Reliability,
Maintainability, and Availability (RMA)
engineering?

5. Is there demonstrated achievement of
system of systems resiliency through
the management of external interac-
tions and dependencies, the control of
distributed supervisory control
processes, and the practice of next
generation software engineering?
The assurance claim for resilience

assurance, the five arguments demonstrat-

ing resiliency assurance, and the types of
evidence expected for each argument are
shown in the Claim-Argument-Evidence
Chain (Figure 1).

Assurance assertions themselves are
subject to validation and verification, and
it is here that managing the risk associat-
ed with assuring resiliency is focused. The
claim-argument segment of the assurance
assertion chain is validated when the cor-
respondence between a claim and its argu-
ments is shown to be clear and convinc-
ing with respect to completeness and cor-
rectness.

The argument-evidence segment of the
assurance assertion chain is verified accord-
ing to the degree of correspondence
between the evidence and the argument.
Four levels of confidence for appraising
evidence are identified as follows:
1. The evidence in support of the argu-

ment is insufficient.
2. The preponderance of the evidence

supports the argument (e.g., through
assessment, interview, testimony, and
inspection).

3. The evidence in support of the argu-
ment is clear and convincing (e.g.,
measurement and static analysis).

4. The evidence in support of the argu-
ment is beyond a shadow of a doubt
(e.g., demonstration and dynamic
analysis).

Achieving Resiliency
Assuring resiliency under stress is
achieved through a framework of man-
agement, process, and engineering capa-
bilities and indicators organized around
managed review, defined process capabili-
ty, and a designed engineering solution.
Achieving system of systems resiliency
brings with it an architectural challenge
associated with the need to counter the
effects of crosscutting and cascading trig-
gers. Borrowing an example from the crit-
ical infrastructure and a dependency from
the industrial base, stovepiped vertical
protection, and crosscutting horizontal
protection through resiliency are illustrat-
ed in Figure 2.

Crosscutting effects stem from depen-
dent relationships. Some dependent rela-
tionships are planned and intended inter-
actions between industry sectors—such as
financial transactions embedded in
telecommunications, electrical, transporta-
tion, and medical operations—where
cross sector impacts are surprisingly per-
vasive [11]. Other dependent relationships
are indirect and stem from outsourced
commoditized services that bring with
them opportunities for common single-
point failures among industry sectors—

1. There is not
demonstrated inability
to advance enterprise
security assurance.

2. There is demonstrated
enterprise commitment
to security assurance.

3. There is demonstrated
business continuity
assurance.

4. There is demonstrated
achievement of system
survivability.

5. There is demonstrated
achievement of system
of systems resiliency.

Apathy Denial Management
Inaction

Lack of
Engineering
Know-How

Strategic
Management

Management of
Faults and Failures

Sustainable
Processes

RMA
Engineering

Management of
External Interactions
and Dependencies

Control of Distributed
Supervisory Control

Processes

Practice of
Next-Generation

Software Engineering

Internal
Processes

Defense-in-Depth

Compliance
Management

External
Processes

Product
Engineering

Maturity has been achieved
in the assurance of

resiliency under stress.

Figure 1: Claim-Argument-Evidence Chain for Assessing Resiliency Assurance

Vertical Protection and
Horizontal Resilience

Security in-depth

Business Continuity

Survivability

Resiliency

Banking and
Finance Telecomm Electrical

Stovepiped
Protection

Stovepiped
Protection

Stovepiped
Protection

Crosscutting

Protection

Figure 2: Vertical Protection and Horizontal Resilience

Resilient Software
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such as the Internet and global positioning
systems [5].

Building on security in depth [12, 13,
14], business continuity [15], and system
survivability [16], a defined engineering
challenge of adopting system of systems
resilience must be addressed [17]. The
recovery time objectives among systems
must be coordinated, interoperability of
information sharing and platform opera-
tions must be assured, distributed supervi-
sory control protocols must be in place,
operation sensing and monitoring must be
embedded, and digital situation awareness
must be achieved. These capabilities are
designed to counter crosscutting effects
and cannot be expected to evolve in a
loosely coupled environment. They must
be holistically specified, architected,
designed, implemented, and tested if they
are to operate with resilience under stress
[18]. A management, process, and engi-
neering framework is necessary to advance
the assurance of software security, busi-
ness continuity, system survivability, and
system of system resiliency capabilities
(see Table 2).

Conclusion
This article has sought to point the way
towards accountability and transparency
in assuring the resiliency of systems of
systems. Each operating command and
critical infrastructure sector must insist on
accountability from each system manager
for its security in-depth, business continu-
ity, and survivability. In addition, system
managers must adopt transparency to the
resiliency assurance claims, arguments,
and evidence as the preferred means to
achieve and demonstrate coordinated
recovery time objectives, interoperability,
operation sensing and monitoring, digital
situation awareness, and distributed super-
visory control.u
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management.
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defense industrial base finds itself in the
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Diverse cybersecurity threats to the
defense industrial base are posed by vari-
ous factors parsed into type of risk,
actor, attack, target, and countermeasure.
For example, the type of actor includes
disgruntled employee, hacker, criminal,
terrorist, organized crime, and nation
state. Faced with a complex array of
threats, the critical infrastructure protec-
tion (CIP) model is insufficient to ensure
the continuity of operations for critical
missions. In addition to CIP, a critical
infrastructure resiliency model is needed
to anticipate, avoid, and mitigate cascad-
ing and propagating effects within sys-
tems of systems. “Meeting the Challenge
of Assuring Resiliency Under Stress”
provides a definition and framework of

assurance claims useful in assuring
resiliency maturity throughout industry,
government, and defense.

The challenge associated with assur-
ing the resiliency of systems of systems
—based on a broad definition for
resiliency—calls for a framework for
assuring resiliency under stress expressed
in terms of management, process, and
engineering indictors useful in asserting
resiliency assurance claims, validating
assurance arguments, and verifying assur-
ance evidence. The targeted users for
assuring resiliency under stress include
selected sectors within the critical infra-
structure and defense industrial base and
certain operating commands within the
defense establishment. These are charac-
terized by their increasing dependence on
the acquisition, development, fielding,
and sustainment of large-scale, complex
systems of systems.

Software Defense Application



Resilient Software

36 CROSSTALK The Journal of Defense Software Engineering September/October 2009

6. Miller, Robert A., and Irving Lachow.
“Strategic Fragility: Infrastructure
Protection and National Security in the
Information Age.” Defense Horizons 59.
Jan. 2008 <www.ndu.edu/ctnsp/
defense_horizons/DH59.pdf>.

7. Goodenough, John, Howard Lipson,
and Chuck Weinstock. “Arguing
Security – Creating Security Assurance
Cases.” Build Security In. DHS National
Cybersecurity Division. 4 Jan. 2007
<https://buildsecurityin.us-cert.gov/
daisy/bsi/articles/knowledge/assur
ance/643-BSI.html>.

8. CMMI Product Team. “CMMI for
Development, Version 1.2.” SEI,
Carnegie Mellon University. Technical
Report CMU/SEI-2006-TR-008. Aug.
2006 <www.sei.cmu.edu/pub/docu
ments/06.reports/pdf/06tr008.pdf>.

9. Caralli, Richard A., et al. “Introducing
the CERT Resiliency Engineering
Framework: Improving the Security
and Sustainability Processes.” SEI,
Carnegie Mellon University. Technical
Report CMU/SEI-2007-TR-009. May
2007 <www.sei.cmu.edu/pub/docu
ments/07.reports/07tr009.pdf>.

10. Jackson, Daniel, Martyn Thomas, and
Lynette I. Millett. Software for Dependable
Systems: Sufficient Evidence? Washington,

D.C.: National Academies Press, 2007.
11. Borg, Scott. “Recommendations for

NDU Cyber Risk and Response
Conference.” U.S. Cyber Conse-
quences Unit, National Defense
University. Jan. 2009 <www.ndu.edu/
CTNSP/cyberworkshop/1030%20
BORG.pdf>.

12. Chess, Brian, Gary McGraw, and
Sammy Migues. The Building Security In
Maturity Model. 2009 <www.bsimm.
com>.

13. “Fundamental Practices for Secure
Software Development: A Guide to
the Most Effective Secure Develop-
ment Practices in Use Today.” SAFE
Code. 8 Oct. 2008 <www.safecode.
org/publications/SAFECode_Dev_
Practices1008.pdf>.

14. Collins, Rosann W., et al. “The CERT
Function Extraction Experiment:
Quantifying FX Impact on Software
Comprehension and Verification.”
SEI, Carnegie Mellon University.
Technical Note CMU/SEI-2005-TN-
047. Dec. 2005 <www.sei.cmu.edu/
pub/documents/05.reports/pdf/05tn
047.pdf>.

15. O’Neill, Don. Inside Track to Offshore
Outsourcing Using the Trusted Pipe™:
What Global Enterprises Look For in

Offshore Outsourcing. Proc. of the
Making the Business Case for Software
Assurance Workshop, Carnegie Mellon
University, Pittsburgh. 26 Sept. 2008
<www.sei.cmu.edu/community/BCW
_Proceedings.pdf>.

16. Ellison, R.J., et al. “Survivable Net-
work System: An Emerging Disci-
pline.” SEI, Carnegie Mellon Univer-
sity. Technical Report CMU/SEI-97-
TR-013. Nov. 1997, Rev. May 1999
<www.cert.org/research/97tr013.
pdf>.

17. O’Neill, Don. “Maturity Framework
for Assuring Resiliency Under Stress.”
Build Security In. DHS National
Cybersecurity Division. 11 July 2008
<https://buildsecurityin.us-cert.
gov/daisy/bsi/articles/knowledge/
business/1016-BSI.html>.

18. Northrop, Linda. Architecting High
Quality Software: The Role of Software
Architecture in System Development and
Evolution. Proc. of the 2nd Annual
Team Software Process Symposium,
Orlando, FL. Keynote Presentation. 19
Sept. 2007 <www.sei.cmu.edu/ tsp/
symposium/2007/Day%203%20830
AM%20SEI%20keynote.pdf>.

About the Author

Don O’Neill is a sea-
soned software engineer-
ing manager and technol-
ogist. As an independent
consultant, O’Neill con-
ducts defined programs

for managing strategic software spanning
competitiveness, security, and process
improvement. Following his 27-year
career with IBM’s Federal Systems
Division, O’Neill completed a three-year
residency at the SEI under IBM’s
Technical Academic Career Program,
and currently serves as an SEI visiting
scientist. He served on the executive
board of the IEEE Software
Engineering Technical Committee and as
a distinguished visitor of the IEEE. He
is a founding member of the Software
Process Improvement Network and
served as the president of the Center for
National Software Studies.

9305 Kobe WY
Montgomery Village, MD 20886
Phone: (301) 990-0377
E-mail: oneilldon@aol.com



Departments

September/October 2009 www.stsc.hill.af.mil 37

Embedded.com
www.embedded.com 
If this issue’s “Considering Software Protection for Embedded
Systems” spurred your interest, you’ll want to explore this com-
panion to Embedded Systems Design magazine and the Embedded
Systems Conferences. Embedded.com—a resource for technical
information and news on embedded design—is the global online
authority for embedded designers and technical managers who
are responsible for defining systems, selecting the critical hard-
ware and software components, building the systems, and inte-
grating the hardware and firmware designs. The Web site pro-
vides practical design techniques, new product updates, how-to
technical features, as well as weekly columns and polls. 

When Robots Invaded the Senate
www.nsf.gov/news/news_summ.jsp?cntn_id=115211&org=NS
F&from=news
At the heart of “Robots” are resilient mixed-criticality systems
called cyber-physical systems (CPSs), an emerging technological
field that incorporates computing power to improve virtually
every facet of modern life—and the government, industry, and
mainstream media are taking notice. Experts believe that CPS
technologies will increasingly affect our well-being, security, and
competitiveness in a variety of areas including aerospace, auto-
mobiles, civil infrastructure, energy, finance, healthcare, and
manufacturing. In this article, the National Science Foundation
discusses the basics of these systems and details a recent lun-

cheon briefing and open house on CPSs for members of the
U.S. Senate.

Survivable Systems Engineering 
www.cert.org/sse
After reading Karen Mercedes Goertzel’s article on software sur-
vivability, you may want to learn more about survivable systems
engineering. This Carnegie Mellon University Computer
Emergency Response Team-sponsored Web site explores the
current state of systems to identify problems and proposes engi-
neering solutions. The work focuses on the development life
cycles for both new development and COTS-based systems. It
includes analysis of how susceptible these systems are to sophis-
ticated attacks and provides suggestions for improving the
design of systems based on this analysis.

The U.S. Cyber Consequences Unit
www.usccu.us
The U.S. Cyber Consequences Unit (US-CCU) is an indepen-
dent, non-profit research institute providing assessments of the
strategic and economic consequences of possible cyber-attacks
and cyber-assisted physical attacks. At this Web site, learn how
the US-CCU investigates the likelihood of such attacks and
examines the cost-effectiveness of possible countermeasures.
The US-CCU’s primary concern is the sort of larger scale
attacks that could be mounted by criminal organizations, ter-
rorist groups, rogue corporations, and nation states.

WEB SITES
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Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

Send resumes to:
phil.coumans@hill.af.mil

or call (801) 777-6870

Visit us at:
http://www.309SMXG.hill.af.mil

The Software Maintenance Group at Hill Air Force Base is recruiting civilian positions
(U.S. Citizenship Required). Bene�ts include paid vacation, health care plans, matching 401k, 

tuition assistance and time o� for �tness activities. Become part of the best and brightest!

Hill Air Force Base is located close to the Wasatch and Uinta mountains with many recreational 
opportunities available.
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Before I go, I would like everyone to know: my name is Nicole.
I started at CrossTalk in March 2001 as an article coor-

dinator. Just days later, my first stop was a conference in New
Orleans.

“Sounds great! But wait, what am I doing again?”
I was lucky: When I started here, current BackTalk regular

Dave Cook worked in our organization. He was tasked with
introducing me to people and showing me the ropes. Dave was a
lifesaver. I left New Orleans armed with 500 names, an open
view of my new co-workers and organization, and a new insight
into what software engineering was all about.

I learned quickly that the CrossTalk staff was a tight-knit
family that liked having fun. There was the time we emulated a
video of a bunch of cubicle-dwellers hooking their office chairs
together and “rowing” around the office. We all grabbed our
chairs, linked them together, and started rowing down the hall-
way. Despite our airtight design, excellent teamwork, and perfect
rowing skills, we ran right into our boss, Tony Henderson.
Silently looking at all of us and shaking his head (as he always
did), he just walked on by. Laughing hysterically, we went back to
our desks.

Although a lot of long hours and hard work goes on around
here, this certainly wasn’t the last time we saw the head shake.
Both Tony and our current boss, Brent Baxter, have that move
down pat when the CrossTalk staff is around.

There was the time after a fire safety briefing when we decid-
ed to practice the fireman’s carry. There have been the “off-
topic” CrossTalk production meeting conversations: Drew
Brown (our current managing editor) threatening to send my
ancient cell phone to the Smithsonian, a child’s science project
consisting of Jell-O and a Quaker Oats canister, or Chelene
Fortier (the associate editor) asking, for the 4,326th time, for a
“dedicated color printer.” There was Chelene and I holding “cute
boy” counting contests at the Systems and Software Technology
Conference (SSTC). The tally? Nine years, two cute boys (and
you both know who you are!). And there was the staff member
who we liked so much that we volunteered him to run for Utah
governor. We made posters and buttons and, for a brief morn-
ing, our building became his campaign headquarters (of sorts).
And there are the old favorites that caused beet-red faces and
silent screams of laughter: flatulence machines, keyboard letter-
switching, and a pair of strategically placed red balloons (Hi,
Bruce!).

I often say, “Aww, good times.” But maybe not for the
Software Technology Support Center staff (bless their hearts)
who sit near us. During my time here, they have all developed
nervous ticks and invested in good pairs of earphones. And our
poor publisher (Kasey Thompson) and Brent: They come to our
area daily, but are no match for our conversational skills. I’ve
heard “I forgot what I came over here for” more times than I can
count.

There have also been good times in pursuit of great
CrossTalks.

There was our November 2002 issue cover <www.stsc. hill.
af.mil/crosstalk/2002/11/>. It was August, 95 degrees, and we
were bundled up as if it was late autumn. Of course, I got to be
the one to climb the tree and sit on the branch ... but what a view! 

Every year, I got to play a major role in the SSTC. Meeting
attendees, talking with prospective authors, and learning about

cutting-edge issues from our presenters was an amazing experi-
ence. What each SSTC lacked in “cute” boys, it made up for in
CrossTalk issue topics and new authors.

And there’s the process of working with all the authors: get-
ting to really know them, watching their article go from excellent
to exceptional, and seeing the reward and excitement when they
publish for the first time. The thing that astonishes me most is
that all of these people are striving for the same thing: to make
better, faster, more cost-effective software that will benefit the
government and industry alike. I’ve learned a lot over the years
and truly respect what everyone in the field is doing.

To our CrossTalk authors: What can I say? Cross-
Talk wouldn’t be here if it wasn’t for you. I am so thankful you
all continue to write for our journal.

To our CrossTalk Editorial Board: Thank you for review-
ing all of those articles! Your hard work makes CrossTalk the
high-quality publication it is today.

To our CrossTalk sponsors: I can’t thank you enough for
going to bat for our journal every year, standing up and recog-
nizing that CrossTalk is a highly valuable and extremely ben-
eficial resource for the software engineering field.

To all of my fabulous co-workers, near and far: You have
been with me through the good, the bad, the ugly, and the sweet
(of course). You have put up with my silly sense of humor,
singing, and G-rated swears.

Again, my name is Nicole. I can’t tell you how many times
people have called me by my now defunct last name, Kentta
(“Dear Kentta,” or “Thanks Kentta”), despite big fonts, gargan-
tuan signature blocks, or my voice mail message that starts off
with “You’ve reached the voice mail of NICOLE Kentta .... .” I
still get a chuckle thinking about it.

I also have to thank all the people with the names more con-
fusing than mine. I’ve worked with two Kents (Bingham, the man
of many amazing CrossTalk covers, and Poorman, the guy
we complain to when the AC is not working), a Ken (a former
managing editor), a Kase (another former managing editor), and
Kasey. And, of course, I’ll never forget the good times during the
“all-women” days of CrossTalk: Tracy, Beth, Pam, Chelene,
and Janna.

So, as this chapter in my life ends, the next chapter begins
across the country at Shaw AFB in South Carolina (the Air Force
is relocating my husband). I promise to bring all of my experi-
ence and knowledge with me to my next adventure. And if you’re
ever in the South, don’t hesitate to look me up!

I’m now getting on the next ride with new hope and a new
last name: French. Or, as Drew likes to call me, Nicole Freedom.

I will miss you all! 

—Nicole French
CrossTalk Article and Publishing Coordinator

March 2001-July 2009
whritwuz@juno.com

What a Great Ride It Was!
A Farewell From a Longtime CrossTalk Staffer

Introducing Marek

We’d like to welcome our new Article Coordinator, Marek
Steed. Be nice to her. And remember: her name is MAREK.
<marek.steed.CTR@hill.af.mil>
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