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Abstract

This article proposes a mechanism to explain allometric relations between basal metabolic
rate and the body size of organisms. The model postulates that energy transduction in biological
organisms is constrained by two classes of dynamical processes: The -rst process has its origin
in quantum mechanics and the constraints which the coupling of electron transport and proton
translocation impose on metabolic activity. The second derives from evolutionary dynamics and
the constraints which ecological and demographic forces impose on metabolic rate. These two
processes are invoked to show that the scaling exponent between basal metabolic rate and body
size follows a 3

4 rule, in the case of organisms subject to ecological constraints de-ned by
scarce but dependable resources, and a 2

3 rule when constraints are de-ned by ample but only
temporarily available resources. Our conclusions are based on general arguments incorporating the
molecular mechanisms that determine metabolic activity at all levels of biological organization.
Hence the model applies to uni-cellular organisms, plants and animals.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The body size of an organism is a fundamental property as it constraints several
di:erent features of the organism’s physiology and behavior. Body size a:ects all
biological structures and processes by regulating the rates at which the organism absorbs
nutrients and also the rate at which it converts these nutrients or metabolites into

E-mail address: ldemetr@oeb.harvard.edu (L. Demetrius).

0378-4371/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0378-4371(03)00013-X

mailto:ldemetr@oeb.harvard.edu


478 L. Demetrius / Physica A 322 (2003) 477–490

reproduction. The dependence of the basal metabolic rate, P, on body size, denoted
W , is typically described in terms of the allometric relation

P = aW� : (1)

Here a is a constant, which is a characteristic of the phylogenetic status of the organism,
and � is a scaling exponent.
The empirical basis for (1) has its origin in studies of the metabolic rate of several

di:erent species of domesticated mammals [1]. These studies, and later work by Brody
[2] on a larger range of mammals, and by Hemmingsen [3] on uni-cellular organisms,
showed that � = 3

4 . Accordingly, the
3
4 rule was considered as a universal property

of organisms. More recent studies, however, have shown that the scaling exponent
is highly dependent on the phylogenetic status of the organisms: mammalian lineages
are typically characterized by � = 3

4 , whereas most species of birds [4] are de-ned
by the exponent � = 2

3 . Recent reviews of the empirical literature [5], using highly
re-ned statistical methods, now indicate that, although the 3

4 rule is dominant among
large mammals, signi-cant deviations, as represented by �= 2

3 , do obtain among small
mammals and birds.
This article proposes a mechanism, based on quantum statistics, to explain the origin

of allometric relations as de-ned by (1). Our model aims to explain the incidence of
scaling relations in both uni-cellular and multicellular organisms, the dependence of the
scaling exponent on body size, and the presence of both two-thirds and three-quarter
power scaling laws.
Previous e:orts to elucidate (1) in terms of mechanistic models have been based on

hypotheses such as resistance to elastic buckling in terrestrial organisms [6], the alleged
fractal-like nature of distribution networks [7]. These studies have failed to account for
the fact that (1) pertains not only to multicellular organisms, but also to uni-cells,
where the phenomena of elastic buckling and fractal networks are questionable. The
works in Refs. [6,7] also do not account for the dependency of the scaling exponent
on the phylogenetic status of the organism. The model we now propose rests on the
observation, enshrined in the chemiosmotic theory of bioenergetics [8], that production
of ATP, the energy currency of living organisms, is mediated by the coupling of two
dynamical processes:

(i) The movement of electrons through a series of carriers in biological
membranes—the plasma membrane in bacteria, the inner membrane in mitochon-
dria, the thylakoid membrane in chloroplasts.

(ii) The translocation of protons across the membrane to produce a proton gradient.

In this article we will analyze the action of these dynamical processes by invoking a
quantum mechanical nature of energy transfer in electron Gow and proton translocation.
We will exploit the fact that quantum theory restricts the energy in any given standing
wave mode de-ned by an electron or proton to be of the form

�n = nh! (2)
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when n = 0; 1; : : : ; h is Planck’s constant and ! the frequency of the mode, to show
that the scaling exponent, �, in the allometric relation (1) is given by

� =
4� − 1
4�

:

The parameter � denotes metabolic eIciency, de-ned by the ratio of the rate of
energy-accepting processes, that is, ATP synthesis, to the rate of the energy-donating
process, substrate oxidation.
We will show that maximal and minimal values of the basal metabolic rate are

obtained when � = 1 and 3
4 , respectively. In view of the corresponding values for

the scaling exponent �, we have Pmax ∼ W 3=4; Pmin ∼ W 2=3. We will invoke this
observation in the context of an evolutionary argument, to explain the dependence of the
scaling exponent on the phylogenetic status of organisms, in particular, the dominance
of the 3

4 rule in large mammals, and the incidence of the 2
3 rule in certain species

of birds. The evolutionary argument we apply derives from directionality theory, an
analytical model which studies changes in the genotypic and phenotypic composition
of populations under mutation and natural selection [9]. This theory predicts that the
evolutionarily stable states of populations are characterized by patterns of fecundity and
mortality distributions which are extremal states of the demographic variable entropy,
a measure of the uncertainty in the age of reproducing individuals in a population:
Life history distributions will maximize entropy, when evolution occurs under limited
but constant resource conditions, and minimize entropy when resources are ample but
inconstant. The analytical fact that evolutionary changes in entropy and metabolic rate
are positively correlated [10] entails that the physiological conditions that describe the
evolutionarily stable states of natural populations will also be characterized by extremal
states—maxima and minima—of metabolic rate.
The concepts in bioenergetics and the chemiosmotic theory described in this arti-

cle are drawn extensively from Ref. [11]. This text provides a critical review of the
various mechanisms which have recently been proposed to model energy transduction
in organisms. The review paper [9] provides the basic ideas which underlie the main
tenets of directionality theory.

2. Metabolic rate and energy transduction

The engines that perform energy transduction in plants and animals are chloroplasts
and mitochondria, respectively. In chloroplasts, energy is transduced by electron carriers
in the thylakoid membrane; in mitochondria, the inner membrane is the mediating fac-
tor. These processes are similar in bacteria where transduction occurs within the plasma
membrane. Whereas plants and animals are highly complex structures, a bacterial cell
typically consists of a single compartment, a minute blob of protoplasm encased within
its plasma membrane and shielded by an inert cell wall. In view of the simplicity of
the bacterial system we will use this model in our analysis, and show later that the
results obtained in this context can be extended to multicellular organisms.
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We will consider energy transduction as a two-stage process:

(i) An energy source is used to power the movement of electrons through a series of
carriers in the cytoplasmic membrane. These movements are coupled to the pump-
ing of protons across the membrane generating a transmembrane electrochemical
proton gradient.

(ii) The energy accumulated is used to move protons across the membrane, down
their concentration gradient. This movement is coupled to the synthesis of ATP
from ADP and Pi.

Our analysis rests on the distinction between heat engines, that is, machines that convert
thermal energy into mechanical energy, and non-thermal engines, that is, machines that
do work at a single temperature. Most physical systems operate as heat engines and
changes in energy in these systems can be parametrized by temperature.
Living organisms are essentially isothermal—there are no signi-cant di:erencies in

temperature between parts of a cell or between di:erent cells in a tissue; chemical
energy is converted by the processes of energy transduction directly into biological
work. Energy transfer between parts of a cell generally results from di:erencies in the
turnover rates of metabolites at di:erent locations within the cell. Energy transformation
between di:erent cells in a tissue is mediated by di:erencies in the replication rates of
the various cells.
Now the fundamental processes which drive the dynamics of energy transformation

at the molecular and cellular levels are: (a) the set of redox reactions that transfer
electrons from a reduced substrate to a terminal acceptor and (b) the chemiosmotic
reactions that translocate protons across the energy-transducing membranes. A measure
of the temporal organization of these processes is the mean transit time for the circuit
of protons linking the primary proton pump with ATP synthesis. This index of turnover
rate, which we call the protonic cycle time, will play a fundamental role in our study
of the metabolic process.
The signi-cance of the di:erent time scales that characterize metabolic activity at

cellular, organismic and population levels has been recognized in several empirical stud-
ies [12,13]. Physiological time, the generic term used to describe the di:erent turnover
times of metabolic events at the molecular and cellular level, includes properties such
as the duration of heart beat, turnover time of insulin, twitch contraction time of mus-
cle, and duration of one breath. The cycle times, denoted �, for these processes are
quantitatively related. We have the allometric relation [12]

�= ãW �̃ :

Here ã is a constant, which depends on the phylogeny and the level of biological
organization, and �̃ is a scaling exponent. The scaling exponent in most cases studied
concentrates around the value one-quarter. The robustness of the empirical scaling rules
for physiological time and metabolic rate suggests that these two processes are regulated
by the same physiological mechanisms. The analysis we develop in this article will
provide support for this hypothesis.
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2.1. Quantization e5ects

In our analysis of the electron-transport process we will appeal to certain pioneering
studies on electron transfer reactions [14]. These studies applied a theory of potential
energy surfaces and equilibrium statistical mechanics to develop a detailed model of
electron transfer in chemical systems. The analysis showed that, provided a change in
charge on the reactants produced a proportional change in the dielectric polarization of
the surrounding medium, many dimensional potential energy surfaces for the reactants
and products could be reduced to harmonic free energy curves that are functions of a
single-reaction coordinate.
Now electron transfer in the redox reactions in biological systems are from one

molecular center to another, as in the chemical case. However, these reactions do
not depend strongly on environmental Guctuations since the centers are embedded in
a lipid–protein membrane, which is relatively rigid. Accordingly, the formalism in
Ref. [14] can be applied to these redox reactions.
Within this framework, the distortions of electron donors and acceptors from their

equilibrium con-gurations can be described by free energy parabolas with identical
force constants. Hence the rate constant k̃ for the electron transfer from donor to
acceptor is given by [14]

k̃ = �(r)� exp
[
−LG#

RT

]
: (3)

Here �(r) is the transmission coeIcient for electron transfer which is dependent on
the distance, r, between donor and acceptor, R is the gas constant, � is an e:ective fre-
quency parameter and T the absolute temperature. LG# is the free energy of reactants
necessary to accomplish the electron transfer.
Now let � denote the protonic cycle time, the mean time which elapses from the

extrusion of a proton to its return in the membrane through one of its pores. The mean
number of protons (N ) generated per cycle by the electron transfer process will be
given by N = k̃�, where k̃ denote the reaction rate given by (3).
Now let L�̃H+ denote the free energy change as protons move back into the cell

down along both the electrical and chemical gradients. The free energy of the driving
reaction LG∗ will be given by LG∗ = N L�̃H+ [11]. We will rescale this quantity
using the counting index, Avogadro’s number, NA, the number of atomic mass units
per mole. The corresponding free energy change at steady state, denoted E, becomes

E =
(
N
NA

)
L�̃H+ ;

which can be expressed in the form

E = g� ; (4)

where g= (k̃=NA)L�̃H+ .
The free energy change given by (4) describes the metabolic energy released by the

transfer of electrons along the electron transport chain and the concomitant translocation
of protons across the energy-transducing membrane. Eq. (4) resides on the relation
N = k̃�, for the mean number of protons generated per cycle. This characterization
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implicitly assumes that the circulation of protons across the membrane is a continuous
process.
The continuity assumption will now be relaxed. The studies reviewed in Refs. [15,16]

indicate that the Marcus theory of electron transfer can be applied to the proton-transfer
process. Accordingly, the multidimensional potential energy surfaces for the donor and
acceptor states in proton-transfer reactions can also be reduced to harmonic free energy
curves which depend on a single-reaction coordinate.
We will now assume that the behavior of the proton is quantized: We postulate that:

(a) The potential energy curve for the proton can be characterized in terms of a
harmonic oscillator.

(b) The energy that can be stored by the oscillator with natural frequency is an
integral multiple of a basic energy unit and directly proportional to the oscillator’s
characteristic frequency !.

The quantization hypothesis entails that the electron transfer–proton translocation pro-
cess will now be stochastic. Hence, in order to determine the mean metabolic energy
generated, we must -rst characterize the probability, �̂n, that the proton is in energy
state �n when steady-state conditions are attained.
We will appeal to the statistical mechanics formalism developed in Ref. [17].
Write ’n = exp[− �n=E], and let �= (�n) denote an arbitrary probability distribution

on the set of energy states. The entropy S(�) of the state �= (�n) is given by

S(�) =−
∑
n

�n log �n :

The mean energy of the system in state � is denoted �[’], and is de-ned by

�[’] =
∑
n

�n log’n :

The steady-state distribution, �̂= (�̂n), is the unique state that maximizes

S(�) + �[’] ;

which, as shown in Ref. [17], is given by

�̂n =
exp(−�n=E)

Z
;

where

Z =
∑
n

exp
(−�n

E

)
:

Hence the mean energy Ẽ now becomes

Ẽ =
∑
n

�n�̂n =
∑
n

nh!
exp(−nh!=E)

Z
:
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The above expression yields, on algebraic manipulation,

Ẽ =
h!

exp(h!=g�)− 1
: (5)

Now, when g��h!,

exp
(
h!
g�

)
− 1 ≈ h!

g�
:

Hence,

Ẽ = g� :

We note that when the cycle time � is large, the mean energy Ẽ, de-ned by (5),
reduces to the expression for the classical case. These observations indicate that a
quantum-mechanical or a classical behavior is not an inherent property of the metabolic
system under any conditions, but depends critically on the cycle time �.
Now the energy Ẽ given by (5) depends on the frequency. We write Ẽ = Ẽ(!), to

denote this dependency. In order to determine the total metabolic energy generated by
the process, we will now consider the density of states f(!), that is, the number of
states in which the electron has frequency in the range !, !+ d!.
Assuming that the electron behaves as an in-nite set of harmonic oscillators, the

density f(!) will be given by f(!)= aV!2, where V denotes the total volume of the
cell and a a constant (see Ref. [18]).
Hence the mean energy U generated by the metabolic transfer process is now given

by

U =
∫ ∞

0
E∗(!)f(!) d! ;

where E∗(!) = (1=V )Ẽ(!), the mean energy per unit volume.
Using (5), we thus obtain

U = a
∫ ∞

0

h!3 d!
exp (h!=g�)− 1

=
( a
h3

)
(g�)4

∫ ∞

0

x3 dx
ex − 1

;

which yields

U = c�4 ; (6)

where c = a%4g4=15h3.
The above expression for the metabolic energy U released by the electron-transfer

process, as given by (6), is analogous to the Stephan–Boltzmann law: the rate of
energy transmission of a hot body is proportional to the fourth power of the abso-
lute temperature. The law was originally discovered empirically by Stephan in 1879.
Boltzmann later showed that the empirical law could be derived using thermodynamic
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and electromagnetic arguments. Planck, in e:orts to construct a statistical mechanics–
electromagnetic theory of black body radiation, showed that the Stephan–Boltzmann
law could be derived by postulating that when heated matter emits radiant energy, it
does so in discrete bundles rather than continuously.
The derivation of (6) is based on the proposition that Planck’s quantization rule

may also apply to the energy generated by cellular metabolism, a non-equilibrium
process. Planck’s prescription �n=nh! for the energy of a harmonic oscillator assumes
that the energy associated with photons, electrons, protons occur in discrete bundles.
Electromagnetic radiation is generated by the energy of photons. Radiant energy is
due to the random thermal motion of the individual photons. Hence radiant energy at
thermal equilibrium will depend on temperature. Metabolism is generated by the energy
released by electrons and protons as the particles are transferred from donor to acceptor
states within and across the energy-transducing membranes. Metabolic energy is due
to the coupling of the dynamic events—electron transfer and proton translocation. This
is a non-equilibrium process which is essentially isothermal. The metabolic energy
at steady state will therefore depend on the temporal organization of the individual
particles, a property which can be measured by the protonic cycle time.
The thrust of our analysis derives from the observation that physical processes at

thermal equilibrium, where temperature is the organizing parameter, and biological
processes at non-equilibrium steady states, where cycle time is the organizing variable,
can be analyzed within the same statistical mechanics formalism. This observation has
an analytical basis. It issues from the following mathematical fact: The growth rate
parameter in population dynamics satis-es a variational principle which is formally
analogous to the minimization of the free energy in thermodynamic systems [17,19].
This fact implies a formal correspondence between temperature, in thermodynamic
theory, and cycle time in population dynamics. The methods we invoke to derive (6)
are an application of this idea to metabolic systems.

2.2. Metabolic rate and cell size

The expression for the metabolic energy U given by (6) pertains to the electron-
transfer process, that is, the energy-donating system. Let Ũ denote the metabolic en-
ergy associated with ADP phosphorylation, the energy-accepting process. According to
the chemiosmotic theory, there is no direct connection between the enzymes of the
respiratory chain and the phosphorylation enzymes. Respiration and phosphorylation
are coupled via the energy-transducing membrane. When protons are transferred across
the membrane it is converted to an energized state due to the proton concentration
gradient formed and the electrical potential di:erence across the membrane.
Let � denote the metabolic eIciency that de-nes the coupling between the res-

piratory and phosphorylating systems. This is represented by the ratio of the rate
of the energy-accepting process, that is, ADP phosphorylation, to the rate of the
energy-donating process, electron transport. Hence the parameter � is given by

� =
log Ũ
logU

:
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As noted in Ref. [20], � = qZ , where q; 06 q6 1, is a measure of the degree of
coupling between electron transport and proton phosphorylation, with q= 1 and 0 for
completely coupled and uncoupled systems, respectively. The quantity Z is a stoichiom-
etry parameter which is equal to the ATP/electron transport Gux ratio.
In view of (6), we have

Ũ = c�4� :

The expression for the metabolic energy Ũ derives from the quantum e:ects we pos-
tulate and the statistical mechanics argument we invoke. We can also consider cellular
metabolism as a thermodynamic process and appeal to ideas from non-equilibrium ther-
modynamics to characterize Ũ . Assuming a steady-state condition for the cell, we have
Ũ = S̃T , where S̃ denote the thermodynamic entropy of the cell.

The entropy S̃ is an extensive quantity which will be proportional to the volume V .
Assuming that the density of the cell is uniform, we obtain, since the temperature is
an intensive parameter, that

Ũ = 'W ;

where W denotes the cell size and ' a proportionality constant. We can now appeal to
the quantized and thermodynamic descriptions of the energy Ũ to infer that the cycle
time � will be given by the allometric relation

�= (W 1=4� ; (7)

where (= ('=c)1=4�.
Since the metabolic rate P = dŨ =d�, we obtain

P = 4�c
('
c
W
)(4�−1)=4�

:

This yield the general scaling relation

P ∼ W (4�−1)=4� : (8)

2.3. Multicellular organisms

The analysis I have described pertains to uni-cellular organisms. The argument can
be extended to plants and animals. Energy transduction in plants is mediated by the
thylakoid membrane in chloroplasts; in animals, by means of the inner membrane in
mitochondria. ATP production in these organelles is also generated by the coupling
of electron transport and proton translocation. Accordingly, the model for uni-cellular
organisms will also apply to these multicellular systems.
In the case of animals, the model we will now consider, we assume that the metabolic

energy is due exclusively to processes that occur in mitochondria. For an organism with
m mitochondria, the energy associated with each mitochondrion, denoted Xi, is given
by Ũ i = c�4�i where �i is the protonic cycle time. The mean energy Ũ is given by
log Ũ = (1=m)

∑n
j=1 log Ũ j. Hence Ũ = (Ũ 1Ũ 2 : : : Ũ m)1=m. The cycle time associated
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with the coupling of the di:erent processes is given by � = (�1�2 : : : �n)1=m. These
relations yield Ũ = c�4�.
We can exploit the argument described in the uni-cell model to show that Ũ = '̃W̃ ,

where W̃ denote the mean mitochondrial mass. In view of the expressions for Ũ in
terms of cycle time and mitochondrial mass, we conclude that for mitochondria, scaling
relations analogous to (7) and (8) will also hold.
In order to determine a scaling relation for the overall metabolic rate, P̂, of a mul-

ticellular organism as a function of its body size Ŵ , we will consider the allometric
relations for its constituent cells and their mitochondria. We will appeal to ideas de-
scribed in Ref. [21]. We -rst note that P̂ will be a function of the masses characterizing
the various levels—mitochondrial, cellular, and individual: We write

P̂ = P̂(Ŵ ;Wc;Wm) ;

where Wc and Wm denote the mean cell size and mean mitochondrial size, respectively.
We consider a multicellular organism, to be composed of Nc closely packed identical
cells; each with metabolic rate Pc(Ŵ ;Wc;Wm) such that Nc ≈ Ŵ =Wc. In this model,
the metabolic rate of an average cell in the organism will depend on the overall
body mass. Each cell will be composed of Nm mitochondria, each with metabolic
rate Pm(Ŵ ;Wc;Wm) such that Nm ≈ Wc=Wm.
From the conservation of energy for Gow through the circulatory system that supplies

cells, we have

P̂(Ŵ ;Wc;Wm) = NcPc(Ŵ ;Wc;Wm) : (9)

An analogous relation is obtained for Pc by considering energy Gow through the
mitochondria. We have

Pc(Ŵ ;Wc;Wm) = NmPm(Ŵ ;Wc;Wm) : (10)

Combining (9) and (10), we have

P̂ = NcNmPm : (11)

Now NcWc ≈ Ŵ and NmWm ∼ Wc.
Hence

NcNmWm ≈ Ŵ : (12)

Since Pm ∼ W (4�−1)=4�
m , we conclude from (11) and (12), that the overall metabolic

rate P̂ will also satisfy a scaling relation of the form

P̂ ∼ Ŵ (4�−1)=4� :

3. Metabolic rate: optimality principles

The expression for the metabolic rate given by (8) derives from physical constraints,
namely the quantized nature of energy transformations. We will now apply an analytic
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model of the evolutionary process to determine a complementary set of constraints
which evolutionary forces will impose on the metabolic rate.
Analytical studies of the evolutionary process show that the metabolic rate of an

organism, as is the case with other physiological variables, is subject to evolutionary
change by mutation and natural selection. The trends in metabolic rate can be inferred
from directionality theory, an analytic model which integrates Mendelian genetics with
demography [9].
Directionality theory classi-es populations according to the ecological forces that

impinge on the population dynamics. The theory distinguishes between two classes of
ecological constraints.

(a) Bounded growth: This pertains to populations existing in environments in which
resources are limited but in constant supply. Population size under this constraint
will be either stationary or Guctuate around some constant value.

(b) Unbounded growth: This condition refers to populations existing in environments
in which resources are ample but are available only intermittently. Population size
under this constraint will be characterized by alternating episodes of rapid increase
and decline.

Directionality theory parametrizes the state of the population by the complexity of its
life-history, a property which is measured by evolutionary entropy, denoted H , and
given by

H =−
∫∞
0 p(x)logp(x) dx∫∞

0 xp(x) dx
≡ S

T̃
: (13)

Here p(x) denotes the probability density function of the age of reproducing individuals
in the population. The function p(x) = exp (−rx)V (x). The quantity, r, denotes the
population growth rate. The function V (x), called the net reproductive function at age
x, is de-ned by the product l(x)m(x), where l(x) is the probability that an individual
born at age zero will survive to age x, and m(x) the mean number of o:spring produced
at age x.
The main tenets of the theory are a set of directionality principles which relate

ecological constraints—bounded and unbounded growth—to changes in entropy under
mutation and natural selection.
In the case of large populations, these tenets can be described as follows:

I(a) In populations subject to bounded growth constraints, evolution is described by a
uni-directional increase in entropy.

I(b) In populations subject to unbounded growth constraints, evolution is described by
a uni-directional decrease in entropy.

We will now show that the metabolic rate, P, is characterized by directionality prin-
ciples analogous to (I). We observe from (13) that S = − ∫∞

0 p(x) logp(x) dx and
T̃ =

∫∞
0 xp(x) dx. The quantity S describes the uncertainty in the age of the mother of
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a randomly chosen newborn, whereas T̃ denotes the generation time, the mean age of
mothers at the birth of their o:spring.
The studies given in Ref. [10] applied energetic arguments to show that the entropy

function S is, up to additive constants, isometrically related to body size. We have

S = c̃W + d̃ ;

where c̃ and d̃ are constants which depend on the phylogenetic status of the organism.
In view of (13), we conclude that

HT̃ = c̃W + d̃ : (14)

Now since cycle times at di:erent levels of biological organization satisfy allometric
relations with similar exponents [12], we can conclude that the generation time T̃ will
satisfy the allometric relation (7). Using (7) and (8) we can therefore infer that

PT̃ ∼ W : (15)

The perturbation methods in Ref. [10] can now be applied to (14) and (15) to show
that

LH ·LP¿ 0 ; (16)

where LX denotes a change in the parameter X due to a change in the net reproductive
function that de-nes the life table. Relation (16) implies that evolutionary changes in
entropy and evolutionary changes in the metabolic rate are positively correlated.
Relation (16) can be integrated with (I) to derive, in the case of large populations,

the following series of correlations between ecological constraints and evolutionary
changes in metabolic rate. We have

II(a) Bounded growth constraints: a uni-directional increase in metabolic rate.
II(b) Unbounded growth constraints: a uni-directional decrease in metabolic rate.

Principles (II) entail that the metabolic rate of an organism, and consequently the
scaling exponent � = (4� − 1)=4�, will be regulated by the ecological situation the
population contends throughout its evolutionary history. We can exploit (II) to infer
the following extremal principles for metabolic rate:
We have

(A) In populations subject to bounded growth constraints, the evolutionarily stable
state of the population will be described by organisms with physiological states
that maximize the metabolic rate.

(B) In populations subject to unbounded growth constraints, the evolutionarily stable
state will be described by physiological states which minimize the metabolic rate.

Invoking principle (A) and expression (8) for metabolic rate, we observe that maximal
metabolic rates will correspond to an eIciency �=1. When this condition holds, �= 3

4
and we obtain the scaling relation P ∼ W 3=4.

In our application of principle (B) we note that, in the case of homeotherms of a
given body size W , the minimal metabolic rate will be that rate which balances the rate
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of heat loss. However, in a resting state, heat is predominantly lost through the surface
area, which scales as V 2=3, where V denotes the volume. Assuming a size-invariant
uniform density, we obtain that the minimal metabolic rate of homeotherms will be
described by the exponent � = 2

3 , and we have P ∼ W 2=3. This minimal condition
corresponds to an eIciency � = 3

4 .

4. Conclusion

The size of an organism imposes constraints on its physiology and determines its
life-history and ecological traits. The metabolic rate of an organism, that is, the rate
at which chemical energy is being transformed from nutrients into osmotic and chem-
ical work, regulates its physiological activities. Empirical studies show that metabolic
rate and body size satisfy an allometric relation whose exponent depends on the phy-
logenetic status of the organism. This article has proposed a model to explain these
empirical laws. The model rests on the idea that energy transduction in a biologi-
cal organism is determined by two classes of dynamical processes. The -rst operates
on the time scale of chemical kinetics—the transit time of molecules in the electron-
and proton-transfer reactions. This dynamic is concerned with the energy released as
electrons are transferred from a substrate to oxygen and protons are translocated across
membranes. Our model assumes that these processes are quantized and exploits Planck’s
quantization rule to show that the relation between metabolic rate P and body size W
will be given by

P = aW� ;

where the scaling exponent, �, depends on the metabolic eIciency.
The second process we consider operates on the time scale of a generation—the mean

age at which individuals in the population produce o:spring. This dynamical system
describes evolutionary changes in the population under di:erent ecological constraints.
The model exploits a new analytical theory of evolution to show that the scaling
exponent � will be contingent on the evolutionary history of the population. The scaling
exponent �= 3

4 , which maximizes metabolic rate, and �= 2
3 , which minimizes metabolic

rate, are consequences of these evolutionary constraints.
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