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Abstract

The term Darwinian fitness refers to the capacity of a variant type to invade and displace the resident population in competition for

available resources. Classical models of this dynamical process claim that competitive outcome is a deterministic event which is regulated

by the population growth rate, called the Malthusian parameter. Recent analytic studies of the dynamics of competition in terms of

diffusion processes show that growth rate predicts invasion success only in populations of infinite size. In populations of finite size,

competitive outcome is a stochastic process—contingent on resource constraints—which is determined by the rate at which a population

returns to its steady state condition after a random perturbation in the individual birth and death rates. This return rate, a measure of

robustness or population stability, is analytically characterized by the demographic parameter, evolutionary entropy, a measure of the

uncertainty in the age of the mother of a randomly chosen newborn. This article appeals to computational and numerical methods to

contrast the predictive power of the Malthusian and the entropic principles. The computational analysis rejects the Malthusian model

and is consistent with of the entropic principle. These studies thus provide support for the general claim that entropy is the appropriate

measure of Darwinian fitness and constitutes an evolutionary parameter with broad predictive and explanatory powers.

r 2007 Elsevier Inc. All rights reserved.
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The race is not to the swift nor the battle to the strong
but chance and entropy, Nature’s high arbiters,
govern all.
1. Introduction

Evolutionary ecology in its broadest sense involves the
integration of two distinct disciplines, with quite different
mathematical cultures. One is population genetics, whose
problematic is the dynamics of genetic change within a
population due to mutation and natural selection. The
second is population ecology which deals with changes in
age distribution and changes in population size within a
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population as a consequence of the interaction of the
organisms with the environment. One of the central
concepts which has emerged in the rapprochement of these
two disciplines is Darwinian fitness: the capacity of a
variant type to displace the resident genotype in competi-
tion for the available resources.
Fitness, according to Darwin, means the capacity to

survive and reproduce. This property includes a variety of
behavioral factors—elements which are highly contingent
on the environmental conditions that the organism
experiences. In situations where competition involves the
location of resources, fitness can be described by foraging
ability; when the relative ability to evade predators is at
issue, fitness may now involve visual acuity; in problems
involving competition for mates, the capacity to intimidate
rivals may now become the dominant trait. These
behavioral features are highly qualitative predictors of
net reproductive success. Consequently, they do not
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provide a basis for understanding, in quantitative terms,
the dynamics of invasion as new variants compete with the
resident population for the available resources.

The problem of transforming Darwin’s qualitative
description of selective advantage into quantitative mea-
sures of fitness was first addressed by Fisher (1930). Fisher
recognized that any index of competitive ability must
incorporate demographic components—age-specific fe-
cundity and mortality variables—as the operational units.
A measurable macroscopic aggregate of individual fecund-
ity and mortality variables is the rate of increase in
population numbers. Accordingly, Fisher proposed this
quantity as an index of Darwinian fitness and called it the
Malthusian parameter, in honor of Malthus’ contribution to
the study of population dynamics. Fisher’s proposition took
hold and became the cornerstone of studies in evolutionary
genetics and ecology (Roff, 1992; Stearns, 1992; Charles-
worth, 1994). Although the Malthusian parameter continues
to drive most theoretical and empirical studies of invasion
dynamics in evolution and ecology, certain questions regard-
ing its predictive and explanatory power have become
prominent. We point to two issues—the first based on
empirical, the second on theoretical considerations—that
have been brought to bear on the pertinence of the
Malthusian measure as an index of fitness.

The empirical issue concerns an extensive study of the
invasion process in vertebrates and invertebrates in Britain
(Lawton and Brown, 1986). The data indicate that the
amplitude of population fluctuations, but not the popula-
tion’s intrinsic rate of increase, is the main determinant of
invasion success. The empirical observations of Lawton
and Brown are consistent with the claim that invasion is a
highly stochastic process, and that the probability of
establishment of an invader is correlated with body size.
The studies furthermore indicate that the relation between
invasion success and body size is dependent on the
taxonomic status of the species. In large vertebrates, the
probability of establishment of an invader increases with
body size. However, the studies of insect orders show the
opposite trend, with probability of establishment decreas-
ing with increasing body size.

The theoretical issue concerns the analysis of the inten-
sity of selection, a property measured by the sensitivity of
demographic measures of Darwinian fitness to changes in
the age-specific fecundity and mortality schedule (Hamil-
ton, 1966). Perturbation studies using continuous models
(Hamilton, 1966), have shown that the sensitivity of the
Malthusian parameter to changes in the life-history
variables is a decreasing function of age. This analytical
fact has important implications for studies of the evolution
of aging. The sensitivity property entails that, in the case of
Malthusian models, evolution by natural selection will
result in mortality rates that increase exponentially with
age (Partridge and Barton, 1996; Rose and Mueller, 2000).
This condition, however, is known to be inconsistent with
empirical data for human and several laboratory popula-
tions (Carey and Judge, 2000). In human populations, for
example, a simple exponential curve—the Gompertzian
distribution—provides a good fit for the mortality data for
most populations from age 35 to 95. However, after age 95,
mortality rates decelerate or abate with age, defining what
is called a mortality plateau.
The problems raised by these empirical and theoretical

issues were addressed in a series of articles which pointed to
the anomalies which result when the Malthusian parameter
was used as a measure of Darwinian fitness. This critique of
the Malthusian principle led to the study of a new class of
population models which exploited the methods of
statistical mechanics to generate new macroscopic descrip-
tors of age-structured populations. We appealed to these
parameters to analyze the invasion dynamics of variant
types introduced in a resident population. This analysis, in
sharp contrast to the classical models of competition (see,
for example, Charlesworth and Williamson, 1975; Pollak,
1976), showed that the probability of establishment of a
variant type is contingent on the prevailing ecological
conditions and is determined by the rate at which the
population returns to its original size after a random
perturbation in the individual birth and death rates. This
return rate, called the fluctuation decay rate, characterizes
the robustness of the population, that is, the capacity of the
population to maintain its steady state condition in the face
of random perturbations in the life-history variables.
Robustness can be analytically described by the demo-
graphic parameter, evolutionary entropy, a measure of the
uncertainty in the age of the mother of a randomly chosen
newborn (Demetrius, 1974; Demetrius et al., 2004).
Our analysis of the invasion process distinguishes

between (i) equilibrium species, typically large vertebrates
and perennial plants, which refer to populations which are
either stationary or fluctuating around some constant size,
(ii) opportunistic species, typically insects, small vertebrates
and annual plants, which pertain to populations which
undergo large irregular fluctuations in size (cf. Pianka,
2000; Emlen, 2004).
Studies based on diffusion processes showed that

invasion success is modulated by the condition—equili-
brium or opportunistic—that defines the population, and
can be qualitatively described in terms of the following
rules (Demetrius, 1997; Demetrius and Gundlach, 1999):
A(i)
 Equilibrium species: Variants with increased entropy
will almost always invade, variants with decreased

entropy will almost always become extinct.

A(ii)
 Opportunistic species:

(a) Large population size: Variants with decreased

entropy will almost always invade; variants with
increased entropy will almost always become
extinct.

(b) Small population size: Variants with decreased

entropy will invade with a probability that
increases with population size, variants with
increased entropy will become extinct with a
probability that increases with population size.
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The invasion criteria pertain to local changes in entropy.
These criteria are the cornerstone of directionality theory,
an analytic evolutionary model which studies global, that
is, long run changes in entropy. Directionality theory
considers evolution as a dual process. The first phase
consists of the production of genetic variability through
mutation and the invasion of these mutants in the resident
population. The second phase consists of the ordering of
this genetic variability through natural selection under
various types of ecological constraints. The integration of
these two phases leads to the replacement over time of one
population type by another, with concomitant changes in
life-history.

Directionality theory predicts the following relations
between the equilibrium-opportunistic condition and glo-
bal changes in entropy as the system evolves from one
steady state to the next.
B(i)
 Equilibrium species: A uni-directional increase in
entropy.
B(ii)
 Opportunistic species: A uni-directional decrease in
entropy, when population size is large; and random,
non-directional change in entropy when population
size is small.
Directionality theory has been shown to have a wide
explanatory and predictive power, as indicated by the
computational studies reported in Kowald and Demetrius
(2005), and the empirical studies using plant populations
described in Ziehe and Demetrius (2005), and human
populations analyzed in Demongeot and Demetrius (1989),
Demetrius and Ziehe (1984). This evolutionary theory is
the crux of a new class of models which deals with the
origin and evolution of senescence (Demetrius, 2003) with
important empirical implications (see, Olshansky and
Rattan, 2005; Braeckman et al., 2006; Spinney, 2006).

The invasion criteria, as qualitatively expressed by (A),
elucidate the observation, due to Lawton and Brown, that
body size is a critical determinant of invasion success. The
rationale for this observation rests on the analytical and
empirical fact that entropy is related to body size
(Demetrius (2000)). This relation entails that in equilibrium
species, the probability of establishment of an invader will
increase with body size, whereas in opportunistic species,
the probability of establishment will decrease with body
size.

The directionality principles for evolutionary entropy, as
qualitatively summarized in (B), account for certain life-
history patterns observed in studies of longevity. The
principles explain the empirical observation that the
mortality rates in human populations are not described
by a Gompertzian distribution—as predicted by the
Malthusian invasion condition—but by a so-called mor-
tality plateau. The argument is based on the following fact:
the sensitivity of entropy to changes in the age-specific

fecundity and mortality variables is a convex function of age

(Demetrius, 2001). The convexity property entails that the
response of entropy to changes in the net-fecundity
distribution will be relatively strong during the earlier
and later stages of the reproductive phase, but relatively
weak during the intermediate stages. Since evolution
under mutation and natural selection will result in
increased entropy in equilibrium species, and, typically,
decreased entropy in opportunistic species, we can predict
that: (i) in equilibrium species (humans and certain
laboratory organisms, for example) mortality rates will
abate with age at advanced ages, thus inducing a mortality
plateau, and (ii) in opportunistic species (small vertebrates
in the wild and insects) morality rates will increase
exponentially with age, thus defining a Gompertzian
distribution.
The entropic criteria for invasion success is a general-

ization of the Fisherian models, which deals with invasion
dynamics in structured populations of infinite size, and the
Wright–Kimura models, which pertain to invasion pro-
cesses in non-structured populations of finite size.
The synthesis of the Fisher and the Wright–Kimura

models has been shown to invoke new population concepts
such as entropy, reproductive potential, and demographic
variance, etc. These concepts have their mathematical
origin in ergodic theory and statistical thermodynamics.
Their emergence in a population context derives from the
recognition, articulated in Demetrius (1974, 1975), that the
steady state dynamics of structured populations—in which
individuals of different ages or size ‘‘interact’’ according to
birth and death processes—and the equilibrium dynamics
of material aggregates (solids, liquids or gases)—in which
the individual molecules ‘‘interact’’ according to the laws of
classical mechanics—can be analyzed in terms of a similar
mathematical formalism. The analytical basis of this
formalism has been extensively developed in articles
addressed primarily to mathematicians (see Demetrius,
1983; Arnold et al., 1994; Demetrius and Gundlach, 1999).
This article aims to complement certain aspects of these
mathematical studies with a computational analysis of the
invasion process.
Our objectives are two-fold.
(1)
 To exploit the computational methods to explain the
interdependence of the various demographic para-
meters which determine invasion success.
(2)
 To exhibit in numerical terms the relation between the
entropic invasion criteria and the Malthusian condi-
tion.
We should point out at this juncture that certain
deficiencies of the Malthusian parameter as a measure of
invasion success has been recognized by various research
groups (see, for example, Metz et al., 1996; Champagnat
et al., 2001; Ferrière et al., 2004). The arguments reviewed
in Metz et al. (1996), and Ferrière et al. (2004), for
example, aim to integrate the effects of environmental
conditions with different forms of density-dependence to
provide general criteria for invasion success that go beyond
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the Malthusian condition. These analyses are in large
measure developed in terms of the same analytical and
conceptual structure as the classical Malthusian models.
Hence, they are not directly pertinent to the problems of
invasion dynamics addressed in this article.

This paper is organized as follows. The origin of the
Malthusian parameter and its significance as an invasion
exponent are described in Section 2. The origin of the
entropy concept, its conceptual and empirical basis, and its
relation with the Malthusian parameter are reviewed in
Section 3. The ideas in this section have been developed
more extensively in earlier publications and are here
included to make the paper self-contained and more
accessible to empiricists. The characterization of entropy
as an invasion exponent is developed in Sections 4 and 5. In
Section 6 we compare the diffusion equations which arise
in structured models with analogous equations derived in
the Wright–Kimura models. The computational studies of
the entropic principle and its relation to the Malthusian
principle are developed in Sections 7–9. Section 10
summarizes the main results.

2. The Malthusian parameter

The Malthusian parameter derives from Lotka’s (1925)
model of the population dynamics of age-structured
populations. He showed that a population with fecundity
and mortality variables which are continuous functions of
age will ultimately attain a growth rate, r, which is the real
root of the equation,

1 ¼

Z 1
0

expð�rxÞV ðxÞ dx. (1)

Here V ðxÞ is the net reproductive function which is given
by the product, lðxÞ, the probability that an individual
survives to age x, and mðxÞ, the mean number of offspring
produced in the age interval x to xþ dx.

The analysis of competition between mutant types and a
resident population in terms of the Lotka model was
pioneered by Fisher (1930). Elaborations of this model by
Charlesworth and Williamson (1975), Pollak (1976) have
led ultimately to the claim that the invasion dynamics of a
mutant allele is a deterministic process whose outcome is
predicted by the Malthusian parameter. Hence, the
selective advantage, s, is given by

s ¼ Dr. (2)
Table 1

Invasion criteria: Dr

Demographic condition Selective outcome

Dr40 Mutant invades

Dro0 Mutant becomes extinct
Here Dr denote the difference in the Malthusian parameter
between the variant and the resident type. The invasion
criterion can be expressed in terms of Table 1.
The Malthusian principle has been extended to more

general situations involving populations evolving in
stochastic environments (see, for example, Ferrière and
Gatto, 1995). These extensions essentially assert that the
invasion exponent is described by some measure of growth
rate in population numbers. This measure is given by the
dominant Lyapunov exponent of a matrix sequence, a
quantity which is analogous to the dominant eigenvalue of
the Leslie matrix in classical population models. Accord-
ingly, these developments can be subsumed under the
criteria given in Table 1.
The Malthusian principle is based on models which

implicitly assume that populations have infinite size. This
constraint on size entails that random variations in the
individual birth and death rate—demographic stochasti-
city—will have a negligible effect on the population
dynamics. Hence, the establishment of a rare mutant will
be a deterministic process regulated by the population
growth rate.
This situation no longer prevails when size is finite. In

this case, demographic stochasticity will induce irregular
fluctuations in population numbers. The number of
descendants left by an individual will now become a
random variable. Accordingly, the establishment of a rare
mutant now becomes a stochastic process regulated by
several parameters: the population growth rate, the
population size, and the demographic variance, that is
the variance in the net-reproductive function (Demetrius,
1997; Demetrius and Gundlach, 1999).

3. Entropy and the reproductive potential

The Malthusian parameter derives from models
which parametrize structured populations in terms of
their age distribution and analyses changes in the age-
distribution over time. It is the rate of increase of
total population numbers when the population attains
the stable age-distribution (Lotka, 1925; Leslie, 1945). A
new class of macroscopic descriptors of structured popula-
tions was derived by considering models in which popula-
tions are parametrized in terms of their ‘‘genealogies’’
(Demetrius, 1974). This term refers to a recording of
successive ancestors of a particular individual which at
time zero is in a particular age-class. A central result of this
new theory is the following analytical fact: The population

growth rate satisfies a variational principle which is formally

analogous to the extremal principle for the free energy in

equilibrium statistical mechanics (Demetrius, 1974; Arnold
et al., 1994). This variational principle implies that the
population growth rate r, as defined in Eq. (1), can be
expressed as the sum of two macroscopic variables,
namely,

r ¼ H þ F. (3)
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The quantities H and F are given by

H ¼ �

R1
0 pðxÞ log pðxÞ dxR1

0
xpðxÞ dx

�
S

T
;

F ¼

R1
0 pðxÞ logV ðxÞ dxR1

0 xpðxÞ dx
�

E

T
, ð4Þ

where pðxÞ ¼ expð�rxÞV ðxÞ.
The expression T ¼

R1
0 xpðxÞ dx is the generation time,

the mean age of mothers at the birth of their offspring.
Hence Eq. (3) can also be expressed in terms of the

identity

rT ¼ S þ E.

We will now describe and illustrate with empirical data the
main properties of the demographic parameters defined in
Eq. (4).

3.1. Demographic entropy

The quantity S ¼ �
R1
0 pðxÞ log pðxÞ dx is a measure of

the uncertainty in the age of the mother of a randomly
chosen newborn. It is called demographic entropy and
describes the degree of iteroparity of the population. Large
values of S correspond to the following life-history
properties: late age of sexual maturity, small net progeny
sets, broad reproductive span. Small values of S define:
early age of sexual maturity, large net progeny sets, narrow
reproductive span (Demetrius, 2003).

A property which has played an important role in studies
of life-history patterns is the so-called fast–slow continuum
(cf. Promislow and Harvey, 1990). Species that mature
early have large reproductive rates, and short generation
times are said to occupy the ‘‘fast’’ end of the continuum.
Species with the opposite suite of traits occupy the ‘‘slow’’
end of the continuum. The following analytical fact derives
from perturbation studies of the life-history variables:
Demographic entropy quantifies the position of a population

along the fast–slow life-history continuum.

Small mammals and herbs in disturbed habitats (low
entropy species) will occupy the fast end, whereas large
mammals and trees (high entropy species) will occupy the
slow end (see Ziehe and Demetrius, 2005).

Table 2 illustrates the entropic parametrization of the
fast–slow continuum by considering the life-history pattern
of a large mammal (high entropy), a medium sized
mammal (intermediate entropy), and a small mammal
(low entropy).
Table 2

Relation between life-history properties and demographic entropy

Species Body size (kg) Age of sexual Litter size

maturity (years)

Spermophilus armatus 0.35 1 5

Ovid canadensis 55 2 1

Connochaetes taurinus 170 3 1
3.2. Evolutionary entropy

The quantity H ¼ S=T has the dimension of inverse
time. It is called evolutionary entropy or entropy rate to
distinguish it from S, the demographic entropy. The
entropy rate H provides an analytic characterization of
the robustness of a population. Robustness, in its broadest
sense, describes the capacity of a population to maintain its
phenotypic characteristic in the face of random perturba-
tions in the genotypic states, a notion whose general
biological significance was emphasized by Waddington
(1959). In the demographic context, we use the term to
refer to the capacity of a population to maintain its
predicted steady state condition in the face of random
perturbations in the age-specific birth and death rates. The
perturbation in this model derives from demographic
stochasticity and is thus distinct from variations in
population observables induced by environmental factors.
Analytically, the notion robustness, denoted R, is

described by Demetrius et al. (2004):

R ¼ lim
n!1

�
1

n
log Qnð�Þ

� �
.

Here Qnð�Þ is the probability that the sample mean of some
population observable, defined at instant n, differs from the
asymptotic mean by more than �.
By appealing to the theory of large deviations, we

showed (Demetrius et al., 2004) that

DHDR40. (5)

The quantities DH and DR denote changes in the
macroscopic parameters H and R induced by a change in
the age-specific fecundity and mortality variables.

R describes the rate of convergence to the steady state
condition after a random perturbation. It is negatively
correlated with the intensity of fluctuations, a property
which can be measured by the coefficient of variation in
population size. In view of the fluctuation-stability
theorem, as expressed by Eq. (5), the entropy rate H, will
also be negatively correlated with the coefficient of
variation in population size: the larger the entropy rate,
the smaller the coefficient of variation. Since changes in
demographic entropy S, and changes in the entropy rate H

are positively correlated (Demetrius, 2001), we can
infer that demographic entropy and the coefficient of
variation in population size will be described by a similar
property. Empirical support for the correlation between
Age of last Demographic Reference

reproduction (years) entropy

4 0.870 Slade and Balph (1974)

8 1.835 Deevey (1947)

20 2.315 Watson (1970)
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Table 4

Trends in demographic variables for human populations: Sweden (1778–

1965), France (1851–1965)

Year r H F

For Sweden

1778 0.0062 0.0493 �0.0431

1828 0.0093 0.0481 �0.0385

1878 0.0107 0.0485 �0.0370

1928 �0.060 0.0520 �0.0580

1965 0.0048 0.0528 �0.0480

For France

1851 �0.002 0.0502 �0.0504

1871 �0.0087 0.0516 �0.0603

1909 �0.0017 0.0524 �0.0540

1945 0.0049 0.0504 �0.0456

1965 0.0096 0.0506 �0.04810

L. Demetrius, M. Ziehe / Theoretical Population Biology 72 (2007) 323–345328
demographic entropy and the coefficient of variation in
population size was described in Ziehe and Demetrius
(2005) using data from plant populations.

3.3. The reproductive potential

The quantity E, and likewise the parameter F, can
assume both positive and negative values. E, called the net-
reproductive index, describes the net-offspring production
log V ðxÞ, averaged over all age classes. The quantity F ¼
E=T has the dimension of inverse time and is called the
reproductive potential. We now provide arguments to
support the following characterization of the reproductive
potential. The reproductive potential F quantifies the

position of a population along the equilibrium-opportunistic

axis.

We observe from Eq. (3), that

F ¼ r�H. (6)

Hence,

Fo0 ¼) roH; F40 ¼) r4H. (7)

Equilibrium and opportunistic populations are qualitative
notions which originate from the so-called r� K theory of
life-history evolution (Pianka, 2000). Equilibrium species,
we recall, are defined as populations whose growth rate is
either stationary or slowly growing (r small). These
populations are described by small fluctuations in popula-
tion numbers, and rapid return to the steady state
condition after a random perturbation in the age-specific
birth and death rate (H large). In view of Eq. (7), we
conclude that equilibrium species will be described by the
condition Fo0.

Opportunistic species are defined by populations which
are subject to relatively long episodes of rapid population
growth (r large) followed by an abrupt decline in
population numbers. In these systems, populations under-
go large irregular fluctuations in numbers due to the effects
of demographic stochasticity (H small). Accordingly, we
have from Eq. (7) that F40.

We give in Table 3 values for r, H, and F for selected
examples of equilibrium species—three large mammals and
a large bird; and opportunistic species—a small mammal,
two insects and a small bird.
Table 3

Demographic variables for equilibrium and opportunistic species

Taxon Species Body size (g)

Large mammal Equus burchelli 250,000

Large mammal Cervus elaphus 175,000

Large mammal Ovis canadensis 57,900

Large bird Gyps fulvis 9000

Small mammal Tamias striatus 100

Small bird Petrona petrona 35

Insect Calandra oryzae 0.01

Insect Tribolium castaneum 0.01
We should point out that the values of the demographic
variables given in Table 3 are regulated by the scaling
units—weeks, months or years—which are invoked in
generating the various life tables. However, the sign of F
does not vary with the scaling, which is a necessary
requirement for the significance of F as a measure of the
equilibrium—opportunistic distinction.
The significance of the equilibrium—opportunistic dis-

tinction can be underscored by appealing to empirical
studies of demographic changes in human populations over
a relatively long time period—Sweden (1778–1965), France
(1851–1965) (see Demetrius and Ziehe, 1984; Demongeot
and Demetrius, 1989). Table 4 gives the values for r, H, and
F for Sweden and France at selected points over a 200 year
and 100 year period, respectively.
The values of the demographic variables described in

Table 4 indicate that although the growth rate r showed a
large variation—with negative and positive values—the
reproductive potential remained negative. Hence, over a
period of two centuries, gradual genetic and cultural
changes, together with the punctuated changes in demo-
graphic patterns induced by two world wars, have resulted
in no variation in the sign of the reproductive potential.
Humans are a typical example of an equilibrium species.
The hunter-gathering phase represents 99% of human
evolutionary history. During this period, population
r H F References

0.05 0.0343 �0.288 Spinage (1970)

0.058 0.44 �0.38 Lowe (1969)

0.088 0.45 �0.362 Geist (1968)

0.087 0.257 �0.168 Niel and Lebreton (2005)

0.962 0.602 0.360 Spinage (1970)

0.765 0.652 0.113 Niel and Lebreton (2005)

0.843 0.01 0.61 Birch (1948)

1.26 0.27 0.01 Leslie and Park (1949)
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growth rate has ranged between 0.007 and 0.0015 per
thousand per year. The large increases in growth rate (0.36
per 1000), at the advent of agriculture 10,000 years ago,
and (0.56 per 1000) since 1750, represent only 1% of
human evolutionary history (Coale, 1974). The negative
values of F for Sweden and France, given in Table 4, are
typical for modern human populations. Computational
studies of the life tables of agricultural and hunter-gatherer
populations also yield negative values for F. These
observations indicate the robustness of the reproductive
potential as a quantitative measure of the distinction
between equilibrium and opportunistic species.

4. Invasion dynamics: the entropic condition

Diffusion equations were applied to analyze models of
competition between a resident population and a mutant
(Demetrius and Gundlach, 1999). The resident population
is described by the parameters r;H, and F; the mutant by
r�;H�; and F�. The analytical studies show that the
outcome is determined by DH, where DH ¼ H� �H.
However, whether an increase or a decrease in entropy
confers a selective advantage, depends on the condition,
equilibrium (Fo0), or opportunistic (F40) which de-
scribes the population.

The invasion criteria summarized in Table 5 are derived
from analytical studies which integrate the ergodic theory
of dynamical systems with diffusion processes (Demetrius,
1997; Demetrius and Gundlach, 1999). The conditions
described in Table 5 can be explained by a qualitative and
heuristic argument. The thrust of the argument revolves
around two items:
(i)
Tab

Inva

Dem

cons

Fo
spec

F4
spec

Larg

Sma
The characterization of entropy as a measure of
robustness, that is, the capacity of a population to
maintain a steady state condition in the face of random
perturbations in the birth and death rates.
(ii)
 The representation of the equilibrium—opportunistic
condition in terms of constraints on the disposition of
the resources. The equilibrium state defines species
subject to limited but constant resources, whereas the
le 5

sion criteria: DH

ographic

traints

Invasion

condition

Selective outcome

0 (equilibrium

ies)

DH40 Invasion occurs almost surely

(a.s.)

DHo0 Extinction occurs a.s.

0 (opportunistic

ies)

e population size DHo0 Invasion occurs a.s.

DH40 Extinction occurs a.s.

ll population size DHo0 Invasion with a probability

increasing in population size

DH40 Extinction with a probability

increasing in population size
opportunistic state refers to species subject to abundant
but variable resource conditions.
Our qualitative argument is based on the observation, first
noted in Lotka (1922) (see also Watt, 1986; Brown et al.,
1993; Parsons, 2005), that, in competition for the available
resources, selective advantage accrues to organisms who are
most efficient in acquiring resources and converting the
metabolic energy into viable offspring.
Efficiency in resource acquisition and resource conversion

have differential effects on the invasion success of a mutant.
When resources are limited but constant, the rate at which the
organism acquires resources becomes the limiting factor with
regards to the efficient direction of the available energy into
net-reproductive power. However, when resources are
abundant but variable, the rate of conversion of the resources
into net-offspring production now becomes limiting (see, for
example, Brown et al., 1993).
Now in the case of equilibrium species, resources are

limited but constant, and population size will remain
relatively stable. Selective outcome under these conditions
will be determined by efficiency in resource acquisition.
This property will be positively correlated with the
robustness of the population. Mutants with increased

robustness, and consequently increased entropy, will
acquire resources at a faster rate than the ancestral type.
Such mutants will have a selective advantage and hence
increase in frequency.
In the case of opportunistic species, resources are abundant

but variable, and populations will undergo large variations in
numbers. Selective outcome will now be determined by the
rate at which the organism converts the available resources to
net-offspring production— a property which will be nega-
tively correlated with robustness: mutants with decreased

robustness, and consequently decreased entropy, will convert
resources into viable offspring at a faster rate than the
ancestral type. When population size is large, the outcome of
competition between the mutant and ancestral type will be
predictable: mutants with lower entropy will have a selective
advantage. However, when population size is small, stochas-
tic effects will dominate and competitive outcome will now be
a random process.
The invasion criteria are given in Table 5 in terms of

evolutionary entropy H. This quantity describes a rate,
namely the rate of increase of an effective population size
(Demetrius, 1983), and determines robustness, the rate at
which the population returns to its steady state condition
after a random perturbation in the age-specific variables
(Demetrius et al., 2004).
Demographic entropy, S, is an analog of the Gibbs–

Boltzmann entropy in statistical mechanics. S is the
product of the entropy rate, H and the generation time,
T. Now perturbation studies (Demetrius, 2000) show that
evolutionary changes in the parameters H and S are
positively correlated. We write

DHDS40. (8)
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In view of (8), the invasion condition described in terms of
DH can be reformulated in terms of DS.

Since S quantifies the position of the population along
the fast–slow life-history continuum, the reformulation of
the invasion criteria in terms of demographic entropy S

provides a complementary characterization of invasion
success which can be roughly described as follows: late age
of sexual maturity, small litter size and broad reproductive
span confers a selective advantage in equilibrium species
ðFo0Þ; early age of sexual maturity, large litter size, and
narrow reproductive span bestows a selective advantage in
opportunistic species ðF40Þ.

5. The Malthusian and entropic principles: a contrast

In this section we will contrast the Malthusian principle,
as given in Table 1, with the entropic principle, as
summarized in Table 5. In order elucidate the relation
between the two invasion criteria, we will give a brief
summary of the mathematical basis for the entropic
principle. A more extended development is given in
Appendix A.

The derivation of the entropic invasion criteria rests on a
mathematical model which considers the resident popula-
tion as defined by the net-reproductive function V ðxÞ.
Consequently, the resident will be described in terms of the
demographic parameters, r, H, s2, which as shown in
Eqs. (1) and (4), are all functions of V ðxÞ.

The quantities r and H are given by Eqs. (1) and (4),
respectively. The quantity s2, called the demographic
variance, is given by

s2 ¼

R1
0 pðxÞW 2ðxÞ dx

T
, (9)

where W ðxÞ ¼ �xFþ log V ðxÞ.
The analysis assumes throughout that Fa0. This

constraint represents a generic condition for age-structured
populations.

The demographic parameters r;H;F; and s2 are all
functions of V ðxÞ, the net-reproductive function. Mutants
are here defined by a perturbation of the net-reproductive
function: V�ðxÞ ¼ V ðxÞ1þdðxÞ.

The change in the net-reproductive function is assumed
to be the result of changes in the activity of the enzymes
that regulate the metabolic reactions which determine the
individual’s life-history. Since enzyme activity typically
increases or decreases as the individual ages, we will assume
that dðxÞ is a monotonic function of age (Demetrius, 1992).

The demographic parameters which describe the mutant
population are given by r�, H�, and s�2—which are all
functions of V�ðxÞ. We write

Dr ¼ r� � r; DH ¼ H� �H; Ds2 ¼ s�2 � s2.

The condition for the increase in frequency and ultimate
fixation of the invading population is evaluated by
considering the stochastic dynamics of the frequency of
the invader. For this purpose a continuous time diffusion
approximation is used in order to analyze the frequency
pðtÞ, given by

pðtÞ ¼
N�ðtÞ

N�ðtÞ þNðtÞ
. (10)

Here NðtÞ denote the population size of the resident
population and N�ðtÞ the population size of the invader,
where N�ðtÞ5NðtÞ.
Let cðp; tÞ denote the probability density function of the

stochastic process which describes the change in frequency,
denoted p, of the invading genotype. We have, see
Appendix A, the Fokker–Planck equation,

qc
qt
¼ �

q½aðpÞc�
qp

þ
1

2

q2½bðpÞc�
qp2

, (11)

where

aðpÞ ¼ pð1� pÞ Dr�
1

M
Ds2

� �
(12a)

and

bðpÞ ¼
pð1� pÞ

M
½s2pþ ðs2 þ Ds2Þð1� pÞ�. (12b)

The quantity M is the total population size. The
parameter r is the population growth rate, defined in
Eq. (1), whereas s2 is the demographic variance given by
Eq. (9).
The Fokker–Planck equation, Eq. (11) can be analyzed

to yield the probability PðyÞ that a mutant, with initial
frequency y, invades the population. This is given by

PðyÞ ¼
1� 1� Ds2

s2þDs2
y

� �ð2Ms=Ds2Þþ1

1� 1� Ds2
s2þDs2

� �ð2Ms=Ds2Þþ1
, (13)

where

s ¼ Dr�
1

M
Ds2 (14)

Now, the geometry of the function PðyÞ is determined by
the sign of s. This is expressed in terms of the implications:

s40 ¼) PðyÞ convex; so0 ¼) PðyÞ concave.

The above fact, together with certain analytic properties of
PðyÞ was exploited to express the conditions for invasion in
terms of the parameters: Dr;Ds2, and M. This is given in
Table 6.
The criteria given in Tables 5 and 6 are equivalent. This

equivalence is a result of the following series of perturba-
tion relations (Demetrius, 1992; Arnold et al., 1994):

Dr ¼ Fd1; DH ¼ �s2d2; (15)

Ds2 ¼ gd3. (16)

The magnitude of the mutation effects d1; d2; d3 satisfy
d1d240; d2d340.
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Table 7

The Malthusian model and the entropy principle: a contrast

Evolutionary property Malthusian model Entropic model

Measure of fitness Population growth rate Entropy

Intensity of selection Decreasing function of

age

Convex function

of age

Invasion criteria Deterministic: Relative

values of population

growth rate

Stochastic:

Relative values

of entropy

Table 6

Invasion criteria: Dr;Ds2;M

Demographic constraint Selective outcome

Dr40;Ds2o0 Invasion occurs a.s.

Dro0;Ds240 Extinction occurs a. s.

Dr40;Ds240

M4Ds2=Dr Invasion occurs a.s.

MoDs2=Dr Extinction with a prob., decreasing in M

Dro0;Ds2o0

MoDs2=Dr Invasion with a prob. decreasing in M

M4Ds2=Dr Extinction a.s.
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The quantity g is given by

g ¼ 2s2 �
3s2

T

Z 1
0

xpðxÞW ðxÞ dx

þ
1

T

Z 1
0

pðxÞW 3ðxÞ dx. ð17Þ

Numerical and analytical studies of typical net-reproduc-
tive functions show that g40.

The perturbation relations for Dr;DH ; and Ds2 given by
Eqs. (15) and (16), and the positivity of s2 and g entails the
following relations:

Fo0 ¼) DrDH40; F40 ¼) DrDHo0, (18a)

DHDs2o0. (18b)

Eq. (18a) asserts that in the case of equilibrium species

ðFo0Þ, mutational changes in the growth rate and entropy
are positively correlated, whereas in the case of opportu-

nistic species ðF40Þ, mutational changes in the growth rate
and entropy are negatively correlated. The relation (18b)
states that mutational changes in entropy and the demo-
graphic variance are negatively correlated.

The relations given by (18a) and (18b) are sufficient to
establish the equivalence between the invasion criteria
based on entropy, given in Table 5, and the criteria based
on the Malthusian parameter and the demographic
variance as expressed is Table 6.

The condition M4Ds2=Dr, MoDs2=Dr, in Table 6
correspond to the distinction, large and small population
size, described in Table 5.

It is evident that as M !1, the selective advantage as
expressed by Eq. (14) reduces to Eq. (2). Accordingly, the
invasion criteria described in Table 1 are the limiting case
of the conditions enunciated in Table 5. In view of the
equivalence between Tables 5 and 6, we conclude that the
Malthusian principle is the limit (M !1;M denotes
population size) of the entropic criteria.

The contrast between the main properties of the
Malthusian model and the entropic principle is summar-
ized in Table 7.
6. Diffusion equations in population genetics: models with

and without age structure

The fundamental quantity which is used in population
genetics to characterize the genetic composition of a
Mendelian population is the gene frequency. When
population size is finite, the sampling effects of gametes
introduce an element of chance into the change of gene
frequencies so that the dynamical changes in gene
frequency must be treated as a stochastic process.
Wright (1931, 1942, 1945) was the first to recognize that

these stochastic processes can be treated by the application
of diffusion equations and produced an extensive theory
which investigated in detail changes in gene frequency
under various assumptions of random genetic drift,
mutation, migration and selection.
Diffusion processes, as an analytic theory of stochastic

phenomena in population genetics, were later systematized
by Kimura (1955, 1957, 1962), with special reference to the
invasion dynamics of a mutant allele and the probability of
gene fixation.
The arguments by Wright and Kimura, though based on

the assumption that population size is finite, postulate an
infinite gametic pool. In view of the law of large numbers,
this postulate excluded the action of stochastic effects due
to variance in offspring number.
The importance of the variance in offspring number in

determining the outcome of selection was recognized by
Gillespie (1974, 1975), who extended the Wright–Kimura
models by assuming that the gametic pool is essentially the
same size as the final population. This important general-
ization of the Wright–Kimura models has been the basis for
extensions to include various classes of migration effects
(Proulx, 2000; Shpak, 2005; Shpak and Proulx, 2006).
The Gillespie models are concerned with the effects of

within-generation variance in offspring number on the
fixation probabilities of mutant alleles. This class of
models, as in the case of Wright–Kimura systems, pertains
to the dynamics of competition within a population whose
individuals do not vary in terms of age or size. In these
models differences in generation time and demographic
variability are not considered in the analysis of the
evolutionary dynamics.
The stringency of these assumptions was recognized by

Demetrius and Gundlach (1999), who integrated the
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methods of ergodic theory and the theory of diffusion
processes to study, under more general conditions, the
invasion dynamics of mutant alleles. The diffusion
equations which were derived from the study of this new
class of models are generalizations of the equations derived
from models concerned with selection within populations
defined by the absence of age structure. We will now
specify the nature of these generalizations by describing the
assumptions and the structure of the various models and
the relations between them.

6.1. Models without age structure

6.1.1. The Wright–Kimura model

The model assumes that the gametic pool is infinite. This
condition entails that variance effects due to sampling from
the gametic pool can be neglected, hence the selective value
can be described completely by the mean number of
offspring, denoted m.

Since the populations are not structured by age, size or
any such characteristic, a mutation can be described
directly in terms of changes Dm, in the mean offspring
number.

The selective advantage, s, is given by

s ¼ Dm. (19)

The probability density function, cðp; tÞ, which describes
the change in frequency, denoted p, of a genotype is given
by Eq. (11), where the drift and diffusion terms are

aðpÞ ¼ pð1� pÞDm, (20a)

bðpÞ ¼
pð1� pÞ

M
. (20b)

6.1.2. Models based on variance in offspring number

This class of models differs from the Wright–Kimura
systems by postulating a finite gametic pool of the same
size as the population (Gillespie, 1974). The selective value
is now described by the mean offspring number, m, and the
variance in offspring number, ~s2. A mutation is described
in terms of its direct effect on the parameters m and ~s2.

The analysis of the dynamics between mutant and
resident type shows that the selective advantage now
becomes

s ¼ Dm�
1

M
D ~s2. (21)

The probability density function cðp; tÞ also satisfies the
diffusion equation, Eq. (11), with the drift and diffusion
terms given by

aðpÞ ¼ pð1� pÞ Dm�
1

M
D ~s2

� �
, (22a)

bðpÞ ¼
pð1� pÞ

M
½ ~s2pþ ð ~s2 þ D ~s2Þð1� pÞ�. (22b)

As shown in Gillespie (1975), when a!1, where a
denotes the size of the gametic pool, we have ~s2! 1, hence
D ~s2! 0. Hence, the Wright–Kimura model is a limiting
case, as the gametic pool size tends to infinity, of the
Gillespie model.
6.1.3. Models based on growth rate and demographic

variance

This model, in contrast to the structures described in
Sections 6.1.1 and 6.1.2, is concerned with the analysis of
competition between populations, each population being
defined by a particular genotype (Demetrius and Gun-
dlach, 2000). Formally, each genotype is described by a
triple ðO;m;jÞ, where
(i)
 O is a set of strategies, O ¼ ðx1; . . . ;xdÞ.

(ii)
 j : O! R, a function on O which assigns to each

xi �O, a non-negative number jðxiÞ, the net-offspring
production associated with the strategy xi.
(iii)
 m ¼ ðmiÞ is a probability distribution. It refers to the
preference of certain strategies in the population.
The evolutionary dynamics of the population is now
described in terms of the parameters:
(i)
 the population growth rate r ¼ log ZðjÞ, where
ZðjÞ ¼

P
ijðxÞ, R
(ii)
 the demographic variance s2 ¼ ðlogjÞ2 dm�
ð
R
logjdmÞ2.
A mutation in this model is defined in terms of a change j�

in the function j defined by

logj� ¼ ð1þ dÞ logj,

where d, a real number, is assumed small.
The analysis of the dynamics of selection between

mutant and resident types shows that the selective value,
s, is now given by

s ¼ Dr�
1

M
Ds2. (23)

The probability density function cðp; tÞ, which describes
the change in frequency of the mutant population, also
satisfies Eq. (11). The drift and diffusion terms now become

aðpÞ ¼ pð1� pÞ Dr�
1

M
Ds2

� �
, (24a)

bðpÞ ¼
pð1� pÞ

M
½s2pþ ðs2 þ Ds2Þð1� pÞ�. (24b)

Eqs. (23), (24a) and (24b), are formally identical to the
equations for selective value given by Eq. (21), and the drift
and diffusion term given by Eqs. (22a) and (22b),
respectively. From appropriate scaling of the demographic
parameters we can infer that the model described by 6.1.2,
which refers to selection within a population, is a limiting
case of the model described in Section 6.1.3, which pertains
to selection between populations.
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6.2. Age-structured models

The demographic model (Demetrius, 1997; Demetrius
and Gundlach, 1999) is a generalization of the model
described in Section 6.1.3, to populations where the
fecundity and mortality variables are functions of age.
Each genotype is now defined by a Leslie matrix, or, in the
case of a continuous model, by a net-reproductive function
V ðxÞ. The selection dynamics is now described in terms of
the population variables: (i) the population growth rate, as
defined by Eq. (1), (ii) the demographic variance, given by
Eq. (9).

A genotype is now defined in terms of a population of
individuals of the same genetic constitution but differing in
terms of their age. Mutations result in a change in
genotypic composition.

In view of the demographic heterogeneity of the
population, a mutation cannot be modeled as a simple
change in the fecundity or survivorship variables, analo-
gous to the changes described in the Wright–Kimura
systems. A mutation is now considered as a small
perturbation in the net-reproductive function V ðxÞ that
determines the genotype. These perturbations will induce
changes Dr, Ds2, in the demographic variables, r and s2,
respectively.

For the mutant V�ðxÞ, we have imposed the condition

V�ðxÞ ¼ V ðxÞ1þdðxÞ,

where dðxÞ is monotonic in x (see Demetrius, 1992).
Entropic model

s=Δr- 1
M

Δσ2

Δσ2

s=Δμ

0 M ∞

s=Δr

Wright-Kimura model Fisherian model

Fig. 1. The relation between the selective advantage parameters of the

entropic model (age structure and finite size), the Wright–Kimura (no age

structure and finite size), and the Fisherian model (age structure and

infinite size).

Table 8

Relations between the three classes of models

Population properties Fisherian models

Demographic constraints Infinite size,

age structure

Darwinian fitness Malthusian parameter, r

Selective advantage s ¼ Dr
In view of the constraints on the perturbations in V ðxÞ,
the changes, Dr, Ds2, are not arbitrary. They will be
correlated, as they are both specific functions of the
individual demographic variables, as is shown by Eqs. (15)
and (16).
The selective value in structured populations now

assumes the form

s ¼ Dr�
1

M
Ds2, (25)

where the growth rate r is given by Eq. (1), and the
demographic variance s2 by Eq. (9).
The probability density function cðp; tÞ which describes

the change in frequency of the mutant population is also
given by Eq. (11), where the drift and diffusion terms are
formal analogies of Eqs. (24a) and (24b).
The above characterization of structured population

models, and the relation we have delineated between the
Wright–Kimura models and the models described in
Sections 6.1.2 and 6.1.3 indicate that structured population
models, which we call entropic models, are natural and
meaningful generalizations of the Wright–Kimura systems.
These systems are the limit, Ds2! 0, of the entropic
models. We also observe from Eq. (25), that as M !1,
the selective value for the entropic models now reduces to
the equation s ¼ Dr, the selective value for the Fisherian
models with demographic structure. Hence the Fisherian
models are also limiting states of the entropic model.
Our representation of the entropic model (age structure

and finite size), as generalizations of the Wright–Kimura
model (no age structure and finite size), and the Fisherian
model (age structure and infinite size) is described in Fig. 1.
The correspondence between the three classes of models,

(a) age structure and infinite population size (Fisher), (b)
no age structure and finite size (Wright–Kimura), (c) age
structure and finite size (the entropic model), is described in
Table 8.
7. Computational studies: model description

To evaluate and contrast the predictions of the
Malthusian and entropic principles we performed compu-
ter simulations of direct competition between a population
of wild type genotypes and a mutant genotype that is
initially present at low frequency. We will draw extensively
from the computational studies described in Kowald and
Wright–Kimura models Entropic models

Finite size, Finite size,

no age structure age structure

Mean number of offspring, m Entropy, H

s ¼ Dm s ¼ Dr� 1
M
Ds2
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Demetrius (2005). We refer to this article for the details of
the model on which the computation is based.

Our analysis of this numerical experiment is based on a
Cþþ program that simulates a population of genotypes
based on the Leslie model, a discrete analog of the
continuous process described by Lotka. In this framework
the population consists of a number of discrete age classes.
Each year individuals in the age classes either die with a
certain probability or move into the next higher age class.
Furthermore, in each age class an individual generates on
average a certain number of offspring. The genotype of an
individual is therefore completely determined by two
vectors of numbers: one for the age specific mortality and
the other for age specific fertility. From these data the
Malthusian parameter r can be calculated according to
Eq. (1), and the evolutionary entropy H and the
reproductive potential F can be calculated, using Eq. (4).
7.1. Mutations

The resident population is described by a net-fecundity
function V ðxÞ, which we assume is a concave function of
age x. We assume that the mutant V�ðxÞ is a perturbation
of the function V ðxÞ defined by V�ðxÞ ¼ V ðxÞ1þdðxÞ where
dðxÞ is monotonic in x. A consequence of the monotonicity
condition is that the relation between V ðxÞ and V�ðxÞ can
be categorized in terms of the following patterns (see
Kowald and Demetrius, 2005).
(i)
 A translation of the function V ðxÞ, which corresponds
to a change in the age of sexual maturity.
(ii)
 A rescaling of the function V ðxÞ, which characterizes
an increase or a decrease in the net-fecundity function.
The genotypes of mutant and wild type are constructed in
such a way, that their net reproductive rate exceeds one,
which entails a growing population. To simulate the
competition between individuals additional growth con-
straints have to be applied.

Equilibrium species live under conditions where the
population size remains roughly constant. If the total
population size (wild type plus mutant) exceeds the
carrying capacity, an additional extrinsic mortality prob-
ability is applied to each individual (regardless of
genotype), so that the population is reduced to the allowed
maximum population size. Because external mortality is a
probabilistic process, the total population size fluctuates
around the carrying capacity. The frequencies of wild type
and mutant, however, are free to change and the simulation
is continued until only one genotype (wild type or mutant)
is left in the population. The competition experiments are
repeated 200 times to assess the invasion probability of the
mutant.

Opportunistic species are characterized by a different
life-history. Their population size grows exponentially for
12 time periods after which a probabilistic external
mortality is applied that reduces the population size to its
initial value.

8. A computational study: the entropic principle—the

constraints on the reproductive potential

The entropic principle, as summarized in Table 5, asserts
that the invasion dynamics is a stochastic process which is
determined by DH and is contingent on the parameter F.
The simulations we now describe are based on numerical

studies which investigate the selective outcome between
wild type and mutant under different ecological constraints
described in terms of the parameter F.

8.1. Fo0 (equilibrium species), DH40

The analysis asserts that for equilibrium species,
genotypes that have a larger entropy should almost always
invade and increase in frequency.
Fig. 2 shows typical simulation results for a large

population of an equilibrium species. Initially the popula-
tion consists of 9500 wild-type and 500 mutant individuals
(5% mutants) and develops according to the rules outlined
under Section 7. DH, the difference of entropy between
mutant and wild type, is 0.045. Since the computer
simulations reflect the stochastic nature of the invasion
process, the competition between mutant and wild type was
repeated 200 times to obtain a statistical measure of the
invasion probability. Under the described conditions the
mutant was able to invade in 84% of the cases. The
development of mutant and wild-type population numbers
is shown in Fig. 2 for three successful invasion events.

8.2. Fo0 (equilibrium species), DHo0

The situation is completely different if the demographic
entropy of the mutant is lower than that of the wild type.
Initially the mutant is again present at 5%, but now DH is
negative ð�0:033Þ. During the 200 repetitions the mutant
was never able to invade. As can be seen in Fig. 3, the
mutant finally dies out. Although it might temporarily
increase in frequency, it never reaches fixation.

8.3. F40 (opportunistic species, large size), DH40

The entropic principle asserts that in large populations
that undergo episodes of rapid growth followed by a
catastrophic breakdown (opportunistic species), genotypes
with a higher entropy will almost always become extinct.
Again we tested this by computer simulation. As before the
initial mutant frequency was 5%, but this time the
population was free to grow unconstrained for 12 time
steps (years), after which the total population was reduced
back to the carrying capacity of 10 000 individuals,
resulting in an oscillating behavior. We studied the
situation with the mutant having a higher entropy than
the wild type (DH ¼ 0:00023). As expected, the mutant
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explained in Section 7. The total population size consisted of 9500 wild type and 500 mutant individuals. In these simulations Hmut4Hwt, leading to 84%

invasion success of the mutant. The diagram shows population trajectories of three typical simulation runs.
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successful invasion events within 1000 simulations. The diagram shows population trajectories of three simulation runs.
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could only invade in 6% of the encounters and Fig. 4
shows an example of the more likely case described by
success of the wild type.

8.4. F40 (opportunistic species, large size), DHo0

The invasion behavior is different, as predicted, if the
mutant has a smaller entropy than the wild type (Fig. 5). If
DH ¼ �0:03, the invasion success, calculated from the
simulations, is 88%. The diagram shows a successful
invasion process that is completed after approximately
3500 years.

8.5. F40 (opportunistic species, small size)

The simulations described in Sections 8.3 and 8.4
investigated the behavior of large populations of
opportunistic species. However, the entropic principle
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asserts that in small populations of opportunistic
species stochastic events will dominate, irrespective of the
constraint on the entropy. Accordingly, the invasion
success should be a random event. This prediction is
investigated for mutants first with smaller then with
larger entropy. As usual the initial frequency of mutants
was 5%, but in these simulations the total population only
consists of 60 individuals. Although the mutant genotype
had smaller entropy than the wild type ðDH ¼ �0:03Þ,
it only reached fixation in 6.5% of the simulations. As the
three examples described in Fig. 6 demonstrate, when
population size is small, the mutant often dies out very
quickly. Simulations with different positive values
for DH and different initial mutant frequencies showed
that the invasion probability is largely independent of
the value of DH, but is instead proportional to the
initial mutant frequency. This observation is consistent
with Eq. (11) which predicts that the invasion probability
PðyÞ will be proportional to the initial frequency when N is
small.
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9. A computational study—constraints on growth rate,

population size, and demographic variance

The probability of fixation PðyÞ of a mutant allele is
given, according to the entropic principle, in terms of
population size, and the demographic parameters,
growth rate and demographic variance. We will invoke
the expression for PðyÞ, see Eq. (11), to contrast the
predicted patterns of invasion success with the patterns
generated by the simulation. The effect of population
size on invasion success will be analyzed in Section 9.1.
The computational studies reject the Malthusian
tenet, namely, when Dr40 invasion always occurs. The
numerical analysis indicates the stochastic nature of the
invasion process and its dependence on population size.
These effects are consistent with the predictions of the
theory.
The effect of invasion success on the growth rate and

demographic variance is analyzed in Section 9.2. These
studies demonstrate the relation between predicted and
observed patterns. Our analysis indicates that the discre-
pancy between the observed and predicted patterns
decreases as the growth rate r decreases, and the variance
s2 increases. These correlations are consistent with the
predictions of the theory.
9.1. Invasion success: the dependence on population size

We investigate the relation between predicted pattern
and simulation by studying the relation between invasion
success, population size and initial frequency of mutant.
We evaluate this dependence by performing computer
simulations for competition between a wild type and a
mutant for populations varying in size from 200 to 10,000.
For each population size 1000 repetitions were performed
from which the invasion probability was calculated. Two
different types of simulations were performed, one with the
mutant having a higher Malthusian parameter ðDr ¼ 0:074)
and a second with the genomes of wild type and mutant
being exchanged (Dr ¼ �0:074). The initial frequency of
the mutant was in each case 10%. The diamonds in Fig. 7
show the results for Dr ¼ 0:074 and the circles the outcome
for Dr ¼ �0:074.
We observe the following features:
Even if Dr40, the invasion success shows a strong

dependence on population size. With a population size of
5000 the fixation probability is still below 90%, reaching
97.5% for 10 000 individuals.
A similar but opposite situation exists if Dro0.

Although the mutant has a smaller Malthusian
parameter than the wild type, in a population with 230
individuals it replaces the resident genotypes in 6.9%
of the cases.
The study of the relation between invasion success and

initial frequency gives rise to a general property: Irrespec-

tive of the value of the selective advantage, for very small

populations the invasion success becomes equal to the initial

mutant frequency.

Such a behavior is predicted by Eq. (11), which shows
that for very small M, PðyÞ is approximately the initial
frequency y.



ARTICLE IN PRESS
L. Demetrius, M. Ziehe / Theoretical Population Biology 72 (2007) 323–345338
9.2. Invasion success: the dependence on growth rate and

demographic variance

In this study we analyze the relation between predicted
and observed patterns in terms of its dependence on the
demographic variance, s2, for the wild type.

We consider the invasion success of several pairs of
genotypes characterized by different values of r and s2.

The life tables used in the study are 4� 4 Leslie matrices:
each matrix has a fecundity, denoted a, which is
independent of age, and a survivorship b, which is constant
from one age class to the next.

A ¼

a a a a

b 0 0 0

0 b 0 0

0 0 b 0

2
6664

3
7775.

We consider two classes of models, defined by fecundities
a ¼ 1 (Class I), a ¼ 2 (Class II) for the resident type.

The genotypes are described by the net-reproductive
function ½V1;V 2;V 3;V4�. Here V 1 ¼ a, V 2 ¼ ab, V 3 ¼ ab2,
V4 ¼ ab3. These values and the corresponding demographic
parameters are described in Table 9.

The initial frequency of the mutant in each case was 5%.
In the computational study we first fix the carrying
capacity and then run the experiment to determine the
probability of invasion: to estimate invasion success several
runs were done. The graphs in Fig. 8(a) contrast the
invasion success for the two genotypes in Class (I). The
graphs in 8(b) contrast the invasion success for the three
pairs of genotypes in Class (II).

We observe the following features from the graphs:
(a)
Tab

Life

Typ

(b fo

Clas

Wild

Mut

Wild

Mut

Clas

Wild

Mut

Wild

Mut

Wild

Mut
The predicted and observed patterns are qualitatively
similar.
(b)
 The diffusion approximation overestimates the simu-
lated extinction probabilities.
le 9

table and demographic parameters

e Net reproductive function

r wild) V1 V 2 V3 V4

s I models ða ¼ 1Þ

(0.4965) 1 0.4965 0.2466 0.1

. 1 0.4997 0.2497 0.1

(0.1849) 1 0.1849 0.0342 0.0

. 1 0.1877 0.0352 0.0

s II models ða ¼ 2Þ

(0.1880) 2 0.3761 0.0707 0.0

. 2.0139 0.3724 0.0689 0.0

(0.707) 2 0.1414 0.0100 0.0

. 2.0139 0.1387 0.0095 0.0

(0.0266) 2 0.0532 0.0014 0.0

. 2.0139 0.0516 0.0013 0.0
(c)
224

248

063

066

133

127

007

007

0003

0003
The magnitude of the overestimation decreases with
increasing values for the demographic variance. This is
true in both class (I) types where we consider two
models whose wild type is given by the variance 0.088
and 0.3612. In class (II) models, there are three pairs of
genotypes: the demographic variance of the wild type
varies from 0.2417 to 0.4356.
(d)
 The magnitude of the overestimation is small when the
Malthusian parameter is small. A small deviation from
predicted value is observed in the class (I) model with
r ¼ 0:1692, a larger variation is observed when
r ¼ 0:3947. Relatively larger deviations from predicted
values are observed in the class (II) models. In these
models the values for r are relatively large, ranging
from 0.7064 to 0.783.
We will now comment on observations (b), (c) and (d) in
order to explain the observed deviations of the predictive
patterns from the simulations.
The reason for (b) is due to the fact that the sample paths

in the diffusion process are continuous, whereas those in
the simulations are discrete. The continuous and discrete
nature of the two processes entails that there will be
significant differences in the extinction time. Extinction in
the diffusion approximation occurs when the population
size first reaches one individual. However, as observed in
Karlin and McGregor (1964), Lande and Orzack (1988),
the extinction will not necessarily occur at an integer value
of elapsed time, in sharp contrast to the extinction event in
the discrete simulation. Accordingly, certain sample paths
will be considered an extinction in the continuous model,
but a non-extinction event in the discrete simulation. This
condition will result in an overestimation of the extinction
probability in the diffusion approximation.
The rationale for (c) derives from certain limiting

arguments which are implicitly invoked in the approxima-
tion of the dynamics of discrete time stochastic processes
Demographic parameters

r H F s2

0.3947 0.6127 �0.2180 0.0880

0.3967 0.6135 �0.2168 0.0865

0.1692 0.4298 �0.2607 0.3612

0.1715 0.4331 �0.2616 0.3580

0.7830 0.2926 0.4904 0.4356

0.7879 0.2882 0.4997 0.4360

0.7279 0.1489 0.5790 0.3682

0.7337 0.1452 0.5885 0.3641

0.7064 0.0699 0.6365 0.2417

0.7127 0.0675 0.6452 0.2364
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with continuous time diffusion processes. The limiting
argument depends on the rate at which certain parameters
of the model tend to zero. According to the central limit
theorem for the abstract dynamical systems associated with
structured populations, the rate will be determined by the
demographic variance s2. In models where s2 is small,
there will be weak agreement between the predicted
values and the simulation. This is illustrated by comparing
the two examples described in class (I) models. The
discrepancy is small when s2 ¼ 0:3612, but large
when s2 ¼ 0:088. We also observe that in class (II) models
the discrepancy between the predicted patterns and
the simulations reduces with increasing demographic
variance.
The observations noted in (d) are due to the fact that the

accuracy of the diffusion approximation also decreases with
increasing values of the Malthusian parameter. This is evident
from the nature of the assumptions invoked in deriving the
diffusion equations. Accordingly, we expect the concordance
between the predicted values and the numerical studies to be
strong when r is small and weak when r is large. The patterns
observed in the class (I) models with r ¼ 0:1692 and 0.3947
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and the class (II) models with r ¼ 0:7064, 0.7279, and 0.783
are consistent with this argument.

10. Conclusion

The numerical studies we have described provide a
computational support for the following analytical results.
1.
 Evolutionary entropy predicts the outcome of competition
between a variant and a resident type. This outcome is a
stochastic event which is contingent on the condition—
equilibrium or opportunistic—of the species.
(a) In the case of equilibrium species, population size

remains relatively constant. When this condition
obtains, mutants with increased entropy have
increased demographic stability or robustness and
will almost always prevail in competition with the
resident for the available resources.

(b) In the case of opportunistic species, population size
undergoes large variations. Under such constraints,
selective outcome is determined by both entropy and
population size. When size is large, mutants with
decreased entropy and consequently decreased
demographic stability will almost always prevail.
When size is small, the selective outcome is
unpredictable.
2.
 The Malthusian parameter predicts the outcome of
competition between variant and resident only when
population size is infinite. In this case the selective
outcome is a deterministic event.
3.
 The invasion criteria described by the Malthusian
condition is the limit, as population size tends to
infinity, of the criteria described by entropy.
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Appendix A

The condition for the frequency and ultimate fixation of
the invading population is evaluated by considering the
stochastic dynamics of the frequency of the invader. The
frequency pðtÞ is given by

pðtÞ ¼
N�ðtÞ

N�ðtÞ þNðtÞ
.

Here NðtÞ denotes the population size of the resident
population and N�ðtÞ the population size of the invader;
where N�ðtÞ5NðtÞ.

Let cðp; tÞ denote the probability density of populations
with allele frequency p at time t. We will show that cðp; tÞ
satisfies the diffusion equation:

qc
qt
¼ �

q½aðpÞc�
qp

þ
1

2

q2½bðpÞc�
qp2

, (A.0)

where aðpÞ and bðpÞ are given by (9a) and (9b), respectively.
Eq. (A.0) was derived by integrating the methods and

techniques of ergodic theory with the theory of diffusion
processes (see Demetrius and Gundlach, 1999).
The derivation involves several elements.
(i)
 The application of a statistical mechanics formalism to
generate the macroscopic parameters that appear in
the diffusion equations.
(ii)
 The use of a central limit theorem for dynamical systems
to provide a rationale for demographic parameters which
are invoked in the diffusion equations.
(iii)
 The appeal to the Ito calculus in obtaining the
diffusion approximation.
These elements are of a highly technical nature. The
Appendix is intended to give a relatively non-technical
guide to the main mathematical ideas involved.
We begin with certain preliminaries. This section

describes the classical Leslie model based on considering
the dynamics of age distributions. We then proceed to a
statistical mechanics description, based on the notion of
‘‘genealogies’’.
The formalism outlined in this description is the

cornerstone of the mathematical models we have developed
to study the transient dynamics of structured populations.
The analysis revolves around the concepts, reproductive
potential, entropy, and demographic variance. These
concepts play a central role in the models for the diffusion
approximations.

A.1. Preliminaries

A.1.1. Population processes in terms of their age-

distribution

We consider a simple time discrete model obtained by
dividing a population into d age-classes. Hence, a vector
z̄ðnÞ ¼ ðz1ðnÞ; z2ðnÞ; . . . ; zd ðnÞÞ represents an age-distribution
of the population at time n. Changes in the age-distribution
are described by the discrete dynamical system given by

z̄ðnþ 1Þ ¼ Az̄ðnÞ, (A.1)

where A ¼ ðaijÞ, the so-called Leslie matrix is given by

A ¼

m1 m2 . . . md

b1 0 . . . 0

0 b2 . . . 0

:

:

:

0 0 bd�1 0

2
666666666664

3
777777777775
,
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where mi is the mean number of offspring produced by
individuals in the ith age-class, bi the probability that an
individual survives from age class ðiÞ to age class ði þ 1Þ. Write

lj ¼
1; j ¼ 1;

b1b2 . . . bj�1; j41;

(

and let V j ¼ ljmj.
We assume that the matrix A is primitive. By the Perron–

Frobenius theorem, we conclude that
(i)
 A has a simple positive real dominant eigenvalue l.

(ii)
 There exist positive unit vectors ū; v̄ 2 Rd such that

Aū ¼ lū; v̄A ¼ lv̄. (A.2)
b1 b2 b3 bd-1

1 3

m2

m3

md

d2

Fig. 9. Life cycle graph of a Leslie matrix.
The vector ū ¼ ðuiÞ corresponds to the stationary age-
distribution. The vector v̄ ¼ ðviÞ is a measure of the relative
contribution made to the stationary population in the
future by the individual age groups.

r ¼ log l

is the population growth rate or the Malthusian parameter.
It describes the growth rate of the population number
NðnÞ ¼

Pd
j¼1zjðnÞ, that is

r ¼ lim
n!1

1

n
logNðnÞ. (A.3)

The dominant eigenvalue l is the unique positive real root
of the equation

1 ¼
Xd

j¼1

V j

lj
,

from which we can deduce that the function

pj ¼
V j

lj
(A.4)

defines a probability distribution. It is the probability that the
mother of a randomly chosen newborn belongs to age class j.

A.1.2. Population processes in terms of genealogies

The description of the population process in terms of
dynamical changes in the age distribution is the basis for
generating the characterization of the population growth
rate r. This macroscopic parameter is the cornerstone of
the classical models of population dynamics. The statistical
mechanics formalism we now describe is the framework for
generating a new class of population observables, which
include the reproductive potential, and the demographic
variance (Demetrius, 1983).

The relevance of this mathematical model to population
processes is based on the observation that the dynamics of
the age-distribution given by Eq. (A.1) can be considered as
a deterministic representation of an underlying stochastic
process. This process is characterized by a probability
measure on the space of ‘‘genealogies’’, a notion we will
now describe.
This new formalism recognizes that the matrix A ¼ ðaijÞ

can be represented as a directed graph, G. This graph, see
Fig. 9, is obtained by joining nodes ðiÞ to ðjÞ if aij40.
A path in the graph G can be described by a sequence

x ¼ ðx0; x1; x2; . . .Þ,

where xiEf1; . . . ; dg and axi ;xiþ1
40.

A path is called a genealogy as it represents a recording
of successive ancestral states of a particular individual
which at time 0 is in the class x0.
Let O denote the set of all infinite backward paths of the

graph G. The genealogies generated by a single individual
in age class (1) at time 0 will be characterized by a certain
distribution which can be calculated from the Markov
chain generated by the transition matrix P.
The Markov measure ~m associated with the transition

matrix P ¼ ðpijÞ has the representation

~mfxn ¼ in; . . . ;nþk ¼ inþkg ¼ pinpininþ1
� � � pinþk�1inþk

,

where

pij ¼
ajivj

lvj

.

The vector ~p ¼ ðpiÞ is the stationary distribution of the
Markov matrix P.
The statistical mechanics representation of the Leslie

model described by (A.1) can be characterized by the triple
ðO; ~m;jÞ, where O denotes the space of genealogies, ~m the
probability measure on O, and j : O! R defined by

jðxÞ ¼ log ax0x1
, (A.5)

where aij denote the i; jth term of the Leslie matrix A.
The function j can be interpreted as a potential function

on the space of genealogies O.
The importance of this representation resides in the fact

that it can be invoked to generate not only the population
growth rate, defined by (A.3), but also a new class of
macroscopic variables, analogous to the macroscopic
parameters in statistical thermodynamics (see Demetrius,
1983).
The fundamental parameter in these derivations is the

function

SnðjðxÞÞ ¼ log ax0x1
þ log ax1x2

þ � � � þ log axn�1xn

¼ log ax0x1
ax1x2

� � � axn�1xn . ðA:6Þ
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The quantity SnðjðxÞÞ represents the net-offspring
production rate of the individuals that describe the
genealogy.

The population growth rate r ¼ log l, which is defined in
terms of the Leslie model by Eq. (A.3), can be expressed in
terms of the function SnðjðxÞÞ

We observe that

expSnðjÞ ¼ ax0x1
ax1x2

� � � axn�1xn .

Write

ZnðjÞ ¼
X

x0x1...xn

exp SnðjÞ

¼
X

x0x1...xn

ax0x1
ax1x2

� � � axn�1xn .

We now have (see, for example, Demetrius, 1983; Arnold
et al., 1994)

log l ¼ lim
n!1

1

n
logZnðjÞ. (A.7)

By evaluating the asymptotic mean and variance of the
random variable X n induced by SnðjÞ, we can derive the
population variables: reproductive potential F, and the
demographic variance s2. These quantities are aggregates
of the age-specific birth and death rates, the ‘‘microstates’’
of the population process.

We have

lim
n!1

1

n
EðX nÞ ¼

Z
jd ~m, (A.8)

where j ¼ log ax0x1
,

lim
n!1

1

n
VarðX nÞ ¼

X1
k¼0

rk, (A.9)

where

rk ¼

Z
log axkþ1xk

�

Z
log axkþ1xk

d ~m
� �

� log ax1x0
�

Z
log ax1x0

d ~m
� �

d ~m.

The expressions (A.8) and (A.9) can be explicitly computed
for the potential function j induced by the Leslie matrix
defined by (A.1) (see Demetrius and Gundlach, 1999).

Thus, the mean value described by (A.8), called the
reproductive potential, and denoted F, assumes the explicit
form:

F ¼

P
pj logV jP

jpj

.

The variance term given by (A.9), and called the demo-
graphic variance and denoted s2, can also be expressed in
terms of the age-specific demographic variables. We obtain

s2 ¼

P
pjW

2
jP

jpj

,

where W j ¼ �jFþ logV j.
These quantities are the discrete analogs of Eqs. (4)
and (9).

A.1.3. Demographic variance and the central limit theorem

The demographic variance as described by Eq. (A.9) will
play a fundamental role in the diffusion analysis. We now
briefly describe the mathematical rationale for this role.
We first observe that, by the ergodic theorem (see, for

example, Demetrius et al., 2004):

lim
n!1

1

n
SnðjðxÞÞ ¼

Z
j d ~m.

This equation asserts that if choose a genealogy x ¼

ðx0;x1;x2; . . .Þ then with probability one the long term
mean of its net-offspring production equals the normalized
average F taken over all genealogies with respect to ~m.
Now write

PnðjÞ ¼
1

n
SnðjðxÞÞ � F

����
����.

The quantity PnðjÞ represents the deviation of the sample
mean 1

n
SnðjðxÞÞ from the normalized average F. We can

apply the central limit theorem for dynamical systems (see
Demetrius et al., 2007) to study the fluctuations

1

n
SnðjðxÞÞ � F. (A.10)

The central limit theorem implies that asymptotically, the
deviations of the sample path Sn from the mean for n!1

can be approximated by Brownian motion with variance
s2t, if we consider a continuous time evolution St; t�R. This
observation is the basis for invoking the variance described
by Eq. (A.9) in the description of the diffusion equation.

A.2. Diffusion equation

The derivation of the diffusion equation draws from the
observations described in Preliminaries, in particular A.1.3.
We will consider NðtÞ, the population size at time t, as

the solution of a diffusion equation and hence we will
derive the infinitesimal moments for this process:

lim
Dt!0

1

Dt

� �
EfNðtþ DtÞ �NtjNðtÞ ¼ Ng ¼ rð0ÞN,

lim
Dt!0

1

Dt

� �
EfNðtþ DtÞ �NðtÞÞ2jNðtÞ ¼ Ng

¼ N2 lim
Dt!0

1

Dt

� �
s2Dt

N
¼ s2N,

where we denote by E the expectation.
In determining the first infinitesimal moment we assume

that the fluctuations described by (A.10) have mean zero.
In the determination of the second infinitesimal moment

we invoke the observation that, if N becomes large, the
influence of fluctuations becomes small and hence the
process becomes deterministic. Thus, we make the assump-
tion that the change in logNðtÞ in the time interval Dt due
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to fluctuations is caused by Brownian motion with variance
s2Dt=NðtÞ. We can therefore describe the evolution of the
density f ðN; tÞ of the process NðtÞ by the solution of the
Fokker–Planck equation:

qf

qt
¼ �rð0Þ

qðfNÞ
qN
þ

s2ð0Þ
2

q2ðfNÞ

qN2
.

Equivalently, we could characterize NðtÞ as a solution of
the stochastic differential equation:

dN ¼ rN dtþ s
ffiffiffiffiffi
N
p

dW t. (A.11)

We get respective representations for the process N�ðtÞ and
its density f �ðN�; tÞ, namely,

qf �

qt
¼ �rðdÞ

qðf �N�Þ
qN�

þ
s2ðdÞ
2

q2ðf �N�Þ

qN�2
,

and

dN� ¼ rðdÞN�dtþ sðdÞ
ffiffiffiffiffiffiffi
N�
p

dW �
t . (A.12)

We assume that the processes NðtÞ and N�ðtÞ evolve
simultaneously and stochastically independent, that is,
W and W � are independent Wiener processes.

Define MðtÞ ¼ NðtÞ þN�ðtÞ and pðtÞ ¼ N�ðtÞ=MðtÞ ¼

N�ðtÞ=ðNðtÞ þN�ðtÞÞ ¼ 1� ðNðtÞ=ðNðtÞ þN�ðtÞÞÞ.
Then, Eqs. (A.11) and (A.12) are equivalent to

dM ¼ ðrþ pDrÞM dtþ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞM

p
dW t

þ sðdÞ
ffiffiffiffiffiffiffiffi
pM

p
dW �

t , ðA:13Þ

dp ¼ pð1� pÞ Dr�
Ds2

M

� �
dt� sp

ffiffiffiffiffiffiffiffiffiffiffi
1� p

M

r
dW t

þ sðdÞð1� pÞ

ffiffiffiffiffiffi
p

M

r
dW�

t . ðA:14Þ

The derivation of (A.13) is immediate: we observe, using
the equation for M that
rN þ rðdÞN� ¼ rðN þN�Þ þ DrN� ¼ rM þ DrpM.

Eq. (A.14) can be obtained by Ito’s formula. From the
relations

qp

qN
¼ �

N�

M2
;

qp

qN�
¼

N

M2
;

q2p

ðqNÞ2
¼

2N�

M3
,

and
q2p

ðqN�Þ2
¼ �

2N

M3
,

we have

dp ¼ rN
qp

qN
þ rðdÞN�

qp

qN�
þ

1

2

�

� ðs
ffiffiffiffiffi
N
p
Þ
2 q2p

ðqNÞ2
þ ðsðdÞ

ffiffiffiffiffiffiffi
N�
p
Þ
2 q2p

qN�2

� ��
dt
þ s
ffiffiffiffiffi
N
p qp

qN
dW t þ sðdÞ

ffiffiffiffiffiffiffi
N�
p qp

qN�
dW �

t

¼ �rpð1� pÞ þ rðdÞpð1� pÞ þ
s2pð1� pÞ

M

�

�
sðdÞ2pð1� pÞ

M

�
dt

�
sN�

ffiffiffiffiffi
N
p

M2
dW t þ

sðdÞN
ffiffiffiffiffiffiffi
N�
p

M2
dW �

t .

Hence,

dp ¼ pð1� pÞ Dr�
Ds2

M

� �
dt� sp

ffiffiffiffiffiffiffiffiffiffiffi
1� p

M

r
dW t

þ sðdÞð1� pÞ

ffiffiffiffiffiffi
p

M

r
dW �

t .

We are mainly interested in the problem of invasion or
extinction of the mutant type. We express the interaction
between the two types by assuming that the total population
size MðtÞ is constant for tot0, where t0 represents the
instant at which resources or spatial constraints begin to
operate. The invasion event is analyzed for small N�5M

and N close to equilibrium. Consequently, the changes in N�

and N will be at the expense of each other. This implies that
the changes in M will be negligibly small. In the sequel we
will assume that M is constant.
We can now state the main result: let M be a constant.

Eq. (A.14) generates a diffusion process with drift

aðpÞ ¼ pð1� pÞ Dr�
Ds2

M

� �
, (A.15)

and variance

bðpÞ ¼
pð1� pÞ

M
ðs2pþ sðdÞ2ð1� pÞÞ. (A.16)

The diffusion process has a density c solving the Fokker–
Planck equation:

qc
qt
¼ �

q½ðaðpÞc�
qp

þ
1

2

q2½bðpÞc�
qp2

. (A.17)

The drift term in (A.17) is an immediate consequence of
(A.14).
In order to obtain the variance term in (A.17) we observe

that in (A.14) the Wiener processes W t and W �
t are

independent, which yields a diffusion coefficient

bðpÞ ¼ sp

ffiffiffiffiffiffiffiffiffiffiffi
1� p

M

r !2

þ sðdÞð1� pÞ

ffiffiffiffiffiffi
p

M

r� �2

¼
pð1� pÞ

M
ðs2pþ sðdÞ2ð1� pÞÞ.
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