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ON SCHAUDER’S 54th PROBLEM IN

SCOTTISH BOOK REVISITED

Milan R. Tasković∗

Abstract. The most famous of many problems in nonlinear analysis
is Schauder’s problem (Scottish book, problem 54) of the following form,
that if C is a nonempty convex compact subset of a linear topological
space does every continuous mapping f : C → C has a fixed point? The
answer we give in this paper is yes.

In this paper we prove that if C is a nonempty convex compact
subset of a linear topological space, then every continuous mapping
f : C → C has a fixed point.

On the other hand, in this sense, we extend and connected for-
mer results of Brouwer, Schauder, Tychonoff, Markoff, Kakutani, Darbo,
Sadovskij, Browder, Krasnoselskij, Ky Fan, Reinermann, Hukuhara, Ma-
zur, Hahn, Ryll-Nardzewski, Day, Riedrich, Jahn, Eisenack-Fenske, Idzik,
Kirk, Göhde, Caristi, Granas, Dugundji, Klee and some others.

1. Introduction

Brouwer’s theorem of fixed point is one of the oldest and best known
results in mathematics.

Schauder’s theorem of fixed point is a generalization of Brouwer’s the-
orem to infinite dimensional normed linear spaces. Schauder’s theorem states
that every continuous mapping of a compact convex subset of a normed linear
space into itself has a fixed point.

Schauder’s problem (Scottish book, problem 54) is the following form:
Does every continuous mapping f : C → C of a nonempty convex compact
subset C in arbitrary linear topological space have a fixed point?
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For locally convex spaces the answer is affirmative from Tychonoff.
Naimely, in 1935, Tychonoff had shown that if C is a nonempty convex com-
pact subset of a locally convex space, then every continuous map f : C → C
has a fixed point.

In this paper we give the complete solution of the preceding well known
Schauder’s problem fixed point. Also, this solution is answering a question
of S. Ulam. In connection with this, in this paper, we extend well known
Markoff-Kakutani theorem to arbitrary linear topological spaces as an imme-
diate consequence of the preceding solution of Schauder’s problem.

On the other hand, in this sense, we extend and connected former results
of Brouwer, Schauder, Tychonoff, Markoff, Kakutani, Darbo, Sadovskij, Kras-
noselskij, Browder, Ky Fan, Reinermann, Hahn, Ryll-Nardzewski, Granas,
Dugundji, Hukuhara, Mazur, Riedrich, Jahn, Eisenack-Fenske, Day and some
others.

2. Main result

In connection with the preceding, let X topological space, let T : X →
X and let A : X × X → R0

+ := [0,+∞) be a function. A topological space
X satisfies the condition of CS-konvergence iff {xn}n∈N is a sequence in
X and if A(xn, xn+1) → 0(n → ∞) implies that {xn}n∈N has a convergent
subsequence.

An annotation. With this definition we precision and correction our
the former definiton of CS-convergence in: Tasković [3, p.123].

On the other hand, a function T satisfies the condition of general
A-variation iff there exists a continuous function G : X → R0

+ and if for any
x ∈ X, with x �= Tx, there exists y ∈ X BS{x} such that

(AG) A(x, y) ≤ |G(x) −G(y)|
for some function A : X ×X → R0

+ with property A(a, c) ≤ A(a, b) +A(b, c)
for all a, b, c ∈ X.

We are now in a position to formulate the following general statement,
which is an extension to former results of Brouwer, Schauder, Tychonoff and
some others.

Theorem 1. (General A-variation Principle). Let T be a general
A-variation mapping of topological space X into itself, where X satisfies the
condition of CS-convergence. If y �→A(x, y) is continuous and if A(x, y) = 0
iff x = y, then T has a fixed point ξ ∈ X.

A brief proof of this statement based on Zorn’s lemma may be found in
Tasković [3], [4] and [5].
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Proof of Theorem 1. As is well known, the use of Zorn’s lemma may
be replaced by an induction argument (involving the Axiom of Choice) along
the following lines. In this sense defines

R = {Q ⊂ X : A(x, y) ≤ |G(x) −G(y)| for all x, y ∈ Q} .
It is easy to verify that (R,�) is a partially ordered set (asymmetric and

transitive relation), where Q1 � Q2 iff Q1 ⊂ Q2. Namely, in view of Zorn’s
lemma, there exists a maximal set M ⊂ R such that

A(x, y) ≤ |G(x) −G(y)| for all x, y ∈M .(1.1)
Denote by α the greatest lower bound of the set {G(x) : x ∈ M}, i.e.,

α := inf{G(x) : x ∈ M}. Thus there exists a sequence of points {an}n∈N

from M such that {G(an)}n∈N is decreasing and G(an) → α (n → ∞). It
follows from (1) and from

A(an, an+1) ≤ |G(an) −G(an+1)|
that A(an, an+1) → 0 (n → ∞). This implies (from CS-convergence) that its
sequence {an}n∈N contains a convergent subsequence {an(k)}k∈N with limit
ξ ∈ X.

For any x ∈ M , if G(x) �= α, then for sufficiently large k we have the
following inequalities
A(ξ, x) ≤ A(ξ, an(k)) +A(an(k), x) ≤ A(ξ, an(k)) + |G(x) −G(an(k))|.

If G(b)=α for some b∈M , then we obtain in a similar way A(ξ, b)=0.
For any x ∈M , if G(x) �= α, then we have

A(x, an(k)) ≤ |G(x) −G(an(k))|
and thus by the continuity of G and A, we obtain that A(x, ξ) ≤ |G(x)−
−G(ξ)|. This means that ξ ∈ M and that there is no point y ∈ X such that
ξ �= y and A(ξ, y) ≤ |G(ξ) −G(y)|, because such y would belong to M . Then
it must be so that A(ξ, T ξ) = 0, i. e. , ξ = Tξ. This completes the proof.

3. A geometric lemma and its applications

Further, we notice, the set C in linear space is convex if for x, y ∈ C
and λ ∈ [0, 1] implies λx + (1 − λ) y ∈ C. The metric space (X, ρ) is called
convex (or metric convex) if for any two different points x, y ∈ X there is
a point z ∈ X (z �= x, y) such that

ρ[x, y] = ρ[x, z] + ρ[z, y] .(1.2)
In connection with this, if C ⊂ X convex set of a normed linear space

X, then C also and metric convex set with ρ[x, y] = ||x− y||, because for any
two different points x, y ∈ C there is a point z := (x + y)/2 ∈ C (z �= x, y)
such that (2).
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Lemma 1. Let (X, ρ) be a metric space. If C is a metric convex set in
X and if map T : C → C with the property that there is a point a ∈ C which
is not fixed point, then there exists a continuous function G : C → R0

+ such
that T is a general ρ-variation mapping.

Proof. Let a ∈ C be a fixed element such that a �= Ta and let x ∈ C be
an arbitrary point with x �= a. Since C is a convex (metric convex) set in X,
it follows from definition that for a ∈ C and for all x ∈ C BS{a} there exists
a point y �= a, x in C such that ρ[a, x] = ρ[a, y] + ρ[y, x]. Hence, we have, also
and the following inequality

3−1ρ[x, y] ≤ ρ[x, y] = ρ[a, x] − ρ[a, y] for all x ∈ C BS{a}.(1.3)

On the other hand, analogous to the preceding construction, we also
have the following inequality

3−1ρ[x, y] ≤ ρ[x, y] = ρ[Ta, x] − ρ[Ta, y] for all x ∈ C BS{Ta}.(1.4)

Also, immediately to join and take away the expression ρ[Ta, a] on the
right side of inequality (3) we obtain the following equivalent inequality with
(3), that is

3−1ρ[x, y] ≤ ρ[a, x] + ρ[Ta, a] −
(
ρ[a, y] + ρ[Ta, a]

)
(3’)

for all x ∈ C BS{a}.
From inequalities (3’) and (4) define function G : C → R0

+ such that

G(x) =
{

3ρ[Ta, x] for x = a,
3
(
ρ[a, x] + ρ[Ta, a]

)
for x ∈ C BS{a}.(1.5)

Then, clearly, from (3’), (4) and (5) we have for any x ∈ C there exists
y �= x in C such that ρ[x, y] ≤ |G(x)−G(y)|. Thus, for any x ∈ C with x �= Tx
there exists y ∈ X BS{x} such that (AG), where A(x, y) := ρ[x, y]. Hence, it
follows that T is a general ρ-variation mapping. The proof is complete.

Some remarks. In the proper second manner, for the existing contin-
uous functions G : C → R0

+ (in Lemma 1) instead (5) we can, from the proof
of Lemma 1, define function G : C → R0

+ such that

G(x) =
{

3ρ[a, x] for x = Ta,
3
(
ρ[Ta, x] + ρ[a, Ta]

)
for x ∈ C\{Ta};(1.6)

then, from (4) and (6), also for any x ∈ C with x �= Tx there exists y ∈
X BS{x} such that (AG), where A(x, y) := ρ[x, y]. In this case, also, it follows
that T is a general ρ-variation mapping.

We are now in a position to formulate our the following famous appli-
cations.
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Corollary 1. (Brouwer, 1912). Suppose that C is a nonempty convex,
compact subset of Rn, and that T : C → C is a continuous mapping. Then T
has a fixed point in C.

Proof. From the preceding Lemma 1, we have that T : C → C is a
general A-variation mapping, where A is a metric on Rn. The set C is compact
in X, and thus C satisfies the condition of CS-convergence.

From the preceding remarks, it is easy to see that T satisfy all the
required hypotheses in Theorem 1. Hence, it follows from Theorem 1 that T
has a fixed point in C.

Let X,Y be topological spaces. A continuous map F : X → Y is a
called compact if F (X) is contained in a compact subset of Y . If X and Y
are Banach’s spaces and T : D(T ) ⊂ X → Y , then T is called compact if T
is continuous and T maps bounded sets into relatively compact sets. Compact
operators play a central role in nonlinear functional analysis. Schauder’s the-
orem is a generalization of Brouwer’s theorem to infinite dimensional normed
linear spaces, with the preceding fact.

We can now formulate Brouwer’s theorem in a manner valid for all
normed linear spaces.

Corollary 2. (Schauder, 1930). Let C be a nonempty, closed, bounded,
convex subset of the Banach space X, and suppose T : C → C is a compact
operator. Then T has a fixed point in C.

Also, we have and an alternate version of the preceding Schauder fixed
point theorem.

Corollary 3. (Schauder, 1930). Let C be a nonempty, compact, convex
subset of a Banach space X, and suppose T : C → C is a continuous operator.
Then T has a fixed point.

This corollary is the direct translation of the Brouwer fixed point the-
orem to Banach spaces.

Proof of Corollary 3. Since C is a convex subset of Banach space,
from Lemma 1, we have that T : C → C is a general A-variation, where
A(x, y) = ||x− y||. The set C is closed in X, and thus C is a complete space.
It is easy to see that T satisfy all the required hypoteses in Theorem 1. Hence,
it follows from the Theorem 1 that T has a fixed point in C

Corollary 4. (Banach Contraction Principle, 1922). Let (X, ρ) be a
complete metric space and T : X → X contractive. Then T has a unique fixed
point ξ, and T nx→ ξ(n→ ∞) for each x ∈ X.
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Proof. From the condition of contraction, it is easy to see that T is gen-
eral ρ-(bounded) variation. Preciselly, every contraction mapping is bounded
variation and continuous. Hence, it follows from the Theorem 1 that T has a
fixed point.

At the and, we notice, also in this paper, we extend and results of Darbo,
Browder, Sadovskij, Tychonoff, Krasnoselskij, Ky Fan, Dugundji, Granas,
Kirk, Caristi, Kakutani and some others. In connection with this, proofs are
the analogous to the proofs of the preceding statements of Brouwer, Schauder
and Banach.

4. Answer to Schauder’s problem is affirmative

From the preceding statement and some further facts we are now in the
position to formulate the following fact which is an extension of the former
results of Brouwer, Schauder, Tychonoff, Mazur, Hukuhara, Ky Fan, Browder,
Sadovskij, Darbo, Krasnoselskij, Reinermann, Dugundji, Granas, Klee, Idzik,
Riedrich, Eisenack-Fenske, Jahn and some others.

Theorem 2. (Answer is yes for Schauder’s problem). Let C be a non-
empty convex compact subset of a linear topological space X and suppose T :
C → C is a continuous mapping. Then T has a fixed point in C.

To prove this statement, the following facts are essential. In this sense
we have the following facts:

Let X be a nonempty set and q : X × X → R0
+. The function q is

called a quasimetric (or pseudometric) on X iff q(x, y) = q(y, x), q(x, z) ≤
q(x, y) + q(y, z) and if x = y implies q(x, y) = 0 for all x, y, z ∈ X. The pair
(X, q) is called a quasimetric (or a pseudometric) space.

Lemma 2. Let X be a nonempty set, let φ : X → R0
+ an arbitrary

function and let us define q : X ×X → R0
+ by the equalities

q(x, y) =
{

0 if x = y,
max{φ(x), φ(y)} if x �= y,

then q is a quasimetric function on X. Also, if φ(x) = φ(y) = 0 implies x = y,
then q is a metric function.

The proof of this statement is very elementary. Thus we omit it.
To prove Theorem 2 and the following fact is essential.

Lemma 3. (Application of Lemmas 1 and 2). Let X be a linear space.
If C is a convex set in X and if T is a map of C into itself, then there exists
a continuous function G : C → R0

+ such that T is a general A-variation
mapping for some function A : C × C → R0

+.
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Proof. Consider the convex set C of linear space X as a quasi-metric
space (from Lemma 2) with the quasi-metric q, where q : C × C → R0

+ is
defined by

q(x, y) =
{

0 for x = y,
max{K(x),K(y)} for x �= y,

(1.7)

for a strictly convex function K : C → R0
+. Then it is easy to see that q

is a quasi-metric, i.e., that for all x, y, z ∈ C we have : q(x, y) = q(y, x),
q(x, z) ≤ q(x, y) + q(y, z), q(x, y) ≥ 0 and that x = y implies q(x, y) = 0.

On the other hand, if q(x, y) = 0 and x �= y, i.e., if K(x) = K(y) = 0,
then since K is a strictly convex function, we obtain

0 =
K(x) +K(y)

2
> K

(
x+ y

2

)
≥ 0 ,

which is a contradiction. Consequently x = y = x+y
2 , i.e., x = y. Thus

q(x, y) = 0 implies x = y, i.e., q is a metric on C.
Applying Lemma 1 to this case, we obtain then that there exists a

continuous function G : C → R0
+ such that T is a general q-variation mapping,

where A = ρ ≡ q. The proof is complete.

Proof of Theorem 2. From Lemma 3 there exists a continuous func-
tion G : C → R0

+ such that T is a general A-variation, mapping where
A(x, y) := q(x, y) and q defined in (7).

Since T is a continuous mapping, the function of the following form
x �→ A(x, Tx) = q(x, Tx) is a continuous function. Also and the function
y �→ A(x, y) = q(x, y) is continuous. The set C is a compact in space X and
thus C satisfies the condition of CS-convergence.

It is easy to see that T satisfies all the required hypotheses in Theorem
1. Hence, it follows from the Theorem 1 that T has a fixed point ξ ∈ C. The
proof is complete.

5. Some further applications

As an immediate corollary of the preceding solved problem (Theorem
2), we obtain one of the basic results in nonlinear functional analysis which
is an extension of the Markoff-Kakutani theorem.

Theorem 3. Let C be a nonempty convex compact set in a linear topo-
logical space X and let F be a commuting family of continuous affine maps
of C into itself. Then F has a common fixed point ξ ∈ C.

A brief proof of this result based on Theorem 2 may be found in Tasković
[3], [4] and [5].
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On the other hand, as an immediate consequence of Theorem 1, we
obtain the following geometrical fact on fixed points.

Theorem 4. Let T be a self-map on a topological space X and A :
: X × X → R0

+ be a function with properties : A(a, b) = 0 iff a = b and
A(a, c) ≤ A(a, b) + A(b, c) for all a, b, c,∈ X. Suppose that there exists a
continuous function G : X → R0

+ such that

A(x, Tx) ≤ |G(x) −G(Tx)|
for every x ∈ X. If X satisfies the condition of CS-convergence and if b �→
A(a, b) is continuous, then T has a fixed point ξ ∈ X.

A brief proof of this statement, based on Theorem 1, may be first found
in Tasković [3].
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