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Peng Chen

BIG DATA ANALYTICS IN STATIC AND STREAMING PROVENANCE

With recent technological and computational advances, scientists increasingly integrate

sensors and model simulations to understand spatial, temporal, social, and ecological

relationships at unprecedented scale. Data provenance traces relationships of entities over

time, thus providing a unique view on over-time behavior under study. However,

provenance can be overwhelming in both volume and complexity; the now forecasting

potential of provenance creates additional demands.

This dissertation focuses on Big Data analytics of static and streaming provenance. It

develops filters and a non-preprocessing slicing technique for in-situ querying of static

provenance. It presents a stream processing framework for online processing of

provenance data at high receiving rate. While the former is sufficient for answering

queries that are given prior to the application start (forward queries), the latter deals with

queries whose targets are unknown beforehand (backward queries). Finally, it explores

data mining on large collections of provenance and proposes a temporal representation of

provenance that can reduce the high dimensionality while effectively supporting mining

tasks like clustering, classification and association rules mining; and the temporal

representation can be further applied to streaming provenance as well. The proposed

techniques are verified through software prototypes applied to Big Data provenance

captured from computer network data, weather models, ocean models, remote (satellite)

imagery data, and agent-based simulations of agricultural decision making.
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Chapter 1

Introduction

1.1 Motivation

E-Science (or eScience) is data intensive, computationally-based science where computer

science meets applications, and brings advances in both fields [75]. With recent techno-

logical and computational advances, eScience research increasingly integrates sensors and

model simulations to understand spatial, temporal, social, and ecological relationships at

unprecedented scale. This data intensive aspect of eScience reflects the increasing value

of observational, experimental and computer-generated data in virtually all domains, from

physics to social and ecological sciences. However, the explosion in volume and dimen-

sionality of data and the extraordinarily broad field of eScience introduce severe challenges

for data management. These include reliably archiving large volumes (many terabytes) of

data, sharing such data with users within access control policies, and maintaining sufficient

context and provenance of sensor data using correct metadata [53].

Provenance, sometimes referred to as the lineage or pedigree of data derivation, is a key

piece of metadata that facilitates data sharing and re-use in eScience data management. It

has also been widely recognized that provenance is critical to sharing, trust, authentication

and reproducibility of eScience process [100]. However, given the sheer volume of datasets
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and the complex nature of the interactions in an eScience infrastructure, provenance can be

overwhelming in both volume and complexity, requiring new techniques to handle it and

make it useful.

The development of provenance research has its roots in databases and workflow man-

agement systems [145], where it has been shown to facilitate the reproducibility of com-

putational experiments [116]. In eScience, it has been shown that provenance can identify

event causality; enable broader forms of sharing, reuse, and long-term preservation of sci-

entific data; can be used to attribute ownership and determine the quality of a particular data

set [143]. Earlier research in provenance has studied the capture, modeling, and storage of

provenance. Collaborative efforts have yielded the Open Provenance Model (OPM) [117]

and its successor, the W3C recommendation named PROV [23], for modeling and exchange

of provenance. Both OPM and PROV model provenance as a Direct Acyclic Graph (DAG),

where nodes are artifacts (data), processes and agents (person), and edges represent the rich

relationships between nodes.

Despite advances in capturing and modeling provenance, its size remains a significant

issue, as does its complexity. There has been research on visualizing [107] and mining

provenance data [110], but the analysis of provenance in general has been underexplored.

Gobe [73] and Simmhan et al. [145] summarize five major reasons to use provenance: data

quality, audit trail, replication recipes, attribution, and informational. We aim to further

expand the use of data provenance that is captured from computer network, workflow, and

agent-based model. Efficient and scalable provenance retrieval is the key to obtaining crit-

ical information from large scale provenance datasets. Being able to process streaming

provenance generated from running applications further enables online monitoring, debug-

ging, and calibration. Data mining is useful in discovering hidden information from prove-
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nance datasets, but in order to support that, the representation of provenance has to address

the challenge of high-dimensional graph data. Provenance brings a unique view on over-

time behavior under study and thus its forecasting potential also suggests new solutions to

data mining.

This dissertation aims to help data scientists to better understand, debug, and use big

data, by providing techniques and software solutions to analyzing Big Data provenance of

high complexity, large volume, and high velocity. The research is mainly driven by two

factors:

• To exploit the intrinsic value in provenance graphs’ attribute and structure. Further-

more, to discover the hidden information from large collections of provenance graphs

that are often generated by scientific workflows/simulations ran with different param-

eters and input data;

• To develop general analytical techniques that can deal with the large volume, high

complexity and velocity of provenance data.

1.2 Challenges

This research investigates Big Data challenges at different stages of provenance analysis,

namely, capture, retrieval, and mining.

1.2.1 Selective Capture and In-Situ Retrieval of Provenance

We have demonstrated earlier [43] that data provenance is capable of capturing the cause-

effect relations in agent based models, aiding in the understanding of the complex processes

and to enable the analysis of internal dynamics that were previously hidden as black box.
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However, for large scale agent-based models that involve thousands of interacting agents,

the sheer volume of provenance can be overwhelming. Traditional retrieval techniques fall

short of processing this Big Data provenance since they often require persistence of the

entire provenance dataset, despite the fact that only a small portion is desired. The existing

method that captures provenance from program logs needs to recover all the entities and

dependencies from the logs before being able to answer queries [9]. Instead, if we know the

provenance query prior to the application start (for example, a forward provenance query),

we can reduce the amount of provenance stored by preserving only the relevant provenance

information; we can also perform the provenance queries in-situ and on-demand to avoid

recovering and maintaining provenance entities and dependencies that are unnecessary.

1.2.2 Online Processing of Live Provenance

Scientific experiments that run at large scale and for a long time can produce a huge amount

of provenance data that is too big to be stored persistently. One approach to handling

provenance data in-motion is to process it continuously in the data stream model where the

input is defined as a stream of data. Algorithms in this model must process the input stream

in the order it arrives while using only a limited amount of memory [18]. Earlier work

on processing real time streams of data [3, 17, 39, 126] focuses on high velocity data that

arrives continuously (as streams of indefinite duration). However, provenance is modeled

as a graph, and most of the work on graph streams has occurred in the last decade and

focuses on the semi-streaming model [65, 121]. In this model the data stream algorithm is

permitted O(npolylogn) space where n is the number of nodes in the graph thus it does not

suit for continuous processing. This is because most problems are provably intractable if

the available space is sub-linear in n, whereas many problems become feasible once there
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is memory roughly proportional to the number of nodes in the graph. Thus the challenge

here is to develop a streaming solution that can process the live provenance using limited

memory.

1.2.3 Representation for Data Mining on Large Scale Provenance

Provenance modeled in either the OPM or the PROV standard can be represented as a

graph with node/edge attributes. Both the graph structure and node/edge attributes contain

valuable information that is useful for data mining operations. Workflow graph, sometimes

referred to as the workflow plan, is in some cases a coarse approximation of a provenance

graph, but existing work on mining workflow graphs uses data representations that either

lose the structure information or the attribute information. Besides, as the size of prove-

nance graph grows, the high dimensionality in the attribute information also poses a prob-

lem for data mining. Finally, existing research on mining provenance data requires that

provenance be stored persistently, which could be intractable for the Big Data provenance

with high velocity.

How to treat data with temporal dependencies is another problem in the discovery pro-

cess of hidden information. The ultimate goal of data mining is to discover hidden relations

between sequences and subsequences of events [16]. Provenance information has an im-

plicit temporal ordering that can be exploited for data clustering and relationship discovery.

1.3 Contributions

This dissertation develops analytical techniques for efficient retrieval and representation of

Big Data provenance. It further expands the use of data provenance in computer network,

workflow, and agent-based simulation to help data scientists better understand, debug, and
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use their data. In computer network, we demonstrate network provenance can be used to

explore, present, and debug various network experiments. In workflow system, we use

provenance to detect and diagnose failure executions, and to predict the workflow type of

a provenance graph. In agent-based simulation, provenance captures the internal dynamics

that can be used to debug the simulation and analyze the model and the simulation results.

By enabling the real-time processing of live provenance, we are even able to support the

online debugging and calibration of simulations.

On the technical level, the dissertation contributes the following:

1. Selective capture of provenance is explored through filters that aggregate or filter

out irrelevant provenance information for pregiven queries. A slicing technique is

proposed for provenance called “non-preprocessing provenance slicing” that avoids

recovering provenance entities and dependencies unnecessary for queries. The com-

bination of the two is shown to be effective for the retrieval of large scale static prove-

nance generated from agent-based simulations.

2. A stream model of data provenance and a streaming algorithm that enable the back-

ward provenance query on live provenance data from agent-based model. This avoids

the persistent storage of Big Data provenance and requires few computational re-

sources. A general provenance stream processing framework is prototyped using

Apache Kafka and Spark Streaming. The proposed streaming algorithm is shown to

have high throughput, low latency and good scalability.

3. A reduced temporal representation for provenance graphs that preserves temporal or-

der between node subsets and retains structural information together with attribute in-

formation. Experiments on semi-synthetic and real life scientific provenance datasets

show that the temporal representation can detect failures in the workflow execution
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or the provenance capture; can be used to predict the type of new workflow instance;

and can describe/distinguish clusters from one another. The scalability study indi-

cates that data mining on proposed temporal representations is scalable because the

size and dimensionality of the dataset is greatly decreased in our reduction (represen-

tation) process, and the representation process can be parallelized using MapReduce.

Furthermore, a window-based streaming algorithm is proposed to apply the temporal

representation to the provenance stream model. To measure the similarity between

window-based temporal representations that vary in time or speed, we propose a new

similarity measurement based on Dynamic Time Warping (DTW).

1.4 Thesis outline

The remainder of this dissertation is organized as follows. We present related research in

Chapter 2. Next, we discuss the background information, our earlier work on provenance

capture and visualization, and the experimental datasets in Chapter 3. In Chapter 4, we

present our solutions to efficient static provenance retrieval. In Chapter 5, we propose a

stream model for provenance and a streaming solution to online retrieval of live provenance.

Chapter 6 introduces the temporal representation for mining large collections of provenance

data. Finally, we conclude and discuss future directions in Chapter 7.
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Chapter 2

Related Work

In this chapter, we discuss existing research in areas that are related to our study. The first

section examines provenance visualization techniques that have been developed. The sub-

sequent section discusses efforts to efficiently store and retrieve provenance data. While

there has been little research on the stream processing of provenance data, provenance data

of streaming systems has been extensively studied. The third section examines related re-

search on mining provenance data, and since workflow graphs can be considered as coarse

approximations of provenance graphs, the existing work on mining workflow graphs is also

included. Since one of the goals in our research is to expand the use of data provenance,

we also discuss the existing work on the use of provenance in the final section.

2.1 Visualization of Provenance

Iliinsky and Steele (2011) [87] identify two categories of data visualization: exploration

and explanation. Exploratory visualization is designed to support a researcher who has

large volumes of data and not certain what is in it. Explanatory visualization, on the other

hand, takes place when a researcher knows what the data has to say, and is trying to tell that

story to someone else. The two serve different purposes, and there are tools and approaches
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that may be appropriate for one and not the other.

Prior provenance visualization tends to deal with small graphs, and seldom addresses

the issue of graph layout. Specifically, Taverna [123] uses visualization to help answer

questions that establish how the experiment results were obtained; VisTrails [69] allows

users to navigate workflow versions in an intuitive way, to visually compare different work-

flows and their results, and to examine the actions that led to a result; Probe It! [56] enables

scientists to move the visualization focus from intermediate and final results to provenance

back and forth; the Prototype Lineage Server [29] allows users to browse lineage informa-

tion by navigating through the sets of metadata that provide useful details about the data

products and transformations in a workflow invocation; Pedigree Graph [122], one of tools

in Multi-Scale Chemistry (MSC) portal from the Collaboratory for Multi-Scale Chemical

Science (CMCS), is designed to enable users to view multi-scale data provenance; the My-

Grid project renders graph-based views of RDF-coded provenances using Haystack [170];

Provenance Explorer [47], a secure provenance visualization tool, dynamically generates

customized views of scientific data provenance that depend on the viewer requirements

and/or access privileges.

Provenance Map Orbiter [107] uses graph summarization and semantic zoom to nav-

igate large provenance graphs. It gives a high-level abstracted view of a graph and the

ability to incrementally drill down to the details. However, node summarization depends

on having available sufficient semantic information. Besides, a summarized view may not

work well for visual comparison of multiple graph components at a detailed level.

While there is no prior research on graph matching in provenance visualization, there

has been some work on comparing pairs of graphs visually, including the visual “diff”

in VisTrails for comparing two workflows by Freire et al. [69]. Bao et al. [19] visualize

9



pairs of provenance graphs to compare workflow executions of the same specification and

understand the difference between them.

There has been substantial work in the area of graph visualization, ranging from lay-

out algorithms, to methods for visualizing large graphs, to techniques for interacting with

graphs [83]. The existing graph visualization tools could also be used for provenance

graphs. Some of the tools are implemented in JavaScript to provide interactive data vi-

sualizations for the Web [67, 102], but handling large scale graphs requires more compu-

tational resources, and thus we focus on the desktop tools instead. Cytoscape [141] is an

open source software platform for visualizing complex networks. Cytoscape allows diverse

types of attribute data to be visualized on the nodes and edges of a graph, and thus is suit-

able for visualizing provenance graphs with many attributes. Gephi [22] is another inter-

active visualization and exploration platform for networks and complex systems, dynamic

and hierarchical graphs. The Science of Science (Sci2) Tool [150] is a modular toolset

specifically designed for the study of science. It supports the temporal, geospatial, topical,

and network analysis and visualization of scholarly datasets at the micro (individual), meso

(local), and macro (global) levels. While Gephi and Sci2 also have good support for large

graphs, we choose Cytoscape as the base framework to implement our proposed techniques

due to Cytoscape’s abundant features for rendering the attribute data in provenance graphs.

2.2 Storage and Retrieval

2.2.1 Storage and Retrieval of Large Scale Provenance Data

The existing solutions to provenance management adopt a variety of formats and databases.

Kepler [105] uses a provenance framework, called Collection-Oriented Modeling and De-
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sign (COMAD) [30], which stores provenance data in an XML file and in a relational

database [14]. Taverna [114] features a provenance ontology and employs semantic web

technologies for provenance collection and representation. VisTrails [69] and Karma [147]

use XML and relational database technologies to represent, store, and query workflow

provenance. Since provenance can be represented as a DAG, graph databases are also used

for storing and querying provenance [115, 153]. Trident [144] and PreServ/PASOA [119]

are not tied to any particular provenance storage model, but rather define interfaces and

adaptors to enable different storage systems, such as a file system, relational database,

XML database and so forth.

Provenance query processing has been studied in some existing work. Miles [112]

defines a provenance query and describes techniques for scoped execution of provenance

queries. Zhao et al. [172] propose a logic programming approach to scientific workflow

provenance querying and management. Holland et al. [85] present a provenance query

model based on the Lorel query language. Based on a general model of provenance sup-

porting scientific workflows that process XML data and employ update semantics [14],

Anand et al. [13] define a formal semantics of a provenance query language, QLP, and

discuss efficient query processing approaches.

Kementsietsidis and Wang [92] first define the provenance backward/forward query.

The provenance backward query is defined as a query addressing what input was used to

generate the output, and the provenance forward query is defined as a query identifying

what output was derived from the input.

More recently, there has been research on efficient and scalable storage and query-

ing of large scale provenance graphs. Zhao et al. [167] explore the feasibility of a gen-

eral metadata storage and management layer for parallel file systems, in which metadata
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includes both file operations and provenance metadata. They consider two systems that

have applied similar distributed concepts to metadata management, but focusing singularly

on provenance data: (1) FusionFS [168], which implements a distributed file metadata

management based on distributed hash tables, and (2) SPADE [71], which uses a graph

database to store audited provenance data and provides distributed module for querying

provenance. Chebotko et al. [38] address the challenge of storage and querying of large

collections of provenance graphs serialized as RDF graphs in an Apache HBase database.

Rozsnyai et al. [128] introduce a large-scale distributed provenance solution built around

HBase/Hadoop to track a consistent and accurate history, the relationships and derivations

between artifacts in order to be able to monitor and analyze business process.

Provenance query processing in distributed environment has been studied in several

papers. In [109], Malik et al. propose a decentralized architecture in which each host

maintains an authoritative local repository of the provenance metadata gathered on that

host, and the use of provenance sketches (based on Bloom filters) to optimize subsequent

data provenance queries. Groth and Moreau [77] also discuss how to represent prove-

nance information in distributed environments by using the Open Provenance Model [117].

Gadelha et al. [70] present and evaluate the Swift parallel scripting language in recording

and analyzing provenance information collected from large-scale distributed systems. Kim

et al. [93] discuss the generation and refinement of application-level provenance in the

context of very large-scale workflows that often involve thousands of computations over

distributed, shared resources.

It is also possible to process large provenance graphs with general distributed graph

processing frameworks such as the Parallel Boost Graph Library (BGL), GraphX, Dis-

tributed GraphLab, Pregel, Giraph, GPS and PowerGraph. Parallel BGL [76] is a generic
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C++ library for distributed graph computation. Its primary goals are to provide a flexible,

efficient library of parallel and distributed graph algorithms and data structures, and to un-

derstand how generic programming interacts with parallel programming. GraphX [162]

combines the advantages of both data-parallel and graph-parallel systems by efficiently ex-

pressing graph computation within the Spark data-parallel framework. It leverages ideas in

distributed graph representation to efficiently distribute graphs as tabular data-structures,

and advances in data-flow systems to exploit in-memory computation and fault-tolerance.

The Distributed GraphLab [103] adopts graph based extensions to pipelined locking and

data versioning to reduce network congestion and mitigate the effect of network latency. It

adds fault tolerance to the GraphLab abstraction using the classic Chandy-Lamport snap-

shot algorithm. Pregel [108] is a bulk synchronous message passing abstraction in which

all vertex-programs run simultaneously in a sequence of super-steps. Within a super-step

each program instance receives all messages from the previous super-step and sends mes-

sages to its neighbors in the next super-step. The program terminates when there are no

messages remaining and every program has voted to halt. Giraph [48] originated as the

open-source counterpart to Pregel. Giraph adds several features beyond the basic Pregel

model, including master computation, sharded aggregators, edge-oriented input, and out-

of-core computation. GPS [132] is another open source implementation of the Pregel sys-

tem, with three new features: (1) an extended API to make global computations more easily

expressed and more efficient; (2) a dynamic repartitioning scheme that reassigns vertices

to different workers during the computation, based on messaging patterns; and (3) an opti-

mization that distributes adjacency lists of high-degree vertices across all compute nodes to

improve performance. The PowerGraph [74] abstraction exploits the Gather-Apply-Scatter

model of computation to factor vertex-programs over edges, splitting high-degree vertices
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and exposing greater parallelism in natural graphs. It is the first to introduce vertex-cuts and

a collection of fast greedy heuristics to substantially reduce the storage and communication

costs of large distributed power-law graphs.

Although a lot of effort has been put on improving the performance of provenance

queries, most existing work, even if discussed within a distributed environment, only pro-

vides provenance retrieval functionality based on complete provenance. However, the Big

Data provenance that we captured from simulations is at exascale and cannot be stored

persistently. Furthermore, the provenance from a continuously running application such

as an agent based simulation is also generated continuously. We cannot wait until all the

provenance data is generated to start the analysis. To address these problems, we believe

that stream processing of provenance queries that does not persist the data and provides

real-time results is a natural solution.

2.2.2 Provenance Filtering and Non-preprocessing Slicing

Systems that gather fine-grained provenance metadata must process large amounts of in-

formation, and there is some existing research on provenance filtering. SPADE [71] is

an open source software platform that supports collecting, filtering, storing, and querying

provenance metadata. SPADE provides a framework for implementing filters (that can be

stacked in arbitrary order). A filter receives a stream of provenance graph vertices and

edges, and can rewrite their annotations (in which domain-specific semantics are embed-

ded).

Filtering has also been used in provenance query processing. Zhao [169] gives a for-

mal definition of provenance filter query, and provides a general and efficient approach

for distributed query processing. Sahoo et al. [130] propose an example filter query when
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discussing semantic provenance management for e-Science. Groth [78] describes an al-

gorithm, D-PQuery, for determining the provenance of data from distributed sources of

provenance information in a parallel fashion. The D-PQuery algorithm is made up of six

steps: translate, filter, traverse, consolidate, pare and merge.

Our research focuses on filtering during provenance capture and we propose several

use-inspired filters to keep provenance traces relevant to the queries that are known prior

to the application start. In addition, since the raw provenance data is usually in the form

of semi-structured log files [72], recovering the complete provenance information from

the raw data is costly and unnecessary, so instead we perform on-demand recovering and

processing, which are inspired by the dynamic program slicing technique that is reviewed

below.

Program slicing is a well-explored technique in software engineering. Intuitively, pro-

gram slicing attempts to provide a concise explanation of a bug or anomalous program

behavior, in the form of a fragment of the program that shows only those parts “relevant”

to the bug or anomaly. Cheney [45] argues that there is a compelling analogy between

program slicing and data provenance and defines the dependency provenance of an output

as the set of all input fields on which it depends (a data slice). However, the data slice alone

does not explain why there are dependences, thus we propose the provenance slice as a

combination of data slice and its related program fragment (program slice).

The concept of program slicing is first introduced by Mark Weiser [157]. He introduced

program slicing as a debugging aid and gave the first static slicing algorithm. Since then

a great deal of research has been conducted on static slicing and a survey of many of

the proposed techniques and tools can be found in [151]. It is widely recognized that

for programs that make extensive use of pointers, the highly conservative nature of data
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dependency analysis leads to highly imprecise and considerably larger slices. Recognizing

the need for accurate slicing, Korel and Laski propose the idea of dynamic slicing [7],

where the data dependences that are exercised during a program execution are captured

precisely and saved. It has been shown that precise dynamic slices can be considerably

smaller than static slices [84, 152].

While precise dynamic slices can be very useful, it is also well known that computing

them is expensive, as it needs to build the dependence graph from the program’s execution

trace before slicing – so called preprocessing. To address this challenge, Zhang et al. [166]

present the design and evaluation of three precise dynamic slicing algorithms called the

full preprocessing (FP), no preprocessing (NP) and limited preprocessing (LP) algorithms.

The no preprocessing (NP) algorithm does not perform any preprocessing but rather dur-

ing slicing it uses demand driven analysis that recovers dynamic dependencies and caches

the recovered dependencies for potential future reuse. We derive our non-preprocessing

provenance slicing technique from this no preprocessing (NP) algorithm.

2.2.3 Stream Processing of Provenance Data

Stream processing is a new computing paradigm that enables continuous and real-time

analysis of massive streaming data. In contrast to traditional data analysis approaches,

stream computing does not require data to be persisted before processing. Earlier work

on processing real time streams of data [3, 17, 39, 126] focuses on high velocity data that

arrives continuously (as streams of indefinite duration).

The research on stream provenance has been focused on the provenance for data streams.

The existing work in that field can be categorized as coarse-grained provenance method that

identifies dependencies between streams or sets of streams, and fine-grained provenance
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method that identifies dependencies among individual stream elements.

Towards coarse-grained provenance, Vijayakumar and Plale [154, 155] define prove-

nance of data streams as information that helps to determine the derivation history of

a data product, where the data product is the derived time bounded stream. A similar

coarse-grained technique for recording provenance has been used in sensor archive sys-

tems [51, 95]. In this technique, processing modules of archive systems have to employ

standardized logging methods to capture only important events during their processing.

Towards fine-grained stream provenance, Sansrimahachai et al. [136] propose a fine-

grained provenance solution called Stream Ancestor Function – a reverse mapping function

used to express precise dependencies between input and output stream elements. De Pauw

et al. [54] provide a visual and analytic environment based on fine-grained provenance to

support debugging, performance analysis, and troubleshooting for stream processing appli-

cations. Wang et al. [156] propose a hybrid provenance model called Time-Value Centric

(TVC) provenance for systems processing high-volume, continuous medical streams.

However, our study focuses on the continuous processing of provenance data streams,

which has been largely unexplored. The most relevant work is Sansrimahachai et al. [135]

on tracking fine-grained provenance in stream processing systems. They develop an on-the-

fly provenance tracking service that performs provenance queries dynamically over streams

of provenance assertions without requiring the assertions to be stored persistently. How-

ever, their focus is on provenance tracking by essentially pre-computing the query results

at each stream operation and storing results into provenance assertions as the provenance-

related property.

There is existing work on provenance collection that treats provenance data as contin-

uously generating events. For example, the ingest API of Komado [148] receives prove-
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nance relationships and attributes as XML messages; SPADEv2 [71] includes a number

of reporters that transparently transform computational activity into provenance events.

However, they do not process provenance events as in a stream and the stream model of

provenance has not been defined. In this work, we present our early result of defining a

stream model for provenance events. Our preliminary model only covers the dependencies

between data products (analogous to the “Derivation and Revision” in W3C PROV [23])

and their temporal ordering. We demonstrate that our model is sufficient for the continuous

backward provenance query.

Provenance can be represented as a DAG, and there is work on querying provenance

graph databases [115, 153]. Our study focuses on the continuous querying of massive

provenance data streams. McGregor [111] survey the state-of-art algorithms for processing

massive graphs as streams, most of which focus on the semi-streaming model that have

O(npolylogn) space. There has been little research on the stream processing of graph

queries, and the closest related work is the stream processing of XPath queries [79] and

SPARQL queries [15, 21]. XPath queries need to consider the relationships between XML

messages that are similar to graph edges, and SPARQL queries are performed on RDF

graphs. However, these extended SPARQL languages are developed for specific goals such

as to support semantic-based event processing and reasoning on abstractions, not to support

typical graph analysis based on the patterns in nodes and paths. The same holds true for

XPath queries.

There is also a little work on analyzing graph streams [20, 66, 138]. In this case, the

edges of the graph are received continuously over time, and the objective is to perform the

computation using small amount of memory (preferably sub-linear in the number of nodes

n) and a smaller number of passes. A typical approach is to construct a synopsis from the
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graph stream, and leverage it for the purpose of structural analysis [50]. We take the same

approach to extend our temporal representation of persistent provenance to be used as the

synopsis of the stream elements within the current sidling window to support data mining.

To the best of our knowledge, we are the first to define the stream model of provenance

graph, and to develop stream processing techniques to support the query and analysis.

2.3 Data Mining on Provenance

Margo and Smogor [110] use data mining and machine learning techniques to extract se-

mantic information from I/O provenance gathered through the file system interface of a

computer. The mining step reduces the large, singular provenance graph to a small num-

ber of per-file features. Our research is complementary in that we examine a collection of

provenance graphs and treat a whole provenance graph as an entity. Like Margo’s work, we

also reduce the size and dimensionality of provenance, but we achieve this by partitioning

the graph and applying statistical post-processing. Phala [99] uses provenance information

as a new experience-based knowledge source, and utilizes the information to suggest pos-

sible completion scenarios to workflow graphs. It does not, however, provide descriptive

knowledge for a large provenance dataset.

Clustering techniques have been applied to workflow graphs. A workflow script or

graph is either an abstract or implementation plan of execution. A provenance graph, on

the other hand, is a record of execution. A provenance record may or may not have the

benefit of an accompanying workflow script, so a workflow graph is in some cases a coarse

approximation of provenance graph. Santos et al. [137] apply clustering techniques to or-

ganize large collections of workflow graphs. They propose two different representations:

the labeled workflow graph and the multidimensional vector. However, their representation
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using labeled workflow graphs becomes too large if the workflow is big, and the struc-

tural information is completely lost if using a multidimensional vector. Jung and Bae [90]

propose the cluster process model represented as a weighted complete dependency graph.

Similarities among graph vectors are measured based on relative frequency of each activity

and transition. It has the same scalability issue as Santos et al. Our work addresses the

problem of mining and discovering knowledge from provenance graphs, while overcoming

the scalability issue by reducing the large provenance graph to a small temporal represen-

tation sequence, and retaining structural information together with attribute information.

There is existing work that studies the workflow execution data, in particular to col-

lect, discover and predicate workflow errors. The temporal representation that we propose

is for all kinds of provenance, but we evaluate its usefulness by representing and mining

workflow provenance that leads to the discovery of failed workflow executions. Thus, we

share many commonalities with these works in terms of motivations and techniques. For

example, Benabdelkader et al. [24] develop a software tool that collects execution infor-

mation from various sources, and the information includes the error occurrence that can be

used to visually explore and trace the source of errors. We use the k-means clustering algo-

rithm to find centroid provenance graphs that can be further visualized to help understand

the experiment and explore failures; Samak et al. [134] use clustering-based classification

for early detection of failing workflows and a regression tree analysis to identify problem-

atic resources and application job types. We also use the k-means clustering algorithm

to separate the failed workflow executions from normal executions, but we adopt a graph

matching algorithm to locate the root-causes; Silva et al. [68] present a practical method for

autonomous detection and handling of operational incidents in workflow activities. They

model workflow activities as Fuzzy Finite State Machines (FuSM) where degrees of mem-
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bership are computed from metrics measuring long-tail effect, application efficiency, data

transfer issues, and site-specific problems. While they use association rules for a predic-

tive purpose, we use association rules for discovering variation patterns offline. However,

the most important difference between our work and all others is probably that we make

little assumption on the dataset: we do not have the status information of workflows and

their processes to tell whether they completed or failed; while clustering the provenance

graphs, we do not know which workflow type the provenance graph belongs to (though we

use the information of workflow type for performance evaluation). We experiment with

datasets that come from the Karma [147] system that gathers structured and unstructured

provenance data without the assumption of a single and coherent system.

How to treat data with temporal dependencies is another problem in the discovery pro-

cess of hidden information. The ultimate goal of data mining is to discover hidden relations

between sequences and subsequences of events [16]. Provenance information stored in a

form amenable to representation as a graph has an implicit temporal ordering, which can

be exploited for data clustering and relationship discovery. To our best knowledge, there is

no previous study on discovering the hidden relations in provenance.

Though there is not much work on mining provenance data, the data mining on graph

in general has been well studied. The existing algorithms on clustering graph data include

both classical graph clustering algorithms as well as algorithms for clustering XML data

– XML data is quite similar to graph data in terms of how the data is organized struc-

turally. Two main techniques [6] used for clustering XML and graph data are: structural

distance-based approach that computes structural distances between graphs or XML doc-

uments [36], and structural summary based approach that creates summaries from the un-

derlying graphs and documents for clustering [5]. It has been shown in [5] that a structural
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summary based approach is significantly superior to a similarity function based approach

as presented in [36], and our temporal representation can be considered as a structural

summary based approach. Finally, for graph classification where the task is to classify un-

labeled graphs based on labeled graphs, the main methods [6] include kernel-based graph

classification and boosting-based graph classification [131].

We also extend our temporal representation to create synopses in the provenance stream

model, which can be used for clustering, classification and association rules mining of

provenance streams. There is related work on mining graph streams in areas such as so-

cial networks, communication networks, and web log analysis. Graph streams are very

challenging to mine, because the structure of the graph needs to be mined in real time.

Therefore, a typical approach is to construct a synopsis from the graph stream, and lever-

age it for the purpose of structural analysis [6]. It has been shown in [66] how to summarize

the graph in such a way that the underlying distances are preserved. Therefore, this sum-

marization can be used for distance-based applications such as the shortest path problem.

Furthermore, the graph synopses are used to estimate the aggregate structural properties of

the underlying graphs. Cormode and Muthukrishnan [50] propose a set of techniques for

estimating the statistics of the degrees in the underlying graph stream, including sketches,

sampling, hashing and distinct counting. Methods have been proposed for determining the

moments of the degrees, determining heavy hitter degrees, and determining range sums

of degrees. In addition, techniques have been proposed in [20] to perform space-efficient

reductions in data streams. This reduction has been used in order to count triangles in the

data stream. A particularly useful application in graph streams is that of the problem of

PageRank. Atish Das et al. [138] use a sampling technique to estimate page rank for graph

streams. The idea is to sample the nodes in the graph independently and perform random
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walks starting from these nodes.

2.4 Usage of Data Provenance

Research on data provenance has been established in many different environments, includ-

ing database [33], workflow [146], web and grid services [149], cloud [120], network [176],

geospatial service [163], visualization [34], etc. Data provenance has a wide range of us-

age, for example, Gobe [73] summarizes five major reasons to use provenance: reliability

and quality; justification and audit; re-usability, reproducibility and repeatability; change

and evolution; ownership, security, credit and copyright. This thesis also expands the use

of data provenance captured from computer network, workflow, and agent-based model, so

we focus on the existing work in these fields below.

Davidson and Freire [52] describe a number of emerging applications for workflow

provenance: to reproduce data, to simplify exploratory processes, to enable social analysis

of scientific data, and to be used in education. More specifically, Kepler [11] uses prove-

nance to enable efficient workflow rerun; Vistrails [142] uses provenance to support com-

parison of data products as well as their corresponding workflows; Scheidegger et al. [139]

use provenance to simplify the construction of workflows. In our research, we propose a

temporal representation of provenance, based on which we apply clustering algorithms to

detect failure executions, and classification algorithms to predict the workflow type of a

future provenance graph; and we also develop advanced visualization techniques including

a provenance graph matching algorithm to better compare workflow executions.

Zhou et al. [175] survey a list of existing work in the networking literature that moti-

vates the use of network provenance. They classify the use-cases as real-time diagnostics,

forensics, accountability, and trust management. They argue that network accountability
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and forensic analysis can be posed as data provenance computations and queries over dis-

tributed streams. In our research, we demonstrate that visualization of network provenance

can be used to explore, present, and debug various network experiments.

Bennett et al. [25] illustrates the importance of explicitly considering provenance in

agent-based modeling through the development of a spatially explicit agent-based land use

simulation framework. While their research is speculative, we implement the automated

provenance tracing and capture for NetLogo and demonstrate some example provenance

queries that can help understand and analyze the simulation. Furthermore, our research al-

lows the in-motion processing of live provenance data so that we can analyze the simulation

progress in real-time, and can enable operations like online steering [140] and automated

parameter readjustment. There is a relevant but different concept introduced by Acar [4]

in programming language called self-adjust computation. In self-adjusting computation,

programs respond automatically and efficiently to modifications to their data by tracking

the dynamic data dependences of the computation and incrementally updating their out-

put as needed. The dynamic data dependencies are captured into a graph that is similar to

provenance graph. However, a dynamic dependency graph (DDG) only contains method

calls, while a provenance graph could also include intermediate data and people that is in-

volved. In self-adjusting computation, a change propagation algorithm is developed to find

the method calls that need to be recomputed when there are changes in the external input,

which can be posed as a forward provenance query. In our research on querying the prove-

nance stream, we aim to address a more difficult challenge – the backward provenance

query that finds out the input parameters that influenced an output data item.
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2.5 Summary

In this chapter, we first discuss the existing work in areas that are related to the analysis

of provenance. While there are tools for provenance visualization, they generally focus

on small graphs, and none of them incorporates graph matching for comparing multiple

graphs. Our earlier work on provenance visualization results in several techniques, includ-

ing layout algorithms and graph matching, for interactive navigation, manipulation, and

analysis of large-scale data provenance. Although a lot of effort has been put on improving

the performance of provenance queries, most existing work, even if discussed within a dis-

tributed environment, only provides provenance retrieval functionality based on complete

provenance. Instead, we develop several use-inspired filters during provenance capture to

keep only relevant provenance traces; we perform on-demand recovering and processing

on the raw provenance traces, to avoid unnecessary construction and maintenance of prove-

nance information; we propose a stream processing solution that does not persist the data

and provides real-time analytical results. There has been little research on mining prove-

nance data, and our research addresses the Big Data challenges by proposing a scalable and

effective temporal representation of provenance for mining purposes.

Finally, we review the existing usage of provenance, and demonstrate that our study

further expands the use of provenance in computer network, workflow, and agent-based

simulation. In computer network, we demonstrate network provenance can be used to

explore, present, and debug various network experiments. In workflow system, we use

provenance to detect and diagnose failure executions, and to predict the workflow type of

a provenance graph. In agent-based simulation, provenance captures the internal dynamics

that can be used to debug the simulation and analyze the model and the simulation results.
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By enabling the real-time processing of live provenance, we are even able to support the

online debugging and calibration of simulations.
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Chapter 3

Background Information and Earlier Work

In this chapter, we first present the background information on provenance modeling and

our earlier work on provenance visualization and capture, and then introduce the prove-

nance datasets that we use in our study.

3.1 Provenance Representation and Interoperability Models

We start with introducing the widely adopted Open Provenance Model (OPM) [117] and

its successor W3C PROV [23], which provide a good set of vocabularies that can be used

to model the provenance.

3.1.1 Open Provenance Model

The Open Provenance Model (OPM) is designed to exchange provenance information be-

tween systems and represents the different elements of provenance as directed graphs.

OPM has been a prominent interoperability model amongst different provenance systems,

in use by a number of systems such as SPADE [71] and Karma [147]. It is based primarily

on three kinds of nodes as defined in the core specification:

• Artifact: An immutable piece of state
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• Process: Action or series of actions performed on or caused by artifacts, and resulting

in new artifacts.

• Agent: Contextual entity acting as a catalyst of a process, enabling, facilitating, con-

trolling, or affecting its execution.

The edges in the graph represent causal dependencies and refer to the past execution

between a source node (the effect) and a target node (the cause). There are primarily five

types of causal dependencies in OPM:

• used: A process used an artifact.

• wasGeneratedBy: An artifact was generated by a process.

• wasTriggeredBy: A process was triggered by another process.

• wasDerivedFrom: An artifact was derived from another artifact.

• wasControlledBy: A process was controlled by an agent.

Figure 3.1(a) shows the nodes and edges of OPM graphs. It is also possible to extend

the basic elements of an OPM graph based on the use case.

3.1.2 W3C PROV

The W3C recommended PROV model [23] is a relatively new data model for provenance

interchange on the Web. W3C PROV has many provenance concepts that are not captured

in OPM, such as versioning, mechanisms for linking the different descriptions of the same

thing, containment relationships and collections and so on. The key concepts in PROV

consist of entities, activities and agents (see Figure 3.1(b)).

• Entity: Any physical, digital, conceptual, or other kinds of thing.

• Activity: Activities are how entities come into existence and how their attributes

change to become new entities, often using previously existing entities.
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Figure 3.1: Basic nodes and relationships in OPM (Figure a, where A stands for artifact, P

stands for process and Ag stands for agent) and PROV (Figure b).

• Agent: An agent takes a role in an activity such that the agent can be assigned some

degree of responsibility for the activity taking place.

The key relations between the different PROV concepts are:

• Usage and Generation: Activities “generate” new entities and make “use” of new

entities.

• Responsibility: An agent can be “associated with” an activity and an entity can be

“attributed to” an agent. An agent can also act “on behalf of” another agent.

• Derivation: When one entity’s existence, content, or characteristics are at least partly

due to another entity, then the former “was derived from” the latter.

• Communication: If two activities exchange some unspecified entity then the informed

activity is said to be “informed by” the informant.
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3.2 Provenance Capture in ABM

We next describe our work in capturing provenance from agent-based simulations. Re-

searchers who use agent-based models (ABM) to model social patterns often focus on the

model’s aggregate phenomena. However, aggregation of individuals complicates the un-

derstanding of agent interactions and the uniqueness of individuals. We develop a method

for tracing and capturing the provenance of individuals and their interactions in the NetL-

ogo ABM, and from this create a “dependency provenance slice”, which combines a data

slice and a program slice to yield insights into the cause-effect relations among system

behaviors.

3.2.1 Agent Based Model

An agent-based model (ABM) is a simulation of distributed decision-makers (agents) who

interact through prescribed rules. ABM has been effective in studies such as complex

adaptive spatial system (CASS) [25], ecological modeling [12], and neuromechanical mod-

eling [88], because of its ability to represent heterogeneous individuals and the interac-

tions between them. Agent-based models (ABM) often focus on the emergent outcomes

of aggregated behaviors. The fundamental philosophy in ABMs of methodological indi-

vidualism warns that aggregation may yield misleading results, and advocates a focus on

the uniqueness of individuals and interactions [12]. In addition, the interactions between

agents are inherently associated with cause-effect relations in the transition of system states

through time. These cause-effect relations are important and necessary for an understand-

ing of a complex process, but elucidating these relations poses a significant challenge to

the research community because of the complex dynamics in ABM [25]. We have demon-
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strated earlier [43] that data provenance is capable of capturing the cause-effect relations

in agent based models, aiding in understanding the complex processes and to enable the

analysis of internal dynamics that were previously hidden as black box.

NetLogo [160] is an agent-based modeling platform in wide use in research and ed-

ucation worldwide. NetLogo has its own Logo programming language, containing high

level primitives for performing batch operations over a group of agents. To understand

the scale of provenance generated by ABM, we perform an empirical study using a classic

NetLogo model for ecologists called wolf-sheep-predation. The model, designed by Uri

Wilensky [159], explores the stability of predator-prey ecosystems. A system is stable if

it trends to maintaining itself over time, despite fluctuations in population sizes. A system

is similarly unstable if it trends to extinction of one or more species involved. The “wolf-

sheep-predator” model has two variations. In the first variation, wolves and sheep wander

the landscape randomly while wolves are busy looking for sheep to prey on. Each model

step is an action by a wolf that costs them energy units, and they must eat sheep in order

to replenish their energy. When a wolf runs out of energy, it dies. Each of wolf and sheep

has a fixed probability of reproducing at each time step. This variation produces interesting

population dynamics, but is ultimately unstable. The second variation includes grass in

addition to wolves and sheep. The behavior of the wolves is identical to the first variation,

however this time the sheep must eat grass in order to maintain their energy – when they

run out of energy they die. Once grass is eaten it will only regrow after a fixed amount of

time. This variation is more complex than the first, but it is generally stable. We choose

the first variation to capture the Big Data provenance when the model is unstable so that it

grows exponentially.

We also experiment with a distributed agricultural decision making model that we are
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developing at Indiana University to study the impact of climate change on food secu-

rity [35]. The current model has 53 thousand household agents in Monze District, Zambia,

carrying out farming activities biweekly over a long period of time (years), on approxi-

mately 89 thousand hectares of cropland. Each of the household agents makes decisions on

farming and labor sharing based on its current status and the context. While NetLogo itself

cannot run simulations at this scale, we create a framework that can split the large district

level model into small ward level models and run the simulations in parallel in the Big Red

II supercomputer at Indiana University.

3.2.2 Provenance in ABM

The first step in provenance capture is to decide what information to capture as prove-

nance. There are various types of information at different levels of granularities that can

be collected as provenance during the data generation process. For example, there are

“why provenance,” “where provenance,” “how provenance,” and dependency provenance,

and each can be captured at system, middle-ware or application levels [174]. Choosing

the scope and granularity of provenance to capture is often determined based on the char-

acteristics of the application and system that generates the data, and the use cases on the

resulting provenance dataset.

Dependency provenance is the information relating each part of the output of a query to

a set of parts of the input on which the output depends [46]. Dependency provenance can

be used to compute data slices, or summaries of the parts of the input relevant to a given

part of the output. We want to define dependency provenance in ABM similar to this, but

we also want to compute the program slice (relevant processes) as a complement to the

data slice. While the data slice tells what the relevant input data is, the program slice tells
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how the output data depends on the input data. Specifically, the dependency provenance in

ABM that we propose contains the information of:

• All data products and their dependencies;

• Procedures associated with these dependencies.

The next step is to select a standard provenance model to represent the captured in-

formation. We choose W3C PROV [23] to record the dependency provenance in ABM,

because PROV allows us to express the provenance of agents and the evolution of a vari-

able. Unlike its predecessor OPM, an agent in PROV is also a particular type of entity

and the PROV has the concept of versions. The mapping of ABM provenance to PROV

is accomplished by first identifying the entities and dependencies in a NetLogo program,

then mapping concepts in PROV to them (see Table 3.2.2).
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Table 3.1: Mappings from PROV ontology to NetLogo concepts

Concept in PROV Concept in NetLogo Code example

Agent Agent breed [wolves wolf] ;; wolf is an agent

Activity Execution of a procedure ask sheep [

move ;; an activity

. . .

]

Entity State of a

global/agent/local vari-

able

set color white ;; the current state of color (an

agent variable) is an entity

Relationship: used 1) Procedure reads the

current value of a variable

2) Procedure depends on

the current value of a vari-

able

1) to reproduce-sheep

. . .

set energy (energy / 2) ;; the activity

“reproduce-sheep” used the entity “energy”

. . .

end

2) if grass? [

. . .

eat-grass ;; the activity “eat-grass” used

the entity “grass?”

Relationship: was-

GenerateBy

Procedure writes the

value of a variable

to reproduce-sheep

. . .

set energy (energy / 2) ;; the entity“energy”

was generated by activity “reproduce-sheep”

. . .

end
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Relationship: was-

DerivedFrom

1) A statement reads var2

before writing var1

2) A statement writing

var1 depends on var2

1) set energy random (2 * wolf-gain-from-

food) ;; the entity “energy” was derived from

entity “wolf-gain-from-food”

2) if grass? [

set energy energy 1 ;; the entity “energy”

was derived from entity “grass?”

Relationship: was-

RevisionOf

If an variable was derived

from itself

to reproduce-sheep

. . .

set energy (energy / 2) ;; the entity “energy”

was a revision of itself

. . .

end

Relationship: was-

InformedBy

A procedure is invoked

inside another procedure

to go

. . .

ask sheep [

move ;; activity “move” was informed by

activity “go”

. . .

end

Relationship:

wasAssociated-

With

A procedure is invoked by

an agent

ask sheep [

move ;; the activity “move” was associ-

ated with a sheep agent

Relationship:

wasAttributedTo

Variable belongs to an

agent

sheep-own [energy] ;; the entity “energy”

was attributed to a sheep agent
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Relationship: alter-

nateOf

A variable is a reference

to an agent

let prey one-of sheep-here ;; the entity “prey”

is an alternate of a sheep agent (an agent is

also an entity in PROV)

3.2.3 Provenance Tracing

A primary source of provenance is the log file, and writing parsers to extract provenance

from logs is a common practice in provenance capture [72]. In the case that the original logs

do not contain enough provenance information, instrumentation is widely used to output

the provenance information into the logs, such as in capturing the NASA AMSR-E prove-

nance archive dataset. We follow the same approach to collect the fine grained provenance

information at statement level by instrumenting the agent-based model’s source code.

We capture the provenance of a NetLogo model by adding probes to the model source

code. These probes generate provenance traces. We propose three types of probes for this

purpose, probes that log:

• Procedure invocations (Type 1),

• Write and read operations (Type 2),

• Conditional statements (Type 3).

Type 1 probes generate information used to compute the program slice. Type 2 and

Type 3 probes produce provenance about data dependencies that is used to compute the

data slice.

The open source tool that we built to implement our abstractions is called PIN (acronym

for “Provenance in NetLogo”) [43]. It can trace, capture, query and visualize the depen-

dency provenance in NetLogo. It consists of four main components: a source code analyzer
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used to automatically add probes to the model’s source code, a NetLogo extension for cap-

turing the provenance traces generated from probes, a non-preprocessing (NP) provenance

slicing technique for computing provenance slices using provenance traces, and a visualiza-

tion component for visualizing the provenance slices. Figure 3.2 shows how the NetLogo

provenance tool works. The tool is compatible with NetLogo version 5.0.3.

Figure 3.2: PIN overview: Red rectangles represent major components, and blue document

charts represent input and output of each component

To understand the time overhead introduced by provenance tracing and capture, we

identify four performance metrics that are measured through timing information gathered

during the “Model execution and provenance tracing” step (in Figure 3.2). These metrics

are:

• Execution time: model execution;

• Message passing time: the probes pass the trace messages to the NetLogo extension

by calling the primitive “provenance:write”;

• Collecting time: the NetLogo extension collects trace messages and their context

information from the model;

• Writing time: the NetLogo extension writes traces into a provenance log file.
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Execution time is calculated by running the model without instrumentation, and the oth-

ers are computed indirectly by running simulations with different versions of the NetLogo

extension and calculating the average time differences. The model is running in NetLogo

5.0.3 on a single machine with Win8 64bit OS, 8GB memory, and a Core i5 2.53GHz dual

core CPU. Figure 3.3 summarizes the results.

Figure 3.3: Provenance tracing and capture: X-axis is number of iterations run; Y-axis has

time cost (ms). (a) shows where time costs lie for up to 300 iterations. (b) shows the ratio

of total overhead to the execution time.

From Figure 3.3(a) we see that the “message passing time” is small compared with the

“execution time” and “collecting time”, which means that we can turn off tracing once the

capture finishes by not processing the trace messages received in the extension. We can also

use filters to reduce the “writing time”. Figure 3.3(b) tells that the overhead has the same

order of magnitude as the original simulation time. This means that simulation analysis

over its provenance is more efficient than traditional statistical analysis over many repeated

runs.
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3.3 Provenance Visualization

Iliinsky and Steele (2011) [87] identify two categories of data visualization: exploration

and explanation. Exploratory visualization is designed to support a researcher who has

large volumes of data and not certain what is in it, whereas Explanatory visualization takes

place when a researcher knows what the data has to say, and is trying to tell that story to

someone else. In our research, we use the exploratory visualization to identify the important

information within provenance data, and use the explanatory visualization to present the

results of provenance queries in a meaningful way.

The visualization of provenance, although supported in existing workflow management

systems, generally focuses on small (medium) sized provenance data. Big Data provenance

visualization differs from prior provenance visualizations in its large volume and high com-

plexity, necessitating techniques such as navigation, abstraction, and layout algorithms to

make the large graph meaningful.

In this section, we introduce a number of provenance visualization techniques that we

developed for interactive navigation, manipulation, and analysis of large-scale data prove-

nance. We demonstrated in [42] that our visualization tool can support both exploratory

and explanatory types of visualization. The visualization techniques are implemented into

a Cytoscape [141] plugin.

3.3.1 Requirements

Kunde et. al [96] derive abstract types of user requirements for provenance visualization,

including 1) process: the sequence of the process steps is in the center of inspection; 2)

results: the intermediate or end results of interactions are in the center of the users view; 3)
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relationship: the relationship of interactions or actors is important; 4) timeline: the time is

important to observe; 5) participation: the correctness of the participants is important; 6)

compare: the comparison of two subjects shows the difference between them; 7) interpre-

tation: an individual visualization view depending on the special question of the end-user.

The goal of our visualization research is to serve both broad and narrowly focused au-

diences, so it addresses each of the above requirements as follows: 1-3) our visualization

tool is based on an accepted model for provenance representation, namely, Open Prove-

nance Model (OPM) [117], which denotes entities (processes and artifacts) as nodes, and

relationship as edges in a graph. It is able to show a complete graph with both process

steps and intermediate (final) results, or abstract graphs focusing on either one of them; 4)

OPM is capable of representing time information of nodes and edges, and our visualization

tool has a special function called “Play movie by time” that can help a user understand

the dynamics through time; 5) participation is represented by agents through “was con-

trolled by” relationships in OPM, so our tool helps a user visually evaluate the correctness

of participations; 6) users can compare attributes of nodes using our tool, and can compare

two provenance graphs with the graph matching algorithm we improved from DePiero’s

work [59]; 7) for the last type of user requirement (interpretation), we will show how we

satisfy it with customized layout algorithms and visual styles in our use cases.

Prior provenance visualization tends to deal with small graphs, and seldom addresses

the issue of graph layout and graph matching. The visualization tool we developed can

satisfy different types of user requirements, and can handle large-scale visualization with

customized layout algorithm and visual styles.
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3.3.2 Provenance Visualization Techniques

The goal of provenance visualization is to help a user navigate provenance. A researcher

brings a mental map of what is going on in an experiment, and uses this model to interact

with and explore the provenance. We develop a number of visualization techniques that we

discuss here. The techniques are implemented into a plugin to Cytoscape, an open source

software platform for complex network analysis and visualization. Cytoscape is appropri-

ate for provenance visualization because of its support for detail and overlaying visualiza-

tions with additional annotations. The Cytoscape plugin can generate provenance graph

visualization by interacting with the Karma provenance server [147] to extract provenance

in the form of a graph as XML.

Incremental Loading

Provenance can be very large, not only because a lineage record can be long but because

OPM v1.1 [117] supports key value annotations to provenance graphs, the latter of which

opens the opportunity for capture of extended information about execution or object cre-

ation. To better support visualizations over large graphs, we support reads of provenance

graph in XML format with and without annotations. Annotations can be separately queried

through the Karma query API. That is, the Karma system generates an OPM compliant

XML file that does not have annotations to process or artifacts, and if the visualization tool

loads this XML file, it will also establish a background connection to the Karma server,

to retrieve annotations when some process or artifact is selected during navigation. This

incremental loading allows loading of annotations on demand.

During the interactive visualization, a user may change the graph and the node (edge)
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attribute, so the visualization tool also supports saving provenance data from Cytoscape to

an OPM compliant XML file.

Customized Layout

Layout is a key element to increasing researchers’ understanding of large-scale network

data provenance. Layout depends on both the nature of provenance data and the user re-

quirement. In fact, it often takes seeing multiple layouts for a researcher to judge which is

most meaningful. Cytoscape offers several default layouts that are meaningful for prove-

nance visualization. For example, its hierarchical layout organizes a provenance graph into

layers based on relationship such that first causes appear at the top of a visualization and

final effects appear at the bottom.

In addition, we designed several customized layouts including:

1. an extended hierarchical layout algorithm that sorts sibling nodes by their time order;

2. a group of layout algorithms specifically for computer network provenance;

3. a string-embed based layout algorithm for provenance data like a history chain.

Visual Style

One of Cytoscape’s strengths is its ability to allow a user to encode any attribute of data

(e.g., name, type, degree, weight, and expression data) as a visual property (such as color,

size, transparency, or font type). A set of these encoded or mapped attributes is called a

Visual Style. We create a default visual style for provenance graphs, using green to color

processes, magenta for artifacts, red for agents, and different colors and arrow styles for

different types of edges.
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Figure 3.4 shows that a special layout algorithm and visual style for computer network

provenance can enable side-by-side performance comparison of different experiment con-

figurations.

Abstract Views

The complexity of the provenance relationships can result in graphs that overwhelm the

researcher. We identify two approaches to abstracting out complexity, including:

1. clustering neighbor nodes;

2. process/artifact elimination.

Neighbor nodes can be clustered and reduced to a single node by an action in our Cy-

toscape plugin. This is useful when exploring a provenance graph and could be applied

to deal with graphs having a large number of artifact nodes. Figure 3.5 shows the abstract

view of the provenance generated from breadth first search experiment under the hierar-

chical layout. The experiment uses Twister MapReduce [63] and runs on PlanetLab [49],

and it has one master node and ten slave nodes. However, the provenance visualization of

this experiment has far too many artifact nodes connected to an extremely small number of

process nodes. By clustering data artifacts, we are able to see where and how each process

ran, and what output (subgraph) was generated. A deeper investigation of the results shown

in Figure 3.5 reveals that the last (rightmost) BFS process (“run BFS”) was not triggered

successfully, and the application as a whole failed without output.

OPM v1.1 introduces two causal dependencies “was triggered by” and “was derived

from” as summary edges for a process view (where an intermediary artifact was unknown)

and a data view (where an intermediary process was unknown), respectively. It also pro-

vides completion rules that can be used to transform a graph between a complete view, a
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Figure 3.4: Capture provenance of DDoS Attacks Exploiting WiMAX System Parameters

by researchers at Clemson [58]. Experiment uses 100 subscribers with varied configura-

tions of 6 parameters running in a simulator. The Base Station (BS) is displayed at the

center, and all Subscriber Stations (SS) are displayed in the large circle, surrounded by a

small circle of their dropped packets (red) and/or received packets (blue). Normal user

SS is connected with yellow edge, while attacker SS is linked via red edge. The layout

algorithm is based on the geographical locations of WiMAX stations and it organizes the

massive amount of nodes in a meaningful way. The visual style (different colors of nodes

and edges) allows the audience to capture the information in an intuitive and visual way.

By comparing the visualizations side by side, we can easily tell that the number of packets

dropped increases as frame duration increases from 0.004s to 0.02s.
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Figure 3.5: Abstract view of a breadth first search application. Subgraph nodes (shown

as two octagons at bottom) result from clustering neighbor nodes; a user can navigate into

subgraphs by clicking on them. In this way, the number of nodes and the complexity of

graph are both reduced so that the most important information is revealed.

process view, and a data view. We developed two techniques of transformation based on

completion rules, namely, process elimination and artifact elimination. Process elimination

eliminates all process nodes that link two artifact nodes with an outgoing edge “used” and

an incoming edge “was generated by”. The process node is replaced by a new edge “was

derived from” (see Figure 3.7). Artifact elimination eliminates an artifact node in the case

where the outgoing edge of an artifact represents the relationship “was generated by” and

its incoming edge represents the relationship “used”. The artifact will be replaced by a new

edge between these two process nodes that represents the relationship “was triggered by”

(see Figure 3.8).

The same process elimination technology can be applied to the W3C PROV model:

we can replace the process nodes connecting two artifact nodes that have an outgoing edge

“used” and an incoming edge “was generated by” with an edge “was derived from.” For ex-
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Figure 3.6: Complete provenance for a breadth-first search application, before the process

elimination in Figure 3.7 and the artifact elimination in Figure 3.8.

ample, we can provide a data-dependency-only view when visualizing forward provenance

by utilizing the process elimination technique (see Figure 3.10).

Graph Comparison

Comparing two provenance graphs is a key piece of provenance analysis. We improve and

implement the Direct Classification of node Attendance (DCA) algorithm to compare two

provenance graphs by finding matched subgraphs and unmatched nodes.

Direct classification of node Attendance (DCA) finds isomorphisms between graphs

and subgraphs [59]. The method first evaluates evidence describing the likelihood of a

node’s predicted attendance in another graph. The evidence is based on measures that are

local to each node, including connectivity and the attributes of adjacent nodes and edges. It

then finds a node-to-node mapping and reorders nodes to permit a direct comparison to be

made between the resultant graphs. The algorithm is of polynomial order. It yields approx-

imate results, maintaining a performance level for subgraph isomorphisms at or above 95%
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Figure 3.7: Breadth-first search application after process elimination. Process nodes be-

tween artifact nodes in Figure 3.6 are now replaced by new edges “was derived from.”

This can eliminate the unwanted process nodes without misrepresenting the provenance

information.

under a wide variety of conditions and with varying levels of noise. The performance on the

full size comparisons associated with graph isomorphisms has been found to be 100/100,

also under a variety of conditions [59]. However, the result of the original DCA algorithm

depends on the input order. That is, the result of matching graph A to graph B is different

from matching B to A. We improve the DCA algorithm by making the matching process

consistent regardless of the input order. Besides, the original algorithm forms only one pair

of matched subgraphs and is purely based on values of node attendance. We extend that to

form multiple pairs of matched subgraphs and to consider the nodes’ topology during the

formation.

Algorithm 1 is the improved version of the DCA algorithm. Steps 4 to 8 are the changes

we made from the original DCA algorithm to make the result of step 19 independent of in-

put order and more reasonable. Considering an extreme case in the original DCA algorithm,
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Algorithm 1 Algorithm that finds multiple pairs of matched subgraphs between two prove-

nance graphs
1: function MATCH(G1, G2)

2: for nodes ni in G1 do . Compare each pair of nodes in each graph

3: for nodes nj in G2 do

4: if number of incident edges: ni < nj then . Always find

best matched edges and adjacent nodes for node ni or nj with larger degree, but the number of

matches equals to the smaller degree of ni, nj

5: n1= ni and n2 = nj

6: else

7: n1= nj and n2 = ni

8: end if

9: for edge e1k incident to n1 do . Compare edges incident to current nodes

10: for edge e2l incident to n2 do

11: Compare connectivity along e1k with e2l

12: Compare edge properties of e1k with e2l

13: Compare adjacent nodes’ properties of n1 with n2

14: Combine results of step 11 to 13

15: end for

16: Save comparison of best matched edges and adjacent nodes

17: end for

18: Compare node properties of ni with nj . Compare current nodes

19: Combine result of step 16 and 18 to form attendance rating of ni to nj , namely

attendance(ni, nj) . Find similarity of current nodes

20: end for

21: end for

48



Algorithm 1 Algorithm that finds multiple pairs of matched subgraphs between two prove-

nance graphs
22: Let list of matched node-pair: S ← empty

23: loop . Find all matchings

24: Let list of current matched node-pair: L← empty

25: Let peak attendance A1 ← 0

26: Let best matched node-pair P ← null . Find the node-pair with peak attendance A1,

based on which to grow a new matched subgraph

27: for nodes ni in G1 do

28: for nodes nj in G2 do

29: if ni, nj not exist in S and A1 <attendance(ni, nj) then

30: A1 ← attendance(ni, nj)

31: Let P ←< ni, nj >

32: end if

33: end for

34: end for

35: if A1 >THRESHOLD then . Add the best matched node-pair into L

36: add node-pair P into L

37: add node-pair P into S

38: else

39: break

40: end if
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Algorithm 1 Algorithm that finds multiple pairs of matched subgraphs between two prove-

nance graphs
41: loop . Grow the subgraph

42: for node-pair < ni, nj > in L do

43: for node ni
k connected to ni do

44: Let peak attendance A2 ← 0

45: for node nj
l connected to nj do

46: if < ni
k, n

j
l > not exist in S and A2 <attendance(ni

k, n
j
l ) then

47: A2 ← attendance(ni
k, n

j
l )

48: end if

49: end for

50: end for

51: if A2 >THRESHOLD then

52: add < ni
k , nj

l > into L

53: add < ni
k , nj

l > into S

54: else

55: break

56: end if

57: end for

58: end loop

59: end loop

60: return S

61: end function
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Figure 3.8: Breadth-first search application after artifact elimination. Artifact nodes be-

tween process nodes in Figure 3.6 are now replaced by new edges “was triggered by.” This

can eliminate the unwanted artifact nodes without misrepresenting the provenance infor-

mation.

where node n1 in step 9 could have many edges while node n2 has only one, then step 16

will be executed many times in which the only edge of n2 is always matched. In contrast,

our improved version guarantees that n1 has less or equal number of edges than n2, and

the number of matched edges in step 16 always equals to the smaller degree of n1 and n2;

what’s more, the unmatched edges of n1 or n2 are also considered when combining the

results in step 19. Step 22 to 60 in our implementation is a greedy algorithm that takes the

node attendance as well as its topology into consideration while forming subgraphs.

3.4 Provenance Datasets

Finally, we introduce the datasets to be used in this thesis, which include a NASA AMSR-E

provenance archive dataset [106], a large 10GB semi-synthetic provenance database [37],
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and the provenance we captured from ABM. The Open Provenance Model (OPM) is used in

the NASA AMSR-E provenance archive dataset and the 10GB semi-synthetic provenance

database, while the W3C PROV is used in our agent-based modeling provenance dataset.

These provenance datasets cover two major categories of provenance in eScience: work-

flow and simulation. In addition, we select the AMSR-E dataset since it has large for-

ward/backward provenance graphs generated from daily and monthly workflows, so that it

can demonstrate the capability of our visualization tool; we choose the 10GB provenance

database because of its large volumes of workflow provenance with failure patterns that can

be used to test the performance of data mining tasks on our proposed temporal representa-

tions; the provenance data we captured from agent-based simulation is at an unprecedented

scale that is too big to be stored and processed in the traditional persistent approach.

3.4.1 Provenance Captured from Agent-based Simulation

As we described earlier, we capture the provenance from the NetLogo mode “wolf-sheep-

predation” and a large scale agricultural decision making model. Both of the two agent-

based models can run continuously for a very long time (hundreds of iterations). To give a

sense of the scale of provenance traces generated from the “wolf-sheep-predation” model,

we run it for up to 400 iterations and collect the raw provenance traces from its log file.

Table 3.2 shows the size of the provenance log and the agent population after 10, 50, 100,

etc. iterations. The size of provenance captured depends on both the number of iterations

and the size of agent population. The provenance size increases dramatically at 400 itera-

tions, which is because the wolves almost die out and the number of sheep has increased

exponentially at 400 iterations. For the agricultural decision making model on Monze Dis-

trict Zambia, we have about 53 thousand household agents in total, and running that for 12
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Table 3.2: Size of provenance log after certain number of iterations

Number of iterations 10 50 100 200 300 400

Number of sheep 129 338 170 38 2,413 112,402

Number of wolves 63 82 349 1 1 116

Log size 523KB 3.63MB 12.1MB 20.4MB 35.3MB 773MB

Number of traces 20,793 144,590 475,061 799,677 1,351,128 27,860,316

iterations (1 growing season/year) generates 66.1MB of provenance log.

This means that, for simulations that have a large population of agents or need to

run over a long period of time, the size of provenance traces captured using our method

can be overwhelming. Besides, the sizes mentioned above are for the raw provenance

traces. When we extract the provenance graph (8,855 nodes and 18,330 edges) from

the 10-iteration “wolf-sheep-predation” log file that is only 523KB and ingest it into a

Neo4J [1] graph database, it takes about 17mins in a machine with 8GB memory and a

Core i5 2.53GHz dual core CPU. This also suggests that the full recovery of provenance

data from logs is intractable for Big Data provenance.

3.4.2 NASA AMSR-E Provenance Archive Dataset

A real life dataset that we experiment with is the NASA AMSR-E provenance archive

dataset [106]. The University of Alabama in Huntsville processes data from the NASA

AMSR-E instrument, and the Karma project at Indiana University instrumented the ingest

processing system and captured provenance for 3,890 runs for period Sept 2 – Oct 4, 2011.

There are six types of daily workflows, one five-day workflow, one weekly workflow, and

three monthly workflows in that dataset. The smallest provenance graph is the Daily Rain

graph that when represented as a XML is 11KB, and the largest is the Monthly Rain graph
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Figure 3.9: Visualization of the provenance of a sea ice daily workflow in the imagery

ingest pipeline. The magenta nodes are data products and green nodes are process of

the workflow. The magenta nodes on the outside circle are data artifacts consumed by

the sea ice daily workflow (“Tb” stands for “temperature brightness,” and “SeaIce6km,”

“SeaIce12km” and “SeaIc25km” are the satellite images of different resolutions). The

magenta nodes on the inside circle are output data generated by the services that are run-

ning different algorithms in the workflow (i.e. the green node “view amsr day” and “hdf-

browse”). The workflow controller is captured as the process “daily” (green node). An

audience can look at this visualization to understand and examine the execution of the

workflow, and the data products. If an audience finds one data product particularly interest-

ing, he/she can perform a backward of forward provenance query to start an investigation.
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Figure 3.10: Visualization of the forward provenance of an input data to a sea ice daily

workflow. The input data is a magenta node in the top right corner, and the rest magenta

nodes are all the data artifacts that depend on it. The forward provenance contains all the

data artifacts that were influenced by that input data, thus it can be used to study the error

propagation. While the complete forward provenance includes the processes as well, we

apply the “process elimination” technique to eliminate the processes but still display the

correct dependencies between data artifacts. This filters out the unnecessary information

to make the visualization more concise. This visualization is particularly useful when the

input data is erroneous and we want to find out its impact.
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Figure 3.11: Backward provenance visualized in a history chain shows the relationship

between daily products (each clover flower in the clover leaf chain) and final monthly

products at the left-end. The connected daily provenance graphs (clover flowers) reflect the

fact that in creating a daily sea ice product, a moving window mask of prior days is used

to locate the boundary between land ice and sea ice. If we have a problem in the monthly

product, we could use this chain to examine where the root cause is.
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that is 9MB. The total size of AMSR-E dataset as XML files is 83.0MB.

The NASA AMSR-E provenance archive dataset is stored in a Karma server. We can

use our visualization tool to retrieve and visualize the provenance of a daily workflow

(Figure 3.9), the forward provenance of an input data (Figure 3.10), and the backward

provenance of a monthly output (Figure 3.10).

3.4.3 10GB Noisy Provenance Database

The 10GB provenance database created at Indiana University is generated from real world

workflows using the WORKEM emulator [127], with known failure patterns [37]. The

database is populated with the provenance of approximately 48,000 workflow execution in-

stances, modeled on six real workflows: LEAD North American Mesocale (LEAD NAM)

forecast (weather), SCOOP ADCIRC (coastline), NCFS (ocean), Gene2Life (bio), Anima-

tion (CS) and MotifNetwork (bio). Some of the workflows are small, having a few nodes

and edges, while others like the Motif workflow have a few hundred nodes and edges. Each

workflow type has approximately 2000 instances per failure mode, with failure modes in-

cluding random dropped messages (a task completes but the notification is not successfully

transmitted) and workflows that fail. We use the Karma provenance tool [147] to export the

10GB provenance dataset into OPM compliant XML strings. This results in a 2.1GB file

with 47912 lines, each an OPM graph.

Since we want to apply the association rules onto the 10GB provenance dataset, there

is an issue that must be dealt with beforehand. Despite failed workflows and dropped

messages modeled into the semi-synthetic database, there are few significant structural

variations amongst the workflow instances. In order to provide association rules that re-

flect meaningful variations, we manually introduce two variants of NAM weather forecast
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workflow (see Figure 3.12).

Figure 3.12: Two variants introduced to association rules mining: (a) introduces two in-

termediate data products generated for the last processing step, which leads to two final

outputs; (b) has one of the two prerequisite files missing, which leads to the intermediate

processes unable to continue, resulting in a failed execution.
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Chapter 4

Provenance Filtering and Efficient Offline Retrieval

Capturing the provenance of complex system behaviors in agent-based simulation requires

collecting information about the execution of every statement in the model, which can gen-

erate huge amounts of fine-grained provenance that poses a big challenge for storage and

subsequent querying. Chapter 3 gives an example of how quickly the size of provenance

captured from NetLogo can accrue as the number of simulations and agents increases. In

addition, Pignotti et al. [124] discuss typical queries over a provenance record in ABM, and

they also find that as the number of simulation runs and agents in the simulation increases,

these queries become exponentially complex.

In this chapter, we take a different approach to dealing with the Big Data provenance,

that is to assume the query is known beforehand, and then we selectively preserve the

provenance traces during capture and process the traces on demand during query execution.

4.1 Provenance Filter

To reduce the overhead and simplify subsequent querying, we develop filters that apply

intelligence to reduce provenance before it is written to log tiles. Some of the filters abstract

statement level traces and others drop unrelated traces and turn off the tracing once the

59



capture finishes. The filters can be categorized into two types: aggregation and filtering.

4.1.1 Aggregation

Keeping track of fine-grained provenance provides a detailed view of the dependencies

between entities in a simulation, but at the expense of additional storage and processing

overhead. We can extract the fine-grained provenance from provenance traces and aggre-

gate them into high level provenance records.

For example, one of the interactions between sheep agents and wolf agents in the model

“wolf-sheep-predator” is that a wolf agent acquires reference to a sheep agent and then kills

it. We can aggregate these two steps into a single activity “kill”, or to a generic relationship

“interact with.” We propose an aggregation filter that uses the generic relationship “inter-

act with” to represent all the complex interactions between agents, since identifying less

generic activities like “kill” is more complicated and may need user effort. This aggrega-

tion filter is inspired by the interest of domain scientist in studying the interactions between

agents in simulation, and we can visualize its output as a social network (see Figure 4.1 for

an example). We implement this filter by buffering all provenance traces within an iteration

at runtime and then extracting and writing the abstract provenance to the log file.

4.1.2 Filtering

To answer the forward and backward provenance query, we propose filtering that computes

a forward provenance slice or backward provenance slice for a given variable. Our NetLogo

extension (Section 3.2.3) captures provenance traces of all iterations by default, but we

also develop one filter that collects the provenance traces from only a single iteration. In

this section, we introduce and describe the use cases and implementations of the forward,
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Figure 4.1: An example visualization of interactions between agents in “wolf-sheep-

predation”. Edges represent interactions between vertices (agents). Edges and vertices

are partitioned into strongly (or weakly) connected communities and are dyed accordingly.

The biggest community in the center has the observer (a manager agent) and the agents that

have no other interactions. Each of the smaller communities far from the center has one

wolf agent and its preys
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backward, and single-iteration filters.

The backward provenance slice includes the processes, input data, intermediate data

and agents that are involved in the generation of an output data. This can help user to better

understand why a particular result is achieved and can be used for debugging. Figure 4.2 is

the visualization of an example backward provenance of the NetLogo mode “wolf-sheep-

predation,” from which we can see how a wolf agent’s energy level changes during the sim-

ulation. It is usually difficult to decide the backward provenance slice for a variable before

the simulation terminates, this is because the target variable can be directly or indirectly

affected by any current data/process in the future. However, by observing the backward

provenance we can get from the provenance traces of a finished simulation, we find that it

is more like a linear structure rather than an upside down tree – it consists of information

about how a given variable evolves as processes running on the same agent to which the

variable belongs. So we implement an imprecise filter that drops all provenance traces that

are not associated with the agent to which the target variable belongs.

The forward provenance slice of one input data tells information about the future data

products that are derived from the input data. It can be used to understand the impact

of an input parameter, or to control the error propagation if an input data is corrupted.

Figure 4.3 is the visualization of an example forward provenance of a parameter named

“wolf-reproduce”. Note that each “was derived from” relationship means that the target

entity was used in the generation of the source entity, and we do not consider any other

indirect dependency in this way. We implement the forward provenance filter by keeping

track of all data products that are derived from the input data or the previously derived data.

The last filter we propose keeps the execution traces only for a single iteration, which is

inspired by the user’s interest in studying the various agent behaviors and the interactions
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Figure 4.2: The backward provenance of a data product “energy” of agent “wolf 130”. We

create a different visual styles for W3C PROV – the orange triangles represent agents, the

blue rectangles represent processes and the yellow circles represent data products. This

visualization could be used for debugging. It is clear to see how the different behaviors

of a wolf agent affect its level of energy: there are three types of processes involved in

the generation –“go”, “catch-sheep” and “wolf-reproduce”; the agent variable “energy” is

reduced by 1 each time the “observer” agent (global manager) invokes the “go” procedure

(which means one iteration); the agent variable “energy” increases by the value of “wolf-

gain-from-food” after catching sheep agent “sheep 26”; the “energy” is reduced from 46 to

23 after the process “wolf -reproduce” took place.
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Figure 4.3: The forward provenance of global variable “wolf-reproduce.”

between them. By recovering and visualizing the provenance from provenance traces of

a single iteration, we can discover the different agent behavior patterns. Figure 4.4 is an

example visualization that shows six different agent behaviors within an iteration. The

implementation of the single-iteration provenance filter is simple. We ask the user to start

the filtering by entering the name of the entry procedure for the next iteration (like the

procedure “go” in the model “wolf-sheep-predator”). After the simulation exits the entry

procedure, the filter shuts down the tracing to minimize the overhead.

In sum, we have proposed two types of filters and included visualizations of the prove-

nance computed from the output provenance traces of these filters. We examine their per-

formance in Section 4.3.
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Figure 4.4: An example single-iteration provenance of the “wolf-sheep-predation” model.

It shows six different agent behaviors within an iteration: 1) the global agent “observer”

invokes “display-labels” on each wolf and sheep agent; 2) the wolf agents invoke the proce-

dure “go”, “move” and “death”; 3) the wolf agents invoke the procedure “wolf-reproduce”

in addition to the procedure “go”, “move” and “death”; 4) the sheep agents invoke the

procedure “go”, “move” and “death”; 5) the sheep agents invoke the procedure “sheep-

reproduce” in addition to the procedure “go”, “move” and “death”; 6) the wolf agents catch

sheep agents via the procedure “catch-sheep”.

4.2 Non-preprocessing Provenance Slicing

The existing method that captures provenance from program logs needs to recover all the

entities and dependencies from the logs before being able to answer queries [9]. However,

our empirical study indicates that this can be infeasible for large provenance graph. For

example, the log file that has the 20,793 provenance traces from a 10-iteration simulation

of the model “wolf-sheep-predation” is only 523KB (see Chapter 3 for more information).

However, recovering the full provenance (that has 8,855 nodes and 18,330 edges) from the

10-iteration log file and storing it into the Neo4J [1] graph database takes 1,035,845ms
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(about 17 mins) in a machine with 8GB memory and Core i5 2.53GHz dual core CPU.

However, we can actually avoid recovering and maintaining provenance entities and

dependencies that are unnecessary for answering a specific query. To achieve this, we

propose a query technique we call non-preprocessing (NP) provenance slicing that is de-

rived from Zhang’s no preprocessing (NP) program slicing algorithm [166]. The non-

preprocessing (NP) provenance slicing technique employs demand driven analysis of the

provenance traces to recover dependency provenance. When a provenance query begins we

traverse the provenance traces forward (or backward) to recover the dynamic dependencies

required for the provenance slice computation. For example, if we need the provenance

slice for the final value of some variable v (backward provenance), we traverse the execu-

tion traces backward till the first access of the variable was found. If that value of v depends

on another variable w (see possible dependencies in Table 3.2.2 in Chapter 3), we resume

the traversal to also calculate the provenance slice of w.

In essence this algorithm performs partial preprocessing for extracting entities, activ-

ities and dependencies relevant to a provenance query. It is possible that two different

querying requests involve common information. In such a situation, the non-preprocessing

(NP) provenance slicing algorithm will recover the common information from the execu-

tion trace during both provenance slice computations. To avoid this repetitive work we can

cache the recovered entities, activities and dependencies. Therefore at any given point in

time, all entities, activities and dependencies that have been computed so far can be found

in the cache. Similar to Zhang’s definition, we also define two versions of this demand

driven algorithm, that is, without caching and with caching, as non-preprocessing without

caching (NPwoC) provenance slicing and non-preprocessing with caching (NPwC) prove-

nance slicing. We evaluate the performance of NPwoC provenance slicing in Section 4.3
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Table 4.1: Evaluation of storage cost

Number of Iterations 10 50 100 200 300 400

full provenance capture 523KB 3.63MB 12.1MB 20.4MB 35.3MB 773MB

aggregation filter 8.22KB 30.9KB 100KB 140KB 230KB 4.53MB

backward provenance filter 5.36KB 18.1KB 18.1KB 18.1KB 18.1KB 18.1KB

forward provenance filter 13.9KB 163KB 925KB 2.08MB 2.10MB 2.75MB

single-iteration filter 46.8KB 45.2KB 45.2KB 45.2KB 45.2KB 45.2KB

and find that it is faster than traversing the pre-recovered full provenance graph.

4.3 Performance Evaluation

In this section, we first evaluate the proposed filters by comparing the performance of

provenance capture with these filters against the performance of a full provenance capture

without any filter.

Table 4.1 compares the size of provenance logs generated using different filters with the

size of a full provenance log. We can see that all filters can dramatically reduce the storage

cost. While the provenance log generated from the single-iteration filter remains the same

(after the capture finishes), the logs generated from other provenance filters get larger as

simulation goes on: the log size from aggregation filter keeps increasing since there are

more and more agents; the log size from backward provenance filter keeps increasing until

the target agent dies; the log size from forward provenance filter does not increase much

after 200 iterations since we were tracing the usage of the global variable “wolf-reproduce”

by wolf agents and there are few wolf agents after 200 iterations.

Figure 4.5 shows the average time of provenance capture with different filters and with-

out any filter (the full provenance capture). It shows that while the single-iteration filter can
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significantly reduce the time overhead, the backward (history) provenance filter doesn’t re-

duce the time overhead much, and the forward provenance filter and aggregation filter have

even higher overhead than the full provenance capture. However, we argue that this can

be optimized by detaching the filtering from the tracing and the model execution using a

messaging bus. In this way, the “writing time” and the additional computation time are

replaced with less communication time.

Figure 4.5: Evaluation of capture time cost.

We also evaluate the performance of proposed non-preprocessing (NP) provenance slic-

ing technique (the NPwoC version) with various query requests (Table 4.2). The non-

preprocessing (NP) provenance slicing technique can query either on the full provenance

traces or on the filtered provenance traces, and we measure both performance to demon-

strate that the filtered provenance traces of reduced size can further improve the querying

performance. Finally, we compare the performance of the non-preprocessing (NP) prove-

nance slicing technique with the performance of traversing pre-recovered full provenance

in a Neo4j graph database (using Neo4j Java API).
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Table 4.2: Evaluation of query time cost

Same query

issued to the full

provenance in

Neo4j (ms)a

NP Provenance

Slicing on full

provenance traces

(ms)

NP Provenance

Slicing on filtered

provenance traces

(ms)

Aggregation filter 6,046 2,565 2,025

Backward provenance filter 3,043 1,964 1,823

Forward provenance filter 3,127 2093 1,785

Single-iteration filter 6,059 3,819 3,750
aNote that the construction of the full provenance database costs 1,035,845ms (about 17 min)

beforehand

4.4 Summary

In this chapter, we assume that the query requests are known beforehand and use filtering

techniques accordingly to reduce the amount of provenance to capture from agent-based

simulations. We also propose the non-preprocessing (NP) provenance slicing techniques

that can directly retrieve provenance information from raw probe traces to avoid recovering

and maintaining provenance entities and dependencies that are irrelevant to the query re-

quest. The experimental evaluation shows that the proposed filters and non-preprocessing

(NP) provenance slicing technique can work together to dramatically reduce the demands

on persistent storage and simplify the subsequent querying.
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Chapter 5

Online Processing of Streaming Provenance

Agent Based Modeling (ABM) is powerful because of its ability of representing heteroge-

neous agents and their interactions so that it can capture emergent phenomena. In Chapter 3

we showed that data provenance in ABM can capture the cause-effect relations to help un-

derstanding the complex process and to enable the analysis of internal dynamics that were

previously hidden as a black box. However, it is also shown in Chapter 3 that the amount

of provenance captured from simulations where there are many interacting components

running over a long period of time could be huge. The traditional approach that stores all

the provenance data and processes it offline requires lots of resources that are unnecessary.

While we can apply filters to provenance capture (Chapter 4), this requires knowing the

query beforehand to determine which information can be discarded. This is inapplicable

for backward provenance queries that are usually on demand. For example, scientists may

find an abnormal agent state (or behavior) when monitoring the simulation run, for which

they can issue a backward provenance query to find out the root causes.

Scientific experiments like agent-based simulation usually run over the course of hours

or days. Operations like debugging and model calibration are usually performed when the

experiment fails/finishes, often need to repeat the experiment multiple times, and thus are
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very time consuming. We have demonstrated that provenance data can be used for de-

bugging [41, 44] and model analysis [43], and since provenance captures the dependencies

between input parameters and intermediate status that does not match real data, it is also

suitable for model calibration. The challenge, however, is to overcome storing and wading

through vast volumes of information by processing the provenance data in-motion.

One approach to handling provenance data in-motion is to process it continuously in

the data stream model where the input is defined as a stream of data. Algorithms in

this model must process the input stream in the order it arrives while using only a lim-

ited amount of memory [18]. Work exists on capturing provenance data from streaming

systems [54, 113, 136, 154–156] and [135] even tracks provenance assertions on-the-fly.

However, provenance is modeled as a graph, and most of the work on graph streams has

occurred in the last decade and focuses on the semi-streaming model [65, 121]. In this

model the data stream algorithm is permitted O(npolylogn) space where n is the number

of nodes in the graph thus it does not suit for continuous processing. This is because most

problems are provably intractable if the available space is sub-linear in n, whereas many

problems become feasible once there is memory roughly proportional to the number of

nodes in the graph.

Since a provenance graph is a directed property graph with temporal relationships,

while a general graph stream is often considered to consist of undirected edges arriving

in a random-order [111], a provenance stream could consist of edges and nodes with prop-

erties following a partial order. In this section, we distinguish a provenance stream from

the general graph stream by emphasizing that partial order. Based on that we developed

an algorithm for backward query over the provenance stream that has a space complexity

limited by the maximum number of data items that the program can access at any given
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time during its execution, which is limited by the total number of variables declared in an

agent-based model.

To demonstrate the feasibility of our proposed approach, we extended our automatic

provenance capture framework mentioned in Chapter 3 to capture provenance streams

from multiple running NetLogo [160] simulations and ingest them into the messaging sys-

tem Apache Kafka [94]. We then implemented the proposed algorithm using the stream

processing platform Apache Spark Streaming [165] to enable the parameter readjustment

and mining analysis for agent-based simulations. The performance evaluation shows high

throughput, low latency and reasonable scalability.

Finally, we discuss various applications on an environmental agent-based model that

can be developed within our stream processing framework. That includes parameter cali-

bration through online monitoring and steering [140], and simulation analysis through time

series clustering and association rules mining.

The remainder of the chapter is organized as follows: Section 5.1 defines the stream

model of dependency provenance. Section 5.2 gives an overview of the framework, while

Section 5.3 describes its stream provenance capture component and Section 5.4 describes

its stream processing component. Section 5.5 describes the application of this framework

on the Zambia food security agent-based model and its performance evaluation. Section 5.6

discusses the various applications that can be developed within our framework.

5.1 Stream Model of Provenance Graph

An agent-based model (ABM) is a simulation of distributed decision-makers (agents) who

interact through prescribed rules. We demonstrated in Chapter 3 that the dependency prove-

nance in ABM can explain how and why the output data depends on the input data, and
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can yield insights into cause-effect relations among system behaviors. The concept of de-

pendency provenance [45, 46] is based on the dependency analysis techniques used in

program slicing, which is different from “where-provenance” and “data lineage”, but simi-

lar to “how-provenance” or “why-provenance” [32] in that it identifies a data slice showing

the input data relevant to the output data. In this chapter, we focus on the dependency

provenance that consists of all the data products and their dependencies within an ABM.

Figure 5.1: Illustration of the provenance stream model.

We use the same mapping to W3C PROV as in [43] to express the dependency prove-

nance in ABM. PROV models provenance as a static graph, but the provenance capture

can be viewed as a process of appending node/edge to the graph in their generation order.

While a general graph can be streamed into a sequence of undirected edges in random-

order, a provenance graph could be represented as a sequence of directed edges and nodes
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following the order of node/edge generation (see Figure 5.1 for an example).

Below, we propose a stream model of provenance that only captures the data products

and their dependencies. We denote a dependency provenance graph as G = (V,E,A),

where V = {v1, v2, ..., vn} is the set of data products (nodes); E = {e1, e2, ..., em} is

the set of dependency relationships (edges) in which an edge e = 〈vi, vj〉 specifies that vi

depends on vj; A(v) = {a1, a2, ...} represents an arbitrary number of attributes of v.

Definition A stream of dependency provenance consists of a sequence of time ordered

elements:

S = 〈p1, p2, ..., pm+n〉 (5.1)

where p ::= v|e is either a provenance edge or a provenance node, and timestamp(pn)

< timestamp(pn+1).

The provenance stream is append only and is potentially unbounded in size. Once an

element of the stream has been processed it is discarded, and a query can only be evaluated

over the sliding window (with length w) of recently processed elements (at time t):

W = {et−w+1, ..., et} (5.2)

However, unlike the general data stream, a provenance stream has unique properties

that allow for the stream processing with limited resources:

1. There is temporal order between nodes that are connected by edges in the stream. For

each edge in the stream, the sink node should be generated before the source node.

We assume that this temporal order can be preserved during the provenance capture

and transfer (in our framework this is guaranteed by the Kafka per-partition ordering),

and we describe the first property of provenance stream as below:
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Property For any edge e = 〈vi, vj〉, timestamp(vj) < timestamp(vi)

2. All of the dependencies (outgoing edges) contributing to the generation of a data item

(source node) must be formed by the time that the data is generated. Due to differ-

ent implementations in provenance capture and different definitions of provenance

edge/node in provenance modeling, the outgoing edges of a node can come before or

after the node in the provenance stream. However, no out-going (upstream) edges of

an existing node should be seen in the downstream when we see an in-coming edge

of that node.

Property For any two edges el = 〈vi, vj〉 and em = 〈vk, vi〉 that share a common

node vi, timestamp(el) < timestamp(em)

Based on these two properties, we are able to process the provenance stream using a

standard stream processing approach.

5.2 System Architecture

We develop a scalable framework to support the capture and processing of live provenance

streams generated from simulations running in NetLogo. Figure 5.2 is an overview of its

two major components. The provenance stream capture component captures live prove-

nance streams from agent-based simulations and stores them into a Kafka messaging clus-

ter. The provenance stream processing component is built in a Spark Streaming cluster to

support query and mining operations. The details of them are illustrated in the following

sections.
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Figure 5.2: Architecture of the streaming provenance capture and processing framework.

5.3 Provenance Stream Capture

In Chapter 3 we captured the provenance traces of a NetLogo simulation through the pro-

cess of adding probes into the model’s source code. We developed a NetLogo extension

that collects the provenance traces from probes and the context information from the model

and then combines them into provenance records to be saved and processed offline. In this

chapter, we extend the NetLogo extension to send the provenance records directly to a

converter that converts provenance records into a live stream of provenance nodes/edges

(in JSON format), which are then forwarded to the messaging system and processed in

real-time. The new provenance capture mechanism is illustrated in Figure 5.3.

Note that each provenance hub uses multi-threading to receive probe traces from mul-

tiple simulations and to send them to Apache Kafka [94], which is a distributed publish-

subscribe messaging system that is designed to be fast, scalable, and durable. The prove-

nance streams from different simulations can be separated by keys (unique keys can be

created by combining the hub id and the stream number within the hub). Each provenance

hub can be configured either to send its streams into different partitions of one Kafka topic
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Figure 5.3: Provenance capture from multiple running NetLogo simulations.

or into different Kafka topics. This flexibility in organizing streams by topics and parti-

tions is used to improve the throughput and the level of parallelism of stream processing in

Spark Streaming (see Section 5.5). For agent-based simulations distributed across multiple

machines, we can deploy one or more provenance hubs on each machine.

5.4 Provenance Stream Processing

5.4.1 Stream Processing Algorithm to Support Backward Provenance Query

Now we present our Backward Dependency Matrix (BDM) algorithm, which maintains a

dependency matrix to answer the backward provenance query for the most recent prove-

nance nodes (i.e., data products) in the stream. Given the temporal order we defined in

Section 5.1, we can use a dynamic matrix to store and calculate the dependencies between
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all provenance nodes and the input/global parameters. So that for a newly arriving prove-

nance node, we can use the matrix to find the input/global parameters on which it depends.

Figure 5.4 illustrates the dynamic matrix, whose rows and columns can be added and re-

moved on demand. The rows in the matrix correspond to provenance nodes (data products),

and the columns corresponds to input/global parameters. A cell of value 1 in the matrix

means a backward dependency from its row to its column. Each time a new provenance

edge e = 〈vi, vj〉 arrives, we extract the backward dependencies of vj (value 1s in its row),

and add them into the backward dependencies of vi. The temporal order guarantees that all

the backward dependencies of vj exist already. In this way, we can calculate the backward

dependencies for all provenance nodes, with the matrix size being potentially unbounded.

However, under the constraints of our stream model, we can only use an internal state of

limited size.

Figure 5.4: Dynamic dependency matrix (0: dependent; 1: independent).

One observation on agent based model in NetLogo, and in many other applications

too, is that there exists only one instance (or value) of any variable at any moment – a

universal value of a global variable, one copy of an agent variable within each agent, and
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Algorithm 2 The BDM algorithm that maintains a dependency matrix to support the back-

ward query on provenance stream.
1: function UPDATESTATE(element, state) . element: a

provenance stream element; state: the internal state with two dynamic matrices current and

purge, and one HashMap varIdToNodeId

2: if element is a provenance edge then

3: sourceNode← element.source

4: destNode← element.dest

5: if state.varIdToNodeId.containsKey(sourceNode.varId) and

state.varIdToNodeId.get(sourceNode.varId) != sourceNode.nodeId then

6: remove all dependencies from state.current whose sources match

sourceNode.varId

7: cache dependencies in state.purge . older dependencies in state.purge whose

sources match sourceNode.varId are purged

8: end if

9: state.varIdToNodeId.put(sourceNode.varId, sourceNode.nodeId)

10: if destNode.varId is an input/global variable then

11: add new dependency sourceNode.varId⇒ destNode.varId into state.current

12: end if

13: if destNode.varId == sourceNode.varId then

14: inputV ars← getBackwardProvenance(destNode.varId, state.purge)

15: else

16: inputV ars← getBackwardProvenance(destNode.varId, state.current)

17: end if
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Algorithm 2 Algorithm that maintains a dependency matrix to support the backward query

on provenance stream.
18: for var in inputV ars do

19: add new dependency sourceNode.varId⇒ var into state.current

20: end for

21: end if

22: end function

23: function GETBACKWARDPROVENANCE(varId, matrix) . varId: the variable that we want

to find its related input/global parameters; matrix: the dependency matrix.

24: dependencies← all dependencies in matrix whose sources match varId

25: return destinations of dependencies

26: end function

one value of a local variable inside a function invocation – and we only need to query the

backward dependencies for the current value of a variable. Thus the matrix only needs to

keep the dependencies of the current variable instances, and those that could be used in

future calculations.

In our stream model of provenance graph, each node is assigned with a node ID (unique

within the stream) and a variable ID during the provenance capture (see Figure 5.1). The

variable ID is formed by concatenating the context information and the declared name of

that variable. For example, “global:variable 1”, “agent 1:variable 2”, and “procedure 1,

level 1:variable 3” (“level” specifies the depth of recursion). Two provenance nodes with

different node ID but same variable ID represent different values of the same variable. We

can keep dependencies of the most recent provenance node for each variable ID, except in
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the case that the most recent value of a variable depends on its earlier value – we use a

cache matrix to temporarily store the dependencies of its earlier value. The algorithm is

shown in Figure 2. It has a space complexity of O(N), where N is the number of variables

declared in the model that is independent of the unbounded stream length. The matrix

state.current stores the dependencies of current nodes to input data which can be queried

using the function getBackwardProvenance.

5.4.2 Stream Processing Implementation

We implement the proposed algorithms inside a stream processing platform called Apache

Spark Streaming [165]. Apache Spark [164] is a batch processing framework that has an

extension to support continuous stream processing (Spark Streaming). The idea behind

Spark Streaming is to treat streaming computations as a series of deterministic micro-batch

computations on small time intervals, executed using Spark’s distributed data processing

framework. We choose Spark Streaming because the provenance stream from agent-based

simulation has very high rate (thousands of events per second) and Spark Streaming sup-

ports higher throughput [104] compared with other streaming platforms like Storm [2].

Spark Streaming uses a resilient distributed dataset (RDD) as the basic processing unit,

which is a distributed collection of elements that can be operated on in parallel. There

are two approaches fetching messages from Kafka: one is the traditional approach, which

uses Receivers and Kafka’s high-level API that communicate with ZooKeeper; the other

is direct mode, introduced since Spark 1.3, which directly links and fetches data from

Kafka brokers. We integrate Spark Streaming with Kafka using the direct approach that has

better efficiency and simplified parallelism – it creates one RDD partition for each Kafka

partition (i.e., a provenance stream from a different simulation). Since Kafka implements
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the per-partition ordering and each RDD partition is processed by one task (thread) in Spark

Streaming, the temporal order we defined in the provenance stream model is preserved in

both the provenance capture and processing. Finally, the Kryo serialization is enabled for

the BDM algorithm to reduce both the CPU and memory overhead caused by its internal

state (i.e., two dynamic matrices and one HashMap).

5.5 Experimental Evaluation

To evaluate the performance of our framework, we apply it to a food security agent-based

model that we built for Monze District in Zambia, Africa [35]. In that ABM, 53 thousand

household agents make decisions biweekly based on a utility maximization approach within

the context of local institutional regimes (i.e., ward). The goal of that model is to identify

how climate change impacts adaptive capacity. We use the source code analyzer [43] to add

probes into the NetLogo code and the extended provenance extension to capture the live

provenance stream while the simulation is running. The amount of raw provenance traces

generated by running that model on one ward in the Monze District for one year is around

66MB, which is 357MB of provenance nodes/edges in JSON format. In our experiments,

we run the model continuously for five years that generates about 1.7GB of provenance

stream data to be processed in real-time. The throughput of our streaming framework is

measured as below:

throughput = pSize ∗ nSim/(nBatch ∗ bInterval) (5.3)

where pSize is the total amount of provenance data generated by one simulation (1.7GB

in our evaluation), nSim is the number of simulations, nBatch is the number of batches
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taken to finish processing all the data, and bInterval is the batch interval. The latency is

measured as the average total time to handle a batch (i.e., the sum of scheduling delay and

processing time).

We run the experiments using the CPU-only nodes from “Big Red II” supercomputer at

Indiana University (each CPU-only compute node contains two 2.5GHz AMD Opteron 16-

core CPUs and 64 GB of RAM, and is connected to a 40-Gb Infiniband network). In each

experiment run, we use one node to run NetLogo (v5.2.0) simulations and our provenance

hub, one to run the Kafka server and broker (v0.8.2), and up to nine nodes of Spark Stream-

ing (v1.5.1) standalone clusters – one master and eight slaves. The Kafka log directory and

the Spark Streaming checkpoint director are both placed in Big Red II’s shared Data Ca-

pacitor II (DC2) file system, which is connected via a 56-Gb FDR InfiniBand network.

By default, the Spark standalone cluster (v1.5.1) only supports a simple FIFO scheduler

across applications. To allow multiple concurrent applications, we divide the resources

by setting the maximum number of resources each application can use (i.e., parameter

“spark.cores.max”).

Spark Streaming receives input data streams and divide the data into batches. For a

Spark Streaming application to be stable, it is important to set the batch interval so that the

system can process data as fast as it is being received. In our implementation, the maxi-

mum processing speed for one provenance stream is limited by the power of a single CPU

core, since each provenance stream is stored into one RDD partition that is processed se-

quentially by one Spark task. If the provenance generation rate is constantly higher than

the maximum processing speed, we can throttle the generation by introducing delays in

the provenance hub to slow down the simulation speed. However, in our experiments, we

choose to not throttle the generation rate, but instead we measure the maximum receiving
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Figure 5.5: The data receiving rate is automatically controlled by the “backpressure” fea-

ture in Spark Streaming for the BDM algorithm with a batch interval of 5s.

rate by enabling the “backpressure” feature in Spark Streaming – it automatically figures

out the receiving rate and dynamically adjusts it if the processing conditions change. Fig-

ure 5.5 shows that how the receiving rate is controlled to keep the batch processing time

lower than the batch interval (or sliding interval).

We first measure the throughput and latency of the BDM algorithm running in a single-

node Spark Streaming cluster, and the size of its internal state serialized in memory. To

determine the maximum throughput under the condition of simply receiving stream ele-

ments, we also measure the Spark “collect” operation running alone. As can be seen from

Figure 5.6, our proposed BDM algorithm can achieve throughput as high as 10.8MB/s per

stream (77% of the maximum throughput of 14MB/s), and latency as low as 1.5 seconds;

when increasing the batch interval, the BDM algorithm will have higher throughput but also

longer latency. In all scenarios, the maximum size of the internal state (an RDD cached in

memory) is the same – 10.2MB.
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Figure 5.6: Increasing the batch interval increases the throughput as well as the latency of

the BDM algorithm.

Next we demonstrate the scalability of our framework to handle increasing number

of provenance streams. Since our algorithms do not parallelize the processing within one

provenance stream, we can only evaluate its scalability by measuring the scaleup – the abil-

ity to keep the same performance levels (response time) when both workload and resources

(CPU, memory) increase proportionally. That is, we increase the number of provenance

streams together with the number of nodes in the Spark Streaming cluster. While essen-

tially its performance is determined by the underlying Kafka and Spark Streaming system,

we can choose different approaches and tune their parameters.

There are two different approaches to send provenance streams into processing: we

can either create a separate streaming application to process each provenance stream, or

process all provenance streams within one streaming application. The provenance hub

can organize the provenance streams accordingly: one provenance stream per Kafka topic

(the 1st approach), or one provenance stream per Kafka partition (the 2nd approach). We

found during our experiments that the 2nd approach has restricted scalability when using
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the stateful operation “updateStateByKey()” – it maintains global states for all provenance

streams. While the 1st approach is apparently more scalable, it restricts our ability to

process multiple provenance streams (e.g., clustering and classification).

The number of parallel tasks in a Spark Streaming job is controlled by the parameter

“spark.default.parallelism” by default. Since the actual number of non-idle tasks is deter-

mined by the number of RDD partitions (a.k.a. the number of provenance streams), we

decide to set “spark.default.parallelism” equal to the number of provenance streams. How-

ever, when using the direct mode in Spark-Kafka integration, each Kafka partition occupies

one CPU core per node for data receiving, thus there exists a cap on how many streams one

node can handle.

Figure 5.7: Scalability test on the BDM algorithm (5s batch interval).

Results in Figure 5.7 demonstrate that the 1st approach on the BDM algorithm has

better scalability than the 2nd approach.
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5.6 Applications on Agent-Based Modeling

While the main contributions of this paper are the stream model of provenance and the

provenance capture and processing solution, there are various applications that can be de-

veloped based on them. We discuss a few of them below:

1. Automatic model calibration generally requires repeated simulation runs with dif-

ferent combinations of parameters [62], which is not suitable for large scale ABMs

that run for a long period of time. Our BDM algorithm can solve this problem by

providing the key information for parameter readjustment – the dependency between

input parameters and mismatching results. When we observe a mismatching vari-

able during the simulation, we can get the relevant input parameters using backward

provenance query and then readjust them on-the-fly.

2. It is important to verify that the implementation of the ABM matches its design –

model verification. While code walk-through can be useful, it is hard to make sure

that each of the thousands of agents performed as expected. We can solve this prob-

lem by setting important logical consistency checks over the live provenance stream.

3. Finally, it is typical to run the agent-based simulations with various input parameters

to get all possible results – Monte Carlo simulation, and we are interested in ter-

minating/discarding useless simulation runs to save time and resource. By applying

k-means clustering algorithm on the window-based representations generated by our

WTR algorithm, we are able to group similar simulation runs that can be discarded.
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5.7 Summary

In this chapter, we propose a streaming solution to backward provenance query whose tar-

get is unknown a priori and the full provenance data is too big to be persisted and processed

offline. We first characterize the provenance stream with unique properties that makes it

different from a general data stream. Then we develop a framework that can automatically

capture the live provenance stream from agent-based simulations running in NetLogo, and

then process it continuously in real-time. We propose a streaming algorithm to support

backward provenance query using limited space. The framework has been tested with a

real-world agent-based model that has thousands of household agents and runs in a su-

percomputer. The performance results show good throughput, latency and scalability. In

the end, we have discussed various real-world applications that we can develop using our

framework.
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Chapter 6

Temporal Representation for Mining Large Scale Provenance

When provenance data becomes big, the graph representations of provenance (OPM and

W3C PROV) are no longer suited to data mining for two reasons: the challenges for ana-

lyzing high-dimensional data and the difficulty to place both structural and non-structural

information in a single uniform attribute space.

There are two common challenges for analyzing high-dimensional data. The first one

is the curse of dimensionality. The complexity of many existing data mining algorithms

is exponential with respect to the number of dimensions. With increasing dimensionality,

these algorithms soon become computationally intractable and therefore inapplicable for

many real applications. Secondly, the specificity of similarities between points in a high

dimensional space diminishes. Clustering in a high dimensional space presents tremendous

difficulty [26]. It was proven in [28] that, for any point in a high dimensional space, the

expected gap between the Euclidean distance to the closest neighbor and that to the far-

thest point shrinks as the dimensionality grows. This could make many data mining tasks

including clustering ineffective and fragile because the model becomes vulnerable to the

presence of noise.

The structural and non-structural information of a provenance graph are both very im-
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portant when we try to discriminate similar provenance graphs and to learn relations be-

tween the characteristic of data products and processes that generate them. While structural

information can be easily represented as a connectivity matrix and the non-structural infor-

mation can be represented using multidimensional vectors, the unification of structural and

non-structural information from the provenance graph remains to be a challenge.

In this chapter, we propose a new approach to deal with the large volumes of prove-

nance, and that is to selectively reduce the feature space while simultaneously preserving

interesting features so that data mining on the reduced space yields provenance-useful in-

formation. More specifically, we propose a representation of provenance using logical time

that reduces the feature space of provenance. We posit that the temporal presentation is

an efficient and useful statistical feature representation of provenance. The mining tasks

to be performed on the proposed representation include: generating patterns that describe

and distinguish the general properties of the datasets in provenance repositories (by train-

ing classifier and mining association rule set), finding variants to detect faulty provenance

data (by checking cluster centroids in the case where correct and faulty provenance are

naturally separated into different clusters) and discovering more descriptive knowledge of

provenance clusters (by mining association rules that reflects workflow variants). We also

apply the temporal representation to the provenance stream model defined in Chapter 5 so

that mining live provenance streams becomes possible.

6.1 Provenance Graph Partitioning

We use Lamport’s logical clocks [98] as the basis for an abstract representation of prove-

nance. We propose a graph partitioning algorithm based on the logical clocks to split a
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provenance graph into leveled subsets1 with temporal order among different levels.

The graph partitioning algorithm we propose in this section is the basis for our abstract

representation. Our approach has the assumption that the provenance graphs to which

the representation is applied are compliant with the Open Provenance Model [117]. A

discussion on how to extend it to the W3C PROV model is in Section 7.2.

6.1.1 Partial Ordering

Lamport determines a total ordering of events in a distributed computer system based on

logical time order. Since the OPM reference specification [117] defines edges as causal

relationships, we define the “happened before” relation in a provenance graph based on its

causal relationships.

Definition The “happened before” relation, denoted by “→,” on the set of nodes in a prove-

nance graph is the smallest relation satisfying the following two conditions:

1. If a and b are nodes that have an edge between them, and a is the cause, then a→ b

2. If a→ b and b→ c then a→ c

We assume that a /→ a for any node, which implies that → is an irreflexible partial

ordering on the set of all nodes in the provenance graph. We define node a and b to be

concurrent nodes if a /→ b and b /→ a. For example, in Figure 6.1(c): Node “6”→ Node

“multiplier,” and Node “multiplier’ → Node “54” so that Node “6” → Node “54”; Node

“6” and Node “9” are concurrent nodes.

While the current OPM reference document forbids cycles, a new definition [97] allows

the presence of derived-from cycles (simple cycles composed of derived-from edges) after
1We will call it “subset” or “level” for short in the rest of the chapter
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a merge operation. However, an OPM graph resulting from a typical experimental prove-

nance collection procedure, which is the target of this study, does not contain such cycles.

In addition, new definitions (e.g., [97]) avoid using the term causal relationship, but the

constraints in their temporal theory are more similar to Lamport’s ordering, and they are

still using “cause” to represent an edge source and “effect” to represent an edge destination.

Thus our definition above also works in this case.

6.1.2 Logical Clock-P

We propose the Logical Clock-P, a function C that takes a node as input and produces

an integer as output. This function maps an integer to each node of a given provenance

graph. The correct logical clocks must satisfy the condition that if a node a occurs before

another node b, then a should happen at an earlier time than b. We state this condition more

formally as follows.

Definition Clock Condition: The Clock condition satisfies the following condition: For

any node a and b, if a→ b then C(a) < C(b).

6.1.3 Strict Totally Ordered Partition

With Logical Clock-P defined, we define a strict totally ordered partition that divides a

provenance graph into a list of non-empty leveled subsets. A typical provenance graph has

three kinds of nodes: artifacts, processes, and agents. A partitioning of a provenance graph

is a set of non-overlapping and non-empty subsets of nodes based on the logical clocks.

More precisely, a partition of provenance graph G = (V,E), where V denotes the set of all

nodes and E denotes the set of all edges, is defined as follows:
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Remark For a provenance graph G = (V,E), partition V into k subsets V1, V2, . . . , Vk

such that:

1. V 1, V 2, . . . , V k ∈ V and
k⋃
1

V i = U

2. ∀ i 6= j and 1 ≤ i , j ≤ k, V i ∩ V j = φ

3. ∀ a , b ∈ V i, we must have C(a) = C(b), and the node type of a is the same as the

node type of b

In addition, we define an “appears before” relation to give the level order on the set of

all these subsets. Naturally, a node with a smaller Logical Clock-P comes before a node

with a larger Logical Clock-P. Furthermore, for nodes with the same Logical Clock-P, we

put agents before processes and processes before artifacts. This is because of the implicit

order in node definition [117]: an agent is defined as an entity enabling process execution,

a process is defined as an action resulting in an artifact, and an artifact is defined as a state

in a physical object. Though this implicit order can be different from the real time order, it

is still meaningful for us when putting concurrent nodes into a sequential representation.

Definition The “appears before” relation “⇒” on the set {V1, V2, . . . , Vk} in a provenance

graph needs to satisfy the following conditions:

1. ∀a ∈ Vi , ∀b ∈ Vj, if C (a) < C (b) , then Vi ⇒ Vj

2. ∀a ∈ Vi , ∀b ∈ Vj , if C (a) = C (b) , and node type of a is agent, and node type of b

is process, then Vi ⇒ Vj

3. ∀a ∈ Vi , ∀b ∈ Vj , if C (a) = C (b) , and node type of a is agent, and node type of b

is artifact, then Vi ⇒ Vj

4. ∀a ∈ Vi , ∀b ∈ Vj , if C (a) = C (b) , and node type of a is process, and node type of

b is artifact, then Vi ⇒ Vj
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Figure 6.1: Temporal partition: (a) is an example provenance graph from [117]; (b) is from

the same experiment as (a) with different input data; (c) has a similar graph structure to (a)

and (b) but with different nodes.

A partition of a provenance graph with the “appears before” relation on the set {V1,

V2, . . ., Vk} is asymmetric, transitive and also totally ordered, but not unique. We show an

example partitioning generated by our Logical-P algorithm in Figure 6.1, where the level

with the smaller number (e.g., Level 1) “appears before” the level with larger number (e.g.,

Level 2, Level 3).

6.1.4 Provenance Graph Partitioning Algorithm (Logical-P Algorithm)

Given any provenance graph (we are using the XML representation [118]), we generate a

unique strict totally ordered partition with the Logical-P algorithm (see algorithm 2). Steps

1–16 are derived from the topological sorting algorithms of Kahn [91], which has linear

time in the number of nodes plus the number of edges O(|V |+ |E|). The time complexity

of step 18 depends on the sorting algorithm that is used. For heapsort, the complexity is
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O(klogk), where k is the number of leveled subsets in the partition. Note that steps 9–11

give the maximum possible Logical Clock-P value to nodes that have multiple causes.

Algorithm 2 Logical-P algorithm
Require: Provenance graph G

1: S ← Set of all nodes in G with no outgoing edges

2: for nodes k in S do

3: assign 0 to C(k)

4: end for

5: while S is non-empty do

6: remove node n from S

7: for node m with edge e from m to n do

8: remove edge e from graph

9: if C(n) + 1 > C(m) then

10: assign C(n) + 1 to C(m)

11: end if

12: if m has no other outgoing edges then

13: insert m into S

14: end if

15: end for

16: end while

17: Group nodes with same Logical Clock-P value and node type into one subset

18: Sort subsets according to “appears before”
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Table 6.1: Workflow type and number of leveled subsets for a successful execution instance

Workflow Type Number of leveled subsets in the prove-

nance partition of a complete run

LEAD North American Mesoscale

(LEAD NAM) forecast (weather)

10

SCOOP ADCIRC (coastline) 5

NCFS (ocean) 10

Gene2Life (bio) 10

Animation (CS) 8

MotifNetwork (bio) 10

6.1.5 Partitioning the Provenance Graphs in the Datasets

We use the Logical Clock-P algorithm to partition the provenance graphs (in the form of

OPM complaint XML strings or files) in the experimental datasets. Table 6.1 shows the six

types of workflow in the 10GB dataset and the number of leveled subsets in the provenance

partition for a successful run, to be referred back to in Section 6.4.2.

Once a provenance graph is partitioned into an ordered list of leveled subsets, we can

create the representations of each leveled subset and organize them into a sequence repre-

sentation of the graph.

6.2 Feature Selection

6.2.1 Statistical Feature Space

A typical provenance graph is a fully-labeled graph with annotations (both nodes and edges

have labels and annotations), so direct representations such as feature vector spaces will

result in high dimensional datasets that are not suitable for large scale mining tasks. We
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address this issue by using attribute transformation [26] to define a new statistical feature

space. That is, instead of making each attribute of each node in the provenance graph into

a feature, we can summarize the same attribute of all nodes into one (or several) features.

In this way, we can select fewer features from the much smaller statistical feature space to

represent each subset (subgraph).

We first give the definition of a feature space of node subset, and then extend this defi-

nition to a statistical feature space by introducing a statistical feature function.

Definition For a feature vector subset N = (V, F,D), where V = {v1, ..., vn} denotes the

node subset, the function F : V → D1 × D2 × ... × Dd is a feature function that assigns

a feature vector to any node v ∈ V , and the set D = {D1, D2, D3, . . . , Dd} is called the

feature space of N .

Definition For a statistical feature vector subset N ′ = (V, F,G,D, S), a statistical func-

tion G : Di × Di × ... × Di → Si applies statistical operators such as max, min, avg,

std.dev, std.err, sum, variance, and mode to feature Di ∈ D of all nodes in V , and the set

S = {S1, S2, S3, . . . , Sd} is called the statistical feature space of N . Note that feature

Di can be either numerical data or not, and choosing the right statistical operator is data

dependent.

Here is an example of how to create a statistical feature space from the original feature

space of a subset. The features of a provenance graph node include its attribute feature

such as its labels and annotations, and its structural feature such as the attributes of its

incoming/outgoing edges. A simple node attribute feature can be the number of characters

in the node label, and a simple node structural feature can be its in-degree or out-degree.

So the feature space for level 2 in Figure 6.1(a) can be D = { number of characters in
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node label, number of in-degree, number of out-degree } = {(1, 1), (1, 1), (1, 1)}. After

applying the statistical operation “avg” to D, we get its statistical feature space S = {

average number of characters in node label, average number of in-degree, average number

of out-degree } = {1, 1, 1}.

6.2.2 Feature Selection from Statistical Feature Space

Having more features should—in theory—result in greater discriminating power, however,

in practice, adding irrelevant or distracting attributes to a dataset often confuses machine

learning systems. Because of the negative effect of irrelevant attributes on most machine

learning schemes, it is common to precede learning with an attribute selection stage that

strives to eliminate all but the most relevant attributes. The best way to select relevant

attributes is manually, based on a deep understanding of the learning problem and what the

attributes actually mean. However, automatic methods can also be useful [161].

Manual Feature selection, Structured and Attribute

The selection of a good feature set from a statistical feature space depends upon both the

mining targets and the nature of the provenance. Samak et al. [134] demonstrated that a

clustering algorithm like k-means can group similar workflows to separate and identify fail-

ure workflows from normal workflows. They assume that the application domain (which

we call the type) of workflows are already known, and clustering is carried out on work-

flows of different application domains separately. However, we make few assumptions

about our dataset, and do not know the workflow type of each provenance instance, so our

first target in unsupervised clustering is to group provenance instances based on their orig-

inal experiment (the workflow type or the application domain for workflows). We need to
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select a feature set that minimizes the distance between two provenance representations de-

rived from the same experiment; this distance should be smaller than the distance between

two representations derived from different experiments. So for unsupervised clustering, we

should first study the differences between provenance graphs and the efficiency of using

attribute feature set and structural feature set in discriminating these differences.

We assume provenance graphs from related experiments have similar structure and sim-

ilar attribute information (Figure 6.1(a) and Figure 6.1(b)); while provenance graphs from

different experiments are either different in attribute information (Figure 6.1(a) and Fig-

ure 6.1(c) have different node labels), or different in structural information (Figure 6.1(a)

and Figure 6.9(b) have different topology). While using any feature set, Figure 6.1(a) and

Figure 6.1(b) should be clustered together.

Based on this assumption, we create a simple attribute feature set that includes “aver-

age number of characters in label” to discriminate between Figure 6.1(a) and Figure 6.1(c),

and a simple structural feature set that includes “average number of in-degree/out-degree”

to discriminate between Figure 6.1(a) and Figure 6.9(b). The nodes’ labels in the prove-

nance graph are agent names for “Agent” nodes, process names for “Process” nodes and

data values for “Artifact” nodes. Santos et al. [137] use the module names to construct

the vector-space based representation of workflow graphs for clustering, which produce

good clustering results comparable to the results obtained using the more costly structural

representation. Here we choose the numerical value “number of characters in label” and

statistical operator “average” for simplicity, but we could also choose “node label” as nom-

inal value with statistical operator “mode.” Each leveled subset in the resulting partition

consists nodes of the same type, and we map the type of nodes from their textual values

“Agent”, “Process”, “Artifact” into numerical values 0, 1, 2. Note that while we use this
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Table 6.2: Euclidean distance for attribute and structural feature sets

Figure Distance in Attribute Feature Set

6.1(a) - 6.1(b) 0.9110

6.1(a) - 6.1(c) 1.3807

6.1(b) - 6.1(c) 1.6787

Distance in Structural Feature Set

6.1(a) - 6.1(b) 0.7454

6.1(a) - 6.9(b) 2.5878

6.1(b) - 6.9(b) 2.5805

mapping to simply subsequent data mining operations, it might result in wrong implica-

tions of distance (for example, the Euclidean distance from “Artifact” to “Agent” is twice

the distance to “Process” after mapping). A better solution might be to maintain the nom-

inal values and to specify in the distance calculation that these nominal values are equally

far from each other.

Specifically, for the attribute feature set we capture: <Type of nodes in subset, Num

nodes in subset, Avg num characters in node name> which for Figure 6.1(c), gives:

(< 2, 1, 7 >,< 1, 1, 8 >,< 2, 3, 1 >,< 1, 1, 10 >,< 2, 1, 2 >,< 1, 1, 3 >,<

2, 1, 2 >)

For structural feature set we capture the following features: <Type of nodes in subset,

Num nodes in subset, Avg num in-degree of nodes in subset, Avg num out-degree of nodes

in subset > from each subset Vi. The resulting provenance partition of Figure 6.1(c) is

represented as:

(< 2, 1, 1, 0 >,< 1, 1, 3, 1 >,< 2, 3, 1, 1 >,< 1, 1, 1, 2 >,< 2, 1, 1, 1 >,< 1, 1, 1, 2 >

,< 2, 1, 0, 1 >)
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Table 6.2 gives the Euclidean distance calculated from the attribute feature set and the

structural feature set. We can use these distances to tell whether two graphs are relatively

closer to or farther from each other than the others. As discussed earlier, graph 1(a) from

Figure 6.1 is very similar to 1(b). Their distance is close for both attribute and structural

feature sets. Graph 1(a) – 1(c) are different from an attribute perspective but similar struc-

turally. The attribute difference is illustrated in top four rows of Table 6.2. Finally, the

graph in Figure 6.9(b) is distinct structurally and this is evident in its Euclidean distance

from graph 1(a) and 1(b). Note that attributes are normalized before calculating Euclidean

distance, so that all attributes contribute equally to the result. This normalization scales

each data variable into a range of 0 and 1 using the following equation:

xnormalization =
x− xmin

xmax − xmin

where xnormalization represents the normalized value, x represents the value of interest, xmin

represents the minimum value and xmin represents the maximum value.

After manually choosing a feature set, the next step is to select features from all leveled

subsets. We can further remove features that have zero standard deviations, since they are

not contributing to the distance calculation. However, we are not considering applying

any automatic feature selection algorithms. This is because we do not have class labels in

unsupervised clustering to tell if a feature is relevant or not, and the dimensionality of the

proposed structural feature set is very high for clustering purposes.

The simple structural feature set discussed above has been tested in [40] on the 10GB

dataset (Section 3.4.3), where we choose structural feature set over the attribute feature

set or other more complicated feature sets in unsupervised clustering for the purpose of

a strong evaluation – we do not want to take advantage of obvious difference in node at-
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tributes. The disadvantage of that feature set is that if we have two provenance graphs with

the same structure but with different node/edge information, then it would be impossible to

distinguish the two through graph structure alone. In this thesis, we propose an extension

to it by further splitting edges into different types in OPM – used, wasGeneratedBy, was-

ControlledBy, wasTriggeredBy, and wasDerivedFrom – and then calculate the average, so

that we can discriminate graphs that have similar structure but are semantically different.

The size of the OPM graphs extracted from the original database is 2.1GB, while the size

of the temporal representation is 16.9MB, a decrease by several orders of magnitude.

However, the different workflows in the AMSR-E dataset (Section 3.4.2) can have iden-

tical graph structure, thus it is no longer sufficient to use only structural information. In-

stead we use a feature set that contains both structural and attribute information, however,

still avoiding the use of node labels for the purpose of a strong evaluation. That is, in ad-

dition to the simple structural feature set, we apply the statistical operator “average” on

all numeric node attributes, including ESDTVersion, PGEversion, artifact-size, qapercent-

missingdata and qapercentoutofboundsdata. Specifically, the feature set is <Type of nodes

in subset, Number nodes in subset, Avg number of in-degree, Avg number of out-degree,

Avg of ESDTVersion, Avg of PGEversion, Avg of artifact-size, Avg of qapercentmissing-

data, Avg of qapercentoutofboundsdata >. The size of AMSR-E dataset as XML files is

83.0MB, and its initial representation using this feature set is 479KB. After cleaning at-

tributes with zero standard deviation, the final representation for unsupervised clustering is

375KB in size (44 attributes per instance).
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Manual Feature Selection, Small feature set

Association rule mining is less efficient when dealing with long sequences. If we were

to select 4 features for each subset, there would be 40 attributes in a provenance repre-

sentation for a workflow instance having 10 subsets (levels). Instead we select one target

attribute, Number of nodes in the subset, for each subset (level). This new short sequence

is sufficient to expose the structural variants with different number of intermediate data

products/processes.

Automatic Feature Selection

Supervised learning, unlike unsupervised learning, requires class labels (such as the work-

flow type in our case), so it is natural to keep only the features that are relevant to or lead to

these given labels [61]. There are many potential benefits of feature selection in supervised

learning: facilitating data visualization and data understanding, reducing the measurement

and storage requirements, reducing training and utilization times, and defying the curse

of dimensionality to improve learning performance [80]. When selecting a good attribute

subset, there are two fundamentally different approaches. One is to make an independent

assessment based on general characteristics of the data; the other is to evaluate the sub-

set using the machine learning algorithm that will ultimately be employed for learning.

The first is called the filter method because the attribute set is filtered to produce the most

promising subset before learning commences. The second is called the wrapper method

because the learning algorithm is wrapped into the selection procedure [161].

For the 10GB dataset, the structural feature set that we proposed in the previous section

leads to 120 features for a provenance graph that has 10 subsets (levels) in its partition. We
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take both the filter method and the wrapper method to further selecting features from these

120 features. Specifically, we use: ClassifierSubsetEval, a wrapper method implemented in

Weka that evaluates attribute subsets on training data or testing set and uses a classifier to

estimate the “merit” of a set of attributes; CfsSubsetEval [81], a filter method that assesses

the predictive ability of each attribute individually and the degree of redundancy among

them, preferring sets of attributes that are highly correlated with the class but with low

intercorrelation.

We use NaiveBayes [89] as the evaluating classifier for ClassifierSubsetEval, and it

selects 7 out of 120 features, which means it can significantly shorten training times and

enhance generalization by reducing overfitting. The seven selected features are:

<Avg num of incoming “was triggered by” edges in Level 1, Avg num of incoming “was

generated by” edges in Level 3, Avg num of outgoing “was generated by” edges in Level

3, Num nodes in Level 4, Avg num of incoming “was generated by” edges in Level 4, Avg

num of outgoing “was derived from” edges in Level 6, Num nodes in Level 9>

CfsSubsetEval also selects 9 out of 120 features, namely:

<Avg num of incoming “was triggered by” edges in Level 1, Num nodes in Level 2, Avg

num of incoming “was derived from” edges in Level 2, Num nodes in Level 3, Avg num of

incoming “was generated by” edges in Level 3, Num nodes in Level 4, Avg num of outgoing

“was derived from” edges in Level 4, Avg num of outgoing “was derived from” edges in

Level 6, Avg num of outgoing “was triggered by” edges in Level 7>

Note that the nine features share three common features with the seven features.

For the AMSR-E dataset, we also use CfsSubsetEval, which selects two attributes from

the initial feature set: average number of in-degree in level 2 and average value of PGEv-

ersion in level 4. This reduces the representation’s size from 80.3MB to 21.8KB.
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6.3 Methodology

We assess the efficacy of the temporal representation in revealing the kinds of information

in which we are interested, for instance, “Given a new provenance graph that is either com-

plete or incomplete, can we determine the type of workflow that generated it?” “Can we

detect interesting variants including failed workflows?” and “What are the differences be-

tween variants, and whether the differences come from workflow execution or provenance

capture.” This study extends the earlier study, replaces frequency domain representation

with ensemble representations, and includes a more methodical evaluation of mining tech-

niques applied to the representation.

The mining tasks that we explore include generating patterns that describe and distin-

guish the general properties of the datasets in provenance repositories (by training classi-

fier and mining association rule set), finding variants to detect faulty provenance data (by

checking cluster centroids in the case where correct and faulty provenance are naturally

separated into different clusters) and discovering more descriptive knowledge of prove-

nance clusters (by mining association rules that reflects workflow variants). We use the

data mining software Weka [82] in our experimental evaluation, which has the implemen-

tations for all the mining algorithms that we refer to.

On choosing the best unsupervised clustering algorithm for our use, we investigate the

performance of three different types of popular clustering algorithm: centroid-based, distri-

bution based and density based, using k-means [101], DBScan [64] and EM algorithms [57]

respectively. As shown in Section 6.4.2, k-means gives the best results, in that it produces

clusters with the best quality and centroids that can be further used in failure detection.

Hence, we choose the k-means algorithm (SimpleKMeans in Weka) to show the useful-
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ness and applicability of our proposed temporal representation. Using the similarity mea-

sure between sequences from Section 6.2.2, we cluster the temporal sequences to discover

a number of clusters, say K, to represent the different sequences. The centroids we discov-

ered from k-means algorithm are further compared with each other using our provenance

graph matching algorithm (see Algorithm 1) to answer the problem of what the differences

are and where they come from.

However, using Euclidean distance as the similarity measurement limits the application

of the k-means to representation sequences of same length. We identified several solutions

to this problem: 1) pre-grouping representations by length, which has the advantage of

pre-separating representations using the a priori knowledge (length); 2) transforming rep-

resentations into frequency domain, which can further reduce the dimensionality, but has

the disadvantage of being meaningless for association rule mining; 3) filling missing fea-

tures with special values of 0 or -1, which is the simplest but has problematic implications

of distances. In [40] we already tested approach 1) and 2), and in this thesis we evaluate 1)

in Section 6.4.2 and 3) in Section 6.4.3 instead.

Another important use of temporal representation is to train classifiers (supervised

learning), for example to categorize the workflow type for a new provenance record. We

assume a use case in which given a new provenance record, a researcher wants to cate-

gorize its workflow type based on the existing provenance records in the 10GB database.

To achieve this, we train a classifier for workflow type from the Logical Clock-P repre-

sentation. As discussed in Section 6.2, we can utilize some automatic feature selection

algorithms for supervised learning. The feature selection algorithms we use in Weka are

ClassifierSubsetEval – a wrapper method implemented in Weka, which evaluates attribute

subsets on training data or testing set and uses a classifier to estimate the “merit” of a set
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of attributes, and CfsSubsetEval [81] – a filter method that assesses the predictive ability

of each attribute individually and the degree of redundancy among them, preferring sets of

attributes that are highly correlated with the class but with low intercorrelation.

The discovery of relevant association rules is one of the most important methods used

to perform data mining on transactional databases [16]. An effective algorithm to discover

association rules is the Apriori algorithm [8]. Adapting this method to better deal with

temporal information is beyond our current research; instead we apply the Apriori method

(Weka) on the clusters to get more descriptive knowledge of that cluster.

6.4 Data Mining Evaluation

6.4.1 Evaluation Metrics

Purity [171] and the Normalized Mutual Information (NMI) [173] are used to compare the

performance of different clustering techniques. Purity assumes that all samples of a cluster

are predicted to be members of the actual dominant class for that cluster. However, high

purity can be achieved when the number of clusters is large. For example, purity would

be one when each graph belongs to its own cluster. We cannot use purity to trade off

the quality of the clustering against the number of clusters, so we also use NMI cluster-

ing evaluation metric. NMI [86] is defined as the mutual information between the cluster

assignments and a pre-existing labeling of the dataset normalized by the arithmetic mean

of the maximum possible entropies of the empirical marginals. k-means performance is

evaluated using Within-Cluster Sum of Squares (WCSS), purity, and Normalized Mutual

Information (NMI) metrics.

As for the classification, we use NaiveBayes [89] as the evaluating classifier for Classi-
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fierSubsetEval, and we test different classification methods on the features selected by the

CfsSubsetEval, including the NaiveBayes and the Random forests [31]. The accuracy is

evaluated using the 10-fold cross-validation method.

We use association rules to expose variants amongst workflows, and apply Weka’s Apri-

ori algorithm to discovering the association rules on the resulting clusters generated from

pre-grouped unsupervised clustering, to see if there are rules that can expose the variants

that we are looking for.

6.4.2 Unsupervised Clustering, Pre-grouped

As discussed in Section 6.3, we can group together the provenance representations by their

lengths and then apply the k-means algorithm within each group.

This first order breakdown by temporal subset length is shown in Figure 6.2. 46% of

the provenance representations have the largest number (10) of subsets, while only a small

portion (2%) have very small number of subsets (2, 3); the latter subject to early failures in

the workflow execution and dropped provenance notifications.

For clustering within a grouping, we apply the k-means clustering algorithm with Eu-

clidean distance to the representation sequences inside each group. Note that we removed

the attributes with zero standard deviation, and Weka’s Euclidean distance function nor-

malizes attributes by default, just like what we showed in Section 6.2.2.

To choose the number of clusters, k, we plot the within-cluster sum of squares (WCSS)

for each subset (level) and look for the “elbow point”. Figure 6.3 plots WCSS for workflow

instances having 3 subsets (a) and 4 subsets (b). For the former, k is chosen as k = 2, for

latter, we choose k = 3 because WCSS decreases slowly after k reaches 3. We use the

same procedure to choose k for the remaining groups. Finally k-means is applied for each
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Figure 6.2: Grouping results based on temporal subset length (level depth)

group creating an overview shown in Figure 6.4.

Clustering graphs of the same temporal representation length requires different values

of k, as shown in Figure 6.4. We find that the number k determined this way is slightly

smaller than the number of actual classes within each group. However, it still generates

major clusters and has good clustering quality (to be evaluated below). In fact, there is

a trade-off between the number k and the value WCSS, since larger k always results in

smaller WCSS but also has the potential to split the natural cluster into smaller clusters.

As discussed before, we evaluate the quality of resulting clusters by computing the pu-

rity and Normalized Mutual Information (NMI). The purity and NMI are not very high

when the workflow representation contains a small number of subsets (levels), as shown in

Figure 6.5. This is because most workflow instances that have smaller graph sizes are in-

complete because of incomplete execution or dropped provenance notifications (as shown

in Figure 6.9), so they are difficult to accurately cluster using only their structural informa-
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Figure 6.3: WCSS as function of number of clusters for different groups of representa-

tion sequences: (a) WCCS for workflow instances having 3 subsets, and (b) WCCS for

workflow instances having 3 subsets.

Figure 6.4: High level view of 10GB provenance dataset created from its structural infor-

mation only

110



Figure 6.5: Purity and NMI results as external evaluation criteria for k-means cluster quality

by workflow instance group. The graph on the left shows the clustering results from an

initial version of temporal representation, while the graph on the right shows the results

from the extended temporal representation.

tion. But the purity and NMI increases as the number of subsets (levels) in the provenance

representation increases, and the workflow provenance that has most provenance informa-

tion (with number of subsets > 4) can still support clustering well. This indicates that our

representation of workflow provenance provides high level of clustering efficiency and is

also robust in dealing with incomplete provenance.

Since k-means uses a random number seed to determine the starting centroids of the

clusters, it might be helpful to run it with different random number seeds to see the impact.

We run SimpleKMeans (Weka) on the 10-subset temporal representations with random

number seed ranging from 1 to 10, and the result in Figure 6.6 shows good stability.

As we discussed earlier, k-means is representative of centroid based clustering algo-

rithms, and we also want to evaluate the clustering performance of DBScan, a representa-

tive of distribution based algorithms, and EM, a representative of density based algorithms.

The results in Figure 6.7 show that the performance of EM is worse than k-means (Fig-
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Figure 6.6: Repeating the SimpleKMeans on the 10-subset temporal representations with

random number seed ranging from 1 to 10.

Figure 6.7: Purity and NMI results as external evaluation criteria for EM and DBScan

clustering quality. The graph on the left shows the evaluation of clustering results of EM

clustering, while the graph on the right shows the results for DBScan clustering. Both

results come from clustering extended temporal representation.
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Figure 6.8: Repeating the EM on the 10-subset temporal representations with random num-

ber seed ranging from 1 to 10.

ure 6.5), and so is DBScan. It is because of 1) the characteristic of 10GB database: EM is

based on a gaussian distribution, however, the workflows in 10GB database do not follow

this distribution, and 2) the purpose of our clustering: we want to separate faulty prove-

nance from correct provenance, and the structural feature set we proposed can support this

if using Euclidean distance and k-means. However, density based algorithms like DBScan

focus on finding major components rather than classifying outliers/minorities. Other ad-

vantages of k-means include that it is highly scalable algorithm, and that we can further use

the centroid graphs to detect clusters of incorrect workflow instances and discover problems

inside incorrect workflow instances.

Similar to k-means, EM also relies on a random number seed to generate the initial

clusters. Figure 6.8 shows that running EM clustering on our temporal representations with

different random seed values produces stable results.

To help understand how to identify clusters of incorrect workflow instances, Figure 6.9

shows the provenance graphs of several centroids. We deliberately choose provenance
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graphs from the LEAD North American Mesoscale (NAM) forecast workflow [125] be-

cause it best illustrates failures in provenance capture. It turns out that the NAM prove-

nance graph with 10 subsets (levels) is a complete graph, while difficult to discern, this is

evidenced by an artifact (circle) at bottom of graph. The NAM provenance graphs with less

than 10 subsets (levels) partition the graph, all versions of which are incomplete and caused

by failures or dropped notifications. The NAM provenance graph with 2 subsets (levels)

consists of some units of a complete provenance graph, which is very likely the result of

failures.

The way to discover problems inside incorrect workflow instances is to apply the prove-

nance matching algorithm (see Algorithm 1) to centroid graphs. Basically, the matching

algorithm matches sub-graph based on both node/edge attribute and local topology. Match-

ing a problematic provenance graph against a known correct provenance graph reveals the

missing nodes and missing edges that lead to disorganized parts. So that we can know

where the problem exactly is, and whether the problem comes from experiment itself (miss-

ing process, Figure 6.10) or provenance capture (missing notification, Figure 6.11).

On the AMSR-E dataset, we also use the k-means (SimpleKMeans in Weka) and repeat

the same clustering experiments. The clustering performance on pre-grouped represen-

tations (Figure 6.12) is also good. We separate representations into a 4-subset group, a

5-subset group and a 6-subset group. It is no longer the case that 4-subset group is the pro-

duction of failures, and in fact the 4-subset group has the majority of all instances (91%).

That means the AMSR-E dataset has less failures than the 10GB semi-synthetic dataset.

However, we are still able to discover variants – many AMSR-E workflow instances belong

to the same workflow type but are separated into different clusters. There are three types

of variants discovered: 1) the same type of workflows have completely different structures,
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Figure 6.9: Provenance graphs of several centroids. Square nodes represent processes, and

circles represent artifacts. The graph is read top to bottom, with earlier activity at the top.
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Figure 6.10: Provenance graph on left is the complete provenance of a successful execution.

Matching it with the provenance graph on right shows that the right one is a failure, because

of that the final data product (green) in left graph cannot be matched.

Figure 6.11: Left graph is provenance of a successful execution. Graph on right shows that

although the right graph is a successful execution, it has dropped notifications in prove-

nance capture, because all nodes except some edges in left graph cannot be matched.
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Figure 6.12: Purity and NMI results as external evaluation criteria for k-means cluster

quality by workflow instance group.

such as Figure 6.13(a) and Figure 6.13(c); 2) the same type of workflows are separated

only because the number of their input data artifacts are different, such as Figure 6.13(c)

and Figure 6.13(d); 3) workflows have the same structure, but one cluster has larger input

data (large artifact-size) and produces larger output data, such as Figure 6.13(a) and Fig-

ure 6.13(b). Note that even though we do not know what a correct AMSR-E workflow is,

the identified variants may have potential problems and are worth checking.

6.4.3 Unsupervised Clustering using an Ensemble Provenance Representation

Alternatively, we can compile representations of varied-length subsets (levels) into one

representation, an ensemble provenance representation. This way, we extend all represen-

tations to be the same length by filling in the missing values with the value of -1. Note that

this is not a new representation, but instead just a compilation of variable length represen-

tations.

We evaluate k-means clustering on this representation by plotting WCSS and comput-

ing the purity and NMI evaluation metrics (Figure 6.14). WCSS decreases substantially
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Figure 6.13: (a), (b), (c) and (d) are all AMSR-E daily ocean workflows. (a) and (b) have

the same graph structure, but the size of input artifact and output artifact is larger in (a);

(a) and (b) have completely different graph structure with (c) and (d); (c) has more input

artifacts than (d) – the unmatched artifacts are colored differently after application of the

provenance graph matching algorithm.
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Figure 6.14: WCSS (a) and Purity & NMI (b) as function of number of clusters in k-means.

with the increase in number of clusters in k-means algorithm. After the number K reaches

20, the WCSS becomes small enough and very stable as K increases. Purity increases as

K increases. After the number K reaches 22, the purity is high enough (0.92) and it also

becomes stable afterwards. Compared with the 42 clusters we created from pre-grouped

original provenance representations, we generate only 22 clusters from the ensemble prove-

nance representation, with a slightly lower purity.

Our results in Figure 6.14 show that, similar to purity, NMI increases as K increases.

After K reaches 22, the NMI value is 0.72 and becomes stable. These results indicate that

our proposed ensemble provenance representation supports efficient unsupervised cluster-

ing.

On the AMSR-E dataset, we also use the k-means (SimpleKMeans in Weka) and take

the compiling approach to dealing with representations with variable length. The perfor-

mance shown in Figure 6.15 is also good.
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Figure 6.15: WCSS (a) and Purity & NMI (b) as function of number of clusters in k-means.

6.4.4 Workflow Type Classification

Recall that we select seven features out of 120 features by using the feature selection algo-

rithm ClassifierSubsetEval, and select 9 features by using CfsSubsetEval. The NaveBayes

model trained from the seven features has a high correctness of 95.79% in its 10-fold cross

validation (Table 6.3). On the nine features, we test different classification methods and

find many of them, such as NaiveBayes and Random forests [31] can achieve a correct

ratio more than 95% (Table 6.3)2. This indicates the feature selection in our temporal rep-

resentations is independent of learning algorithm, and the resulting classifier also has good

performance.

For classification on the AMSR-E dataset, we also use the feature selection method

CfsSubsetEval, which selects 2 attributes from the initial 40 features that further reduces

the representation’s size to 21.8KB – average number of in-degree in subset 2 and average

value of PGEversion in subset 4. Using these two attributes to train a Naive Bayes clas-

sifier can achieve a high correctness of 96.78% (Table 6.4), which indicates that they are
2We also vary the random seed number for the Random forests algorithm from 1 to 10, the resulting ratios of correctly

classified instances have a mean value of 96.86% and a standard deviation of 0.0002.
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Table 6.3: Classification model trained on features selected by ClassifierSubsetEval and

CfsSubsetEval

Feature selection al-

gorithm

Weka Scheme Result of 10-fold cross-validation

ClassifierSubsetEval weka.classifiers.

bayes.NaiveBayes

Correctly Classified Instances:

45895 – 95.7902%

CfsSubsetEval
weka.classifiers.

bayes.NaiveBayes

Correctly Classified Instances:

45776 – 95.5418%

weka.classifiers.

trees.RandomForest

-I 10 -K 0 -S 1

Correctly Classified Instances:

46408 – 96.8609%

Table 6.4: AMSR-E classification model trained on features selected by CfsSubsetEval

Weka Scheme Result of 10-fold cross-validation

weka.classifiers.

bayes.NaiveBayes

Correctly Classified Instances: 2798 – 96.7831%

particular important in determining different types of workflow.

6.4.5 Association Rule Mining

We utilize Weka’s Apriori algorithm to discover the association rules on the resulting clus-

ters generated from pre-grouped unsupervised clustering on the 10GB dataset. Recall

that we have manually introduced two variants of NAM weather forecast workflow (Fig-

ure 3.12), and we will look to the resulting association rules for rules related to these two

variants.
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Table 6.5: Sampling of association rules mined by Apriori method

Weka Scheme Sample of association rules found

weka. associations. Apriori -N

10 -T 0 -C 0.9 -D 0.05 -U 0.4 -

M 0.1 -S -1.0 -c -1

1.numberOfNodes 8 =′ (0.8− 1]′ ==>

numberOfNodes 10 =′ (0.8− 1]′

2.numberOfNodes 8 =′ (1.8− inf)′ ==>

numberOfNodes 10 =′ (1.8− inf)′

3.numberOfNodes 2 =′ (−inf − 1.1]′ ==>

numberOfNodes 8 =′ (−inf − 0.2]′

Table 6.5 shows the Scheme of the Weka method we applied and the resulting associ-

ation rules that can reflect the variants we introduced. Rule 1 says that if the number of

nodes in level 8 (which are the data inputs for the last processing step) is between 0.8 and

1 (including 1), then number of nodes in level 10 (which are the final data outputs) will

be between 0.8 and 1 (including 1). Rule 2 says that if the number of nodes in level 8

is larger than 1.8, then number of nodes in level 10 will be larger than 1.8. Because the

number of nodes can only be integer, rule 1 and rule 2 mean one intermediate data input

for the final processing step will lead to one final data output, while more data inputs lead

to more final data outputs, which reveals exactly the first variant we introduced. For the

same reason, rule 3 reveals the second variant of failure execution. This single example

shows that temporal provenance representation with selected number of features supports

the Apriori algorithm well: the association rules can show variants during execution.

6.4.6 Summary of Mining Evaluation

The results of the evaluation are summarized in Table 6.6.
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Table 6.6: Summary of temporal mining

Approach Evaluation

Unsupervised clustering,

time-domain

Demonstrates that: representation can detect failed work-

flow instances and workflow variants; comparing centroid

provenance graphs helps with problem analysis.

Disadvantage: need representations grouped based on

length; creates small clusters inside representation group.

Unsupervised clustering,

ensemble

Demonstrates that: representation lead to good clustering

performance.

Classification Demonstrates that: can predict workflow type of new work-

flow instances.

Association rule mining Demonstrates that: causal relationships captured between

leveled subsets; reveals variants in workflow execution; some

association rule sets can be used to distinguish different clus-

ters.

Disadvantage: Apriori algorithm favors small representation

length (less number of features).
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6.5 Scalability

We evaluate the performance of the mining tasks over the Logical Clock-P representation

primarily by measuring NMI and purity, and the correctness of classification. As time

intensive as mining can be, performance scalability is an important aspect as well. The

scalability of data mining is a function of the size and dimensionality of the dataset and

the complexity of the mining algorithm. Since the user can choose the mining algorithm,

we are only interested in the size and dimensionality of proposed temporal representation.

We demonstrated in [40] that the size and dimensionality of temporal representation is

substantially decreased from the original provenance representation. For instance, the size

of the original 10GB database is 10GB; whereas the size of its temporal representation

in time domain is 10.01 MB, a decrease by several orders of magnitude. The process of

creating the temporal representation consists of a number of different steps: 1.) reading and

parsing XML files, 2.) executing the Logical Clock-P partitioning algorithm, 3.) creating

representation from partition, and 4.) writing results. We measure the time cost in each step.

We instrument and run the sequential version on a desktop machine (Red Hat Enterprise

Linux Server release 6.3 (Santiago), Intel Core2 E8400, 4GB of RAM). Total execution

time is 102 seconds for a 2.1GB file of OPM graphs. Figure 6.16 shows the detailed

breakdown. Parsing XML files into XMLBeans document takes more than half of the total

time. The second time consuming step is the partitioning algorithm, which takes about

27%, but creating representations from partitions is not (1%). Reading XML files takes

considerable time (17%), but writing representations into a file is negligible (0.2%), which

is because of the small size of output representation (16.9MB). In sum, our observation is

that excluding the time spent in reading, writing and parsing XML files, the actual time
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Figure 6.16: Breakdown of representation generating time.

used in executing partitioning (Logical Clock-P) and creating representations is only 28%

of the total time. In other words, this is a data intensive application. Thus, it is natural to

use parallel programming paradigm such as MapReduce [55] to improve its scalability.

To examine how well Hadoop [158] MapReduce can accelerate the representing pro-

cess, we measure the absolute run time as well as relative speedup and scaleup [60]. We

conduct experiments on a cluster of 10 nodes, each node having a dual-socket, 2-core (4

total cores/node) AMD Opteron system with 4GB of memory. The cluster is connected

internally by Gigabit Ethernet and Infiniband networks; we use the former. We use an

extra node for running the master daemons to manage the Hadoop jobs and the Hadoop

distributed file system. On each node, 64-bit Red Hat Enterprise Linux Server release 5.8

(Tikanga), JDK 1.6, and Hadoop 0.21.0 exist. The maximum number of map and reduce
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Figure 6.17: Run time on different cluster sizes.

tasks is set to be the same as number of cores, four, on each node. The MapReduce imple-

mentation follows the same logic/algorithm as previous sequential version, but it has only

mappers (map only) that directly read from and write back to HDFS.

To evaluate the speedup of this approach, we fix the dataset size and vary cluster size.

Figure 6.17 shows run time for 2.1GB OPM graphs on clusters ranging from 1 to 10 nodes.

Also shown is ideal speedup curve (with a smooth line). For instance, if the cluster has

twice as many nodes and the data size does not change, the approach should be twice as

fast. In Figure 6.18 we show the same numbers, but plotted on a “relative scale”. That is,

for each cluster size, we plot the ratio between the run time for 1-node cluster and run time

of the current cluster size. For example, for the 10-node cluster, plotted is the ratio between

the run time on the 1-node cluster and the run time on the 10-node cluster. The result shows

that this approach shows good speedup.

To further evaluate the scaleup of the proposed approach we increase the dataset size

and the cluster size together by the number of nodes. That is, we start with 214M OPM

graphs on 1-node cluster, and then multiply the size of OPM graphs by the number of

nodes, so we will end up with 2.1GB OPM graphs on 10-node cluster. A perfect scaleup
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Figure 6.18: Relative run time on different cluster size.

Figure 6.19: Run time when the dataset size and the cluster size (the number of nodes)

scale together.

could be achieved if run time remained constant (no more overhead). Figure 6.19 shows

the run time when data size is increased from 1 to 10 times, on a cluster with 1 to 10 nodes,

respectively. We can see that this approach has a scaleup curve close ideal.

In summary, data mining on proposed temporal representation is scalable because of

the size and dimensionality of dataset is greatly decreased in our reduction (representing)

process, and the scalability of representing process can be improved using MapReduce.
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6.6 Applying Temporal Representation to Provenance Stream Model

So far we have shown that our proposed temporal representation can be applied onto a large

collection of provenance data to support data mining tasks with good performance and

scalability. Next we extend the same methodology to the stream provenance model so that

it could be used to mine live provenance that is too big to be stored persistently. The idea

is to use a sliding window to take a snapshot of the current status of the provenance stream

and apply the same temporal representation methodology to this snapshot to generate its

temporal representation. However, these window-based temporal representations may vary

in time or speed, thus the previous similarity measurement using Euclidean distance no

longer works. In this section, we first introduce an algorithm to generate the window-

based temporal representation, and then propose a new similarity measurement based on

Dynamic Time Warping (DTW).

6.6.1 Streaming Algorithm that Generates Temporal Representation

The Window-based Temporal Representation (WTR) algorithm (Algorithm 3) generates a

synopsis of the stream elements within the current sliding window. This is a direct applica-

tion of our temporal representation algorithm onto the stream elements within the current

sliding window.

We have shown that the temporal representation can significantly reduce the feature

space while still preserving valuable information to support mining techniques like clus-

tering, classification and association rule mining. While we can still perform the same

association rule mining analysis on the window-based temporal representations, the clus-

tering and classification analysis no longer work as the representations may vary in time
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Algorithm 3 The WTR algorithm that generates the synopsis of provenance stream for the

current sliding window.
1: function GENERATESYNOPSIS(elements) . element: all the provenance stream elements

within current sliding window

2: graph← provenance graph built from elements

3: nodeSubsets← graph partitioned using the Logical-P algorithm

4: synopsis← empty list

5: for subset in nodeSubsets do

6: representation← statistical features selected from subset

7: append representation to synopsis

8: end for

9: return synopsis

10: end function

or speed (see Figure 6.20). We solve this problem with a technique called Dynamic Time

Warping (DTW), which is a method to calculate the optimal match between two given se-

quences that is widely used in mining time series data [27]. With DTW distance, we can

apply the same k-means algorithm to clustering and the k-Nearest Neighbors algorithm (k-

NN) to classification. However, the original DTW algorithm aligns sequences element by

element, thus we have to adapt it to use the leveled subset in temporal representation as the

basic unit of alignment. The modified version of DTW algorithm (see Algorithm 4) has

a time complexity of O(n2). While the time complexity can be improved with fast DTW

computation algorithms such as SparseDTW [10] and FastDTW [133], it is beyond our

current research.
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Algorithm 4 Algorithm that calculates the Dynamic Time Warping (DTW) distance for

two window-based temporal representation sequences.
1: function DTWDISTANCE(synopsis1 : array[1...n], synopsis2 : array[1...m]) . element i

in array[1...n] is feature representation of level i

2: DTW ← array[0...n][0...m]

3: for i← 1 to n do

4: DTW [i][0]←∞

5: end for

6: for i← 1 to m do

7: DTW [0][i]←∞

8: end for

9: for i← 1 to n do

10: for j ← 1 to m do

11: cost← EuclideanDistance(synopsis1[i], synopsis2[j])

12: DTW [i][j]← cost+minimum(DTW [i−1][j], DTW [i][j−1], DTW [i−1][j−

1]) . insertion, deletion, and match, in order

13: end for

14: end for

15: return DTW [n][m]

16: end function
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(a) Sequence I (b) Sequence II

Figure 6.20: Time lag between two representation sequences, caused by the time difference

between ABM simulations. When measuring the similarity, Level 3-7 in Sequence I should

be aligned to Level 1-5 in Sequence II.

6.6.2 Performance of WTR Algorithm

We implement the WTR algorithm in the same Kafka & Spark Streaming framework we

proposed in Chapter 5, and we test its throughput, latency and scalability with the prove-

nance streams from the Zambia food security ABM. Note that though the provenance

streams are represented in W3C PROV, they consist of only data products and the rela-

tionship “was derived from”, which can be directly mapped to OPM concept “artifact” and

“was derived from.”

Again, we choose to not throttle the provenance generating rate, but to control the

receiving rate using the “backpressure” feature in Spark Streaming. Figure 6.21 shows

how the “backpressure” works on the window-based temporal representation algorithm.

Spark Streaming receives input data streams and divide the data into batches. We first

measure the throughput and latency of both algorithms running in a single-node Spark
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Figure 6.21: The data receiving rate is automatically controlled by the “backpressure”

feature in Spark Streaming when running the WTR algorithm, with the window length and

the sliding interval both equal to 1s.

Streaming cluster. To reveal the maximum throughput when just receiving stream elements

from Kafka, we also run the operation “collect” in the same Spark Streaming cluster and

measure its throughput. Figure 5.6 shows the result, where we vary the batch interval to

show its impact on throughput and latency for both algorithms. Note that, in addition to

the batch interval, our WTR algorithm has two more parameters: window length – the

duration of the window, and sliding interval – the interval at which the window operation

is performed, both of which must be multiples of the batch interval. To make the WTR

algorithm process each element in the provenance stream exactly once, we set the window

length equal to the sliding interval. We first vary the window length (and the sliding inter-

val) together with the batch interval in Figure 6.22, and then fix the batch interval and vary

the window length (and the sliding interval) in Figure 6.23.

Figure 6.22 shows that increasing the batch interval has little impact on the throughput

but can increase the latency significantly. The results in Figure 6.23 shows that increasing
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Figure 6.22: The influence of batch interval on throughput and latency (when the window

length and the sliding interval are set equal to the value of batch interval).

Figure 6.23: The influence of window length on throughput and latency (when the sliding

interval is set equal to the value of window length).
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Figure 6.24: Scalability test on the WTR algorithm (with the batch interval, the window

length and the sliding interval all equal to 1s).

sliding interval reduces both the throughput and the latency. By adjusting the value of

window length and sliding interval, our proposed algorithm can have throughput as high as

8.8MB/s per stream and latency as low as less than 1s.

To perform data mining tasks like clustering and classification that require more than

one provenance stream, a straightforward way is to create the temporal representations of

multiple provenance streams and join them within one streaming application. However,

similar to the results of scalability test in Section 5.5, Figure 6.24 demonstrates that the

1st approach (creating a new streaming application for each provenance stream) is more

scalable than the 2nd approach (processing all provenance streams within one streaming

application). This suggests that if we want to further scale up the temporal representation

generation, we can first generate the representations using the 2nd approach and output

them into a shared file system like HDFS, and then read and process them all together

using another streaming application.
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6.7 Summary

In this chapter, we develop the Logical Clock-P algorithm to produce partitions that pre-

serve temporal orders between node subsets. Based on that, we propose a temporal rep-

resentation for provenance graphs, which includes both structure and attribute information

into a single uniform attribute space where statistical features can be extracted for data

mining. Experiments on semi-synthetic and real life provenance datasets show that the

temporal representation can detect failed workflow instances; can be used to predict the

type of new workflow instance; and can reveal workflow variants. The performance eval-

uation shows good purity and NMI in unsupervised clustering, and high correctness ratio

in supervised classification. The scalability study indicates that data mining on proposed

temporal representations are scalable because of the size and dimensionality of dataset are

greatly decreased in our reduction (representing) process, and the scalability of represent-

ing process can be improved using MapReduce.

We also propose a window-based temporal representation (WTR) algorithm for the

provenance stream model to support data mining on streaming provenance data with few

computational resources. The performance evaluation of the representation algorithm using

the same streaming framework we presented in Chapter 5 shows high throughput, low

latency and suggests the right way to scale it up. To address the time and speed differences

between window-based temporal representations, we propose a similarity measurement

method based on Dynamic Time Warping (DTW).
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Chapter 7

Conclusion and Future Work

Our earlier work captures and visualizes the Big Data provenance generated from data in-

tensive eScience: we create a plugin to Cytoscape for visualizing large scale provenance

graphs; we develop an automatic provenance capture extension to NetLogo, and demon-

strate the usefulness of provenance analysis in a social-ecological agent-based model. In

this dissertation, we continue to address the Big Data challenges in provenance analysis:

the volume, velocity, and complexity of provenance for offline and online retrieval and data

mining.

7.1 Contributions

Our research aims to help data scientists to better understand, debug, and use big data. It is

widely recognized the importance of provenance (or data lineage) in understanding, repro-

ducing, and reusing data, and our efforts further expand the use of provenance in several

domains of eScience, including workflow, computer network, and agent-based simulation.

To that end, the major outcomes are summarized below:

1. Efficient Offline and Online Retrieval of Big Data Provenance: Forward prove-

nance query tells which output data depends on a given input data, thus it is helpful
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for data scientists to understand the impact of the input data, and the propagation

of errors from the input to the output data. Backward provenance query answers on

which input data the given output data relies, hence it is useful for debugging the

output, updating data sources, and tuning application parameters. However, the tra-

ditional approach to provenance retrieval, which processes the queries on complete

provenance data, is no longer applicable when the size of provenance is too big to

be stored persistently. Our research enables the efficient retrieval of Big Data prove-

nance, with online and offline solutions depending on when the query is given: if

we know the query before capturing the provenance (often in forward provenance

query), we can preserve and process in situ the provenance traces that are relevant to

the query; if the query is given on-the-fly (often in backward provenance query), we

can use stream processing to calculate the query results in real-time.

2. Temporal Representation to Support Data Mining on Large Collections of Prove-

nance: Variants and exceptions in data processing can be discovered by mining

provenance. However, provenance represented as property graph can have large size

and high dimensionality that makes the data mining ineffective or even intractable.

In the thesis, we propose an efficient and scalable representation of provenance that

can be mined to reveal the variants and exceptions in experiment runs. We also apply

the temporal representation to the provenance stream model to support data min-

ing on streaming provenance. The evaluation on a 10GB semi-synthetic provenance

database and a real life social-ecological dataset shows that the temporal represen-

tation can detect failed workflow instances; can be used to predict the type of new

workflow instance; and can describe/distinguish clusters from one another.
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To achieve the above outcomes, we develop technical solutions that address the chal-

lenges that we mentioned in Section 1.2. The technical contributions of this dissertation

can be summarized as follows:

1. For scientific simulations that generate Big Data provenance but the queries are pre-

given, we propose filtering techniques accordingly to reduce the amount of prove-

nance stored. We also propose a non-preprocessing (NP) provenance slicing tech-

nique that processes the raw provenance traces on demand to answer queries. The

experimental evaluation shows that their combination can dramatically reduce the

demands on persistent storage and the processing time of subsequent querying.

2. For scientific simulations that generate provenance traces at high speed but the query

subject can be any of the future data product, we propose a streaming algorithm that

can dynamically track the dependencies for all future data products. The streaming

algorithm has been implemented in our stream processing framework and tested to

have high throughput, low latency and good scalability.

3. For mining a large collection of provenance graphs, we propose a temporal represen-

tation that can effectively reduce the volume and dimensionality thus is scalable for

data mining operations including clustering, classification and association rules min-

ing. To use the temporal representation to support data mining on streaming prove-

nance, we present a window-based algorithm and a similarity measurement based on

Dynamic Time Warping (DTW). The performance evaluation of the window-based

temporal representation algorithm shows good throughput, latency and scalability.
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7.2 Future Work

The provenance stream model that we defined in this dissertation assumes that temporal

order can be preserved during provenance capture and processing. To satisfy this assump-

tion, our prototype framework sends each provenance stream into one Kafka partition that

is processed in one RDD partition by Spark Streaming. This limits the level of parallelism

and one future direction is to relax the assumption and to parallelize the processing of

each provenance stream. In addition, based on the provenance stream model, our prototype

streaming framework, and our proposed streaming algorithms, various useful applications

can be developed, some of which are already described in Section 5.6.

Our temporal representation is based on OPM’s definition of provenance, but can also

support other provenance models by mapping them to OPM. W3C Provenance Incubator

Group defined provenance vocabulary mappings in [129], in which OPM is the reference

model and map to it are nine provenance vocabularies and models. While some mappings

are inaccurate and lose information, the effort found that the notion of processes, artifacts,

and agents as defined in OPM are common or highly related, so can be mapped quite

naturally between the models. However, the nine vocabularies and models do not include

W3C PROV, which is a standard that emerged after OPM. While OPM is built on causality,

PROV is not and it only has some edges that imply temporal ordering. W3C PROV also

has provenance concepts that are not captured in OPM, such as versioning, mechanisms

for linking the different descriptions of the same object, and containment relationships and

collections. We think that simply mapping PROV to OPM is not the best solution to extend

our representation to PROV, and instead it is worth extending our Logical-P algorithm to

support the definitions of PROV. For example, we can modify our definition of “happened
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before” from a causal relationship to a temporal relationship.

In addition, when evaluating the performance of data mining tasks on proposed tem-

poral representations, we handle nominal values and missing values by mapping them into

numeric values, which makes problematic implications of distances. One way to address

this is to develop special distance measurement methods to handle the nominal and missing

values properly.

Finally, we apply the temporal representation to the provenance stream model through

sliding window and a new distance measurement method. While the efficacy of the tem-

poral representation in data mining has been verified on static datasets, its performance on

streaming provenance needs to be evaluated directly.
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