
An Improved Bound for Random Binary Search
Trees with Concurrent Insertions
George Giakkoupis
INRIA, Rennes, France
george.giakkoupis@inria.fr

Philipp Woelfel
University of Calgary, Canada
woelfel@cpsc.ucalgary.ca

Abstract
Recently, Aspnes and Ruppert (DISC 2016) defined the following simple random experiment to
determine the impact of concurrency on the performance of binary search trees: n randomly
permuted keys arrive one at a time. When a new key arrives, it is first placed into a buffer of
size c. Whenever the buffer is full, or when all keys have arrived, an adversary chooses one key
from the buffer and inserts it into the binary search tree.

The ability of the adversary to choose the next key to insert among c buffered keys, models a
distributed system, where up to c processes try to insert keys concurrently. Aspnes and Ruppert
showed that the expected average depth of nodes in the resulting tree is O(logn + c) for a
comparison-based adversary, which can only take the relative order of arrived keys into account.
We generalize and strengthen this result. In particular, we allow an adversary that knows the
actual values of all keys that have arrived, and show that the resulting expected average node
depth is Davg(n) + O(c), where Davg(n) = 2 lnn − Θ(1) is the expected average node depth
of a random tree obtained in the standard unbuffered version of this experiment. Extending
the bound by Aspnes and Ruppert to this stronger adversary model answers one of their open
questions.

2012 ACM Subject Classification Mathematics of computing → Trees, Theory of computation
→ Data structures design and analysis, Theory of computation → Sorting and searching

Keywords and phrases Random Binary Search Tree, Buffer, Average Depth, Concurrent Data
Structures

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.37

Funding This research was undertaken, in part, thanks to funding from the ANR Project NDFu-
sion (ANR-16-TERC-0007), the ANR Project PAMELA (ANR-16-CE23-0016-01), the Canada
Research Chairs program, and the Discovery Grants program of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

Acknowledgements The authors are grateful to Eric Ruppert for his comments on a draft of
the proof presented here. Eric also pointed out that our earlier, much simpler proof attempt was
indeed too simple to be true.

1 Introduction

Consider the following random procedure, in which distinct keys from a totally ordered
universe are inserted into an (internal) binary search tree (BST). Multiple keys arrive in
random order, and whenever a key arrives, it is first placed into a buffer of fixed size c. Upon
each key arrival, an adversary may remove one of the keys from the buffer, and insert it into

© George Giakkoupis and Philipp Woelfel;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:george.giakkoupis@inria.fr
mailto:woelfel@cpsc.ucalgary.ca
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 An Improved Bound for Random Binary Search Trees with Concurrent Insertions

the BST. (The adversary may also decide not to insert a key, if the buffer is not full.) We
are interested in performance affecting properties of the resulting BST, such as its height or
average node depth.

This random experiment has recently been studied by Aspnes and Ruppert [1], to
understand how concurrency influences the performance of search trees in a distributed
setting: In an asynchronous shared memory system, multiple processes may concurrently try
to insert keys into a BST data structure.

The order in which concurrent insertions succeed can depend on unpredictable system
factors. For example, cache effects or memory locality on NUMA architectures can heavily
influence the speed with which synchronization primitives, and thus insertions take effect.
Events such as context switches can delay the operations by some processes, while other
processes that may have locked parts of the data structure may be able to execute several
operations in rapid succession. Therefore, the order in which concurrent data structure
operations succeed can be arbitrary, and is usually analyzed under worst-case assumptions.
For randomized algorithms or random inputs, an adversary is used to model how this order is
influenced by random events. In analogy to the worst-case analysis of sequential algorithms,
it is natural to make pessimistic adversary assumptions, i.e., consider the worst conceivable
influence that random events can have on the operation order.

A buffered search tree with buffer size c as described above, models such a distributed
scenario, where up to c processes insert random keys concurrently. At any point, there are up
to c insert operations pending (corresponding to the keys in the buffer), and the adversary
decides which of those insert operations succeeds first.

Aspnes and Ruppert [1] analyzed the buffered search tree for a comparison based adversary,
which can base its decisions only on the relative order of the keys that have arrived so far.
They showed that for a random arrival sequence of n distinct keys, the resulting BST has an
expected average node depth of O(c+ logn), and that this bound is asymptotically tight.
They also proved that there is a comparison based adversary that can achieve an expected
height of Ω

(
c · log(n/c)

)
.

Note that the height of a BST corresponds to the worst-case search time, and the average
node depth corresponds to the average-case search time for successful searches.

Contrary to the distributed case (buffered tree), in the sequential setting the expected
height and the expected average node depth are known up to constant additive terms. For
example, the expected average node depth of a BST obtained by inserting keys {1, . . . , n} in
random order is [6]

Davg(n) = 2(1 + 1/n)Hn − 2, where ln(n+ 1) < Hn < (lnn) + 1.

It seems appropriate to also analyze height and average depth as precisely as possible for a
distributed setting.

The adversary considered by Aspnes and Ruppert [1] does not fully reflect a worst-case
scenario, as it can make decisions only based on the relative order of elements, but cannot
distinguish their absolute values. It is not clear whether adversarial decisions based on, for
example, the pairwise differences between consecutive keys in the ordered list of buffered
elements, can lead to a significantly increased average node depth. Consequently, Aspnes
and Ruppert suggested that “it might be interesting to see whether even stronger malicious
adversaries could force the height or average depth of random trees to grow higher by using
the actual values of he keys” [1]. They suggested an example for a buffer size of c = 3, where
keys are drawn uniformly at random from the interval [0, 1]: If the first three keys chosen
are 0.03, 0.45, and 0.54, then a good strategy for an adversary that can see absolute values

G. Giakkoupis and P. Woelfel 37:3

would be to insert 0.03 as the root. On the other hand, if the initial three keys in the buffer
were 0.46, 0.55, and 0.97, the adversary would be better off by inserting 0.97, first.

Results. We provide a negative answer to the question posed by Aspnes and Ruppert [1],
whether an adversary can achieve a significantly increase in the average node depth by using
knowledge about the values of keys in the buffer. At the same time, we refine Aspnes and
Ruppert’s upper bound of O(logn+c) on the expected average node depth, to Davg(n)+O(c).
As a result, a buffer of size c = o(logn) does not negatively affect the constant factor in the
expected average node depth.

We consider a strong adversary, which can at any time base its next insertion decision
on the exact values of all keys that have arrived so far. In a distributed system, where the
buffer corresponds to pending concurrent insert operations, this translates to the strongest
reasonable adversary, namely one which can base its decisions on all past random events,
but not future ones.

Consider an arrival sequence of n arbitrary distinct keys chosen from a totally ordered
universe and permuted randomly. Let ∆(n, c) denote the expected average node depth
obtained for a buffered BST given the strong adversary, if the buffer has size c. Note that
c = 1 corresponds to the unbuffered case, as the adversary has to move a key from the buffer
whenever the buffer is full. Hence, ∆(n, 1) = Davg(n) is the expected average node depth in
the standard sequential case. We will prove the following result.

I Theorem 1. ∆(n, c) = ∆(n, 1) +O(c), for any c ∈ {2, . . . , n}.

Note that the result of Aspnes and Ruppert [1] states that ∆′(n, c) = O(∆′(n, 1) + c), where
∆′ is defined as ∆ but for the weaker comparison based adversary.

Related Work. Binary search trees are among the most fundamental data structures, and
their properties have been studied extensively. It has been known for a long time that the
expected average depth of nodes for trees obtained by inserting a random permutation of n
distinct elements is O(logn) [2, 10]. Many additional details, such as higher moments, are
known about the distribution of node depths [6]. Other parameters of random BSTs have
also been determined precisely. For example, a sequence of works [9, 3, 8] determined the
expected height as (4.311 . . .) · logn− (1.953 . . .) · log logn+O(1).

The buffered search tree scenario considered in this paper was introduced by Aspnes and
Ruppert [1]. They describe it in terms of a card game, where a player takes c cards from a
shuffled deck of n cards, then chooses one of the cards in her hand to insert into the BST,
and replaces that card with a new one from the deck. This continues until the deck has been
depleted, upon which the player inserts all remaining cards in her hand into the tree. The
authors point out that a complementary approach is the smoothed analysis of the expected
BST height [7].

Concurrent Data Structure Context. To understand the context of this work, it is helpful
to know how efficient concurrent data structures, such as binary search trees, may be
implemented. There are several techniques to avoid conflicts, when multiple processes access
a search tree (or other data structure) concurrently. The simplest one is to use “coarse
grained locking”, where a mutual exclusion algorithm (lock) protects the entire data structure.
This way, only one process can access the data structure at a time, while other processes
have to wait.

STACS 2018

37:4 An Improved Bound for Random Binary Search Trees with Concurrent Insertions

But such lock-based solutions are inefficient, and not fault tolerant. The “Read-Copy-
Update” technique is an example of a more efficient and fault tolerant solution: The address
of the root of the tree is stored in a Compare-And-Swap (CAS) object C. This is a standard
shared memory primitive that supports a C.CAS(old, new) operation, which atomically
changes the value of C to new, provided its current value is old. To insert a node v, a process
first creates a copy of the search path from the root to the node u of which v will become a
child. Then the process executes a C.CAS(old, new) operation, where old is the address of
the original root, and new is the address of the root on the search path copy. This CAS only
succeeds, if no other insertion took effect (i.e., no other CAS succeeded) in the meantime.
If it fails, the process repeats its insertion attempt. This method is lock-free, guaranteeing
progress even if processes crash. If the tree only supports insertions and no other update
operations (such as deletions), then more efficient implementations based on fine grained
synchronization are possible (e.g., using one CAS object or lock for each child pointer).

There are several other common solutions, e.g., based on transactional memory. But most
of these solutions have in common that the speed of an insertion attempt may depend on
the length of the search path. Since “fast” attempts have a higher chance of being successful,
it is reasonable to assume that the order of concurrent insertions depends on the values of
the involved keys.

2 Analysis

Our analysis works for a slightly stronger adversary, which in addition to the keys in the
buffer, also knows the set (but not the order) of all future keys to arrive. In other words, the
adversary knows at any point the ranks of the keys that have arrived so far, with respect to
the set of all keys in the complete arrival sequence. In that setting we can assume w.l.o.g.
that the key arrival sequence is a random permutation over {1, . . . , n}. The first c − 1 of
the keys are stored in a buffer. For each following key k that arrives, first k is inserted to
the buffer, and then one of the c keys in the buffer is removed and inserted into the tree.
(It is obvious that the adversary can gain no advantage by inserting a key from the buffer
“early”, i.e., when the buffer is not full and more keys are going to arrive.) After all keys
have arrived, the c keys remaining in the buffer are inserted into the tree as well.

Proof Overview. We use the fact that the average node depth in any tree is equal to the
average number of descendants of all nodes in the tree. Let k1, . . . , kn denote the keys in
the order in which they arrive (so, k1, . . . , kn is a random permutation of {1, . . . , n}). We
bound the expected number of descendants of each key ki in the final tree. For i < c we use
the trivial bound of n on the number of descendants of ki. Next we focus on the case i ≥ c.
We bound the expected number of descendants of ki in the final tree, given the current tree
and the set of keys in the buffer just before ki arrives; at that time, the value of ki is not
yet determined, so it is equally likely to be any of the remaining keys. We observe that the
number of descendants of ki in the final tree is maximized if key ki is inserted to the tree as
soon as it arrives, rather than stored in the buffer and inserted at a later time. So, it suffices
to bound the expected number of descendants ki would have, if it were inserted immediately.
This expected value depends only on the set of the i− 1 keys that arrived before ki, and the
subset of them that have been inserted into the tree; in particular, it does not depend on
the order in which keys arrived or the order in which keys were inserted into the tree. From
this bound on the conditional expectation on the number of descendants of ki, given the
i− 1 keys that arrived before ki and the i− c keys already in the tree, we obtain a bound

G. Giakkoupis and P. Woelfel 37:5

on the corresponding unconditional expectation, by letting the first i− 1 keys be random,
and assuming that an arbitrary (worst-case) (i− c)-subset of them has been inserted into
the tree. From this bound for each i ≥ c (and the trivial bound of n for i < c), and from
the linearity of expectation, we obtain a bound on the expectation of the average number of
descendants of all nodes.

Detailed Proof. We now present the detailed proof of Theorem 1. As already mentioned,
k1, . . . , kn is a random permutation of {1, . . . , n} denoting the order in which keys arrive.
We assume w.l.o.g. that no key is inserted into the tree, unless the buffer is full or all keys
have arrived. I.e., the insertions evolve in rounds as follows: In round j ∈ {1, . . . , c− 1}, key
kj is added to the buffer. In round j ∈ {c, . . . , n}, first key kj is added to the buffer, and
then some key `j is removed from the buffer and inserted into the search tree. Finally, in
each round j ∈ {n+ 1, . . . , n+ c− 1}, one key `j is removed from the buffer and inserted
into the tree.

For i ∈ {0, . . . , n+ c− 1}, let Xi be the set of keys that have arrived by the end of round
i, and let Yi be the set of keys that the tree contains at the end of round i (X0 = Y0 = ∅).
Then Xi = {k1, . . . , ki} for i ∈ {0, . . . , n}, and Xi = {1, . . . , n} for i > n. Moreover, Yi = ∅
for i ∈ {1, . . . , c− 1}, and Yi = {`c, . . . , `i} for i ∈ {c, . . . , n+ c− 1}. At the end of round
i, the set of keys in the buffer is Xi \ Yi. This set contains i elements at the end of round
i ∈ {0, . . . , c−1}, c−1 elements at the end of round i ∈ {c, . . . , n}, and n+ c− i−1 elements
at the end of round i ∈ {n+ 1, . . . , n+ c− 1}. Hence,

|Xi \ Yi| = min{i, c− 1, n+ c− i− 1}. (1)

Let x1
i , . . . , x

i
i denote the elements of Xi ordered by increasing key values. For convenience

we also define x0
i = 0 and xi+1

i = n+ 1. Further, let Y ′i = Yi ∪ {0, n+ 1}.
We are interested in bounding the number of descendants of each key in the final tree.

For i ∈ {0, . . . , n− 1}, define the random variable

δci = min
{
y ∈ Y ′i | y > ki+1

}
−max

{
y ∈ Y ′i | y < ki+1

}
.

As we will show below in the proof of Claim 2, the number of descendants of ki+1 in the
search tree with buffer size c is at most δci −2. Moreover, for c = 1, the number of descendants
is exactly δ1

i − 2. Since the average node depth of a search tree equals the average number
of descendants of each node, we can upper bound the expected average node depth as the
expected average of all values δci − 2. And for c = 1, these two quantities match.

I Claim 2.

(a) ∆(n, 1) = 1
n
·
n−1∑
i=0

E[δ1
i]− 2; and

(b) ∆(n, c) ≤ 1
n
·
n−1∑
i=0

E[δci]− 2, for any c ≥ 2.

Proof. For i ∈ {0, . . . , n− 1} let desc(i) denote the set of descendants of key ki in the final
search tree, and let depth(j) denote the depth of node kj in the final tree. Then the average
node depth of the final tree is

1
n
·
n∑
j=1

depth(j) = 1
n
·
n∑
j=1

∣∣{i ∈ {1, . . . , n} : kj ∈ desc(i)
∣∣ = 1

n
·
n∑
j=1
|desc(j)|.

STACS 2018

37:6 An Improved Bound for Random Binary Search Trees with Concurrent Insertions

We will now show for any i ∈ {0, . . . , n− 1} that |desc(i+ 1)| ≤ δci − 2, and moreover, for a
buffer of size c = 1, |desc(i+ 1)| = δ1

i − 2. The claim follows immediately from that.
Key ki+1 arrives in the buffer in round i + 1. Suppose it is moved into the tree in

round j + 1 ≥ i + 1. Then at that point the tree contains the elements in Yj . When
that happens, the largest element in the tree that is smaller than ki+1 (if it exists) is
aj = max{y ∈ Yj | y < ki+1}, and the smallest element in the tree that is larger than ki+1
(if it exists) is bj = min{y ∈ Yj | y > ki+1}. The search path to the position where ki+1 gets
inserted goes through aj and bj . Hence, in the final tree, the search path to any descendant
of ki+1 also goes through those two nodes. Moreover, any key that is larger than aj and
smaller than bj will follow the search path to ki+1 and become a descendant of ki+1. Define
aj = 0 respectively bj = n+ 1 if Yj contains no element smaller respectively larger than ki+1.
Then we obtain desc(i+ 1) = {aj + 1, . . . , bj − 1} \ {ki+1}, and thus

|desc(i+ 1)| = bj − aj − 2.

Now observe that if the buffer has size c = 1, then j = i, because key ki gets inserted
into the tree in the same round as it arrives. Since ai = max

{
y ∈ Y ′i | y < ki+1

}
and

bi = min
{
y ∈ Y ′i | y > ki+1

}
(recall that Y ′i = Yi ∪ {0, n+ 1}) we obtain δ1

i = bi − ai, and so
|desc(i+ 1)| = δ1

i − 2.
For c > 1 we may have j > i, but in any case Yi ⊆ Yj . Hence, ai ≤ aj and bi ≥ bj , and

so we obtain δci = bi − ai ≥ bj − aj = |desc(i+ 1)| − 2. J

Later, in Claim 4, we will bound the expectation of δci , given Xi and Yi. To do so, we
will use the following simple observation.

I Claim 3. For any i ∈ {c− 1, . . . , n− 1}, δci ≤ max
j∈{0,...,i−c+1}

(xj+ci − xji).

Proof. Let yai = max
{
y ∈ Y ′i | y < ki+1

}
. Then ya+1

i = min
{
y ∈ Y ′i | y > ki+1

}
, and

δci = ya+1
i − yai . Since Y ′i ⊆ Xi ∪{0, n+ 1}, elements yai and ya+1

i are both in Xi∪{x0
i , x

i+1
i }.

Let ` ∈ {0, . . . , i} such that x`i = yai , and r ∈ {`+ 1, . . . , i+ 1} such that xri = ya+1
i .

First assume that r − ` > c. Since yai and ya+1
i appear consecutively in the ordered list

of elements in Yi, none of x`+1
i , . . . , xr−1

i is in Yi. Recall that Xi \ Yi is the set of elements in
the buffer at the end of round i. Hence, all r − `− 1 ≥ c elements x`+1

i , . . . , xr−1
i are in the

buffer at the end of round i. But at the end of a round, the buffer can contain at most c− 1
elements, and we have a contradiction.

Therefore, r− ` ≤ c. Then there exists an index j ∈ {0, . . . , `} with j + c ∈ {r, . . . , i+ 1}.
In this case xji ≤ x`i = yai and xj+ci ≥ xri = ya+1

i , and thus xj+ci − xji ≥ y
a+1
i − yai = δci . This

proves the claim. J

For a set S = {s1, . . . , sm} ⊆ {1, . . . , n}, where s1 < · · · < sm, let

γ(S) =
m∑
i=0

(si+1 − si)2, where s0 = 0 and sm+1 = n+ 1.

For any i ∈ {0, . . . , n− 1} we will now bound the expected value of δci as a function of
γ(Yi), given the sets Xi and Yi. That bound is tight for the case c = 1.

I Claim 4. For any i ∈ {c− 1, . . . , n− 1},

(a) E[δci | Xi, Yi] ≤
γ(Yi)− n− 1

n− i
;

(b) E[δ1
i | Xi] = γ(Xi)− n− 1

n− i
.

G. Giakkoupis and P. Woelfel 37:7

Proof. Let z = i− c+ 1 = |Yi|, let the set of ordered elements in Yi be y1
i , . . . , y

z
i , and let

y0
i = 0 and yz+1

i = n+ 1. Therefore,
z∑
j=0

(yj+1
i − yji) = yz+1

i − y0
i = n+ 1. (2)

Let σ(i) be the unique index in {0, . . . , z} such that yσ(i)
i < ki+1 < y

σ(i)+1
i . Then yσ(i)

i =
max

{
y ∈ {y0

i , . . . , y
z+1
i } | y < ki+1

}
and y

σ(i)+1
i = min

{
y ∈ {y0

i , . . . , y
z+1
i } | y > ki+1

}
.

Hence,

δci = y
σ(i)+1
i − yσ(i)

i .

Recall that Xi is the set of keys arrived by the end of round i. Hence, given Xi, the
element ki+1, which arrives in round i+ 1, is uniformly distributed over {1, . . . , n} \Xi (the
tag (∗) below indicates where this fact is being used). Therefore,

E[δci | Xi, Yi] =
z∑
j=0

Pr(σ(i) = j) | Xi, Yi) · (yj+1
i − yji)

=
z∑
j=0

Pr
(
ki+1 ∈ {yji + 1, . . . , yj+1

i − 1}
∣∣∣Xi, Yi

)
· (yj+1

i − yji)

(∗)=
z∑
j=0

|{yji + 1, . . . , yj+1
i − 1} \Xi|

|{1, . . . , n} \Xi|
· (yj+1

i − yji)

≤
z∑
j=0

yj+1
i − yji − 1

|{1, . . . , n} \Xi|
· (yj+1

i − yji) (3)

=
z∑
j=0

(yj+1
i − yji)2 − yj+1

i + yji
n− i

(2)=
z∑
j=0

(yj+1
i − yji)2

n− 1 − n+ 1
n− i

= γ(Yi)− n− 1
n− i

. (4)

This proves Part (a) of the claim.
For Part (b) note that if the buffer has size c = 1, then Xi = Yi. Hence,

{yji + 1, . . . , yj+1
i − 1} contains no element in Xi, and so inequality (3) above holds as

an equality. Now Part (b) follows from substituting xji with yji and Xi with Yi in the above
bound. J

According to Claim 2, we have

∆(n, c)−∆(n, 1) ≤ 1
n

n−1∑
i=0

(E[δci − δ1
i]).

In the following we will bound the expectation of the maximum of γ(Yi) − γ(Xi) for all
sets Yi ⊆ Xi of size i − c + 1, for i ∈ {c − 1, . . . , n − 1}. This implies an upper bound on
E[γ(Yi)− γ(Xi)], and thus by Claim 4 on E[δci − δ1

i].

I Lemma 5. For any i ∈ {c− 1, . . . , n− 1},

E[δci − δ1
i] = O

(
n2c2 + n2c log2 i

i2(n− i)

)
.

STACS 2018

37:8 An Improved Bound for Random Binary Search Trees with Concurrent Insertions

First we show a high probability upper bound on the differences xj+di − xji , for all values
of j ∈ {0, . . . , i} and d ∈ {1, . . . , i − j + 1} in Claim 6 below. This allows us to bound for
a random set S ⊆ {1, . . . , n} of m elements, the expectation of

(
γ(S \ C) − γ(S)

)
for the

“worst” subset C of S of a given size. This bound is stated in Lemma 7 below. Using this
bound, we will then prove Lemma 5.

I Claim 6. Let S be a set of m ∈ {1, . . . , n} elements chosen at random from {1, . . . , n}
without replacement. Let s1, . . . , sm be the elements of S in sorted order, and let s0 = 0 and
sm+1 = n+ 1. Then for any d ∈ {1, . . . ,m+ 1} and j ∈ {0, . . . ,m− d+ 1},

Pr
(
sj+d − sj >

8n(d+ lnm)
m

)
< e−3d ·m−3.

Proof. Let

b = 8n(d+ lnm)/m.

The distribution of the difference sj+d−sj does not depend on j (see Claim 9 in the appendix),
so we can assume j = 0. Thus, it suffices to show

Pr(sd > b) < e−3d ·m−3. (5)

If b > n, then the claim is trivially true, so assume b ≤ n. Let Rt, t ∈ {1, . . . ,m}, be an
indicator random variable, where Rt = 1 if and only if the t-th element chosen for S has a
value of at most b. Further, let R = R1 + · · ·+Rm. Then Pr(Rt = 1) = b/n, and so

E[R] =
m∑
t=1

E[Rj] = m · b
n

= 8(d+ lnm).

Recall that s0, s1, . . . , sm+1 is an increasing sequence. Therefore, R is the smallest index in
{1, . . . ,m} such that sR+1 > b. Hence, sd > b is equivalent to R < d, so according to (5) it
suffices to show that

Pr(R < d) < e−3d ·m−3. (6)

The random variables Rt are negatively associated [5, Section 3.1(c)], so we can use Chernoff
Bounds [4, Theorem 3.1] to obtain

Pr(R < d) = Pr
(
R <

E[R]
8 − lnm

)
≤ Pr

(
R < E[R](1− 7/8)

)
< e−(7/8)2·E[R]/2

≤ e−(7/8)2·8(d+lnm)/2 < e−3(d+lnm) = e−3d ·m−3.

This proves (6), and thus the claim. J

I Lemma 7. Let S be a set of m ∈ {1, . . . , n} elements chosen at random from {1, . . . , n}
without replacement. Then for any τ ∈ {1, . . . ,m},

E

max
C⊆S
|C|=τ

γ(S \ C)− γ(S)

 = O

(
n2τ2 + n2τ log2 m

m2

)
.

Proof. Let s1, . . . , sm be the elements of S in sorted order, and let s0 = 0 and sm+1 = n+ 1.
Define the following event,

Event A: ∀d ∈ {1, . . . ,m+ 1}, i ∈ {0, . . . ,m− d+ 1} : si+d − si ≤
8n(d+ lnm)

m
.

G. Giakkoupis and P. Woelfel 37:9

Using the union bound and applying Claim 6, we obtain

Pr(¬A) = Pr
(
∃d ∈ {1, . . . ,m+ 1}, i ∈ {0, . . . ,m− d+ 1} : si+d − si >

8n(d+ lnm)
m

)
≤
m+1∑
d=1

m−d+1∑
i=0

Pr
(
si+d − si >

8n(d+ lnm)
m

)
≤
m+1∑
d=1

m−d+1∑
i=0

e−3d ·m−3 = O(m−2). (7)

Now consider an arbitrary set C = {si1 , . . . , siτ } ⊆ S. Let I = {i1, . . . , iτ}, and partition
I into maximal subsets I1, . . . , I` of consecutive indices. Further, for j ∈ {1, . . . , `} let
αj = min Ij − 1 and dj = |Ij |+ 1. Thus,

C =
⋃̀
j=1
{sαj+1, sαj+2, . . . , sαj+dj−1},

and so for S′ = S ∪ {s0, sm+1},

S′ \ C = {s0, s1, . . . , sα1 , sα1+d1 , sα1+d1+1, . . . , sα2 , sα2+d2 , . . . , sα` , sα`+d` , . . . , sm+1}.

Each pair (si, si+1) over S′ \C contributes (si+1−si)2 to the sum γ(S \C), and it contributes
the same amount to the sum γ(S). On the other hand, each pair (sαj , sαj+dj) over S′ \ C
contributes (sαj+dj − sαj)2 to γ(S \ C), while the corresponding contribution to γ(S) is
potentially much smaller (precisely it is

∑dj
t=1(sαj+t − sαj+t−1)2). Therefore, ignoring these

latter contributions to γ(S), we can upper bound the difference γ(S \ C)− γ(S) as follows:

γ(S \ C)− γ(S) ≤
∑̀
j=1

(sαj+dj − sαj)2.

Now, if event A occurs, then sαj+dj − sαj ≤ 8n(dj + lnm)/m, and so in this case

γ(S \ C)− γ(S) ≤
∑̀
j=1

(
8n(dj + lnm)

m

)2
≤
∑̀
j=1

128n2 (dj2 + ln2 m
)

m2 , (8)

where the last inequality was obtained by using the fact that (a + b)2 ≤ 2(a2 + b2). Now
recall that dj = |Ij | + 1, so d1 + · · · + d` − ` = |I1 ∪ · · · ∪ I`| = |C| = τ , and ` ≤ |C| = τ

(because C contains ` sets of consecutive indices. Therefore,

d1 + · · ·+ d` = τ + ` ≤ 2τ, and d1
2 + · · ·+ d`

2 ≤ (d1 + · · ·+ d`)2 = (τ + `)2 ≤ 4τ2. (9)

Observe that if event A occurs, bound (8) is true for every set C ⊆ S of size τ . Thus, if A
occurs, then combining (8) and (9), we obtain

max
C⊆S
|C|=τ

γ(S \ C)− γ(S) ≤
128n2 (4τ2 + ` ln2 m

)
m2 ≤

128n2 (4τ2 + τ ln2 m
)

m2 . (10)

If event A does not occur, then we can use the trivial bound

max
C⊆S
|C|=τ

γ(S \ C)− γ(S) ≤ max
C⊆S
|C|=τ

γ(S \ C) ≤ γ(∅) = (n+ 1)2. (11)

STACS 2018

37:10 An Improved Bound for Random Binary Search Trees with Concurrent Insertions

According to (7), event ¬A occurs with probability O(m−2). Hence, (10) and (11) imply

E[max
C⊆S
|C|=τ

γ(S \ C)− γ(S)] ≤
128n2 (4τ2 + τ ln2 m

)
m2 + (n+ 1)2 ·O(m−2)

= O

(
n2 (τ2 + τ log2 m

)
m2

)
. J

We can now prove Lemma 5.

Proof of Lemma 5. Let τ = c− 1, and recall i ∈ {c− 1, . . . , n− 1}. According to Claim 4,

E[δci − δ1
i | Xi, Yi] ≤

γ(Yi)− γ(Xi)
n− i

.

Recall that Xi is a set of i elements in {1, . . . , n} chosen uniformly at random without
replacement. Moreover, Yi ⊆ Xi is chosen by the adversary, where |Xi \ Yi| = τ by (1).
Hence, from Lemma 7 (substituting Xi for S and i for m) we obtain

E[δci − δ1
i] ≤ 1

n− i
·E

max
C⊆Xi
|C|=τ

γ(Xi \ C)− γ(Xi)

 = O

(
1

n− 1 ·
n2τ2 + n2τ log2 i

i2

)
.

Since τ < c, the claim follows. J

For large i, close to n, the bound in Lemma 5 is too weak. Instead we use the following
result which holds for i ≥ n/2:

I Lemma 8. Let c < n/2 and i ∈ {dn/2e, . . . , n− 1}. Then E[δci] = O(c+ logn).

Proof. Define

Event B : ∀j ∈ {0, . . . , i− c+ 1} : xj+ci − xji ≤ 16(c+ lnn).

If B occurs, then by Claim 3, δci ≤ 16(c+ lnn). On the other hand, if B does not occur,
then we will use the trivial bound δci ≤ n− i < n. We will show below that

Pr(¬B) = O(n−2). (12)

Hence, we obtain

E[δci] ≤ 16(c+ lnn) + n ·O(n−2) = O(c+ lnn).

Next we prove (12).
Recall that k1, . . . , ki are the first i elements that arrive, i.e., they are chosen uniformly

at random without replacement from {1, . . . , n}. Moreover, x1
i , . . . , x

i
i is the sorted order of

those elements. Thus, by Claim 6, for any j ∈ {0, . . . , i− c+ 1},

Pr
(
xj+ci − xji >

8n(c+ ln i)
i

)
< e−3c · i−3.

Using the assumption of this lemma, n/2 ≤ i < n, and a union bound on j, we obtain

Pr
(
∃j ∈ {0, . . . , i− c+ 1} : xj+ci − xji > 16(c+ lnn)

)
< e−3c ·(n/2)−3(i−c+2) = O(n−2).

This proves (12), and thus the lemma. J

G. Giakkoupis and P. Woelfel 37:11

We now combine Lemmas 5 and 8 to prove our main result, i.e., ∆(n, c) = ∆(n, 1) +O(c).

Proof of Theorem 1. Clearly, ∆(n, c) < n for all c. Therefore, if c ≥ n/2, the theorem is
trivially true. Hence, assume c < n/2, and let

b = n− cn

2(c+ logn) > n− cn

2c = n/2 > c.

According to Claim 2, we have

∆(n, c)−∆(n, 1) ≤ 1
n
·
n−1∑
i=0

E[δci − δ1
i]. (13)

It may be useful to recall the reason for inequality (13). As explained in the proof of Claim 2,
δ1
i is equal to the number of descendants of node ki+1 in the final tree in case the buffer size
is 1, and δci is an upper bound for the same if the buffer has size c. Hence, the average of
all values δci − δ1

i upper bounds the difference in the average number of descendants of all
nodes between the two final trees, which in turn is equal to the difference of the average
node depth between the two final trees.

We bound the sum above separately for 0 ≤ i ≤ c− 1, c ≤ i ≤ b, and b < i ≤ n− 1.

From the trivial bounds δci ≤ n+ 1 and δ1
i ≥ 0, we get

∑
0≤i≤c−1

E[δci − δ1
i] ≤

∑
0≤i≤c−1

E[δci] ≤ c(n+ 1). (14)

By Lemma 8, we have E[δci] = O(c+ logn) for i ∈ {dn/2e, . . . , n− 1}, thus

∑
b<i≤n−1

E[δci − δ1
i] = O

(
(n− b) · (c+ logn)

)
= O (cn) . (15)

To bound the remaining sum of E[δci − δ1
i], for c− 1 ≤ i ≤ b, first recall the following basic

facts for any real z ≥ 0 and integers 1 ≤ a ≤ `:

∞∑
i=a

1
i2

≤ 1
a

+ 1
a2 ;

`∑
i=a

1
i

≤ 1
a

+ ln(`/a);
∞∑

i=1

(log i)2

i2
converges; and ln(1 + z) ≤ z. (16)

STACS 2018

37:12 An Improved Bound for Random Binary Search Trees with Concurrent Insertions

By Lemma 5,

∑
c≤i≤b

E
[
δc

i − δ1
i

]
= O

(∑
c≤i≤b

n2c2 + n2c log2 i

i2(n− i)

)

= O

 ∑
c≤i≤n/2

n2c2 + n2c log2 i

i2(n− i) +
∑

n/2<i≤b

n2c2 + n2c log2 i

i2(n− i)

= O

 ∑
c≤i≤n/2

nc2 + nc log2 i

i2

+O

 ∑
n/2<i≤b

c2 + c log2 n

n− i

= O

(
nc ·

∞∑
i=c

(
c

i2
+ log2 i

i2

))
+O

(c2 + c log2 n)
∑

n−b≤j<n/2

1
j

(16)= O (nc) +O

(
(c2 + c log2 n) ·

(
1

n− b
+ ln n/2

n− b

))
= O(nc) +O

(
(c2 + c log2 n) ·

(
1 + ln c+ logn

c

))
(16)= O(nc) +O

(
(c2 + c log2 n) ·

(
1 + logn

c

))
= O(nc) +O

(
c2 + c log2 n+ c logn+ log3 n

)
= O(nc). (17)

Combining (13), (14), (15), and (17), we obtain ∆(n, c)−∆(n, 1) = O(c). This completes
the proof of Theorem 1. J

References

1 James Aspnes and Eric Ruppert. Depth of a random binary search tree with concurrent
insertions. In Proc. 30th International Symposium on Distributed Computing (DISC), pages
371–384, 2016.

2 Andrew Donald Booth and Andrew J.T. Colin. On the efficiency of a new method of
dictionary construction. Information and Control, 3(4):327–334, 1960.

3 Luc Devroye. A note on the height of binary search trees. Journal of the ACM, 33(3):489–
498, 1986.

4 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis
of randomized algorithms. Cambridge University Press, 2009.

5 Kumar Joag-Dev and Frank Proschan. Negative association of random variables with
applications. The Annals of Statistics, 11(1):286–295, 1983.

6 Hosam Mahmoud Mahmoud. Evolution of Random Search Trees. Wiley-Interscience, 1992.
7 Bodo Manthey and Rüdiger Reischuk. Smoothed analysis of binary search trees. Theoretical

Computer Science, 378(3):292–315, 2007.
8 Bruce Reed. The height of a random binary search tree. Journal of the ACM, 50(3):306–332,

2003.
9 John Michael Robson. The height of binary search trees. Australian Computer Journal,

11(4):151–153, 1979.
10 Peter F. Windley. Trees, forests and rearranging. The Computer Journal, 3(2):84–88, 1960.

G. Giakkoupis and P. Woelfel 37:13

A Appendix

In the following we provide a basic claim to facilitate our analysis. We believe that this
simple observation should be known, but we could not find a reference for it.

I Claim 9. Let S be a set of m ∈ {1, . . . , n} elements chosen at random from {1, . . . , n}
without replacement. Let s1, . . . , sm be the elements of S in sorted order, and let s0 = 0,
sm+1 = n+ 1. Then for any d ∈ {1, . . . ,m+ 1} and j ∈ {0, . . . ,m− d+ 1}, the distribution
of sj+d − sj is identical to the distribution of sd − s0.

Proof. Fix d ∈ {1, . . . ,m+ 1}. Choose a set S′ of m+ 1 elements in {0, . . . , n} at random
without replacement, and let s′0, . . . , s′m be the chosen elements in sorted order. Considering
the elements as chosen from the mod(n+ 1) ring {0, . . . , n}, it is obvious by symmetry that
all random variables Zj = (s′(j+d) mod (m+1)− s

′
j) mod (n+ 1), j ∈ {0, . . . ,m}, are identically

distributed. In particular, each variable Zj , j ∈ {0, . . . ,m} has the same distribution as Z0.
Then letting si = s′i − s′0, we have that s1, . . . , sm have the same distribution as if they

were chosen from {1, . . . , n} at random without replacement and then sorted. Moreover, for
j ∈ {0, . . . ,m− d} we have sj ≤ sj+d ≤ n, so

sj+d − sj = (sj+d − sj) mod (n+ 1) = (s′j+d − s′j) mod (n+ 1)
= (s′(j+d) mod (m+1) − s

′
j) mod (n + 1) = Zj .

And since s0 ≡ sm+1 (mod n+ 1), we obtain for j = m− d+ 1 using the same calculation
as above

sj+d − sj = (s0 − sj) mod (n+ 1) = (s′(j+d) mod (m+1) − s
′
j) mod (n+ 1) = Zj .

Since all random variables Zj = sj+d − sj , for j ∈ {0, . . . ,m − d + 1}, have the same
distribution as Z0, the claim follows. J

STACS 2018

	Introduction
	Analysis
	Appendix

