Performance Optimization for the Trinity
RNA-Seq Assembler

Michael Wagner, Ben Fulton, and Robert Henschel

Abstract Utilizing the enormous computing resources of high performance comput-
ing systems is anything but a trivial task. Performance analysis tools are designed
to assist developers in this challenging task by helping to understand the application
behavior and identify critical performance issues. In this paper we share our efforts
and experiences in analyzing and optimizing Trinity, a well-established framework
for the de novo reconstruction of transcriptomes from RNA-seq reads. Thereby, we
try to reflect all aspects of the ongoing performance engineering: the identification
of optimization targets, the code improvements resulting in 20 % overall runtime
reduction, as well as the challenges we encountered getting there.

1 Introduction

High performance computing (HPC) systems promise to provide enormous compu-
tational resources. But effectively utilizing the computational power of these sys-
tems requires increasing knowledge and effort. Along with efficient single thread
performance and resource usage, developers must consider various parallel pro-
gramming models such as message passing, threading and tasking, and architecture
specific models like interfaces to incorporate GPUs. Appropriate development de-
vices such as performance analysis tools are becoming increasingly important in
utilizing the computational resources of today’s HPC systems. They assist devel-
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opers in two key aspects of program development: first, they help to analyze and
understand the behavior of the applications on the HPC system and, second, they
help in identifying critical performance issues.

In this paper we present our efforts to analyze and optimize the RNA-Seq as-
sembler Trinity [4]. Trinity is a software tool that was developed for accurate de
novo reconstruction of transcriptomes from RNA-Seq data. Early versions of the
tool required a great deal of memory and performant hardware. As part of an on-
going process of performance improvement, we used Collectl, Score-P, and Vampir
to identify bottlenecks in the pipeline, with diverse causes including memory con-
tention, suboptimal I/O, and streaming inefficiencies. Armed with this knowledge,
we were able to introduce modifications resulting in a 20% improvement in overall
wall time.

In the following section we present the tool infrastructure that we used to gain
insight into the application behavior and performance characteristics. In Section 3
we focus on the methods we used to understand Trinity’s overall behavior and the
behavior of the individual components. Furthermore, we will demonstrate the result-
ing optimizations in the Trinity pipeline. In section 4 we discuss certain challenges
and restrictions we encountered while using various tools. Finally, we summarize
the presented work and draw conclusions.

2 Tool Infrastructure

To better understand the runtime behavior of Trinity, to identify targets for perfor-
mance optimization, and also to analyze the performance we used state-of-the-art
performance tools: the system performance monitor Collectl, the event-based trace
collected Score-P and the visual performance analyzer Vampir.

2.1 Collectl

Collectl is a popular performance monitoring tool that is able to track a wide variety
of subsystems, including CPU, disk accesses, inodes, memory usage, network band-
width, nfs, processes, quadrics, slabs, sockets and tcp [2]. It is additionally popular
with HPC administrators for its ability to monitor clusters and to track systems such
as InfiniBand and Lustre. Collectl works at a high level by sampling the system at
intervals to determine the usage of each resource and logs the information to a file.

Collectl has long been incorporated into the Trinity pipeline to monitor various
statistics at a coarse-grained level of detail. To minimize the effect on performance,
Trinity runs collectl at a sampling rate of 5 seconds, rather than the default 1 second,
and only monitors applications launched by the current user.

We extracted statistics from the collectl log generated by Trinity on RAM us-
age, CPU utilization, and I/O throughput, and created charts summarizing the use of
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each individual application in the Trinity pipeline. (Figure 1) In order to determine
the performance of each pipeline component, the totals were summed regardless of
whether the component consisted of an single, multithreaded application, or mul-
tiple copies of an application running simultaneously. From these charts, we were
able to crudely assess the relative amount of time each component used, as well as
how effectively it made use of available resources.

2.2 Score-P and Vampir

For a more detailed analysis we chose the state-of-the-art event trace monitor Score-
P and the visual analyzer Vampir. Score-P is a joint measurement infrastructure for
the analysis tools Vampir, Scalasca, Periscope, and TAU [7]. It incorporates the mea-
surement functionality of these tools into a single infrastructure, which provides a
maximum of convenience for users. The Score-P measurement infrastructure allows
event tracing as well as profiling. It contains the code instrumentation functionality
and performs the runtime data collection. For event tracing, Score-P uses the Open
Trace Format 2 (OTF2) to store the event tracing data for a successive analysis [3].
The Open Trace Format 2 is a highly scalable, memory efficient event trace data
format plus support library.

Vampir is a well-proven and widely used tool for event-based performance anal-
ysis in the high performance computing community [6]. The Vampir trace visualizer
includes a scalable, distributed analysis architecture called VampirServer, which en-
ables the scalable processing of both large amounts of trace data and large numbers
of processing elements. It presents the tracing data in the form of timelines, display-
ing the active code region over time for each process along with summarized profile
information, such as the amount of time spent in individual functions.

3 Analysis and Optimization

The starting point for the optimization was Trinity 2.0.6 [5] which already contains
a number of previous optimization cycles [8]. Trinity 2.0.6 is a pipeline of up to
27 individual components in different programming and script languages, including
C++, Java, Perl, and system binaries, which are invoked by the main Trinity perl
script. The pipeline consists of three stages: first, Inchworm assembles RNA-seq
data into sequence contigs, second, Chrysalis bundles the Inchworm contigs and
constructs complete de Bruijn graphs for each cluster, and, third, Butterfly processes
the individual graphs in parallel and computes the final assembly.
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3.1 Identification of Optimization Targets

Due to the multicomponent structure of Trinity, many performance analysis tools
which focus on a single binary were unsuitable to gain a general overview on the
Trinity runtime behavior. To better understand the runtime behavior and to identify
targets for optimization, we conducted a series of of reference runs using Collectl
to measure timings and resource utilization. Figure 1 depicts the initial performance
of nine main components in Trinity 2.0.6, processing the 16.4 GiB reference data
set of Schizosaccharomyces Pombe, a yeast, with 50 million base pairs on a 16-core
node on the Karst cluster at Indiana University.
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Fig. 1 Resource utilization of original Trinity 2.0.6. version.

Based on the CPU utilization of the individual components we identified Inch-
worm, scaffold_iworm_contigs, sort, and Butterfly to run in serial or with insufficient
parallel efficiency. Inchworm has already been targeted for a complete reimplemen-
tation using MPI in a different group and, therefore, was not selected as optimization
target again [1]. The optimization of scaffold_iworm_contigs is discussed in Section
3.2 and the optimization of sort is highlighted in Section 3.3. The second stage of
Trinity processing primarily involves Butterfly. An optimization of Butterfly would
have implied a complete restructuring of the Trinity code, which was infeasible
due to Trinity’s modular and constantly evolving pipeline. Nevertheless, the second
stage recursively calls the main Trinity script, and therefore this stage benefits from
our other optimization efforts as each individual de Bruijn graph is processed.

In addition to the obvious optimization targets, we discovered an overhead of
frequent forking and joining of parallel regions in ReadsToTranscipts marked by the
sharp drops of parallel CPU utilization in the collectl chart (Figure 1). The resulting
optimizations are discussed in Section 3.4.

While collectl’s CPU utilization displays insufficient multi-core usage it does
not expose unbalanced parallel behavior, for instance, busy-waiting cores. There-
fore, we analyzed the parallel scaling of the individual components to detect poor
scaling components. Table 1 lists the parallel speedup of each component together
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with its runtime share'. The runtime share was additionally helpful to prioritize our
optimization efforts. Next to the above discussed components, Table 1 reveals poor
scaling in GraphFromFasta hidden in the collectl graph, which results in over one
third of runtime share. The in-depth analysis of the parallel behavior with Score-P
and Vampir is detailed in Section 3.5.

Table 1 Parallel speedup of the main Trinity components together with their runtime share.

Parallel Speedup Component Runtime Share (in %)
Number of Cores 1 2 4 8 16 1 2 4 8 16
Trinity (total) 1.00 2.07 3.80 6.22 8.78 100.0 100.0 100.0 100.0 100.0
Jellyfish 1.00 1.84 3.23 520 7.34 14 16 17 17 1.7
Inchworm 1.00 1.07 1.21 1.38 1.48 50 9.7 157 227 29.7
Bowtie 1.00 1.63 3.04 5.77 5.35 39 49 49 42 64
Samtools sort 1.00 1.64 2.95 5.09 5.01 47 60 61 58 83
Samtools view 1.00 1.44 2.11 2.86 2.78 49 7.1 89 10.7 15.6
Scaffold_iworm_contigs 1.00 0.99 0.99 0.99 1.00 1.0 22 40 65 92
GraphFromFasta 1.00 1.36 1.67 2.01 2.27 88 134 20.1 27.3 342
ReadsToTranscripts 1.00 2.31 4.08 5.97 9.42 39.6 356 369 413 369
Sort 1.00 1.13 1.05 0.81 1.00 04 07 15 31 36
Butterfly 1.00 1.40 2.33 452 7.00 28.0 41.3 45.7 385 351

3.2 Optimization of Samtools and Scaffold_iworm _contigs

Figure 1 shows a summation of the total CPU time used by each Trinity subcom-
ponent. Thus, areas where only a very small number of CPU’s were in use were
of particular concern. One such area is evident from the 30 minute mark to the 45
minute mark. For approximately 10% of the total runtime, two processes ran: scaf-
fold_iworm_contigs utilizing a single CPU and “samtools view” which used almost
no CPU, and no other processes are running at that time. The minimal CPU usage
seemed to indicate a prime location for performance improvement.

Investigating this area further, we found the following: A tool that had run earlier
in the process (Bowtie) had produced a Binary Sequence Alignment/Map (BAM)
file. The information in the file was extracted to text using the standard bioinfor-
matics tool suite Samtools, and the text was processed by scaffold_iworm_contigs,
a Perl script. Feeling that it would be more effective to parallelize the processing in
C++, we ported the Perl script to a new code in that language. This, in turn, allowed
us to take advantage of a Samtools C library which read the BAM file directly, and
thus removed the need to extract the BAM file to text. After testing these changes,

! Since all components are called again during the Butterfly stage runtimes may deviate from the
collectl chart in Figure 1.
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we determined that the processing time required for this area of the application had
fallen to 1% or less of the total time, equalling a runtime reduction of about 10 min-
utes. Almost the entire time spent in this area of the application had been spent in
converting the binary file to text and processing the text. It was then felt that further
parallelization of the code was unnecessary.

3.3 Optimization of Sort

The CPU chart in Figure 1 shows that sort runs for about 6 minutes to sort a large
text file containing the distribution of reads to components. While Trinity already
tries to utilizes the parallel version of sort, the collectl chart reveals that sort runs
only in serial mode. On further investigation we discovered that all the reviewed
systems that run Trinity in production mode use a sort from the GNU coreutils 8.4
version. However, a parallel version of sort was not introduced until GNU coreutils
in the version 8.6 from October 2010. Consequently, we installed a current version
of the GNU coreutils on the productive Trinity systems.

In addition, we discovered that the memory requirements of sort increase loga-
rithmically with the number of parallel threads. As a result, the memory limitation
that can be passed to Trinity with the option ——max_memory can critically limit
the performance of the parallel sort. For some data sets we recorded memory re-
quirements larger than 200 GiB, which were available on the productive systems
since Trinity requires large memory allocations in other stages, as well. Hence, we
advise adapting Trinity’s ——max_memory option to the actual available memory to
retrieve optimal performance in sort.

Applying both of these sorting optimizations, the parallel version of sort and a
maximal memory limit, the runtime of sort is decreased from over 6 minutes to 40
seconds.

3.4 Optimization of ReadsToTranscripts

Next to the more obvious optimization targets, ReadsToTranscripts revealed an over-
head of frequent forking and joining of parallel regions. Within the main loop a
predefined number of reads is loaded and than processed in a parallel region. The
repeatedly forking and joining of the parallel region can be seen by the sharp drops
of parallel CPU utilization in the collectl chart (Figure 1) and causes unnecessary
overhead due to thread creation.

By increasing the default number of reads to be loaded from 10 to 50 million the
number of thread spawns was drastically reduced and the total runtime of ReadsTo-
Transcripts was reduced by about 6 minutes. In addition, we identified an unneces-
sary entering of the parallel region if no additional reads were loaded, i.e., after all
reads had been processes a final loop iteration work on zero input data. By leaving
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the loop iteration directly when no additional reads are available, we additionally
reduced the runtime of ReadsToTranscripts. This change is particularly effective in
the Butterfly stage where only a few reads are processed and the main loop is only
processed one instead of twice. This resulted in a minor decrease of the runtime of
Butterfly of about one minute.

3.5 Optimization of GraphFromFasta

Along with the above discussed components, Table 1 reveals poor scaling in Graph-
FromFasta. Since collectl’s CPU utilization (Figure 1) did show that all 16 CPUs
are utilized most of the time, it could be inferred that the poor scaling is the result of
ineffective parallel patterns. To further investigate the issue we recorded the parallel
behavior with the event-based trace monitor Score-P and analyzed it with Vampir.

Due to the massive data volumes and application slow down involved with trac-
ing we recorded and analyzed the GraphFromFasta component using only a small
test data set. Our initial assumption that the poor scaling originates from a load im-
balance between the OpenMP threads proved to be wrong, since only a little time
was spent in OpenMP critical sections or synchronization operations?.

To get further detail and reduce application slowdown, we recorded the appli-
cation again without automatic compiler instrumentation but with manual instru-
mentation of the statements in the main loop. In addition, we recorded all OpenMP
operations. Figure 2 shows the runtime behavior in comparison for one, two, four,
eight and 16 threads in Vampir from top to bottom with white, red, yellow, green,
and blue background, respectively. The left side depicts the active function over time
one the horizontal axis and the different threads on the vertical axis. The accumu-
lated exclusive runtime over all threads for each code region is represented in the
function summary on the right side.

The analysis, represented in Figure 2, revealed that the work load in the first part
of GraphFromFasta increased nearly linearly with the number of OpenMP threads
resulting in practically no parallel speed up with more than two threads. The cause
for this was the frequent creation and destruction of string stream objects within
an inner loop of the frequently called function is_simple. The string stream creation
was internally locked by a mutex which resulted in excessive wait time, since all
threads simultaneously created the string stream objects with a very high frequency.
This can be seen by the increasing amount of time spent in the code region creating
the string stream object from about 25 seconds to 260 seconds.

By moving the string stream creation out of the inner loop and only clearing the
string streams in the inner loop, we were able to avoid the serialization in this critical
section. This resulted in a drastically increased parallel scaling and, therefore, a
remarkable reduced runtime for the first part of GraphFromFasta. In addition to the
better scaling, the serial runtime was reduced, as well; for the test data set, the serial

2 Note: the load imbalance shown in Figure 2 only occurs for the small test data set. For regular
data sets the load is almost balanced.
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runtime was reduced from 72 to 45 seconds. Figure 3 shows the improved scaling
of the optimized version in a Vampir timeline for a 1 GiB test data. In this case the
parallel speed up was increased to 8.9 instead of 2.3 with the unoptimized version.
For the S. Pombe data set with 50 million base pairs the runtime of GraphFromFasta
was reduced from 18:26 to 4:40 minutes.
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Fig. 2 Resource utilization of original Trinity 2.0.6 version for a small test data set.
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Fig. 3 Resource utilization of optimized Trinity version for medium size data set.

3.6 Optimization Results

In total, the optimizations reduced the initial runtime of the 50 million base pair S.
Pombe data set from 02:20 hours by 31 minutes to 01:49 hours, which equals a re-
duction of 22 %. Figure 4 shows the resource utilization of the original Trinity 2.0.6
version in comparison to the version including the above described optimizations. It
highlights the runtime reduction in scaffold_iworm_contigs due to the optimization
in samtools, in GraphFromFasta, ReadsToTranscripts, and sort.

4 Tool Challenges and Restrictions

Although, performance analysis tools have been incredibly helpful in the above de-
scribed optimization, their use was not without certain pitfalls and limitations. In
following section highlight some of the major issues we encountered.

Collect]’s five second interval biases timing of components. Running many of
the tools required us to calculate a tradeoff: Was the amount of data that was col-
lected sufficient to accurately determine performance bottlenecks, while at the same
time being limited enough to find useful results? Collectl, for example, defaults to
logging performance counters once per second. In order to minimize the impact on
actual performance, the collectl monitor that is built into Trinity records only once
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Fig. 4 Resource utilization of original Trinity 2.0.6 version (top) and optimized version (bottom).

every five seconds. We chose to keep this default. However, certain embarrassingly
parallel sections of Trinity may launch codes that complete in less than five sec-
onds, and the time spent in these codes may not register with Collectl. As a result,
our analysis of the total CPU usage of, for example, Butterfly, may underestimate
the actual CPU usage.

Busy-waiting is not detectable in collectl’s CPU chart. A casual glance at the
performance graph of Collectl is quite encouraging: several of the codes are display-
ing near-perfect usage of CPU. For example, the ReadsToTranscripts component,
which runs from 40:00 to 60:00, shows very consistent usage of all 16 of the CPU’s
available. An analysis with a different tool shows different information, however:
ReadsToTranscripts is spending a lot of time waiting in OpenMP critical sections.
Many implementations of OpenMP use busy-waiting in critical sections, and Col-
lectl is unable to differentiate between this busy-waiting and actual CPU time.

Instrumentation is difficult for modules written in nonstandard languages.
Trinity is a multi-language application: many sections are written in C++, while oth-
ers are written in Java. A few are also written in Python, and the “’glue” which holds
the pipeline together is written in Perl. However, most HPC performance analyzers
focus on standard languages such as C/C++ or Fortran. Other than with tools rely-



Performance Optimization for the Trinity RNA-Seq Assembler 11

ing on system information like Collectl, it was not possible to record nonstandard
language modules or even the entire pipeline. Therefore, an in-depth performance
analysis with Score-P and Vampir could only be applied to a subset of components.
In addition, it was necessary to break down the Trinity pipeline in a way allowing
to monitor the components individually.

Tracing results in massive data collection and application slowdown. An in-
depth analysis of individual components was additionally constrained by the mas-
sive data collection and application slow down due to the monitoring with Score-P.
These effects occurred especially during the monitoring of the C++ components; a
well-known issue for programming concepts frequently using small helper functions
or get and set class methods [9]. As result, we had to turn of automatic compiler in-
strumentation and use smaller test data sets to limit trace sizes and application slow
down.

Only manual instrumentation helped identifying the problem. Event tracing
tools such as Score-P rely on functions as smallest recorded entities. While this is
sufficient for many applications, in codes using a flat call hierarchy this can lead to
too little detail. During the analysis of GraphFromFasta, with function instrumen-
tation we were able to narrow the issue down to function with 70 lines of code in-
cluding two nested for loops, with only small clues as to where to look further. Only
a manual instrumentation of individual statements revealed the thread contention
during the creation of string streams highlighted in Figure 2. However, manual in-
strumentation requires detailed knowledge of both the monitored application and
the trace monitor.

5 Conclusion

This paper highlights our efforts in analyzing and optimizing Trinity, a well-
established framework for the de novo reconstruction of transcriptomes from RNA-
seq reads. With the help of the performance tools Collectl, Score-P, and Vampir
we identified bottlenecks in the pipeline, with diverse causes including thread con-
tention, suboptimal I/O, and streaming inefficiencies. We optimized the runtime be-
havior of the components samtools, scaffold_iworm_contigs, in GraphFromFasta,
ReadsToTranscripts, and sort. In total, the optimizations reduced the initial runtime
of a 50 million base pair S. Pombe reference data set from 02:20 hours by 31 minutes
to 01:49 hours, which equals a reduction of 22 %.
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