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David Hilbert, in his work on Invariants, established a fundamental link between the
algebra of polynomial rings and the geometry of complex projective space Pn. His Null-
stellensatz shows that the correspondence taking an algebraic variety X ⊂ Pn to the ideal
IX of polynomials vanishing on X in S := C[x0, . . . , xn] is one-to-one and onto the set of
prime ideals.

Hilbert took another big step in describing a way of getting geometric invariants
from the algebra. Let HX(d) = dimC(S/IX)d is the dimension of the vector space of
homogeneous polynomials of degree d modulo those vanishing on X. Hilbert proved that
the function HX(d) is equal, for large d, to a polynomial PX(d) in d. The coefficients
of P (d) are geometrically significant numbers. For example, if X is a compact Riemann
surface then the constant term P (0) is equal to 1 − g, where g is the genus (number of
holes) of the Riemann surface.

In showing that HX is eventually equal to a polynomial, Hilbert defined a much finer
invariant, the free resolution of SX := S/IX . The idea is to take a generator (1) for SX as
a module over S; then the relations it satisfies (homogeneous generators f1, . . . , fs for IX);
then the module of relations that these satisfy (called syzygies of IX : these are vectors
g1, . . . , gs such that

∑
gifi = 0); then the module of syzygies of the syzygies of I (called

second syzygies of I); and so on.
If IX happens to be generated by 1 polynomial f1 then IX has only trivial syzygies.

This would always be the case if n = 1. Hilbert generalized this remark to arbitrary n
with his “Syzygy Theorem”, which I still find astonishing. It (or rather a special case)
says that for any X the d-th syzygy module of IX has only trivial syzygies for d ≥ n− 1.
Equivalently, there is a finite exact sequence of graded modules

F : 0 → Fm
dm- · · · - F1

d1- S - SX
- 0,

where each Fi is a free module over S, called a free resolution of SX .
To prove from this that the Hilbert function HX is eventually a polynomial is easy:

HX is the alternating sum of the Hilbert functions HFi(d) = dimC(Fi)d. The module
Fi itself, being free, is a direct sum of copies of S with generators in various degrees. If
we write S(−a) for the free module of rank 1 with generator in degree a, then we have
dimC(S(−a))d =

(
n−a+d

n

)
. This binomial coefficient is equal to a polynomial in d for all

d ≥ a − n, proving that the Hilbert function is eventually polynomial (and making it
interesting to compute a bound on the degrees a that occur; but this belongs to another
story.)

For a very simple example, consider a linear subspace X ⊂ Pn of codimension 3,
defined by the vanishing of IX = (x0, x1, x2). A free resolution of SX = S/(x0, x1, x2) has
the form

0 - S(−3)

x0

x1

x2


- S(−2)3

 0 −x3 x2

x3 0 −x1

−x2 x1 0


- S(−1)3

(x0 x1 x2 )- S - SX
- 0.
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(This example appears in Hilbert’s 1890 paper, and is a special case of what is now called
the Koszul complex.) Thus

HX(d) =
(

n + d

n

)
− 3

(
n− 1 + d

n

)
+ 3

(
n− 2 + d

n

)
−

(
n− 3 + d

n

)
.

If, in computing a resolution, we always choose a minimal number of generators at
each step, then we get a minimal free resolution, of SX , and it is not hard to show that
this is unique up to isomorphism. In particular, the degrees of the generators of the free
modules are determined by X ⊂ Pn, and this collection of numbers gives a finer invariant
than the Hilbert function or polynomial. What geometric significance does this invariant
have?

The most interesting cases to study are those in which the embedding of X in Pn

depends only on the intrinsic geometry of X, so that the invariants we get will be invariants
of that geometry. For example we can use a basis of the holomorphic sections of the
cotangent bundle of a Riemann surface X of genus g ≥ 3 to define a canonical map from
X to Pg−1. This map will be an embedding except in the “degenerate” hyperelliptic case,
when X is a double cover of P1. The degrees that appear in the minimal free resolution
of SX , when X is canonically embedded in this way, are thus invariants of the geometry
of X.

Perhaps the most important invariant of a Riemann surface after its genus is its
Clifford index , a number that measures how special the surface is from the point of view
of having low degree mappings to small projective spaces. For example a Riemann surface
has Clifford index 0 if it admits a two-to-one mapping to P1; it has Clifford index ≤ 1
if it admits a three-to-one mapping to P1 or an embedding in P2 as a curve of degree 5.
In general, it is a good approximation to the truth to think that a Riemann surface has
Clifford index ≤ c if it admits a c + 2-to-one mapping to P1.

Mark Green [1] conjectured that one could read the Clifford index of a Riemann
surface X from the minimal resolution of SX when X ⊂ Pg−1 is canonically embedded.
More precisely, if the differentials d2, . . . dt−1 are represented by matrices of linear forms
but dt is not, then the Clifford index c(X) should be precisely t. There is an easy geometric
reason why t ≤ c(X), and Schreyer, Voisin, and others proved special cases including all
cases for g ≤ 8, but the inequality t ≥ c(X) has remained obscure.

However, there have been two recent breakthroughs in this subject, one by Montserrat
Teixidor I Bigas [2], and one by Claire Voisin [3]. Together they show the conjecture is
right at least “most of” the time:

Theorem. Except for the case when g is odd and c = (g + 3)/2 the set of Riemann
surfaces of genus g ≥ 3 and Clifford index c that satisfy Green’s conjecture contains an
open set (in the moduli space of such Riemann surfaces.)

Much more is known about this conjecture than I have been able to indicate here. The
introductions to the papers listed above will give a start on the literature. My manuscript-
in-progress [0], which will probably appear in the Springer Graduate Texts in Math series
in 2003, gives a more extended account of how geometry and syzygies interact.
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