Green's Conjecture on Free Resolutions and Canonical Curves

by David Eisenbud

David Hilbert, in his work on Invariants, established a fundamental link between the algebra of polynomial rings and the geometry of complex projective space \mathbf{P}^{n}. His Nullstellensatz shows that the correspondence taking an algebraic variety $X \subset \mathbf{P}^{n}$ to the ideal I_{X} of polynomials vanishing on X in $S:=\mathbf{C}\left[x_{0}, \ldots, x_{n}\right]$ is one-to-one and onto the set of prime ideals.

Hilbert took another big step in describing a way of getting geometric invariants from the algebra. Let $H_{X}(d)=\operatorname{dim}_{\mathbf{C}}\left(S / I_{X}\right)_{d}$ is the dimension of the vector space of homogeneous polynomials of degree d modulo those vanishing on X. Hilbert proved that the function $H_{X}(d)$ is equal, for large d, to a polynomial $P_{X}(d)$ in d. The coefficients of $P(d)$ are geometrically significant numbers. For example, if X is a compact Riemann surface then the constant term $P(0)$ is equal to $1-g$, where g is the genus (number of holes) of the Riemann surface.

In showing that H_{X} is eventually equal to a polynomial, Hilbert defined a much finer invariant, the free resolution of $S_{X}:=S / I_{X}$. The idea is to take a generator (1) for S_{X} as a module over S; then the relations it satisfies (homogeneous generators f_{1}, \ldots, f_{s} for I_{X}); then the module of relations that these satisfy (called syzygies of I_{X} : these are vectors g_{1}, \ldots, g_{s} such that $\sum g_{i} f_{i}=0$); then the module of syzygies of the syzygies of I (called second syzygies of I); and so on.

If I_{X} happens to be generated by 1 polynomial f_{1} then I_{X} has only trivial syzygies. This would always be the case if $n=1$. Hilbert generalized this remark to arbitrary n with his "Syzygy Theorem", which I still find astonishing. It (or rather a special case) says that for any X the d-th syzygy module of I_{X} has only trivial syzygies for $d \geq n-1$. Equivalently, there is a finite exact sequence of graded modules

$$
\mathbf{F}: \quad 0 \rightarrow F_{m} \xrightarrow{d_{m}} \cdots \longrightarrow F_{1} \xrightarrow{d_{1}} S \longrightarrow S_{X} \longrightarrow 0,
$$

where each F_{i} is a free module over S, called a free resolution of S_{X}.
To prove from this that the Hilbert function H_{X} is eventually a polynomial is easy: H_{X} is the alternating sum of the Hilbert functions $H_{F_{i}}(d)=\operatorname{dim}_{\mathbf{C}}\left(F_{i}\right)_{d}$. The module F_{i} itself, being free, is a direct sum of copies of S with generators in various degrees. If we write $S(-a)$ for the free module of rank 1 with generator in degree a, then we have $\operatorname{dim}_{\mathbf{C}}(S(-a))_{d}=\binom{n-a+d}{n}$. This binomial coefficient is equal to a polynomial in d for all $d \geq a-n$, proving that the Hilbert function is eventually polynomial (and making it interesting to compute a bound on the degrees a that occur; but this belongs to another story.)

For a very simple example, consider a linear subspace $X \subset \mathbf{P}^{n}$ of codimension 3, defined by the vanishing of $I_{X}=\left(x_{0}, x_{1}, x_{2}\right)$. A free resolution of $S_{X}=S /\left(x_{0}, x_{1}, x_{2}\right)$ has the form
$0 \longrightarrow S(-3) \xrightarrow{\left(\begin{array}{l}x_{0} \\ x_{1} \\ x_{2}\end{array}\right)} S(-2)^{3} \xrightarrow{\left(\begin{array}{ccc}0 & -x_{3} & x_{2} \\ x_{3} & 0 & -x_{1} \\ -x_{2} & x_{1} & 0\end{array}\right)} S(-1)^{3} \xrightarrow{\left(x_{0} x_{1} x_{2}\right)} S \longrightarrow S_{X} \longrightarrow 0$.
(This example appears in Hilbert's 1890 paper, and is a special case of what is now called the Koszul complex.) Thus

$$
H_{X}(d)=\binom{n+d}{n}-3\binom{n-1+d}{n}+3\binom{n-2+d}{n}-\binom{n-3+d}{n}
$$

If, in computing a resolution, we always choose a minimal number of generators at each step, then we get a minimal free resolution, of S_{X}, and it is not hard to show that this is unique up to isomorphism. In particular, the degrees of the generators of the free modules are determined by $X \subset \mathbf{P}^{n}$, and this collection of numbers gives a finer invariant than the Hilbert function or polynomial. What geometric significance does this invariant have?

The most interesting cases to study are those in which the embedding of X in \mathbf{P}^{n} depends only on the intrinsic geometry of X, so that the invariants we get will be invariants of that geometry. For example we can use a basis of the holomorphic sections of the cotangent bundle of a Riemann surface X of genus $g \geq 3$ to define a canonical map from X to \mathbf{P}^{g-1}. This map will be an embedding except in the "degenerate" hyperelliptic case, when X is a double cover of \mathbf{P}^{1}. The degrees that appear in the minimal free resolution of S_{X}, when X is canonically embedded in this way, are thus invariants of the geometry of X.

Perhaps the most important invariant of a Riemann surface after its genus is its Clifford index, a number that measures how special the surface is from the point of view of having low degree mappings to small projective spaces. For example a Riemann surface has Clifford index 0 if it admits a two-to-one mapping to \mathbf{P}^{1}; it has Clifford index ≤ 1 if it admits a three-to-one mapping to \mathbf{P}^{1} or an embedding in \mathbf{P}^{2} as a curve of degree 5 . In general, it is a good approximation to the truth to think that a Riemann surface has Clifford index $\leq c$ if it admits a $c+2$-to-one mapping to \mathbf{P}^{1}.

Mark Green [1] conjectured that one could read the Clifford index of a Riemann surface X from the minimal resolution of S_{X} when $X \subset \mathbf{P}^{g-1}$ is canonically embedded. More precisely, if the differentials $d_{2}, \ldots d_{t-1}$ are represented by matrices of linear forms but d_{t} is not, then the Clifford index $c(X)$ should be precisely t. There is an easy geometric reason why $t \leq c(X)$, and Schreyer, Voisin, and others proved special cases including all cases for $g \leq 8$, but the inequality $t \geq c(X)$ has remained obscure.

However, there have been two recent breakthroughs in this subject, one by Montserrat Teixidor I Bigas [2], and one by Claire Voisin [3]. Together they show the conjecture is right at least "most of" the time:

Theorem. Except for the case when g is odd and $c=(g+3) / 2$ the set of Riemann surfaces of genus $g \geq 3$ and Clifford index c that satisfy Green's conjecture contains an open set (in the moduli space of such Riemann surfaces.)

Much more is known about this conjecture than I have been able to indicate here. The introductions to the papers listed above will give a start on the literature. My manuscript-in-progress [0], which will probably appear in the Springer Graduate Texts in Math series in 2003, gives a more extended account of how geometry and syzygies interact.

References

[0] David Eisenbud: The Geometry of Syzygies. For an almost-final version of this manuscript, frequently updated, see http://www.msri.org/people/staff/de/ready.pdf. I'd be very interested in getting feedback on it before December 2002!
[1] Mark Green: Koszul cohomology and the geometry of projective varieties. J. Differential Geom. 19 (1984), no. 1, 125-171.
[2] Montserrat Teixidor I Bigas: Green's conjecture for the generic r-gonal curve of genus $g \geq 3 r-7$. Duke Math. J. 111 (2002), no. 2, 195-222.
[3] Claire Voisin: Green's generic syzygy conjecture for curves of even genus lying on a K3 surface. Available at http://arxiv.org/math.RA/0205330

