

3D Printing in the Classroom

Today

- Learn about creating nano-sized 3-D objects
- Learn about polymerization and how it can be initiated by light
- Learn how to use this technology to create
 3-D objects

Micromanufacturing

- Current micromanufacturing methods make relatively flat objects.
 - Alignment of layers hard to achieve
 - Process very complex and expensive
- Flat objects called 2-D or 2.5-D

Example of 2.5D objects

The Challenge: Lack truly 3-D microfabrication methods

The Solution: Microstereo Lithography

Micromanufacturing

 Micromanufacturing refers to methods used to create structures of micrometer sizes or smaller.

A Micron-Size Dust Particle

One micrometer, or micron, is one-millionth of a meter ($1.0x10^{-6}m$)

One nanometer is one-billionth of a meter $(1.0x10^{-9}m)$

Micro Gears

Photonic Crystal

Bioreactor

3-Dimensional Printing

- Work of Professor Nicholas Fang in nanoscale optical imaging
- Idea is to mimic a complicated and expensive lab setup in an inexpensive way.
- Uses equipment normally found in a school classroom.

3-Dimensional Printing

 So, can't take \$ 500,000 machine into classroom – what can students do?

3-Dimensional Printing

Light-Activated Polymer

- uv light reacts with initiator to create two radicals.
- Radicals each have single free electron.

Initiation:

Light Activated Polymer

- Radical bonds with monomer.
- Now single free electron at end of chain

Initiation:

Propagation:

monomer

Light Activated Polymer

 Repeats until two ends with free electrons interact and bond.

Initiation:

Propagation:

Termination:

Elevator Design

- Drawer slide provides smooth movement.
- T-nut and threaded screw controls motion.

Slicing the 3D Object

 3D objects are constructed by slices.

 Overlapping between layers is generally required.

Overhanging Structures?

 Amount of Sudan I determines thickness of layer.

What to Do

- Make black/white images.
- Set up system.
- Print!

Slicing the 3D Object

 Create each different slice.

Add blank slide to advance elevator.

Sample

• To make a rectangular box...

Sample

To make a rectangular box…

Alignment is Important

- Be sure each slide aligns.
- To align copy slide, make modifications.

Check properties.

Preparation Slides

- Polymer reacts with uv light.
- Polymer does NOT react with red light, but we can see red.

Red is good color to use for preparing an apparatus.

Focus Slide

Use a red complex image to focus.

Alignment Slide

Make a red version of the largest image to

align.

Instructions

Use red text for instructions.

Final

• Put these elements together in one file.

Using Math

Welcome to 3-D Printing with *Mathematica*!

If the Program Does Not Load Automatically:

A. Click the long bracket farthest to the right of the screen. Press "Shift", "Enter" (may take a minute)

B. To hide the code, double click the bracket closest to the 3 graphs to the right of the screen

To Create 3-D Objects:

- 1. Enter in your Upper and Lower Bound Equations and press "Enter"
- 2. Drag the "Slicer" to view horizontal cross sections of your 3-D object
- 3. Click "Generate SlideShow!" to obtain the 3-D printing slideshow for your object

Student Objects

Student Objects

A Different Application!

Printing a 3D Object Using Inequalities

inequalities:

$$(x^{2}+y^{2}<0.5||x^{2}+(1+y)^{2}+z^{2}<1.1||$$

$$4 \ge x^{2}+y^{2}+z^{2} \ge 3) &$$

$$-1.1 < y < 1.1$$

x_{min} -2
 y_{min} -2
 y_{max} 2
 z_{min} -2
 z_{max} 2

One Layer at a Time

Mathematical Sculpture

Printing a 3D Object Using Inequalities

inequalities:

$$|x^2+y^2+z^2|$$
 (-0.4` $\leq z \leq 0.4$ ` $\otimes \otimes$
-0.4` $\leq x \leq 0.4$ `) ||
(-0.4` $\leq x \leq 0.4$ `) ||
(-0.4` $\leq z \leq 0.4$ ` $\otimes \otimes$
-0.4` $\leq y \leq 0.4$ `) ||
(-0.4` $\leq y \leq 0.4$ ` $\otimes \otimes$ -0.4` $\leq x \leq 0.4$ `)

Mathematical Sculptures

The Holy Grail

Printing a 3D Object Using Inequalities

inequalities:

$$(2.5 \times^{2} + 2.5 y^{2} + (-1.75 + z)^{2} > 188$$

$$z < 1.588$$

$$2 \times^{2} + 2 y^{2} + (-1.5 + z)^{2} < 1.75) | |$$

$$(5 \times^{2} + 5 y^{2} < 0.2588$$

$$z < 0.188 z > -1.6) | |$$

$$(x^{2} + y^{2} + 3(1.5 + z)^{2} < 0.588$$

$$z > -1.5) | |$$

$$x^{2} + y^{2} + 5(0.25 + z)^{2} < 0.15 |$$

Engagement Ring!

Printing a 3D Object Using Inequalities

inequalities:

× _{min} –2	x _{max} 2
y _{min} -2	y _{max} 2
z _{min} -2	z _{max} 2

