
University of Kentucky
UKnowledge

Theses and Dissertations--Computer Science Computer Science

2015

Data Privacy Preservation in Collaborative Filtering
Based Recommender Systems
Xiwei Wang
University of Kentucky, xwsunrise@gmail.com

Click here to let us know how access to this document benefits you.

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has been accepted for inclusion in
Theses and Dissertations--Computer Science by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Recommended Citation
Wang, Xiwei, "Data Privacy Preservation in Collaborative Filtering Based Recommender Systems" (2015). Theses and Dissertations--
Computer Science. 35.
https://uknowledge.uky.edu/cs_etds/35

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been
given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright
permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-
party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not
permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-
free license to archive and make accessible my work in whole or in part in all forms of media, now or
hereafter known. I agree that the document mentioned above may be made available immediately for
worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future
works (such as articles or books) all or part of my work. I understand that I am free to register the
copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of
the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we
verify that this is the final, approved version of the student’s thesis including all changes required by the
advisory committee. The undersigned agree to abide by the statements above.

Xiwei Wang, Student

Dr. Jun Zhang, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

DATA PRIVACY PRESERVATION IN COLLABORATIVE FILTERING
BASED RECOMMENDER SYSTEMS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By

Xiwei Wang

Lexington, Kentucky

Director: Jun Zhang, Ph.D., Professor of Computer Science

Lexington, Kentucky

2015

Copyright c© Xiwei Wang 2015

ABSTRACT OF DISSERTATION

DATA PRIVACY PRESERVATION IN COLLABORATIVE FILTERING
BASED RECOMMENDER SYSTEMS

This dissertation studies data privacy preservation in collaborative filtering based
recommender systems and proposes several collaborative filtering models that aim at
preserving user privacy from different perspectives.

The empirical study on multiple classical recommendation algorithms presents
the basic idea of the models and explores their performance on real world datasets.
The algorithms that are investigated in this study include a popularity based model,
an item similarity based model, a singular value decomposition based model, and
a bipartite graph model. Top-N recommendations are evaluated to examine the
prediction accuracy.

It is apparent that with more customers’ preference data, recommender systems
can better profile customers’ shopping patterns which in turn produces product rec-
ommendations with higher accuracy. The precautions should be taken to address
the privacy issues that arise during data sharing between two vendors. Study shows
that matrix factorization techniques are ideal choices for data privacy preservation
by their nature. In this dissertation, singular value decomposition (SVD) and non-
negative matrix factorization (NMF) are adopted as the fundamental techniques for
collaborative filtering to make privacy-preserving recommendations. The proposed
SVD based model utilizes missing value imputation, randomization technique, and
the truncated SVD to perturb the raw rating data. The NMF based models, namely
iAux-NMF and iCluster-NMF, take into account the auxiliary information of users
and items to help missing value imputation and privacy preservation. Additionally,
these models support efficient incremental data update as well.

A good number of online vendors allow people to leave their feedback on products.
It is considered as users’ public preferences. However, due to the connections between
users’ public and private preferences, if a recommender system fails to distinguish real
customers from attackers, the private preferences of real customers can be exposed.
This dissertation addresses an attack model in which an attacker holds real customers’
partial ratings and tries to obtain their private preferences by cheating recommender

systems. To resolve this problem, trustworthiness information is incorporated into
NMF based collaborative filtering techniques to detect the attackers and make rea-
sonably different recommendations to the normal users and the attackers. By doing
so, users’ private preferences can be effectively protected.

KEYWORDS: collaborative filtering, data update, matrix factorization, privacy,
trustworthiness

Xiwei Wang

May 7, 2015

DATA PRIVACY PRESERVATION IN COLLABORATIVE FILTERING
BASED RECOMMENDER SYSTEMS

By

Xiwei Wang

Jun Zhang, Ph.D.

Director of Dissertation

Miroslaw Truszczynski, Ph.D.

Director of Graduate Studies

May 7, 2015

Date

ACKNOWLEDGEMENTS

Upon finishing my dissertation, I would like to express my gratitude to people who

encouraged, assisted, inspired, and cared about me during my PhD life at the Uni-

versity of Kentucky. Without the guidance from my advisor and other committee

members, help from friends, and support from my family, I would never have been

able to finish my dissertation.

First of all, I would like to express my sincere appreciation to my academic advisor,

Dr. Jun Zhang, for his excellent guidance, patience, encouragement, and caring. It is

Dr. Zhang who led me to study the topics in privacy preserving collaborative filtering

and trained me to become a researcher in this field. Because of his broad knowledge

and keen professional insight, I could conduct the research in a very effective way.

This allowed me to achieve promising academic success in the past six years. Dr.

Zhang makes me feel at home in the United States and I am truly honored to work

and study under his supervision.

Special thanks to Dr. Jinze Liu for her advice and financial support in my second

academic year. Dr. Liu inspired me to read papers and start my research in the area

of online recommender systems. Without her help, I would never have been able to

continue my degree and begin such an interesting and meaningful research topic.

Next, I would like to thank the other faculty members of my Advisory Committee:

Dr. Ruigang Yang (Department of Computer Science) and Dr. Sen-ching Cheung

(Department of Electrical and Computer Engineering) for their helpful comments on

my dissertation.

Then, I would like to thank my research collaborators: Dr. Yin Wang, Lawrence

Technological University, for providing me with the opportunity of being a work-

iii

shop committee member and reviewer, as well as the suggestions on writing academic

papers; Dr. Nirmal Thapa, TIBCO Software Inc., for his innovative ideas and discus-

sions during the first few years of my study; Mr. Kiho Lim, University of Kentucky,

for his ideas on privacy-preserving vehicle communications.

Also, I would like to thank Dr. Jun Zhang, Dr. William Brent Seales, and Dr.

Neil Moore for their strong recommendation letters, advice, and encouragements in

my job search.

I extend my gratitude to the Elbert C. Ray eStudio for their excellent writing

service. The two experts, Mr. James Marinelli and Mr. Clinton Woodson, were very

friendly, easygoing, and professional. Their expertise in English writing has benefited

me to a great extent. The help they provided me includes not only polishing my

dissertation, but also improving my abilities in writing and speaking English.

Thanks also go to all the members in the Laboratory for High Performance Sci-

entific Computing & Computer Simulation and the Laboratory for Computational

Medical Imaging & Data Analysis during my study: Dr. Yin Wang, Dr. Xuwei

Liang, Dr. Changjiang Zhang, Dr. Dianwei Han, Dr. Ning Cao, Dr. Nirmal Thapa,

Dr. Lian Liu, Dr. Ruxin Dai, Dr. Pengpeng Lin, and Mr. Qi Zhuang. I want to thank

them all for their helpful suggestions and creating a friendly working environment.

Last but not least, I would like to express my thanks and love to my parents. I

thank them for giving me my life as well as their continuous support, encouragement,

and endless love.

iv

Table of Contents

Title Page 1

Abstract 2

Acknowledgements iii

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Dissertation Organization . 4
1.2 Related Work . 4

2 An Empirical Study of Recommendation Algorithms 11
2.1 Description of the Models . 11

2.1.1 Notational Conventions . 11
2.1.2 Item Popularity Based Model 12
2.1.3 Item Similarity Based Model 13
2.1.4 SVD Based Latent Factor Model 14
2.1.5 Bipartite Graph Model . 15

2.2 Experimental Study . 17
2.2.1 Data Description . 17
2.2.2 Evaluation Strategy . 18
2.2.3 Results and Discussion . 19

2.2.3.1 Parameter Study . 19
2.2.3.2 Prediction on Datasets 20

2.3 Summary . 25

3 SVD Based Privacy-Preserving Data Update Scheme in Collabora-
tive Filtering 27
3.1 Problem Description . 27
3.2 Privacy-Preserving Data Update Scheme 29

3.2.1 Row Update . 29
3.2.2 Column Update . 32

3.3 Experimental Study . 34
3.3.1 Data Description . 34
3.3.2 Prediction Model and Error Measurement 34
3.3.3 Privacy Measurement . 35
3.3.4 Evaluation Strategy . 36
3.3.5 Results and Discussion . 37

v

3.3.5.1 Truncation Rank (k) in SVD 37
3.3.5.2 Split Ratio ρ2 . 38
3.3.5.3 Split Ratio ρ1 . 40
3.3.5.4 Impact of Randomization in Data Updates 43

3.4 Summary . 45

4 Incorporating Auxiliary Information into Collaborative Filtering Data
Update with Privacy Preservation 46
4.1 Problem Description . 47
4.2 Using iAux-NMF for Privacy-Preserving Data Updates 48

4.2.1 Aux-NMF . 48
4.2.1.1 Objective Function 48
4.2.1.2 Update Formulas . 51
4.2.1.3 Convergence Analysis 53
4.2.1.4 Detailed Algorithm 56

4.2.2 iAux-NMF . 57
4.2.2.1 Row Update . 57
4.2.2.2 Column Update . 58

4.3 Experimental Study . 58
4.3.1 Data Description . 58
4.3.2 Data Pre-processing . 59
4.3.3 Evaluation Strategy . 60
4.3.4 Results and Discussion . 62

4.3.4.1 Test on Full Training Data 62
4.3.4.2 The Incremental Case 65
4.3.4.3 Parameter Study . 68

4.4 Summary . 71

5 Automated Dimension Determination for NMF Based Incremental
Collaborative Filtering 75
5.1 Using iCluster-NMF for Collaborative Filtering Data Updates 75

5.1.1 Clustering the Auxiliary Information 76
5.1.2 Detailed Algorithm . 76
5.1.3 iCluster-NMF . 76

5.2 Experimental Study . 77
5.2.1 Data Pre-processing . 77
5.2.2 Evaluation Strategy . 78
5.2.3 Results and Discussion . 80

5.2.3.1 Parameter Setup . 80
5.2.3.2 Experimental Results 80

5.3 Summary . 85

6 Trust-aware Privacy-Preserving Recommender System 89
6.1 Problem Description . 90
6.2 Trust-aware Privacy-Preserving Recommendation Framework 92

6.2.1 Unknown Rating Predictions 92
6.2.1.1 Objective Function 93

vi

6.2.1.2 Update Formulas . 94
6.2.1.3 Convergence Analysis 95

6.2.2 Unrelated Entries Filtering . 98
6.3 Experimental Study . 100

6.3.1 Data Description . 100
6.3.2 Evaluation Strategy . 102
6.3.3 Results and Discussion . 103

6.3.3.1 Privacy Preservation 103
6.3.3.2 Prediction Accuracy 107

6.4 Summary . 108

7 Conclusions and Future Work 109
7.1 Research Accomplishments . 109
7.2 Suggestions for Future Work . 112

Bibliography 117

Vita 124

vii

List of Tables

2.1 Statistics of the data . 17
2.2 Hit rates with different α on site 5202 20
2.3 Performance list . 24

3.1 Impact of randomization in data updates 44

4.1 Statistics of the data . 58
4.2 Parameter setup for Aux-NMF . 62
4.3 Results on MovieLens dataset . 64
4.4 Parameter probe on MovieLens dataset 70
4.5 Parameter probe on Sushi dataset . 70
4.6 Parameter probe on LibimSeTi dataset 70

5.1 Parameter setup for iCluster-NMF and nCluster-NMF 80
5.2 Optimal number of clusters on Sushi dataset 83

6.1 Statistics of the data . 100
6.2 Parameter setup for TrustRS . 103
6.3 Privacy protection level . 104
6.4 Prediction accuracy . 107

viii

List of Figures

1.1 Product recommendation on Amazon.com 1
1.2 Missing value imputation and data perturbation 3

2.1 A bipartite graph . 16
2.2 Hit rates with different γ on site 52021 19
2.3 Hit rates in top-10 recommendation 21
2.4 Hit rates in top-N recommendation 25

3.1 MAE variation with different rank-k 38
3.2 Time cost variation with split ratio ρ2 38
3.3 MAE variation with split ratio ρ2 . 40
3.4 Privacy level variation with split ratio ρ2 40
3.5 Time cost variation with split ratio ρ1 41
3.6 MAE variation with split ratio ρ1 . 42
3.7 Privacy level variation with split ratio ρ1 43
3.8 Privacy loss variation with split ratio ρ1 43

4.1 Updating new rows in iAux-NMF . 57
4.2 Clustering results on ratings predicted by Aux-NMF (a) and SVD (b)

on MovieLens dataset . 65
4.3 Time cost variation with split ratio 67
4.4 MAE variation with split ratio . 67
4.5 Privacy level variation with split ratio 68

5.1 Time cost variation with split ratio 81
5.2 MAE variation with split ratio . 82

6.1 An attack model . 92
6.2 Recall rates with varying mu in TrustRS 105
6.3 Recall rates with varying #neighbors in TrustRS 106
6.4 Recall rates with varying #neighbors in PRNBC 106

7.1 Incremental nonnegative tensor factorization 114
7.2 The MapReduce framework . 115

ix

1 Introduction

As technology develops, life becomes easier in many aspects. One of them is the emer-

gence of electronic commerce, which not only helps sellers save resources and time

but also facilitates customers in choosing and buying merchandise. Different kinds

of promotions have been adopted by merchants to advertise their products. Conven-

tional stores like Walmart and Sam’s Club present popular products, e.g., batteries,

gift cards, and magazines at the checkout line in addition to offering discounts. This

is a typical way of product recommendations. Same as conventional stores, online

shops provide recommendations to their customers as well. However, for returning

customers, online stores are superior to the conventional ones with respect to prod-

uct recommendations. This is due to the fact that the former have users’1 purchase

history on file which is very helpful in recommending merchandise. Online shopping

websites often use recommender systems to do this task.

Figure 1.1: Product recommendation on Amazon.com

A recommender system is a program that utilizes algorithms to predict users’

purchase preferences by profiling their shopping patterns. There are many research

publications about recommender systems since the mid-1990s [2]. Various approaches

1The terms “customer” and “user”are used interchangeably as they refer to the same thing in
this context. This interchangeability also applies to “product” and “item”.

1

and models have been proposed and applied to real world applications. Most recom-

mender systems are based on collaborative filtering (CF) techniques [23, 40], e.g.,

item/user correlation based CF’s [62], singular value decomposition (SVD) based la-

tent factor CF’s [64], and nonnegative matrix factorization (NMF) based CF’s [13, 87].

With CF, previous transactions are analyzed in order to establish connections

between users and products. When recommending items to a user, the CF based

recommender systems try to find information related to this user to compute ratings

for every possible item. Items with the highest rating scores will be presented to the

user.

In many online recommender systems, it is inevitable for data owners to expose

their data to other parties. For instance, due to the lack of easy-to-use technol-

ogy, some online merchants buy services from professional recommendation service

providers to help build their recommender systems. In addition, many shops share

their real time data with business associates for better product recommendations.

Such examples include two or more online bookstores that sell similar books, and on-

line movie rental websites that have similar movies in their systems. In these scenar-

ios, exposed data can cause privacy leakage of user information if no pre-processing

is done. Typical private information includes the ratings that a user has given to

particular items and on which items that this user has rated, or in general, user’s

preferences. People would not like others (except the website where they purchased

the products from) to know what they are interested in and to what extent they like

or dislike the items. This is the most fundamental privacy problem in collaborative

filtering. Thus privacy-preserving collaborative filtering algorithms [12, 59, 53] were

proposed to resolve the problem. However, different from datasets for general data

mining tasks, the rating matrices in collaborative filtering are typically very incom-

plete, meaning that there are a large number of missing values. Accordingly, data

owners should complete two tasks before releasing the data to a third party: imputing

2

missing ratings and perturbing the whole data.

User rating data

Missing value imputation

and data perturbation

Released rating data

Figure 1.2: Missing value imputation and data perturbation

In addition, there are a few other problems and points with the CF based recom-

mender systems that would be studied in this dissertation:

(1) Managing fast data growth. In the collaborative filtering context, data

may grow in two aspects: the new item arrival and the new user arrival. It requires

the data owners to complete the aforementioned two tasks on the new data in a timely

manner. In other words, every time when the new data arrives, data owners only need

to perform some incremental data update process on it and send the imputed and

perturbed new data to the third parties.

(2) Utilizing auxiliary information. In some datasets, e.g., the MovieLens

dataset [64], the Sushi preference dataset [35], and the LibimSeTi dating agency

dataset [11], auxiliary information of users or items, e.g., users’ demographic data

and items’ category data, are also provided. This information, if properly used, can

improve the recommendation accuracy, especially when the original rating matrix is

extremely incomplete.

(3) Distinguishing between real users and attackers with the use of

social networks. It is known to people that on many online shopping websites,

customers can leave feedback on the products they purchased. This is treated as users’

public preferences. Due to the connections between people’s public preferences and

3

private preferences, if a recommender system fails to distinguish the real customers

from the attackers, it would be highly possible that the attackers can obtain users’

private preferences by cheating the system. Trustworthiness information in social

networks can be used to help identify attackers for privacy preservation purposes.

1.1 Dissertation Organization

First of all, a preliminary empirical study on several collaborative filtering algorithms

is presented in Chapter 2. Browsing history datasets from an American retargeting

company are used as the test datasets in this study to verify their performance in

binary rating data. Chapter 3 describes an SVD based privacy-preserving data up-

date scheme in collaborative filtering and discusses the experimental results on the

MovieLens dataset [64] and the Jester dataset [22]. An improved data update ap-

proach, which adopts NMF as its fundamental technique, is proposed in Chapter 4.

Chapter 5 addresses the rank determination issue that arises from the NMF based

approach and shows a solution to this issue. Chapter 6 proposes an attack model

in online recommender systems and presents a trust-aware privacy-preserving recom-

mender system that neutralizes the attack. The future work and concluding remarks

are discussed in 7.

1.2 Related Work

Collaborative filtering techniques have been extensively studied by many researchers.

In [42], Yehuda divided the collaborative filtering techniques into two subareas: the

neighborhood approaches and the latent factor models.

The neighborhood approaches focus on the relationships between either users or

items. There are user based models [25] and item based models [18] in this scheme.

For user based models, the recommendation algorithms compute the similarity de-

4

grees between users in order to obtain the like-minded users, i.e., the “neighbors”, of

the active users2 who will receive recommendations. Items that have been purchased

by neighbors will be recommended to this user. Thus the key point of user based

neighborhood models is to find the “neighbors”. However, the computational cost of

these types of models grows fast with the increasing number of users and items. With

millions of users and items, it will take a substantial amount of time to compute the

user similarities [18]. One way to solve this problem is to build the recommendation

models based on the items. The basic principle is very close to the user based models.

It attempts to compute the item-item similarity matrix and the system will recom-

mend items which are similar to the ones that have been purchased by the same user

in the past. Since the number of items is much smaller than the number of users in

most cases, the item based models are more scalable than the user based ones. Pa-

pagelis et al. [55] also showed that the former models resulted in better performance

in prediction accuracy compared to the latter ones.

Different from the neighborhood approaches, the latent factor models transform

users and items to the same latent factor spaces. The characteristics of users and items

are “extracted” and represented at the latent level when factorizing the user-item

rating matrix. The singular value decomposition (SVD) [57], the principal component

analysis (PCA) [22], and the nonnegative matrix factorization (NMF) [13, 87] are

three typical techniques for the latent factor models. They attempt to reduce the

dimensionality of the rating matrices and utilize the reduced matrices. By doing so,

noise can be decreased and some trivial factors are eliminated such that the system

only retains the information that is essential to the recommendations.

However, a significant issue in most CF models is the privacy leakage. Canny [12]

first proposed the privacy-preserving collaborative filtering (PPCF) that addresses

this issue in the CF process. In his PPCF model, users could control all of their data.

2In many papers, the term “active users” and “test users” are used interchangeably. They both
represent the users whose preferences will be predicted.

5

Users in a community are able to compute a public “aggregate” of their data, in

which no individual user’s data is exposed. Local computation is performed by each

user to get the personalized recommendations. Besides Canny’s model, the PPCF

has been studied in both distributed systems [12, 84, 6, 83, 48, 65] and centralized

systems [60, 47, 34, 14]. While most peer-to-peer (P2P) environments adopt dis-

tributed recommender systems, centralized systems are widely used by almost all of

the most popular online vendors, e.g., eBay, Amazon, and Newegg. In centralized

systems, users send their data to a server and they do not participate in the CF

process; only the server needs to conduct the CF. Polat and Du [59, 60] applied ran-

domized perturbation techniques to the SVD based collaborative filtering to provide

privacy-preserving recommendations. In their method, uniform or Gaussian noise is

added to the users’ real ratings and then the server predicts the unknown ratings by

the perturbed data.

In this framework, the data owner also needs to manage the fast data growth and

should ensure that privacy protection is still kept at a reasonable level after the data

update. Among all data perturbation methods, SVD is acknowledged as a feasible and

effective data perturbation technique. Stewart [67] surveyed the perturbation theory

of singular value decomposition and its application in signal processing. Brand [9]

demonstrated a fast low-rank modification of the thin singular value decomposition.

This algorithm can update an SVD with new rows/columns and compute its low

rank approximation very efficiently. Tougas and Spiteri [72] proposed a partial SVD

update scheme that requires one QR factorization and one SVD in each update. Since

both factorizations are performed on small intermediate matrices, the computation

cost is not expensive. Based on their work, Wang et al. [75] presented an improved

SVD based data value hiding method and tested it with clustering algorithms on

both synthetic datasets and real datasets. Their experimental results indicate that,

by introducing the incremental matrix decomposition, the efficiency of the SVD based

6

data value hiding model is significantly increased. It also provides better scalability

and better real-time performance of the model. The scheme proposed in Chapter 3

is similar to this model but it modifies the SVD update algorithm and comes with

randomization and post-processing techniques so it can be incorporated into the SVD

based CF smoothly.

In addition to SVD, NMF has also been studied in collaborative filtering. Zhang et

al. [87] applied NMF to collaborative filtering to learn the missing values in the rating

matrix. They treated NMF as a solution to the expectation maximization (EM) prob-

lems. Chen et al. [13] proposed an orthogonal nonnegative matrix tri-factorization

(ONMTF) [20] based collaborative filtering algorithm. Their algorithm also takes into

account the user similarity and item similarity. To study how differently NMF would

perform from SVD, based on Polat’s model [60], Li et al. [47] used NMF instead of

SVD as the fundamental collaborative filtering technique and they obtained better

results than Polat’s method. While both methods were demonstrated to perturb the

data to a reasonable level and keep the prediction precision, it is not clear how much

contribution can be made by the methods to the real world recommender systems.

Different from Polat’s and Li’s work, Kaleli et al. [34] proposed a privacy-preserving

naive Bayesian classifier (PPNBC) CF approach. The approach employs randomized

response techniques (RRT) [76] to protect users’ privacy while producing referrals

by a naive Bayesian classifier (NBC). In their scheme, the RRT is applied to both

the one-group scheme and the multi-group scheme for data distortion purposes. The

distorted data is then fed to NBC for recommendations. Adding to [34], Bilge et

al. [8] utilized pre-processing to improve the privacy-preserving recommendations. In

their method, the masked data is pre-processed by identifying the most similar items

to each item off-line; some of the unrated items’ entries are also filled to improve

the density. Since the increasing numbers of features and groups would degrade the

online performance of the multi-group PPNBC significantly, decreasing the amount

7

of data involved in CF can be very beneficial. With the varying number of neighbors,

the central server can decide how many items would be recommended to the users.

As mentioned before, auxiliary information of users and items is helpful if properly

utilized. The fast data update approach proposed in Chapter 4 first converts this

information to the cluster membership indicator matrices which are then considered

as constraints for updating factor matrices. Nirmal et al. [71] proposed explicit

incorporation of the additional constraint, called the “clustering constraint”, into

NMF in order to suppress the data patterns in the process of performing the matrix

factorization. Their work is based on the idea that one of the factor matrices in

NMF contains cluster membership indicators. The clustering constraint is another

indicator matrix with altered class membership in it. This constraint then guides

NMF in updating factor matrices. Based on this idea, the proposed model applies the

user and item cluster membership indicators to nonnegative matrix tri-factorization

(NMTF), which results in better imputation of the missing values.

With regard to the clustering algorithms, K-Means [51] is a popular and well

studied approach that is easy to implement and is widely used in many domains. As

the name of the algorithm indicates, K-Means needs the definition of “mean” prior

to clustering. It minimizes a cost function by calculating the means of clusters. This

makes K-Means most suitable for continuous numerical data. When given categorical

data such as users’ demographic data and movies’ genre information, K-Means needs

a pre-processing phase to make the data suitable for clustering. Huang [27] proposed

a K-Modes clustering algorithm to extend the K-Means paradigm to the categorical

domains. Their algorithm introduces new dissimilarity measures to handle categorical

objects and replaces means of clusters with modes. Additionally, a frequency based

method is used to update modes in the clustering process so that the clustering cost

function is minimized. In 2005, Huang et al. [28] further applied a new dissimilarity

measure to the K-Modes clustering algorithm to improve its clustering accuracy.

8

The fast data growth requires the clustering algorithms to update the clusters

constantly. The number of clusters might be increased or decreased. Su et al. [68]

proposed a fast incremental clustering algorithm by changing the radius threshold

value dynamically. Their algorithm restricts the number of the final clusters and

reads the original dataset only once. It also considers the frequency information of the

attribute values in the inter-cluster dissimilarity measure. The approach proposed in

Chapter 5 adopts their clustering algorithm with some modifications. It is known that

the NMF based collaborative filtering algorithms need to determine the dimensions

of the factor matrices and update them when necessary. It is not convenient for

people to manually specify these values and the automated decision making is highly

desired. To this purpose, the proposed method determines the number of clusters by

an incremental clustering algorithm and uses them as the dimensions in NMF.

Recent work on using trustworthiness in collaborative filtering indicates that this

information benefits prediction precision as well as privacy protection. It reveals the

trust relationships between users and can be obtained from online social networks.

Jamali et al. [31] proposed SocialMF, a recommender system that makes use of the

matrix factorization technique with trust propagation in social networks. Similar to

[31], [80] proposed TrustMF to handle data sparsity and cold start problems which

happen commonly in collaborative filtering based recommender systems. In TrustMF,

users are projected into low-dimensional latent feature spaces by the matrix factoriza-

tion technique according to their relationships. By doing so, users’ mutual influence

on their own opinions is reflected in a more reasonable way. In [33], the authors

presented a trust based recommendation scheme on vertically distributed data for

privacy preservation. The scheme builds a trust web of users and then uses it to filter

users’ neighbors in order to protect the privacy. The proposed privacy-preserving

recommender system framework in Chapter 6 incorporates trustworthiness into the

weighted nonnegative matrix tri-factorizarion to improve prediction accuracy and

9

privacy protection.

In [48] and [65], the authors proposed group based privacy-preserving recom-

mender systems in which recommendations are made at the group level as opposed

to the individual level. Their experimental results show that user groups can be used

as the natural protective mechanism for achieving promising privacy protection. In

[48], items are grouped in terms of their ratings so users’ public interests and private

interests can be separated. Then, preferences of group members are identified and

aggregated. Recommendations are made by personalizing the group preferences lo-

cally to conceal users’ private interests. Motivated by this framework, in Chapter 6,

items and users are grouped according to the factor matrices of NMF in centralized

systems to distinguish the real users from the attackers.

Copyright c© Xiwei Wang 2015

10

2 An Empirical Study of Recommendation Algorithms

In this chapter, several classical recommendation algorithms, namely the popularity

based model, the item similarity based model, the SVD based model, and the bi-

partite graph model, are studied on the clicking history datasets of online shopping

websites collected by an American retargeting company. A massive amount of lit-

erature in recommender systems examined the models on rating datasets, such as

the Netflix movie rating data [4], the MovieLens dataset [64], and the Jester dataset

[22]. While rating information is directly connected to people’s preferences, it is not

always available. Although a majority of online shopping websites provide rating

mechanisms for people to leave feedback on products, there are a few companies that

might only be able to collect users’ clicking data due to technical restrictions. For

example, the retargeting companies usually insert a piece of JavaScript code into the

web pages of online vendors to keep track of users’ clicking behaviors. They do not

have the permission to obtain or utilize data other than this. The datasets from the

retargeting company contains only clicking history, e.g., a certain user clicked the link

to a particular product. It is interesting to investigate the above recommendation al-

gorithms on binary browsing data instead of numerical rating data with respect to

prediction accuracy.

2.1 Description of the Models

2.1.1 Notational Conventions

A matrix is used to store the clicking relationships between users and items, called

the user-item rating1 matrix, denoted by R. Assume there are m users and n items,

1Although the values in this matrix are not really ratings, the matrix is still called the rating
matrix for consistency.

11

then R ∈ Rm×n. An entry rij is the click count that user i did on item j in the given

time period. Though there is no definite proof that a user who clicks an item will

buy it, a high click count may imply that the user is interested in it. Since each user

may only click a few items and a single item only receives a small number of clicks,

R is incomplete, meaning that there are many missing entries.

For user i and item j, the existing click count from i to j is denoted as rij and

the predicted one is denoted as pij. The recommended items should be interesting to

the active user, i.e., this user is likely to click the recommended items.

2.1.2 Item Popularity Based Model

The item popularity based approaches are very traditional ones in recommender sys-

tems. The main idea of the item popularity based models is to recommend the most

popular, the most viewed, or the best selling items to users. Although the item popu-

larity based models overlook users’ preferences, these kinds of models are still effective

to a certain degree, and are adopted as an auxiliary component in recommender sys-

tems by many famous online shopping sites, such as eBay, Amazon, etc.

The item popularity based model that is tested in this chapter maintains a popu-

larity list for each data set, denoted by L = {tj}j=1,2··· ,n. The elements in L are items

in descending order in terms of their view counts, denoted by npj.

For the simple implementation of the popularity based top-N recommendation,

items corresponding to the first N elements in list L will be recommended. However,

these recommended items may not be interesting to a user, which means less accurate

predictions. Thus, a further filtering step should be employed in this model to improve

the prediction accuracy. The filtering step introduces a new parameter hi into the

model, where

hi =
number of distinct items viewed by user i

total number of items viewed by user i
. (2.1)

12

The value of hi reveals some of users’ browsing habits, such as the user preferring

to view an item just once, or preferring to view an item for several times during

browsing. In the former case, the filtering step does not recommend the items that

have been already viewed by the user. In the latter case, such items could also be

presented to the user. A threshold ht is set to determine whether a further filtering

step is necessary for user i:

1. if hi < ht, recommend the top-N items in L to the user;

2. if hi ≥ ht, perform the filtering step.

Case 2 means the number of distinct items viewed by user i is close to the total

number of items viewed by this user. In other words, this user is not prone to click

each item multiple times. Then the items that have been clicked by user i will be

excluded from the recommendation list which is generated in the first step.

The filtering step is also applicable to other models, such as the item similarity-

based model. To utilize the filtering step, other models are required to generate an

ordered top-(2N) item list for top-N recommendation. The top-(2N) list will take

the place of popularity list L.

2.1.3 Item Similarity Based Model

Among all recommender systems, the similarity based models are one of the easiest

methods to implement. Papagelis et al. [55] showed that, in most cases, the item

similarity based models produce better prediction accuracy than the user similarity

based models. In the item similarity based model [55], when recommending items to

a user i, the system first retrieves neighbors of the items that have been viewed by

this user. It then selects the N most similar neighbors and recommends them to i.

In the real world scenarios, a notable challenge in recommender systems is the

cold start problem [56]. It often occurs when users have presented very few to no

13

opinions. To resolve this issue, the item popularity factor is incorporated into the

similarity based model to handle new users. Eq. (2.2) calculates the relationship

between user i and item j.

pij = γ · 1

|S(j; i)|
∑

k∈S(j;i), ρjk>0

ρ2
jk + (1− γ) · npj

Ng

(2.2)

The first tier of the equation is the similarity score and the second tier is the

popularity score. S(j; i) is the set of items that were viewed by user i and are similar

to item j. ρjk is the Pearson correlation coefficient [62] between item j and item k.

The popularity score is the ratio between the view count of item j, denoted by npj,

and the global maximum view count, denoted by Ng. γ controls the weight of each

part.

The formula for Pearson correlation coefficient is slightly modified to better de-

scribe the relationship between two items.

ρjk =

∑d
t=1(x′jt − x̄j)(x′kt − x̄k)√∑d

t=1(x′jt − x̄j)2
∑d

t=1(x′kt − x̄k)2

, (2.3)

where x′jt = xjt(1 + 1
1+lognct

) is a variation of xjt (nct is the number of items that user

i has viewed) and d is the dimensionality of an item vector xj. Note that each entry

in xj corresponds to a user’s click count on this item.

The modification on xjt is based on the premise that users who have clicked fewer

items make more contribution to the similarity computation than those who have

clicked significantly more items.

2.1.4 SVD Based Latent Factor Model

The latent factor models [42] focus on reducing dimensionality of the user-item rating

matrix in order to discover some “latent factors”. These factors should best interpret

user preferences with the least noise. They can be exploited to approximate the

14

original rating values.

In Paterek’s SVD based latent factor model [57], the user-item rating matrix

is factorized into two lower rank matrices, i.e., a “user factor” matrix UF and an

“item factor” matrix IF . Thus, each user i and item j can be represented as an f -

dimensional factor vector UFi (i-th row of UF) and IFj (j-th row of IF), respectively

[15]. The prediction of the rating left by user i on item j is made by taking inner

product of UFi and IFj.

In order to obtain the user and item factor vectors, SVD is applied on the huge

incomplete matrix R with all the missing values being set to zeros2.

Rm×n = Um×r · Sr×r · V T
n×r, (2.4)

where U and V are orthonormal matrices, S is a diagonal matrix with singular values

on its diagonal and r is the rank of S.

With SVDLIBC (an SVD-package) [7], the dimension f (f ≤ r) can be easily

specified when decomposing the rating matrix. Hence, the user factor matrix and the

item factor matrix are represented by

UFm×f = Um×f ·
√
Sf×f , IFn×f = Vn×f ·

√
Sf×f (2.5)

and so a prediction can be made by Rij = UFi · IF T
j .

2.1.5 Bipartite Graph Model

In this graph model [26], users and items are represented as vertices of a graph and

can be divided into two disjoint sets, the item set I and the user set U . Every edge

is a connection between a vertex in U and one in I. It corresponds to an entry rij in

user-item rating matrix R, as shown in Figure 2.1.

2This is very biased and the missing value problem will be addressed in the following chapters.

15

 e1 ei ej en

 u1 ut um

Item Set

User Set

rmi

Figure 2.1: A bipartite graph

Sets I and U in the bipartite graph model are independent sets [7]. Therefore,

the transition probability between each item pair ej and ek can be obtained by Eq.

(2.6).

P (ej|ek) =
m∑
t=1

[P (ej|ut) · P (ut|ek)], (2.6)

where P (ej|ut) = rtj/
∑n

i=1 rti, and P (ut|ek) = rtk/
∑m

t=1 rtk.

All item nodes now form a finite Markov chain with transition matrix P =

[ajk]j,k=1,··· ,n, where ajk = P (ej|ek) [44], i.e., the probability that this chain ends

in the specific item node ej with initial node ek is ajk. Therefore, given the previous

click history of user i, the probability for a certain item j that this user might be

interested in can be predicted according to

pij =
m∑
k=1

(ejk · Tik), (2.7)

where Ti represents the initial state vector for user i in a Markov chain and Tik is the

component corresponding to item k. Note that Tik = rik/
∑n

j=1 rij.

In order to penalize the users (or items) with a large number of clicks, the pe-

nalization parameter α is introduced in the model [26, 46]. It is based on a similar

premise that was discussed in the item similarity based model when computing item

16

similarities. Transition probability with penalization parameter α is:

P (ej|ut) = rtj/(
n∑
i=1

rti)
α, P (ut|ek) = rtk/(

m∑
t=1

rtk)
α (2.8)

2.2 Experimental Study

2.2.1 Data Description

The dataset in the experiments was gathered by a retargeting company for research

purposes. It consists of the browsing history from 139 online shopping websites in one

week (08/08/2010 – 08/14/2010). In the dataset, each row represents a transaction,

which has four attributes, product ID, website ID, user ID, and date.

Among 139 sites, 4 were selected for test purposes. Statistics are shown in Table

2.1

Table 2.1: Statistics of the data

Site ID # of Users # of Items # of Clicks
3699 20,471 499 134,982
5202 148.409 1,004 300,757
8631 112,738 94 1,559,529
9093 70,049 2,303 120,836

Each dataset is divided into three subsets, the training set, test set and last

transaction set. The training set is obtained from the original dataset by removing

1000 active users and their accompanying data. In order to ensure the items that

have been viewed by active users also exist in the training set, the items should occur

at least 15 times in the training set after the active users’ data has been removed.

The last transactions of the removed active users form the last transaction set and

the remaining data form the test set.

The goal is to train the models using the training set and apply the models on

the data in the test set to predict the last transaction of the active users.

17

2.2.2 Evaluation Strategy

In general, there are two ways to evaluate the prediction accuracy of the recommen-

dation algorithms: hit rates (or recall rates) for top-N recommendation, and error

measurement (e.g., root mean square error and mean absolute error) for rating value

predictions. Since the datasets are different from Netflix and MovieLens, which pro-

vide real ratings, it is more reasonable to make top-N recommendations rather than

rating value predictions on the clicking data. Accordingly, the prediction accuracy is

evaluated in terms of the hit rates.

The recommended item set is named the predicted set. The hit rate of recom-

mendations (higher is better) is calculated as follows,

hi =
number of correctly predicted active users

total number of active users
(2.9)

Within the item popularity based model, an item popularity list is constructed by

collecting statistics on the clicking history. The filtering step is applied on this list to

obtain the final recommended items.

In the item similarity based model, the parameter γ is tweaked to get the best

ratio of similarity score and popularity score. γ is chosen from the interval of [0, 1]

with step size 0.1.

The bipartite graph model first builds a probability transition matrix with Eqs.

(2.6) and (2.8). The prediction is computed based on the Markov chain in the matrix.

To investigate the influence of the filtering step on other models, this step is

applied to the ordered top-(2N) recommendation lists generated by other models to

produce new top-N lists.

18

2.2.3 Results and Discussion

Prior to the comparisons of prediction accuracy, the parameters in the item based

similarity model and the bipartite graph model are studied on the website with site

ID 5202.

2.2.3.1 Parameter Study

(1) γ in the item based similarity model

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hi
t R

at
e

γ

Figure 2.2: Hit rates with different γ on site 52023

The curve in Figure 2.2 shows that with γ increasing, better hit rates are reached.

The popularity score does not seem to be more effective than the similarity score.

Nevertheless, as stated before, the purpose of using the popularity score is to provide

recommendations for new users who have almost no preference. In the experiments,

the hit rates are tested by applying the models on users that have clicking records

in both the test set and the last transaction set. This test methodology does not

necessarily focus on the new user problem. Thus, the popularity score is eliminated

by setting γ to 1.0, which means this model will recommend items based on the

similarity based score only in later experiments.

3“the website with site ID xxxx” and “site xxxx” are used interchangeably.

19

(2) α in the bipartite graph model

In this model, α penalizes the users or items with lots of clicks. Therefore with

a larger α, the corresponding probabilities in Eq. (2.8) become smaller. Table 2.2

shows the hit rates with different α.

Table 2.2: Hit rates with different α on site 5202

α Hit Rate
0.5 20%
1 21.2%
2 14.2%

In the test datasets, the number of distinct items that each user has clicked does

not vary remarkably. Hence the penalization parameter α does not have significant

effects on the hit rates. Nevertheless, in grocery shopping [46], a customer purchasing

a large number of a specific product reflects a higher interest in this product. Gen-

erally speaking, α = 1 is suitable for the cases in which the range of values in the

rating matrix is not wide.

2.2.3.2 Prediction on Datasets

The four models were first tested on site 3699. Figure 2.3(a) shows the hit rates. IP

denotes the item popularity based model; IS denotes the item similarity based model;

f-IS denotes the item similarity based model with the filtering step; BG is for the

bipartite graph model; f-BG is for the bipartite graph model with the filtering step;

SVD is for the SVD-based latent factor model; lastly, f-SVD is for the SVD-based

latent factor model with the filtering step.

On this site, the SVD based model with 60 factors achieved the highest hit rate,

which is significantly better than other models. More factors were also tested on it

but no better results were obtained. This means the first 60 factors were able to

capture the most critical latent properties of the items in this dataset.

20

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

9.1%

40.2%

67.3%

46.7%

70.9%

90.7% 90.7%

H
it

Ra
te

Model

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

7.9%

20.5%
26.4% 21.2% 26.5%

18.6% 18.6%

H
it

Ra
te

Model

(a) Hit rates on site 3699 (b) Hit rates on site 5202

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%
98.6%

11.6%
20.1%

10.5%
19.5%

95.9% 95.9%

H
it

Ra
te

Model

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

11.5%

27.3% 32.0% 32.8% 38.3%

19.5% 19.5%

H
it

Ra
te

Model

(c) Hit rates on site 8631 (d) Hit rates on site 9093

Figure 2.3: Hit rates in top-10 recommendation

The bipartite graph model reached a hit rate of 46.7%, which is close to the

results of the item similarity based model. Essentially, BG has a similar principle

with IS since they both need to build an item-item matrix. The difference lies on the

viewpoint of entries in the matrix – transition probability in BG and item similarity

in IS. In fact, some IS models obtain the similarities by computing the conditional

probability between items and users.

The item popularity based model performed worst on this dataset. This is because

there are 499 items but only 10 items were recommended to each active user. However,

the filtering step in IP worked quite well with IS and BG. The hit rate is 67.3% for

21

f-IS (70.9% for f-BG) where the top-20 recommendation by the IS model made a hit

rate of 67.6% (71.0% for BG). It means that almost all irrelevant items were filtered

out while the correct ones were retained. The investigation on user browsing habits

reveals that most users clicked distinct items just once. Therefore they may not be

interested in the items they have already clicked.

It is worth mentioning that in the IS model, the neighbors of items that have been

viewed by a user may have already been viewed by the same person. Accordingly,

the IS based recommendation is not entirely suitable to these kinds of users and a

further filtering step is needed.

Nevertheless, the filtering step had no effect on the SVD based model. It can

be inferred that the latent factors in SVD not only captured the users’ click count

information but also the clicking patterns, i.e., the browsing habit, so no filtering step

is needed.

For the website with site ID 5202, the results charted in Figure 2.3(b) are quite

different from those on 3699. All the models with filtering step except f-SVD per-

formed better than others did. IS and BG, f-IS and f-BG had very similar hit rates,

respectively. IP produced the worst prediction accuracy once again. However, SVD

with 70 factors, the champion of the previous experiment, only achieved a hit rate of

18.6%. This indicates that the latent factors did not capture the correlations between

users and items very well. The f-SVD again had no improvement on SVD.

Figure 2.3(d) presents the results on the website with site ID 9093. The bipartite

graph model with filtering step performed best. SVD with 100 factors had a similar

hit rate on site 5202. The results show that on some datasets, the local relationships

among items that were obtained by BG and IS-like models play a more crucial role

in predicting the next item. Whereas on some other datasets, capturing the global

effects that were obtained by SVD-like latent factor models is more important.

The prediction results on site 8631 plotted in Figure 2.3(c) look completely dif-

22

ferent. SVD and IP models had very high hit rates compared to others. In this case,

94 factors, which is the same as the number of items, were used in the SVD model.

Note that this website has special properties – it has very few items (94) and a large

number of users (112,738). Examining the recommended item list of the SVD model

shows that it only generated one item for each user. In other words, the top-1 recom-

mendation of SVD on this site provided correct predictions for 95.9% users. The item

popularity based model performed even better since the popular items are welcomed

by most users – this differs from that in the first dataset. f-SVD was not employed

on this site due to the fact that there was no top-20 list for the filtering step to work

on.

An interesting question remains: why did BG and IS perform significantly worse

on this dataset compared to others? In [29], Huang et al. discussed the sparsity of the

user-item rating matrix which can be used to answer this question. Due to the small

number of items and the large number of users, most customers have only clicked

a few items. Then the number of edges in the BG model connecting to these users

is small. Hence, the transition probability will no longer represent the similarity

of products. This also happens in the IS model – an item is similar to almost all

other items with very close similarity degrees. If customers in this dataset tend to

be interested in several popular items, the prediction accuracy can be very low. This

also explains the positive results of the IP model in this case.

Furthermore, if the dataset has many items but very few customers who have

viewed several items, the number of edges associated with most customers would be

very high. Most entries in the transition matrix will then have small and close values,

which will prevent the model from discovering closely related items.

As a summary of top-10 recommendations, Table 2.3 gives the performance statis-

tics of seven models4 on four datasets. The models are ranked by their hit rates –

4Since SVD and f-SVD have the same hit rates, SVD is used to represent both SVD and f-SVD
in this table.

23

Table 2.3: Performance list

Performance Rank
Dataset IP IS f-IS BG f-BG SVD

3699 6 5 3 4 2 1
5202 6 4 2 3 1 5
8631 1 5 3 6 4 2
9093 6 4 3 2 1 5

the model that performs best is ranked 1 and the one which performs worst is ranked

6. It is expected that the IP model has the lowest rank (rank 6 in total) since it is

only based on the popularity of items. The f-BG and f-IS models attained the first

two places. SVD also worked well in most cases. It can be seen that some mod-

els predicted very accurately for only certain datasets while f-BG and f-IS models

had higher average hit rates than others. Thus, the models with the filtering step,

which take into consideration human behavior patterns, can be employed by most

recommendation tasks to achieve satisfactory results.

In the end, the hit rates with different N ’s in top-N recommendation were studied.

The predictions with seven models were performed on four sites. Figure 2.4 shows

the variance.

The figures show the increasing trends with greater N for all models on all sites.

The differences lie in the slope of the curves. The models with the filtering step – f-BG

and f-IS had about 20% ∼ 50% improvement in accuracy on the original models, BG

and IS. In this experiment, site 8631 is still a special one compared to others because

the hit rates of SVD and IP reached 95.9% and 98.6% when N = 5, respectively. That

means, for these two models, the top-5 recommended items were accurately predicted

and the hit rates for top-1 predictions are 95.2% and 98.5%. Consequently, on this

website, the top-5 recommendations are preferable for SVD and IP models since the

number of items recommended to users are expected to be small – users may not be

interested in a top-50 or top-100 recommendation list as they are not helpful at all.

24

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

0 5 10 15 20

IP IS f-IS BG
f-BG SVD f-SVD

H
it

Ra
te

N

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

0 5 10 15 20

IP IS f-IS BG
f-BG SVD f-SVD

H
it

Ra
te

N

(a) Hit rates on site 3699 (b) Hit rates on site 5202

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

0 5 10 15 20

IP IS f-IS BG
f-BG SVD f-SVD

H
it

Ra
te

N

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

0 5 10 15 20

IP IS f-IS BG
f-BG SVD f-SVD

H
it

Ra
te

N

(c) Hit rates on site 8631 (d) Hit rates on site 9093

Figure 2.4: Hit rates in top-N recommendation

2.3 Summary

In this chapter, several classical recommendation algorithms are studied on the datasets

from an American retargeting company, to find a good strategy in model selection

for specific datasets. The experimental results reveal that, if a dataset has few items

but a large number of users, the SVD based model and the item popularity based

model can be good choices. Whereas if a dataset has many items but fewer users, the

bipartite graph model and models with the filtering step (except SVD) are suitable

to it. However, if the designer of the recommender system wants to build one for

general purposes, the bipartite graph model with the filtering step can be selected

25

due to its higher average performance in the experiments. The results also show that

the filtering step had no effect on the SVD based model which indicates that the

latent factors can capture both rating information and user clicking patterns.

Copyright c© Xiwei Wang 2015

26

3 SVD Based Privacy-Preserving Data Update Scheme in Collaborative

Filtering

It was mentioned in Chapter 1 that in some scenarios, data owners need to share their

data with a third party. This behavior gives rise to the privacy leakage problem. There

are two challenges during the data sharing process: (1) how to protect customers’

private information while keeping data utility; (2) based on (1), how to handle data

growth efficiently.

In this chapter, a privacy-preserving data update scheme is proposed for collabora-

tive filtering based recommender systems. This scheme utilizes truncated SVD update

algorithms [9, 38] and randomization techniques. It can provide privacy protection

when incorporating new data into the original one in an efficient way. The scheme

starts with the precomputed SVD of the original rating matrix. New rows/columns

are then built into the existing factor matrices. Users’ privacy is preserved by trun-

cating the new matrix together with randomization and post-processing. It also takes

into account the missing value imputation during the update process to provide high

quality data for accurate recommendations. Results of the experiments conducted

on the MovieLens dataset [64] and the Jester dataset [22] show that the proposed

scheme can handle data growth efficiently and keep a low level of privacy loss. The

prediction accuracy is still at a high level compared to most published results.

3.1 Problem Description

Assume the data owner has a user-item rating matrix, denoted by R ∈ Rm×n, where

there are m users and n items. Differing from the click count matrix in Chapter 2,

the entry rij in R here represents the rating left on item j by user i. The valid range

of rating value varies from website to website. Some websites use the 1 ∼ 5 scale with

27

1 as the lowest rating (most disliked) and 5 as the highest rating (most favorated)

while some others use the −10 ∼ 10 scale with −10 as the lowest rating, 0 as neutral

rating, and 10 as the highest rating.

The original rating matrix contains the real rating values left by users on items,

which means it can be used to identify the shopping patterns of users. These patterns

can reveal some of the users’ privacy, so releasing the original rating data without

any privacy protection will cause a privacy breach. One possible way to protect user

privacy before releasing the rating matrix is to impute the matrix and then perturb

it. In this procedure, imputation estimates the missing ratings as well as conceals

the user preference on particular items; no missing value means there is no way to

tell which items have been rated by users since all items are marked as rated. On

the other hand, the perturbation distorts the ratings so that users’ preferences on

particular items are blurred.

When new users’ transactions arrive, the new rows (each row contains the ratings

left on items by the corresponding user), denoted by T ∈ Rp×n, should be appended

to the original matrix R: R

T

→ R′. (3.1)

Similarly, when new items arrive, the new columns (each column contains the

ratings left by users on the corresponding item), denoted by G ∈ Rm×q, should be

appended to the original matrix R:

[
R F

]
→ R′′. (3.2)

To protect users’ privacy, the new rating data must be processed before it is

released. Tr ∈ Rp×n is adopted to denote the processed new rows and Gr ∈ Rm×q is

for processed new columns.

28

3.2 Privacy-Preserving Data Update Scheme

This section presents the data update scheme in collaborative filtering that could

preserve the privacy during the update process. Users’ privacy is protected in three

aspects, missing value imputation, randomization based perturbation and SVD trun-

cation. The imputation step can preserve the private information – “which items that

a user has rated”, however, since pure imputation will typically generate same values

and fill the empty entries with these values, the matrix is vulnerable to attack. This

also raises another kind of private information – “what are the actual ratings that

a user left on particular items”. In this scenario, randomization and truncated SVD

techniques are used to do a second phase perturbation that solves the problem. On

one hand, random noise can alter the rating values to some extent while leaving the

distribution unchanged. On the other hand, the truncated SVD is a naturally ideal

choice for data perturbation, since it captures the latent properties of a matrix and

eliminates the useless noise. If given a well-chosen truncation rank, SVD can provide

reasonable balance between data privacy and utility.

As stated in the previous section, new data could be treated as new rows or

columns in the matrix. They should be appended to the original matrix R and

further perturbed to protect users’ privacy. In the following sections, the proposed

scheme would be discussed in the row update and column update separately.

3.2.1 Row Update

In Eq. (3.1), T is added to R as a series of rows. The new matrix R′ has a dimension

of (m+ p)× n. Prior to the updates, it is assumed that the truncated rank-k SVD

of R has been computed previously, as

Rk = Uk · Σk · V T
k , (3.3)

29

where Uk ∈ Rm×k and Vk ∈ Rn×k are two orthogonal matrices; Σk ∈ Rk×k is a diagonal

matrix with the largest k singular values on its diagonal.

As mentioned in Section 3.1, the user-item rating matrix is an incomplete matrix

thus before it is factorized, the missing values must be imputed. Similar to [64], the

column mean rating values are exploited to fill the empty entries. These mean values

are held in a vector ~rmean = (r̄1, · · · , r̄n) and will be used to update the SVD.

For new rows T , before incorporating them into the existing matrix, an imputation

step is performed. In this step, the empty entries should be filled with values that

have knowledge from both the mean values of the existing matrix and the ratings in

the new data. Eq. (3.4) calculates the new column mean.

r̄′j =
m× r̄j +

∑m+p
i=m+1,rij 6=0 rij

m+
∑m+p

i=m+1,rij 6=0 1
(3.4)

Note that the new column means do not affect the old matrix, which should be

kept unchanged as the third parties hold the perturbed old matrix and the data owner

only releases the perturbed new data.

The imputed matrices, R̂ (with its factor matrices Ûk, Σ̂k and V̂k) and T̂ are then

obtained. Now the problem space has been converted from Eq. (3.1) to Eq. (3.5):

 R̂

T̂

→ R̂′ (3.5)

After imputation, random noise drawn from Gaussian distribution is added to the

new data T̂ , yielding Ṫ . The update of the matrix follows the procedure in [72]. First,

a QR factorization is performed on T̈ = (In − V̂k · V̂ T
k) · Ṫ T , where In is an n × n

identity matrix. Thus we have QT · ST = T̈ , in which QT ∈ Rn×p is an orthonormal

30

matrix and ST ∈ Rp×p is an upper triangular matrix. Then

R̂′ =

 R̂

T̂

 ≈
 R̂k

T̂

 ≈
 R̂k

Ṫ

=

 Ûk 0

0 Ip

 Σ̂k 0

Ṫ V̂k STT

[V̂k QT

]T (3.6)

The rank-k SVD is then computed on the middle matrix,

 Σ̂k 0

Ṫ V̂k STT

(k+p)×(k+p)

≈ U ′k · Σ′k · V ′Tk (3.7)

Since (k + p) is typically small, the computation of the SVD should be very fast.

Same as [75], the truncated rank-k SVD of R̂′ instead of a complete one is computed,

R̂′k =

 Ûk 0

0 Ip

 · U ′k
 · Σ′k · ([V̂k QT

]
· V ′k
)T

(3.8)

In CF context, the value of all entries should be in a valid range. For example,

a valid value r in MovieLens should be 0 < r 6 5. Therefore, after obtaining the

truncated new matrix R̂′k, a post-processing step is applied to it so that all invalid

values will be replaced with reasonable ones.

∆r̂′k,ij =

validMinV alue if r̂′k,ij < validMinV alue

validMaxV alue if r̂′k,ij > validMaxV alue

r̂′k,ij otherwise

(3.9)

In Eq. (3.9), r̂′k,ij is the (i, j)-th entry of R̂′k. validMinV alue and validMaxV alue

depend on particular dataset. For the MovieLens dataset, validMinV alue = 0 and

validMaxV alue= 5; for the Jester dataset, validMinV alue= -10 and validMaxV alue

31

= 10. Eventually, the perturbed and updated user-item rating matrix, ∆R̂′k ∈

R(m+p)×n with ∆r̂′k,ij as its entries, is generated.

In this scheme, it is assumed that the third party owns R̂k so only ∆T (∆T =

∆R̂′k(m+ 1 : m+ p, :) ∈ Rp×n)1 is sent to it.

Algorithm 3.1 summarizes the SVD based row update.

Algorithm 3.1 Privacy-Preserving Row Update

Input:
Precomputed rank-k SVD of R̂: Ûk, Σ̂k and V̂k;
Item mean of R̂: ~rmean;
New data T ∈ Rp×n;

Output:
SVD for the updated full matrix: Û ′k,Σ

′
k and V̂ ′k ;

Perturbed new data: ∆T ;
Updated item mean vector: ~r′mean;

1: Impute the missing values in T with Eq. (3.4) and update the item mean vector
→ T̂ , ~r′mean;

2: Apply random noise X(X ∼ N(µ, σ)) to T̂ → Ṫ ;
3: Perform QR factorization on T̈ = (In − V̂k · V̂ T

k) · Ṫ T → QT · ST ;

4: Perform SVD on Σ̈ =

[
Σ̂k 0

Ṫ V̂k STT

]
→ Σ̈ ≈ U ′k · Σ′k · V ′Tk ;

5: Compute

([
Ûk 0
0 Ip

]
· U ′k

)
→ Û ′k

Compute
([

V̂k QT

]
· V ′k
)
→ V̂ ′k

6: Compute the rank-k approximation of R̂′ → R̂′k = Û ′k · Σ′k · V̂ ′Tk ;
7: Process the invalid values by Eq. (3.9) → ∆R̂′k;
8: ∆R̂′k(m+ 1 : m+ p, :)→ ∆T ;
9: Return Û ′k,Σ

′
k, V̂

′
k ,∆T and ~r′mean.

3.2.2 Column Update

The column update is similar to the row update, however, there are several differences

between them. It is worth mentioning that item means are used to impute the missing

values in the raw user-item rating matrix. In the row update, the mean values change

1∆R̂′
k(m + 1 : m + p, :) is a Matlab notation that means the last p rows of ∆R̂′

k

32

when the new rows/users are added while in the column update, the mean values

only depend on the new columns/items. With this property, it is not necessary to

keep an item mean vector in the column update.

Like Eq. (3.5), column update has the following task:

[
R̂ F̂

]
→ R̂′′ (3.10)

Algorithm 3.2 depicts the SVD based column update.

Algorithm 3.2 Privacy-Preserving Column Update

Input:
Precomputed rank-k SVD of R̂: Ûk, Σ̂k and V̂k;
New data F ∈ Rm×q;

Output:
SVD for the updated full matrix: Û ′′k ,Σ

′′
k and V̂ ′′k ;

Perturbed new data: ∆F ;

1: Impute the missing values in F with corresponding item mean values → F̂ ;
2: Apply random noise X(X ∼ N(µ, σ)) to F̂ → Ḟ ;
3: Perform QR factorization on F̈ = (Im − Ûk · ÛT

k) · Ḟ → QF · SF ;

4: Perform SVD on Σ̇ =

[
Σ̂k ÛT

k · Ḟ
0 RF

]
→ Σ̇ ≈ U ′′k · Σ′′k · V ′′Tk ;

5: Compute
([

Ûk QF

]
· U ′′k

)
→ Û ′′k

Compute

([
V̂k 0
0 Iq

]
· V ′′k

)
→ V̂ ′′k

6: Compute the rank-k approximation of R̂′′ → R̂′′k = Û ′′k · Σ′′k · V̂ ′′Tk ;
7: Process the invalid values like Eq. (3.9) (r̂′k,ij are now entries in R̂′′k) → ∆R̂′′k;

8: ∆R̂′′k(:, n+ 1 : n+ q)→ ∆F ;
9: Return Û ′′k ,Σ

′′
k, V̂

′′
k and ∆F .

The data owner should keep the updated factor matrices for the new user-item

rating matrix (Û ′k,Σ
′
k and V̂ ′k for the row update, Û ′′k ,Σ

′′
k and V̂ ′′k for the column

update) and the perturbed new data matrix (∆T for the row update, ∆F for the

column update). Moreover, the updated item mean ~r′mean is also supposed to be held

by the data owner if a row update has been performed.

As shown in both algorithms, three perturbation techniques are combined together

33

to preserve users’ privacy. Imputation at the beginning removes all the missing values.

Adding random noise to the imputed data makes values different from each other.

The truncated SVD update eliminates the factors that are trivial to the data. This

process keeps the data utility and protects the data privacy at the same time. Three

techniques make contributions to privacy preservation in different aspects.

3.3 Experimental Study

3.3.1 Data Description

The experiments were conducted on the MovieLens [64] and Jester [22] datasets.

The public MovieLens dataset has 3 subsets, 100K (100,000 ratings), 1M (1,000,000

ratings) and 10M (10,000,000 ratings). The first dataset, which is adopted in the

experiments, has 943 users and 1,682 items. The 100,000 ratings, ranging from 1 to

5, were divided into two parts: the training set with 80,000 ratings and the test set

with 20,000 ratings. Both sets are stored in matrices so they are very incomplete

(93.7% of the entries in the training matrix are not observed).

The Jester datasets were from a web based joke recommendation system, which

was developed by the University of California, Berkeley [22]. There are also three

subsets, namely jester-data-1, jester-data-2 and jester-data-3, among which, the first

one was chosen. It has 24,983 users and 100 jokes with 1,810,455 ratings ranging

from -10 to 10. 80% of the ratings were randomly selected as the training set and the

rest were used as the test set. Compared to MovieLens, the Jester dataset is not so

incomplete (27.5% of the entries in the training matrix are not observed).

3.3.2 Prediction Model and Error Measurement

In Section 2.1.4, an SVD based CF model that predicts the ratings by utilizing users’

latent factors is described. In this chapter, the same model is exploited to test the

34

proposed data update scheme. Since the SVD can only work on complete matrices,

the missing values in the rating matrices are treated as zeros if no pre-processing is

performed. A typical way to impute missing values is using item means. For each

column, the mean value is calculated from the existing ratings and all the missing

values in this column are filled by the mean value.

Assume p′ij is the predicted value computed by the SVD based CF model; to

ensure the predicted ratings are in the valid range, the same boundary check like Eq.

(3.9) is applied:

pij =

validMinV alue if p′ij < validMinV alue

validMaxV alue if p′ij > validMaxV alue

p′ij otherwise

(3.11)

When testing the prediction accuracy, the user factor matrix UF and the item

factor matrix IF (see Eq. (2.5)) were first obtained from the training set; then for

every rating in the test set, the corresponding predicted value was computed and the

differences were measured. This was done for all the ratings in the test set and the

MAE (mean absolute error) [10, 66] can be calculated as follows:

MAE =
1

|TestSet|
∑

rij∈TestSet

|rij − pij| (3.12)

3.3.3 Privacy Measurement

When measuring the privacy, Definition 3.1 defines the privacy level.

Definition 3.1. Privacy level Π(Y |X) is a metric that indicates the extent to which

a random variable Y could be estimated if given a random variable X.

Π(Y |X) = 2h(Y |X), (3.13)

35

where h(Y |X) is the differential entropy of Y given X.

This privacy measure was proposed by Agrawal and Aggarwal [3] and was applied

to measure the privacy in collaborative filtering by Polat and Du [59]. In addition

to the privacy level, Agrawal and Aggarwal [3] also proposed the conditional privacy

loss of Y after revealing X:

P(Y |X) = 1− Π(Y |X)/Π(Y) = 1− 2h(Y |X)/2h(Y) (3.14)

Similar to Polat and Du’s work, the experiments measure privacy by Π(Y |X) and

P(Y |X).

3.3.4 Evaluation Strategy

The proposed scheme was tested in several aspects: the prediction accuracy in recom-

mendation, the privacy protection level, how to split the new data in the update, when

to recompute SVD, and the randomization degree with its effect in perturbations, etc.

To test when to recompute SVD, the data in the training set, which is viewed as

a rating matrix, was split into two subsections with a particular ratio ρ1. Assuming

the first ρ1 data has already been processed, the remaining data is then updated into

it. For instance, when rows are split with ρ1 = 40%, the first 40% of the rows in

the training set is treated as R in Eq. (3.1). The imputation would be done on this

data without the knowledge from the remaining 60% of the data, yielding R̂ in Eq.

(3.5). Then a rank-k SVD and the item mean vector are computed on this matrix.

The rank-k approximation of R̂ is named the starting matrix. These data structures

are utilized as the input of Algorithm 3.1. Results are expected to be different with

the varying split ratio. If the result is too far from the predefined threshold or the

results evolve more slowly or even start to degrade at some point, a recomputation is

anticipated.

36

However, the remaining 60% of the rows in the training set are not simply updated

in one round since data in real world applications usually grows incrementally. In the

experiments, the 60% of the rows were added to the starting matrix in several rounds,

depending on another split ratio ρ2. For example, if ρ2 = 1/10, the new data will be

added to the starting matrix in 10 rounds. The final matrix, which equals starting

matrix + ∆T1 + · · ·+ ∆T10, is the perturbed and updated matrix.

The algorithms were evaluated on both the MovieLens and Jester datasets by

testing the time cost of the update, the prediction error, and the privacy measure on

the final matrix.

3.3.5 Results and Discussion

3.3.5.1 Truncation Rank (k) in SVD

Due to the characteristics of SVD based CFs, the rank of the truncated matrix, k,

must be chosen in advance. Most papers reported that k = 13 is an optimal choice

for the MovieLens dataset and k = 11 for the Jester dataset. It was verified in the

experiments by probing k in {2, 5, . . . , 25, 50, 100} and computing the corresponding

MAE’s [64]. The results on MovieLens are shown in Figure 3.1. Note that this

experiment is unrelated to the update since the SVD based predictions were performed

on the full imputed training data.

The curve shows the mean absolute errors with different k’s and the lowest MAE

(0.7769) was reached when k = 13. The same experiment on Jester also confirms

that the lowest MAE (3.2871) was reached when k = 11. Accordingly, the truncation

ranks for the MovieLens and Jester datasets are set to 13 and 11 in the following

experiments, respectively.

37

0.765

0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25 50 100

M
AE

k

MovieLens

Figure 3.1: MAE variation with different rank-k

3.3.5.2 Split Ratio ρ2

In this experiment, ρ1 was fixed at 40%, meaning that the first 40% of the data in the

training set is treated as the starting matrix, while the remaining 60% will be added

to it. ρ2 is set to 1/10, 1/9, 1/8, . . . ,1/2, and 1. The greater ρ2 is, the fewer rounds

will be needed in the update.

Figure 3.2 illustrates the time cost with the different split ratio ρ2. The row

update is represented by “Row”, while “Column” refers to the column update. To

eliminate randomization in both algorithms, µ and σ were set to zero. The results

with randomization are reported in Section 3.3.5.4.

0.0

4.0

8.0

12.0

16.0

20.0

24.0

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

Ti
m

e
(S

ec
s)

Row

Column

ρ2

MovieLens

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

Ti
m

e
(S

ec
s)

Row

Column

ρ2

Jester

Figure 3.2: Time cost variation with split ratio ρ2

38

The curves of the MovieLens data are generally in an ascending trend with the

rising split ratio and the row update took more time than the column update. In the

Jester data, the column update reached the shortest time when ρ2 = 1/3 and the row

update took less time than the column update. It is clear that except for the column

update in the Jester data, updating the new data in more rounds with less data in

each round can decrease the time cost. However, the split ratio cannot simply be

determined by this factor alone. The prediction accuracy and the privacy protection

level should play an even more crucial role during this process.

Furthermore, the figure indicates that the time cost of the update depends on

dimensionality of the rows and columns. For example, the MovieLens dataset has

more columns (1,682 items) than rows (943 users) while the Jester dataset has fewer

columns (100 items) than rows (24,983 users). Each step of both the row and column

update algorithms shows that when the number of columns is greater than the number

of rows, steps 1 and 3 in Algorithm 3.1 need more time than those in Algorithm 3.2

due to higher dimensionality and vice versa. Nevertheless, compared to the time cost

for imputing the missing values and computing the SVD on raw training set, which

is 44.9744 (imputation) + 2.2866 (SVD) = 47.261s for MovieLens and 1,592.8075

(imputation) + 3.7552 (SVD) = 1,596.5627s for Jester, the proposed scheme ran

more efficiently in both row and column updates.

The mean absolute error charted in Figure 3.3 keeps stable with the different split

ratio ρ2 which implies that the quality of the updated data with respect to prediction

accuracy is not affected notably by ρ2. Similar results were obtained on the privacy

measure, see Figure 3.4.

Based on the experimental results about split ratio ρ2, it was fixed to 1/9 in both

the row and column updates for the MovieLens data in the following experiments.

The Jester data worked with ρ2 = 1/10 in the row update and ρ2 = 1/3 in the column

update.

39

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

M
AE

Row

Column

ρ2

MovieLens

3.27

3.28

3.29

3.30

3.31

3.33

3.34

3.35

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

M
AE

Row

Column

ρ2

Jester

Figure 3.3: MAE variation with split ratio ρ2

1.20

1.22

1.23

1.25

1.26

1.28

1.29

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

∏
(Y

|X
)

Row

Column

ρ2

MovieLens

4.60

4.78

4.96

5.14

5.32

5.50

5.68

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1

∏
(Y

|X
)

Row

Column

ρ2

Jester

Figure 3.4: Privacy level variation with split ratio ρ2

3.3.5.3 Split Ratio ρ1

Because of the inherent properties of the SVD update algorithms, errors are generated

in each run. The data owners should be aware of the correct time to recompute SVD

for the whole data so that the quality of the data can be kept. This problem is studied

by experimenting with the split ratio ρ1.

The time cost for updating new data with varying ρ1 is plotted in Figure 3.5. It

is expected that updating fewer rows/columns takes less time. While different types

of split ratios were tested, the relation between the time cost of the row and column

updates did not change.

40

0.0

3.0

6.0

9.0

12.0

15.0

18.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

Row

Column

ρ1

MovieLens

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

Row

Column

ρ1

Jester

Figure 3.5: Time cost variation with split ratio ρ1

Figure 3.6 shows the mean absolute error. The curve in the MovieLens data has a

descending trend in the row update but keeps at a stable level in the column update.

The case is different for the Jester data where the MAE is generally decreasing for

the column update and keeps stable for the row update with rising split ratio ρ1. It

indicates that with fewer ratings in the starting matrix, the prediction model tends to

less accurately profile users’ preferences and thus leads to a lower prediction accuracy.

In this case, the users in the MovieLens data affect more while the dominant factor of

the Jester data is the items. It can be assumed that the total amount of information

stored in a rating matrix is fixed, and every matrix entry contributes the same amount

of information. Therefore, the fewer users (or items) we have, the more information

each user (or item) can provide. In the MovieLens data, the row dimension is lower

than the column dimension. In this scenario, users play a more important role than

items because there are fewer users than items and each user contributes more than

each item does. Therefore, with the increasing number of users, the MAE dropped.

On the other hand, in the Jester data, the row dimension is higher than the item

dimension so items are more critical and have a greater effect on errors.

As for the prediction errors, when ρ = 40%, the MAE of the unperturbed training

matrix is 0.7769 for MovieLens and 3.2871 for Jester. The update schemes reached

41

0.7951 for the row update and 0.7768 for the column update on the MovieLens dataset

and 3.2870 for the row update and 3.3221 for the column update on the Jester data.

The MAE’s are still comparable to the published results. If using more sophisticated

prediction models, the MAE could be lower.

0.76

0.78

0.79

0.81

0.82

0.84

0.86

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

Row

Column

ρ1

MovieLens

3.25

3.27

3.29

3.31

3.33

3.35

3.37

10% 20% 30% 40% 50% 60% 70% 80% 90%
M

AE

Row

Column

ρ1

Jester

Figure 3.6: MAE variation with split ratio ρ1

The privacy level with the varying split ratio is displayed in Figure 3.7. It is

apparent that the privacy level decreases when the starting matrix holds more data.

In this experiment, the privacy levels on both datasets were higher and changed

faster in the row update than those in the column update. The results imply that

the privacy with respect to users (rows) plays a dominant role in the update. This is

reasonable because when people talk about the privacy, they mean the users’ privacy

and not the items’.

Corresponding to the privacy level, the privacy loss of the raw training data (Y)

after revealing the perturbed and updated data (X) is presented in Figure 3.8.

With the growing split ratio, the privacy loss increases where the privacy level

decreases. The curves in Figure 3.8 looks like an upside-down version of the curves

in Figure 3.7 due to the relation between them, see Eq. (3.14).

Now it can be decided when to recompute the SVD for the whole data according to

Figures 3.6 and 3.7. Since MAE’s on both datasets drop more slowly after ρ1 ≥ 50%

42

1.16

1.18

1.20

1.23

1.25

1.27

1.29

10% 20% 30% 40% 50% 60% 70% 80% 90%

∏
(Y

|X
)

Row

Column

ρ1

MovieLens

1.00

2.10

3.20

4.30

5.40

6.50

7.60

10% 20% 30% 40% 50% 60% 70% 80% 90%

∏
(Y

|X
)

Row

Column

ρ1

Jester

Figure 3.7: Privacy level variation with split ratio ρ1

and there is no apparent variation of the slope for the privacy measure curves, the

recomputation can be performed when ρ1 reaches 50%.

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10% 20% 30% 40% 50% 60% 70% 80% 90%

P(
Y|

X)

Row

Column

ρ1

MovieLens

0.20

0.34

0.48

0.62

0.76

0.90

1.04

10% 20% 30% 40% 50% 60% 70% 80% 90%

P(
Y|

X)

Row

Column

ρ1

Jester

Figure 3.8: Privacy loss variation with split ratio ρ1

3.3.5.4 Impact of Randomization in Data Updates

So far, randomization technique has not been applied to the proposed data update

scheme. In this section, the impact of randomization (Gaussian noise with µ and σ as

its parameters in Algorithms 3.1 and 3.2) is studied in both data quality and privacy

preservation. In the following experiments, ρ1 is fixed to 40% and ρ2 is set to 1/9. µ

is probed in {0, 1} and σ is probed in {0.1, 1} for both datasets. Table 3.1 collects

43

the statistics of the test.

Table 3.1: Impact of randomization in data updates

MovieLens Data
Row Update Column Update

µ σ MAE Π(Y |X) MAE Π(Y |X)
0 0 0.7951 1.2671 0.7768 1.2124
0 0.1 0.7955 1.2792 0.7781 1.2558
0 1 0.8331 1.2927 0.8219 1.2869
1 0.1 1.0764 1.2808 0.9837 1.2583
1 1 1.0421 1.2926 0.9258 1.2839

Jester Data
Row Update Column Update

µ σ MAE Π(Y |X) MAE Π(Y |X)
0 0 3.2870 5.2894 3.3221 4.7178
0 0.1 3.2872 5.4717 3.3390 4.9811
0 1 3.3007 6.4436 3.3542 6.1920
1 0.1 3.3221 5.4706 3.3629 5.0179
1 1 3.3358 6.4410 3.3799 6.2577

In this table, the row and column updates with the randomization technique is

compared to the non-randomized version. It is obvious that after applying the random

noise to the new data before the update, both privacy metrics (Π(Y |X) and P(Y |X))

in all cases improved to a certain extent. Nevertheless, some utility of the data was

lost which resulted in greater MAE’s at the same time. Hence, the parameters should

be carefully chosen to deal with the trade-off between data utility and data privacy.

Moreover, the results indicate that the expectation µ affected the results to a greater

extent than the standard deviation σ did. It is a good idea to determine µ first and

tweak σ afterwards.

Apparently, the randomization technique can be exploited as an auxiliary step in

the SVD based data update scheme to provide better privacy protection. It brings

in randomness that perturbs the data before the SVD update. Therefore, the data

will be perturbed twice (randomization + SVD) in addition to the imputation during

44

the update process and can achieve a higher privacy level. However, with the latent

factors captured by SVD, most of the critical information can be retained which

ensures the data quality for the recommendation.

3.4 Summary

In this chapter, a privacy-preserving data update scheme for collaborative filtering

purposes is presented. It is an incremental SVD based scheme with the randomization

technique and could be utilized in updating incremental user-item matrices and pre-

serving privacy at the same time. The scheme attempts to protect users’ privacy in

three aspects, missing value imputation, randomization based perturbation and SVD

truncation. The experimental results on the MovieLens and Jester datasets show that

the proposed scheme could update new data into the existing data very quickly. It

can also provide high quality data for accurate recommendations while keeping the

privacy.

Copyright c© Xiwei Wang 2015

45

4 Incorporating Auxiliary Information into Collaborative Filtering Data

Update with Privacy Preservation

In Chapter 3, an SVD based data update scheme is presented. It incorporates the

missing value imputation and randomization based perturbation techniques as well as

a post-processing procedure into the incremental SVD to update the new data with

privacy preservation. Nevertheless, the time complexity contains a cubic term with

respect to the number of new rows or columns. This is a potentially expensive factor

in the update process, especially when a large amount of new data comes in. It is

expected that a better technique can be developed to improve the update process.

Furthermore, it is beneficial to utilize the auxiliary information of users and/or

items that comes with the datasets, e.g., the MovieLens dataset [64] and the Li-

bimSeTi Dating Agency dataset [11]. Typical auxiliary information includes user

demographic data, item category data, etc. This information, if properly used, can

improve the recommendation accuracy, especially when the original rating matrix

contains a large number of missing values.

This chapter discusses an NMF based data update approach that solves these

issues. The approach, named iAux-NMF is based on the incremental nonnegative

matrix tri-factorization algorithms [20]. It starts with computing the weighted and

constrained nonnegative matrix tri-factorization for the original incomplete rating

matrix, utilizing both the rating matrix itself and the auxiliary information. The

factor matrices of NMF are then used to approximate the original rating matrix with

the missing values imputed. Meanwhile, the data is automatically perturbed due

to the intrinsic properties of NMF [74]. For new data, iAux-NMF is performed to

produce imputed and perturbed data. By doing so, even though the third party has

this data on hand, it does not know which ratings it can trust or to what extent it

can trust the ratings. Therefore, users’ privacy is protected. Experimental results

46

on the MovieLens and LibimSeTi datasets show that this approach could update the

new data very fast with low levels of privacy loss and high levels of data utility.

4.1 Problem Description

In Chapter 3, the data update problem is discussed. In this chapter, the case is

further extended. In addition to the incomplete user-item rating matrix R ∈ Rm×n,

the data owner has two more matrices: a user feature matrix FU ∈ Rm×kU , and an

item feature matrix FI ∈ Rn×kI , where there are m users, n items, kU user features,

and kI item features.

The user feature matrix FU and the item feature matrix FI represent the auxiliary

information of users and items, respectively. They are taken into account to help

impute the missing entries in the rating matrix for better accuracy. The processed

matrix Rr ∈ Rm×n is the one that will be transferred to the third party.

When new users’ ratings arrive, the new rows, denoted by T ∈ Rp×n, should

be appended to the original matrix R (see Eq. (3.1)). Meanwhile, their auxiliary

information is also available, and thus the updated feature matrix is

 FU

∆FU

→ F ′U , (4.1)

where ∆FU ∈ Rp×kU .

Similarly, when new items become available, the new columns, denoted by G ∈

Rm×q, should be appended to the original matrix R1,

[
R G

]
→ R′′ (4.2)

and the updated item feature matrix is

1Eq. (3.2) is rewritten due to a different notation G

47

 FI

∆FI

→ F ′I , (4.3)

where ∆FI ∈ Rq×kI .

4.2 Using iAux-NMF for Privacy-Preserving Data

Updates

This section introduces the iAux-NMF algorithm and its application in incremental

data update with privacy preservation.

4.2.1 Aux-NMF

While iAux-NMF handles the incremental data update, it is necessary to present the

non-incremental version, named Aux-NMF beforehand. This section is organized as

follows: developing the objective function, deriving the update formulas, analyzing

the convergences, and the detailed algorithms.

4.2.1.1 Objective Function

Nonnegative matrix factorization (NMF) [45] is a widely used dimension reduction

method in many applications such as clustering [20, 37], text mining [79, 58], image

processing and analysis [86, 63], data distortion based privacy preservation [32, 71],

etc. NMF is also applied in collaborative filtering to make product recommendations

[87, 13].

A conventional NMF is defined as follows [45],

Rm×n ≈ Um×k · V T
n×k (4.4)

48

The goal is to find a pair of orthogonal nonnegative matrices U and V that minimize

the Frobenius norm ‖R− UV T‖F . Thus the objective function for NMF is

minU≥0,V≥0f(R,U, V) = ‖R− UV T‖2
F (4.5)

This chapter proposes an NMF based matrix factorization technique that takes

into account weights and constraints. It is expected to preserve the data privacy by

imputing and perturbing the values during its update process.

As stated in the previous chapters, one of the significant distinctions between col-

laborative filtering data and other data is the missing value issue. The rating matrices

are usually very incomplete so they cannot be directly fed to the matrix factorization

algorithms, such as SVD and NMF. Those missing values should be imputed properly

during the pre-processing step. Existing imputation methods include random value

imputation, mean value imputation [64], expectation maximization (EM) imputation

[17, 82], linear regression imputation [73], etc. Nevertheless, all of them require extra

time to compute the missing values. In contrast, the weighted NMF (WNMF) [87]

can work with incomplete matrices without a separate imputation procedure.

Given a weight matrix W ∈ Rm×n that indicates the existence of values in the

rating matrix R (see Eq. (4.7)), the objective function of WNMF is

minU≥0,V≥0f(R,W,U, V) = ‖W ◦ (R− UV T)‖2
F (4.6)

where ◦ denotes the element-wise multiplication.

wij =

 1 if rij 6= 0

0 if rij = 0
(wij ∈ W, rij ∈ R) (4.7)

When WNMF converges, R̃ = UV T is the matrix with all missing entries filled. Since

49

the residual exists, R̃ is different from R, making it a perturbed version of R. As

discussed in Chapter 1, users do not want their privacy, e.g., their ratings left on

particular items and on which items they have rated, to be released to other people.

In WNMF, both of them are protected.

In [19], Ding et al. showed the equivalency between NMF and the K-Means

clustering algorithm. When given a matrix R with objects as rows and attributes

as columns, the two matrices U and V produced by NMF on R describe the cluster

information of the objects. Each column vector of U , ui, can be regarded as a basis

and each data point ri is approximated by a linear combination of these k bases,

weighted by the components of V [50], where k is the rank of factor matrices. Thus

the objects are grouped into clusters in accordance with matrix U .

However, in some cases, the data matrix R can represent relationships between two

types of objects, e.g., user-item rating matrices in collaborating filtering applications

and term-document matrices in text mining applications. It is expected that both

row (user/term) clusters and column (item/document) clusters can be obtained by

performing NMF on R. Due to the intrinsic property of NMF, it is very difficult to

find two matrices U and V that represent user clusters and item clusters respectively

at the same time. Hence, an extra factor matrix is needed to absorb the different

scales of R, U , and V for simultaneous row clustering and column clustering [20]. Eq.

(4.8) gives the objective function of the nonnegative matrix tri-factorization (NMTF).

minU≥0,S≥0,V≥0f(R,U, S, V) = ‖R− USV T‖2
F (4.8)

where U ∈ Rm×k
+ , S ∈ Rk×l

+ , and V ∈ Rn×l
+ (U and V are orthogonal matrices).

The use of S brings in a large scale of freedom for U and V so that they can

focus on row and column clustering and preserve the privacy during the factorization

process. In this scheme, both U and V are cluster membership indicator matrices

50

while S is the coefficient matrix. Note that objects corresponding to rows in R are

clustered into k groups and objects corresponding to columns are clustered into l

groups.

With the auxiliary information of users and items, NMTF can be converted to a

supervised learning procedure by applying cluster constraints to the objective function

(4.8), giving the equation

minU≥0,S≥0,V≥0f(R,U, S, V, CU , CI) =

α · ‖R− USV T‖2
F + β · ‖U − CU‖2

F + γ · ‖V − CI‖2
F

(4.9)

where α, β, and γ are coefficients that control the weight of each part. CU and CI

are user cluster matrix and item cluster matrix, respectively. They are obtained by

running the K-Means clustering algorithm on user feature matrix FU and item feature

matrix FI as mentioned in Section 4.1.

Combining Eqs. (4.6) and (4.9), the objective function for the weighted and

constrained nonnegative matrix tri-factorization is developed as

minU≥0,S≥0,V≥0f(R,W,U, S, V, CU , CI) =

α · ‖W ◦ (R− USV T)‖2
F + β · ‖U − CU‖2

F + γ · ‖V − CI‖2
F .

(4.10)

This matrix factorization is named Aux-NMF, indicating that it incorporates the user

and item auxiliary information into the factorization.

4.2.1.2 Update Formulas

In this section, the update formulas are derived for Aux-NMF.

Let L = f(R,W,U, S, V, CU , CI), X = ‖W ◦ (R−USV T)‖2
F , Y = ‖U −CU‖2

F , and

Z = ‖V − CI‖2
F .

51

Take derivatives of X with respect to U , S, and V :

∂X

∂U
= −2(W ◦R)V ST + 2W ◦ (USV T)V ST (4.11)

∂X

∂S
= −2UT (W ◦R)V + 2UT [W ◦ (USV T)]V (4.12)

∂X

∂V
= −2(W ◦R)TUS + 2[W ◦ (USV T)]TUS (4.13)

Take derivatives of Y with respect to U , S, and V :

∂Y

∂U
= 2U − 2CU ,

∂Y

∂S
=
∂Y

∂V
= 0 (4.14)

Take derivatives of Z with respect to U , S, and V :

∂Z

∂U
=
∂Z

∂S
= 0,

∂Z

∂V
= 2V − 2CI (4.15)

Using Eqs. (4.11) to (4.15), we get the derivatives of L:

∂L

∂U
= 2α[W ◦ (USV T)]V ST + 2βU

− 2α(W ◦R)V ST − 2βCU

(4.16)

∂L

∂V
= 2α[W ◦ (USV T)]TUS + 2γV

− 2α(W ◦R)TUS − 2γCI

(4.17)

∂L

∂S
= 2αUT [W ◦ (USV T)]V

− 2αUT (W ◦R)V

(4.18)

To obtain the update formulas, the Karush-Kuhn-Tucker (KKT) complementary

52

condition [43] is applied to the nonnegativities of U , S, and V . We have

{2α[W ◦ (USV T)]V ST + 2βU − 2α(W ◦R)V ST − 2βCU}ijUij = 0 (4.19)

{2α[W ◦ (USV T)]TUS + 2γV − 2α(W ◦R)TUS − 2γCI}ijVij = 0 (4.20)

{2αUT [W ◦ (USV T)]V − 2αUT (W ◦R)V }ijSij = 0 (4.21)

They give rise to the corresponding update formulas:

Uij = Uij ·
{α(W ◦R)V ST + βCU}ij

{α[W ◦ (USV T)]V ST + βU}ij
(4.22)

Vij = Vij ·
{α(W ◦R)TUS + γCI}ij

{α[W ◦ (USV T)]TUS + γV }ij
(4.23)

Sij = Sij ·
{UT (W ◦R)V }ij

{UT [W ◦ (USV T)]V }ij
(4.24)

Assume k, l� min(m,n), the time complexities of updating U , V , and S in each

iteration are all O(mn(k + l)). Therefore, the time complexity of Aux-NMF in each

iteration is O(mn(k + l)).

4.2.1.3 Convergence Analysis

This section follows [45] to prove that the objective function L is nonincreasing under

the update formulas (4.22), (4.23), and (4.24).

Definition 4.1. H(u, u′) is an auxiliary function for F (u) if the conditions

H(u, u′) ≥ F (u), H(u, u) = F (u) (4.25)

are satisfied.

Lemma 4.1. If H is an auxiliary function for F , then F is nonincreasing under the

53

update

ut+1 = argmin
u

H(u, ut) (4.26)

Lemma 4.1 can be easily proved since we have F (ut+1) = H(ut+1, ut+1) ≤ H(ut+1, ut) ≤

H(ut, ut) = F (ut).

The convergences of the update formulas (4.22), (4.23), and (4.24) will be proved

by their equivalence to Eq. (4.26), with proper auxiliary functions defined.

Let us rewrite the objective function L,

L = tr{α(W ◦R)T · (W ◦R)}+ tr{−2α(W ◦R)T · [W ◦ (USV T)]}

+ tr{α[W ◦ (USV T)]T · [W ◦ (USV T)]}

+ tr(βUTU) + tr(−2βUTCU) + tr(βCT
UCU)

+ tr(γV TV) + tr(−2γV TCI) + tr(γCT
I CI)

(4.27)

where tr(∗) is the trace of a matrix.

Eliminating the irrelevant terms, we can define the following functions that are

only related to U , V , and S, respectively.

L(U) = tr{−2α(W ◦R)T · [W ◦ (USV T)] + α[W ◦ (USV T)]T · [W ◦ (USV T)]

+ βUTU − 2βUTCU}

= tr{−2[α(W ◦R)V ST + βCU]UT + UT [αW ◦ (USV T)V ST] + UT (βU)}

(4.28)

L(V) = tr{−2α(W ◦R)T · [W ◦ (USV T)] + α[W ◦ (USV T)]T · [W ◦ (USV T)]

+ γV TV − 2γV TCI}

= tr{−2[α(W ◦R)TUS + γCI]V
T + V T [α(W ◦ (USV T))TUS] + V T (γV)}

(4.29)

54

L(S) = tr{−2α(W ◦R)T · [W ◦ (USV T)] + α[W ◦ (USV T)]T · [W ◦ (USV T)]}

= tr{[−2αUT (W ◦R)V]ST + [αUT (W ◦ (USV T))V]ST}

(4.30)

Lemma 4.2. For any matrices X ∈ Rn×n
+ , Y ∈ Rk×k

+ , F ∈ Rn×k
+ , F ′ ∈ Rn×k

+ , and X,

Y are symmetric, the following inequality holds

n∑
i=1

k∑
j=1

(XF ′Y)ijF
2
ij

F ′ij
≥ tr(F TXFY) (4.31)

The proof of Lemma 4.2 is presented in [20]. This lemma is used to build an aux-

iliary function for L(U). Since L(V) and L(S) are similar to L(U), their convergences

are not necessary to be discussed.

Lemma 4.3.

H(U,U ′) =− 2
∑
ij

{[α(W ◦R)V ST + βCU]UT}ij

+
∑
ij

{αW ◦ (U ′SV T)V ST + βU ′}ijU2
ij

U ′ij

(4.32)

is an auxiliary function of L(U) and the global minimum of H(U,U ′) can be achieved

by

Uij = U ′ij ·
{α(W ◦R)V ST + βCU}ij

{α[W ◦ (U ′SV T)]V ST + βU ′}ij
(4.33)

Proof. We need to prove two conditions as specified in Definition 4.1. It is apparent

that H(U,U) = L(U). According to Lemma 4.2, we have

∑
ij

{αW ◦ (U ′SV T)V ST + βU ′}ijU2
ij

U ′ij

=
∑
ij

{αW ◦ (U ′SV T)V ST}ijU2
ij

U ′ij
+
∑
ij

{βU ′}ijU2
ij

U ′ij

≥ tr{UT [αW ◦ (USV T)V ST]}+ tr{UT (βU)}.

(4.34)

55

Therefore, H(U,U ′) ≥ L(U). Thus H(U,U ′) is an auxiliary function of L(U).

To find the global minimum of H(U,U ′) with U ′ fixed, we can take the derivative

of H(U,U ′) with respect to Uij and let it be zero:

∂H(U,U ′)

∂Uij
= {−2[α(W ◦R)V ST + βCU]}ij

+ 2
{αW ◦ (U ′SV T)V ST + βU ′}ijUij

U ′ij
= 0

(4.35)

Solving for Uij, we have

Uij = U ′ij ·
{α(W ◦R)V ST + βCU}ij

{α[W ◦ (U ′SV T)]V ST + βU ′}ij
(4.36)

Since F (U0) = H(U0, U0) ≥ H(U1, U0) ≥ F (U1) ≥ ..., F (U) is monotonically de-

creasing and updating U by Eq. (4.36) can reach global minimum.

Similarly, the convergences of update formulas (4.24) and (4.23) can be proved as

well.

4.2.1.4 Detailed Algorithm

This section presents the specific algorithm for Aux-NMF in collaborating filtering

which is the basis of the incremental Aux-NMF.

Algorithm 4.1 depicts the procedure of performing Aux-NMF on a rating matrix.

Though Aux-NMF will eventually converge to a local minimum, it may take hun-

dreds or even thousands of iterations. In this algorithm, an extra stop criterion, the

maximum iteration count, is set to terminate the program at a reasonable point. In

collaborative filtering applications, this value varies from 10 ∼ 100 and can generally

produce satisfactory results.

56

4.2.2 iAux-NMF

As discussed in Section 4.1, new data can be regarded as new rows or new columns in

the matrix. They are imputed and perturbed by the incremental Aux-NMF (iAux-

NMF) with the aid of U, S, V, CU , CI , CentroidsU , and CentroidsI generated by Al-

gorithm 4.1.

iAux-NMF is technically the same as Aux-NMF, but focuses on a series of new

rows or new columns. Hence, in this section, the incremental case of Aux-NMF is

discussed by row update and column update separately.

4.2.2.1 Row Update

R
Original

User-Item
matrix

U
S VT× ×Aux-NMF

TNew users ΔU

Rr

m×n

p×n

m×k

p×k

k×l l×n

m×n

Tr p×n

rR
~

Figure 4.1: Updating new rows in iAux-NMF

In Eq. (3.1), it can be seen that T ∈ Rp×n is added to R as a few rows. This

process is illustrated in Figure 4.1. T should be imputed and perturbed before it can

be released. Like Section 4.2.1.1, the objective function is developed by

min∆U≥0f(T,WT ,∆U, S, V,∆CU) =

α · ‖WT ◦ (T −∆USV T)‖2
F + β · ‖∆U −∆CU‖2

F

(4.37)

Accordingly, the update formula for this objective function is obtained as follows

∆Uij = ∆Uij ·
{α(WT ◦ T)V ST + β∆CU}ij

{α[WT ◦ (∆USV T)]V ST + β∆U}ij
(4.38)

The convergence of Eq. (4.38) can be proved similarly as in Section 4.2.1.3. Since

the row update only works on new rows, the time complexity of the algorithm in each

57

iteration is O(pn(l+ k) + pkl). Assume k, l� min(p, n), the time complexity is then

simplified to O(pn(l + k)).

Algorithm 4.2 illustrates the row update in iAux-NMF.

4.2.2.2 Column Update

The column update is almost identical to the row update. When the new data

G ∈ Rm×q arrives, it is updated by Algorithm 4.3. The time complexity for the

column update is O(qm(l + k)).

The data owner should hold the updated factor matrices (U ′, S, and V ′) and

the cluster information (the user/item cluster membership indicator matrices and

the centroids) for future updates. Note that matrices S and V (S and U) are left

unchanged in the row update (the column update), which does not indicate that

they will never change. The experimental study will show when Aux-NMF should be

recomputed to ensure the data utility and privacy.

4.3 Experimental Study

4.3.1 Data Description

In the experiments, the MovieLens [64], Sushi [35], and LibimSeTi [11] datasets were

adopted as the test data. Table 4.1 collects the statistics of the datasets.

Table 4.1: Statistics of the data

Dataset #users #items #ratings Sparsity
MovieLens 943 1,682 100,000 93.7%
Sushi 5,000 100 50,000 90%
LibimSeTi 2,000 5,625 129,281 98.85%

The public MovieLens dataset has been described in Chapter 3. In addition to

the rating data, user demographic information and item genre information are also

58

available.

The Sushi dataset describes the user preferences on different kinds of sushi. There

are 5,000 users and 100 sushi items. Each user has rated 10 items, with a rating

ranging from 1 to 5. That is to say, there are 50,000 ratings in this dataset. To build

the test set and the training set, for every user, 2 out of 10 ratings were randomly

selected and were inserted into the test set (10,000 ratings) while the rest of ratings

were used as the training set (40,000 ratings). Similar to MovieLens, the Sushi dataset

comes with user demographic information as well as item group information and some

attributes (e.g., the heaviness/oiliness in taste, how frequently the user eats the sushi

etc.).

The LibimSeTi dating dataset was gathered by LibimSeTi.cz, an online dating

website. It contains 17,359,346 anonymous ratings of 168,791 profiles made by 135,359

users as dumped on April 4, 2006. However, only the user’s gender is provided with

the data. Later sections will show how to resolve the problem with the lack of item

information. Confined to the memory limit of the test computer, the experiments

only used 2,000 users and 5,625 items2 with 108,281 ratings in the training set and

21,000 ratings in the test set. Ratings are on a 1 ∼ 10 scale where 10 is best.

4.3.2 Data Pre-processing

The proposed algorithms require user and item feature matrices as the input. To build

such feature matrices, the auxiliary information of users and items is pre-processed. In

the MovieLens dataset, user demographic information includes user ID, age, gender,

occupation, and zip code. Among them, age, gender, and occupation are utilized as

features. For age, the numbers are categorized into 7 groups: 1-17, 18-24, 25-34, 35-

44, 45-49, 50-55, >=56. For gender, there are two possible values: male and female.

According to the statistics, there are 21 occupations: administrator, artist, doctor,

2User profiles are considered as items for this dataset.

59

and so on. Based on these possible values, a user feature matrix FU was built with

30 features (kU = 30). In other words, each user is represented as a row vector with

30 elements. An element is set to 1 if the corresponding feature value is true for this

user and 0 otherwise. An example is, for a 48-year-old female user, who is an artist,

the elements in the columns corresponding to female, 45-49, and artist should be set

to 1. All other elements should be 0. Similar to the user feature matrix, the item

feature matrix is built according to their genres. Movies in this dataset are attributed

to 19 genres and hence the item feature matrix FI has 19 features (kI = 19) in it.

In the Sushi dataset, some of the user demographic information, e.g., gender and

age, are used. In this case, user age has been divided into 6 groups by the data

provider: 15-19, 20-29, 30-39, 40-49, 50-59, >=60. User gender consists of male and

female, which is the same as MovieLens. Thus, the user feature matrix for this dataset

has 5,000 rows and 8 columns. The item feature matrix, on the other hand, has 100

rows and 16 columns. The 16 features include 2 styles (maki and other), 2 major

groups (seafood and other), and 12 minor groups (aomono (blue-skinned fish), akami

(red-meat fish), shiromi (white-meat fish), tare (something like baste; for eel or sea

eel), clam or shell, squid or octopus, shrimp or crab, roe, other seafood, egg, meat

other than fish, and vegetables).

Different from the MoiveLens and Sushi datasets, the LibimSeTi dataset only

provides user gender as its auxiliary information so it is directly used as the user

cluster indicator matrix CU . It is worth noting that in this dataset, there are three

possible gender values: male, female, and unknown. To be consistent, the number of

user clusters is set to 3.

4.3.3 Evaluation Strategy

For comparison purposes, the proposed approach and the SVD based data update

approach presented in Chapter 3 were run on the datasets to measure the error of

60

unknown value imputation and the privacy level of the perturbed data, as well as

their time cost. The SVD based data update approach first uses the column mean

to impute missing values in the new data and then performs the incremental SVD

update on the imputed data. The machine that ran the experiments was equipped

with Intel R© Core
TM

i5-2405S processor, 8GB RAM and is installed with the UNIX

operating system. The code was written and run in MATLAB.

When building the starting matrix R, the split ratio was used to decide how many

ratings would be removed from the whole training data. For example, there are 1,000

users and 500 items with their ratings in the training data. If the split ratio is 40%

and a row update will be done, the first 400 rows are considered as the starting

matrix (R ∈ R400×500). The remaining 600 rows of the training matrix will be added

to R in several rounds. Similarly, if a column update will be performed, the first 200

columns are considered as the starting matrix (R ∈ R1000×200) while the remaining

300 columns will be added to R in several rounds.

In each round, 100 rows/columns were added to the starting matrix. If the number

of the rows/columns of new data is not divisible by 100, the last round will update

the rest. Therefore, in this example, the remaining 600 rows will be added to R in 6

rounds with 100 rows each. It is worth mentioning that the Sushi data only has 100

items in total but the test of the column update was still expected on it so 10 items

were added instead of 100 in each round.

The basic procedure of the experiments is as follows:

1. Perform Aux-NMF and SVD on R, producing the approximated matrix Rr (see

Figure 4.1);

2. Append the new data to Rr by iAux-NMF and the SVD based data update

algorithm which is proposed in Chapter 3, yielding the updated rating matrix

R̃r;

61

3. Measure the prediction error and the privacy level of the updated rating matrix

R̃r;

4. Compare and study the results.

In the experiments, the same measurements in Section 3.3.3 were adopted. How-

ever, unlike Chapter 3, there was no particular CF prediction model running on the

released data R̃r. Instead, the differences between the ratings in the test data and

the released data were calculated.

Furthermore, the random variable Y in Definition 3.1 corresponds to only non-

zero values in the training set while in Chapter 3, the same variable corresponds to

all the values in the training set. X represents the perturbed values (at the same

positions as those in the training set) in the released data.

4.3.4 Results and Discussion

This section presents and discusses the experimental results in two stages. Aux-

NMF and SVD were first run on the whole training data to evaluate the performance

of the non-incremental algorithm. Then the incremental algorithms were evaluated

following the steps as specified in the previous section.

4.3.4.1 Test on Full Training Data

Some parameters of the proposed algorithms need to be determined in advance. Table

4.2 gives the parameter setup for Aux-NMF.

Table 4.2: Parameter setup for Aux-NMF

Dataset α β γ k l MaxIter
MovieLens 0.2 0 0.8 7 7 10
Sushi 0.4 0.6 0 7 5 10
LibimSeTi 1 0 0 3 10 10

62

For the MovieLens dataset, α = 0.2, β = 0, and γ = 0.8, which means that

the prediction relied mostly on the item cluster matrix, and then the rating matrix,

whereas it eliminated the user cluster matrix. This combination was selected after

probing many possible cases. Section 4.3.4.3 discusses how the parameters were cho-

sen. It is highly possible that there exist better combinations. Both k and l were

set to 7 because K-Means was prone to generate empty clusters with greater k and l,

especially on the data with very few users or items. Note that if β or γ is a non-zero

value, the user or item cluster matrix will be used and k or l is equal to the number of

user clusters or item clusters. As long as β or γ is zero, the algorithm will eliminate

the corresponding cluster matrix and k or l will be unrelated to the number of user

clusters or item clusters.

For the Sushi dataset, α = 0.4, β = 0.6, and γ = 0. The parameters indicate

that the user cluster matrix plays the most critical role during the update process.

In contrast, the rating matrix is the second important factor as it indicates the users’

preferences on items. The item cluster matrix seemed trivial so it did not participate

in the computation. k was set to 7 and l to 5 based on the same reason as mentioned

in the previous paragraph.

For the LibimSeTi dataset, full weight was given to the rating matrix. The user

and item cluster matrices received zero weight since they did not contribute anything

to the positive results. As mentioned in the data description, users’ auxiliary infor-

mation only includes the genders with three possible values. So k was set to 3. In

this case, l just denotes the column rank of V and was set to 10.

In SVD, since it cannot run on incomplete matrices, item mean was used to impute

the missing values. The rank was set to 13 for MovieLens, 7 for Sushi, and 10 for

LibimSeTi. Table 4.3 lists the results on the three datasets.

63

Table 4.3: Results on MovieLens dataset

Dataset Method MAE Π(Y |X) Time Cost

MovieLens
Aux-NMF 0.7481 1.2948 0.9902s

SVD 0.7769 1.2899 34.1341s

Sushi
Aux-NMF 0.9016 1.4588 0.5350s

SVD 0.9492 1.4420 5.4175s

LibimSeTi
Aux-NMF 1.2311 1.0715 5.7962s

SVD 1.2154 1.0537 390.2246s

In this table, the time cost of SVD includes the imputation time while the time cost

of Aux-NMF includes the clustering time. For instance, on the MovieLens dataset,

the imputation took 32.2918 seconds and SVD itself took 1.8423 seconds, for a total

of 34.1341 seconds; the clustering time took 0.0212 seconds and Aux-NMF itself

took 0.9690 seconds, for a total of 0.9902 seconds. One can see that Aux-NMF

outperformed SVD in all aspects on all three datasets. It is apparent that the former

is significantly more efficient than the latter. It saved 97% time on MovieLens, 90%

time on Sushi, and 98% time on LibimSeTi. This is mainly because the SVD based

algorithm needs to impute missing values, which is time consuming. However for

Aux-NMF, it can directly work on incomplete matrices, though it needs to cluster

beforehand, which is fast in general.

It is interesting to investigate the results of running the K-Means algorithm on

the final matrix generated by Aux-NMF and the matrix generated by SVD. As shown

in Figure 4.2(a), the MovieLens users with ratings produced by Aux-NMF were clus-

tered into 7 groups with clear boundaries. The result is different for SVD - most

users were grouped together and thus the clusters cannot be distinguished from each

others. In both figures, the axes denote the ratings left by users on items. The

results indicate that the ratings generated by Aux-NMF distributed more normally

64

than those that were produced by SVD. Remember that the goal is to provide good

imputation accuracy as well as high privacy level. In addition, the data should look

like real world values. To this purpose, the ratings should be distributed normally,

e.g., people may leave more 3 stars on a 1 ∼ 5 scale than 1 star and 5 stars. In this

regard, Aux-NMF generated more reasonable data than SVD did.

1
2

3
4

5

0

2

4

6
1

2

3

4

5

6

7

(a)
2

2.5
3

3.5
4

1

2

3

4

5
1

2

3

4

(b)

Figure 4.2: Clustering results on ratings predicted by Aux-NMF (a) and SVD (b) on
MovieLens dataset

4.3.4.2 The Incremental Case

In the previous section, the experiments examined Aux-NMF on three datasets in

terms of MAE, the privacy level, as well as the time cost. This section presents the

same measurements on iAux-NMF.

Figure 4.3 shows the time cost for updating new rows and columns by iAux-NMF

and the SVD based data update algorithm (SVDU).“RowN” and “ColumnN” are

used to represent the row and column updates in iAux-NMF. Similarly, “RowS” and

“ColumnS” are for the row and column updates in SVDU. The same parameter setup

listed in Table 4.2 was adopted.

65

It can be seen that iAux-NMF outperformed SVDU in both row and column

updates. As pointed out in Section 4.2.2, the time complexity of the row update in

iAux-NMF is O(pn(l+k)) and the column update has a time complexity of O(qm(l+

k)). As a reference, the time complexities of the row and column updates in SVDU

are O(k3 + (m + n)k2 + (m + n)kp + p3) and O(k3 + (m + n)k2 + (m + n)kq + q3),

respectively. When the rating matrix has high dimensionality, the time cost difference

can be significant. For example, the LibimSeTi dataset has both more users and more

items than MovieLens so the improvement of iAux-NMF over SVDU plotted in Figure

4.3(c) was greater than Figure 4.3(a). However, the Sushi data is a bit special as

the time difference between the two methods in row updates was very small, though

iAux-NMF was still faster. In Section 4.3.4.1, the time cost of both methods was split

into two pieces. For SVDU, the cost consists of the imputation time and the SVD

computation time. For Aux-NMF, the cost consists of the clustering time and the

Aux-NMF computation time3. By tracking the time cost of each stage, it was found

that the imputation in SVDU took considerably shorter time in the row update than

the column update on this dataset but the time cost of Aux-NMF in the row update

and the column update did not differ remarkably. Essentially, the faster imputation

in the row update can be attributed to the small number of items. Since SVDU uses

the column mean to impute the missing values, if there are only a few items, the

mean value calculation will be fast.

However, with the substantial improvement in time cost, iAux-NMF should not

produce a significantly higher imputation error than SVDU.

Figure 4.4 shows the mean absolute errors of the prediction. When the split ratio

was greater than 20%, iAux-NMF achieved lower errors than SVDU on the MovieLens

and Sushi datasets. The average improvement on MovieLens was 9.79% for row

update and 9.76% for column update. The Sushi dataset had a little less average

3Before running the algorithms, the parameters need to be determined. The time cost for this
part is discussed in Section 4.3.4.3.

66

0.0

2.0

4.0

6.0

8.0

10.0

12.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

RowN
ColumnN
RowS
ColumnS

Split Ratio

MovieLens

(a)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

RowN
ColumnN
RowS
ColumnS

Split Ratio

Sushi

(b)

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

RowN
ColumnN
RowS
ColumnS

Split Ratio

LibimSeTi

(c)

Figure 4.3: Time cost variation with split ratio

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

RowN
ColumnN
RowS
ColumnS

Split Ratio

MovieLens

(a)

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

RowN
ColumnN
RowS
ColumnS

Split Ratio

Sushi

(b)

1.20

1.32

1.44

1.56

1.68

1.80

1.92

2.04

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

RowN
ColumnN
RowS
ColumnS

Split Ratio

LibimSeTi

(c)

Figure 4.4: MAE variation with split ratio

improvement than MoiveLens but still noticeable. Nevertheless, both of them had

greater errors by iAux-NMF than by SVD when the split ratio was less than 20%.

This is because the centroids chosen by the K-Means algorithm did not distribute

over the data that was adequately large enough to reflect the complete set. With not

optimally selected centroids, K-Means cannot produce reasonable clustering results

which further affect Aux-NMF and iAux-NMF, so the errors will be large. Unlike

MovieLens and Sushi, the LibimSeTi dataset received different results. In this case,

iAux-NMF still performed better than SVDU but the gap tended to be smaller as the

split ratio increased. The results imply that the auxiliary information is important

to iAux-NMF as it is used as the constraints in the update process. On the contrary,

SVDU does not need it. This can explain why SVDU performed better than iAux-

NMF on LibimSeTi since no auxiliary information was used in the update process.

In Section 4.2.2.2, the Aux-NMF recomputation issue is addressed. As presented

67

in Figure 4.4, the MAE’s of both the row and column updates on the MovieLens

dataset decreased more slowly at 70% and leveled off after this point. Similarly, but

more interestingly, the MAE of the row update on the Sushi dataset began to increase

at 70%. Therefore, a recomputation can be performed at 70% for these two datasets.

For the LibimSeTi dataset, the MAE’s did not stop decreasing so the recomputation

was not immediately necessary.

In addition to MAE, it is expected to investigate the privacy metrics presented

in Section 4.3.3. The privacy levels with varying split ratios are plotted in Figure

4.5. The curve shows that the privacy levels of the data produced by iAux-NMF

were higher and more stable than SVDU while the latter had decreasing trends with

greater split ratios.

1.1600

1.1900

1.2200

1.2500

1.2800

1.3100

1.3400

1.3700

10% 20% 30% 40% 50% 60% 70% 80% 90%

∏
(Y

|X
)

RowN
ColumnN
RowS
ColumnS

Split Ratio

MovieLens

(a)

1.2300

1.2800

1.3300

1.3800

1.4300

1.4800

1.5300

1.5800

10% 20% 30% 40% 50% 60% 70% 80% 90%

∏
(Y

|X
)

RowN
ColumnN
RowS
ColumnS

Split Ratio

Sushi

(b)

1.0550

1.0590

1.0630

1.0670

1.0710

1.0750

1.0790

1.0830

10% 20% 30% 40% 50% 60% 70% 80% 90%

∏
(Y

|X
)

RowN
ColumnN
RowS
ColumnS

Split Ratio

LibimSeTi

(c)

Figure 4.5: Privacy level variation with split ratio

As a summary, the iAux-NMF data update algorithm performed more efficiently

than SVDU while maintaining nearly the same data utility and privacy, if not better.

4.3.4.3 Parameter Study

In iAux-NMF, three parameters, α, β, and γ need to be set. In this section, several

parameter combinations are compared. Note that the split ratio was kept at 40% and

the initial random matrices in Algorithms 4.2 and 4.3 were pre-generated to eliminate

the effect of randomness in the experiments. The same parameter setup in Table 4.2 is

adopted because it is the best combination obtained by probing multiple cases. The

68

pseudocode in Algorithm 4.4 shows the procedure to find out the parameters that

produce the lowest MAE’s. The step is set to 0.1 when incrementing the parameters.

Since there is a constraint α+β+γ = 1, the total number of parameter combinations

is 66. It took 806.28 seconds to run a full test on the MovieLens dataset, 1,116.9

seconds on Sushi, and 11,517.87 seconds on LibimSeTi. The times are relatively long

when compared with the times of running the incremental algorithms. However, the

parameters only need to be determined offline once so this process does not affect the

online performance.

Table 4.4 lists some representative combinations with their results on the Movie-

Lens dataset. The best combinations are in bold font. It can be seen that if the

updates simply rely on the rating matrix, the results are only a little worse than

those that take into account the auxiliary information. In contrast, if only the auxil-

iary information is considered, the MAE is unacceptable, though the privacy level is

the highest. It is clear that between user features and item features, the latter makes

a positive contribution to the results while the former seems trivial. Nevertheless,

the weight of the rating matrix can be lowered but should not be ignored. The Sushi

dataset (Table 4.5) has a similar conclusion but it is the user features that played a

more dominant role.

As shown in Table 4.6, the rating matrix of the LibimSeTi dataset is the only

information used in the computation. This indicates that even the dataset comes

with users’ genders, they do not help in the proposed model. This is reasonable as

the gender is not a necessary factor for people to determine their ratings, e.g., a female

can rate another female with a fairly high rating. It is worth noting that since there

is no item feature available in this dataset, γ was set to zero all the time.

Therefore, it can be concluded that the rating matrix should always be utilized

while the auxiliary information makes contributions to the improved results as well.

69

Table 4.4: Parameter probe on MovieLens dataset

Parameters Update MAE Π(Y |X)

α = 1, β = 0, γ = 0
Row 0.7643 1.2913

Column 0.7538 1.2964

α = 0.5, β = 0.5, γ = 0
Row 0.7643 1.2913

Column 0.7539 1.2963

α = 0.5, β = 0, γ = 0.5
Row 0.7624 1.2909

Column 0.7534 1.2958

α = 0, β = 0.5, γ = 0.5
Row 0.9235 1.3149

Column 0.9164 1.3150
α = 0.2, β = 0, γ = 0.8 Row 0.7616 1.2890
α = 0.4, β = 0, γ = 0.6 Column 0.7533 1.2955

Table 4.5: Parameter probe on Sushi dataset

Parameters Update MAE Π(Y |X)

α = 1, β = 0, γ = 0
Row 0.9083 1.4578

Column 0.9221 1.4613

α = 0.5, β = 0.5, γ = 0
Row 0.9073 1.4580

Column 0.9201 1.4614

α = 0.5, β = 0, γ = 0.5
Row 0.9085 1.4580

Column 0.9221 1.4614

α = 0, β = 0.5, γ = 0.5
Row 1.0468 1.4851

Column 1.0371 1.4849
α = 0.4, β = 0.6, γ = 0 Row 0.9071 1.4580
α = 0.2, β = 0.8, γ = 0 Column 0.9180 1.4620

Table 4.6: Parameter probe on LibimSeTi dataset

Parameters Update MAE Π(Y |X)

α = 1, β = 0, γ = 0
Row 1.2589 1.0719

Column 1.2911 1.0717

α = 0.5, β = 0.5, γ = 0
Row 1.3378 1.0713

Column 1.3926 1.0709

α = 0, β = 1, γ = 0
Row 5.4017 1.0782

Column 5.4017 1.0782

70

4.4 Summary

This chapter proposes an NMF based privacy-preserving data update approach for

collaborative filtering purposes. This approach utilizes the auxiliary information to

build the cluster membership indicator matrices for users and items. These matrices

are regarded as the additional constraints in updating the weighted nonnegative ma-

trix tri-factorization. The proposed approach, named iAux-NMF, can incorporate the

incremental data into existing data quite efficiently while maintaining the high data

utility and privacy. Furthermore, the inevitable missing value imputation issues in

collaborative filtering is solved in a subtle manner by this approach without using any

particular imputation methods. Experiments conducted on three different datasets

demonstrate the superiority of iAux-NMF over the previously discussed SVD based

data update method in the incremental data update.

Copyright c© Xiwei Wang 2015

71

Algorithm 4.1 Aux-NMF

Input:
User-Item rating matrix: R ∈ Rm×n;
User feature matrix: FU ∈ Rm×kU ;
Item feature matrix: FI ∈ Rn×kI ;
Column dimension of U: k;
Column dimension of V: l;
Coefficients in objective function: α, β, and γ;
Number of maximum iterations: MaxIter.

Output:
Factor matrices: U ∈ Rm×k, S ∈ Rk×l, V ∈ Rn×l;
User cluster membership indicator matrix: CU ∈ Rm×k;
Item cluster membership indicator matrix: CI ∈ Rn×l;
User cluster centroids: CentroidsU ;
Item cluster centroids: CentroidsI ;

1: Cluster users into k groups according to FU by K-Means algorithm → CU ,
CentroidsU ;

2: Cluster items into l groups according to FI by K-Means algorithm → CI ,
CentroidsI ;

3: Initialize U , S, and V with random values;
4: Build weight matrix W by Eq. (4.7);
5: Set iteration = 1 and stop = false;
6: while (iteration < MaxIter) and (stop == false) do

7: Uij ← Uij · {α(W◦R)V ST +βCU}ij
{α[W◦(USV T)]V ST +βU}ij ;

8: Vij ← Vij · {α(W◦R)TUS+γCI}ij
{α[W◦(USV T)]TUS+γV }ij ;

9: Sij ← Sij · {UT (W◦R)V }ij
{UT [W◦(USV T)]V }ij ;

10: L← α · ‖W ◦ (R− USV T)‖2
F + β · ‖U − CU‖2

F + γ · ‖V − CI‖2
F ;

11: if (L increases in this iteration) then
12: stop = true;
13: Restore U , S, and V to their values in last iteration.
14: end if
15: iteration = iteration+ 1;
16: end while
17: Return U, S, V, CU , CI , CentroidsU , and CentroidsI .

72

Algorithm 4.2 iAux-NMF for Row Update

Input:
New rating data: T ∈ Rp×n;
New user feature matrix: ∆FU ∈ Rp×kU ;
Coefficients in objective function: α, β, and γ;
Factor matrices: U ∈ Rm×k, S ∈ Rk×l, V ∈ Rn×l;
User cluster membership indicator matrix: CU ∈ Rm×k;
User cluster centroids: CentroidsU ;
Number of maximum iterations: MaxIter.

Output:
Updated factor matrix: U ′ ∈ R(m+p)×k;
Updated user cluster membership indicator matrix: C ′U ∈ R(m+p)×k;
Updated user cluster centroids: Centroids′U ;
Imputed and perturbed new data: Tr ∈ Rp×n;

1: Cluster new users into k groups based on ∆FU and CentroidsU by K-Means
algorithm → ∆CU , Centroids′U ;

2: Initialize ∆U ∈ Rp×k with random values;
3: Build weight matrix WT by Eq. (4.7);
4: Set iteration = 1 and stop = false;
5: while (iteration < MaxIter) and (stop == false) do

6: ∆Uij ← ∆Uij · {α(WT ◦T)V ST +β∆CU}ij
{α[WT ◦(∆USV T)]V ST +β∆U}ij

7: L← α · ‖WT ◦ (T −∆USV T)‖2
F + β · ‖∆U −∆CU‖2

F ;
8: if (L increases in this iteration) then
9: stop = true;

10: Restore U ′ to its value in last iteration.
11: end if
12: iteration = iteration+ 1;
13: end while
14: Append ∆CU to CU → C ′U ;
15: Append ∆U to U → U ′;
16: Calculate ∆USV T → Tr;
17: Return U ′, C ′U , Centroids

′
U , and Tr.

73

Algorithm 4.3 iAux-NMF for Column Update

Input:
New rating data: G ∈ Rm×q;
New item feature matrix: ∆FI ∈ Rq×kI ;
Coefficients in objective function: α, β, and γ;
Factor matrices: U ∈ Rm×k, S ∈ Rk×l, V ∈ Rn×l;
Item cluster indicator membership matrix: CI ∈ Rn×l;
Item cluster centroids: CentroidsI ;
Number of maximum iterations: MaxIter.

Output:
Updated factor matrix: V ′ ∈ R(n+q)×l;
Updated item cluster membership indicator matrix: C ′I ∈ R(n+q)×l;
Updated item cluster centroids: Centroids′I ;
Imputed and perturbed new data: Gr ∈ Rm×q;

1: Cluster new items into l groups based on ∆FI and CentroidsI by K-Means algo-
rithm → ∆CI , Centroids

′
I ;

2: Initialize ∆V ∈ Rq×l with random values;
3: Build weight matrix WG by Eq. (4.7);
4: Set iteration = 1 and stop = false;
5: while (iteration < MaxIter) and (stop == false) do

6: ∆Vij ← ∆Vij · {α(WG◦G)TUS+γ∆CI}ij
{α[WG◦(US∆V T)]TUS+γ∆V }ij

7: L← α · ‖WG ◦ (G− US∆V T)‖2
F + γ · ‖∆V −∆CI‖2

F ;
8: if (L increases in this iteration) then
9: stop = true;

10: Restore V ′ to its value in last iteration.
11: end if
12: iteration = iteration+ 1;
13: end while
14: Append ∆CI to CI → C ′I ;
15: Append ∆V to V → V ′;
16: Calculate US∆V T → Gr;
17: Return V ′, C ′I , Centroids

′
V , and Gr.

Algorithm 4.4 Pseudocode for Parameter Probing

1: for α = 0 : 0.1 : 1 do
2: for β = 0 : 0.1 : 1 - α do
3: γ = 1− α− β.
4: Run Aux-NMF and iAux-NMF on a dataset with parameter α, β, and γ,

saving the MAE’s as well as α, β, and γ to the corresponding variables.
5: end for
6: end for
7: Find out the lowest MAE and return the associated parameters.

74

5 Automated Dimension Determination for NMF Based Incremental

Collaborative Filtering

In the previous chapter, an NMF based incremental data update scheme, named

iAux-NMF, is introduced. It is well known that in NMF, the dimensions of the factor

matrices have to be determined in advance. Moreover, data is growing fast; thus, in

some cases, the dimensions need to be changed to reduce the approximation error.

The recommender systems should be capable of updating new data in a timely manner

without sacrificing the prediction accuracy.

This chapter proposes an NMF based data update approach with automated di-

mension determination for collaborative filtering purposes. The approach can deter-

mine the dimensions of the factor matrices and update them automatically. It ex-

ploits the nearest neighborhood based clustering algorithm to cluster users and items

according to their auxiliary information, and uses the clusters as the constraints in

NMF. The dimensions of the factor matrices are associated with the cluster quantities.

When new data becomes available, the incremental clustering algorithm determines

whether to increase the number of clusters or merge the existing clusters. Experi-

ments on three different datasets (MovieLens, Sushi and LibimSeTi) were conducted

to examine the proposed approach. The results show that this approach can update

the data quickly and provide satisfactory prediction accuracy.

5.1 Using iCluster-NMF for Collaborative Filter-

ing Data Updates

In this section, the improved version of iAux-NMF, named iCluster-NMF algorithm,

is introduced. The new algorithm utilizes the same objective function as well as the

update formulas of iAux-NMF but with different clustering mechanisms.

75

5.1.1 Clustering the Auxiliary Information

In Eq. (4.10), the cluster membership indicator matrices are used as the constraints

to perform the supervised learning. This requires the auxiliary information to be

clustered beforehand. In [68], Su et al. proposed a nearest neighborhood based

incremental clustering algorithm that can directly work on categorical data. Thus,

their algorithm was modified and integrated into iCluster-NMF as the fundamental

clustering technique.

Algorithm 5.1 depicts the steps to build the initial clusters for the existing feature

matrices FU and FI . It is worth mentioning that since this algorithm takes categorical

data as the input, for each attribute, all possible values are stored in one column. For

example, a user vector (a row in FU) contains 3 attributes (columns): gender, age,

and occupation. Each column has a different number of possible values, e.g., gender

has two possible values: male and female. The same format applies to FI .

5.1.2 Detailed Algorithm

The whole procedure of performing Cluster-NMF, the non-incremental version of

iCluster-NMF, on a rating matrix is illustrated in Algorithm 5.2 which is generally

the same as Algorithm 4.1.

5.1.3 iCluster-NMF

When new rows/columns are available, they are imputed by iCluster-NMF with the

aid of U, S, V, CU , and CI generated by Algorithm 5.2.

Technically, iCluster-NMF is identical to Cluster-NMF, but focuses on a series of

new rows or columns. Meanwhile, according to Algorithm 5.3, when new feature data

∆FU and ∆FI arrive, they need to be clustered into existing clusters, otherwise new

clusters are created. Eq. (4.10) indicates the relationship between the dimensions of

76

U and CU , V and CI . This means that once the clusters are updated, NMF must be

completely recomputed.

5.2 Experimental Study

The experiments in this chapter tested iAux-NMF and iCluster-NMF on the same

datasets that were used in Chapter 4 for their time cost and prediction errors.

5.2.1 Data Pre-processing

Because iAux-NMF and iCluster-NMF require different feature data formats (numer-

ical vs categorical), the data fed to them should be processed in different ways. While

in Section 4.3.2, data pre-processing for iAux-NMF is already described, the data that

would be used by iCluster-NMF has to be processed in another way. Nevertheless,

the way to build the data for iAux-NMF is also discussed as a reference.

For the MovieLens dataset, since iCluster-NMF directly works on categorical data,

the user feature matrix FU was built with 3 attributes (kU = 3). They correspond

to gender (2 possible values), age (7 possible values), and occupation (21 possible

values), respectively. In contrast, for iAux-NMF, the categories were converted to

numbers since the K-Means algorithm can only work on numerical data. The user

feature matrix FU was built with 30 attributes (kU = 30); each user was represented

as a row vector with 30 elements. An element will be set to 1 if the corresponding

attribute value is true for this user and 0 otherwise. Similar with the user feature

matrix, the item feature matrix was built in terms of their genres. Movies in this

dataset were attributed to 19 genres and hence the item feature matrix FI has 6

attributes for iCluster-NMF (kI = 6 as a single movie could have up to 6 genres) and

19 attributes for iAux-NMF (kI = 19).

In the Sushi dataset, eight of the users’ demographic attributes are used: gen-

77

der, age, and city in which the user has lived the longest until age 15 (plus region

and east/west). Additionally, the city (plus region and east/west) in which the user

currently lives is also used. As described in Section 4.3.2, users’ age has been catego-

rized into six groups while users’ gender has two possible values. There are 48 cities

(Tokyo, Hiroshima, Osaka, etc.), 12 regions (Hokkaido, Tohoku, Hokuriku, etc.) and

2 possible east/west values (either the eastern or western part of Japan). Thus, the

user feature matrix for iCluster-NMF on this dataset has 5,000 rows and 8 columns.

Nevertheless, since there are too many possible values (2 + 6 +(48 + 12 + 2)×2 = 132

values) for all attributes, only gender and age are used to build the user feature ma-

trix for iAux-NMF. This makes the matrix have 5,000 rows and 8 columns (2 genders

plus 6 age groups). The item feature matrix, on the other hand, has 100 rows and

3 columns for iCluster-NMF (16 columns for iAux-NMF) since there are 2 styles, 2

major groups, and 12 minor groups.

Since the LibimSeTi dataset only provides the user gender information, it is simply

used as the user cluster indicator matrix CU . To be consistent, the number of user

clusters is set to 1 for iCluster-NMF and 3 for iAux-NMF.

5.2.2 Evaluation Strategy

To evaluate the algorithms, the error of unknown value prediction and the time cost

are measured. Besides iCluster-NMF and iAux-NMF, a naive Cluster-NMF is ex-

ploited as the benchmark in the experiments for comparisons. The general idea of

the naive Cluster-NMF is quite close to iCluster-NMF. The only difference is the way

of updating the clusters. In iCluster-NMF, it uses Alogrthim 5.1 to build the initial

clusters which are then updated by Algorithm 5.3. In contrast, the naive Cluster-

NMF does not use incremental clustering but simply uses the idea of Alogrthim 5.1

to cluster the existing objects to the fixed number of clusters and re-cluster them

(to the fixed number of clusters as well) when new data is available. In other words,

78

F ′U in Eq. (4.1) and F ′I in Eq. (4.3) are re-clustered every time there is an update

on the data. This will significantly lower the performance of the algorithm but it

theoretically produces the most accurate result among all.

In order to demonstrate how much improvement the proposed algorithms have

achieved, they were compared to two SVD based collaborative filtering algorithms

and the performance was evaluated. In [9], Brand proposed a recommender system

that leveraged the probabilistic imputation to fill the missing values in the incom-

plete rating matrix and then used the incremental SVD to update the imputed rating

matrix. This makes SVD work seamlessly for CF purposes. In the experiments, this

algorithm is denoted as iSVD. The SVD based method that is proposed in Chapter 3

is similar to [9] but has additional processing steps to ensure privacy protection. Ad-

ditionally, it uses the mean value imputation instead of the probabilistic imputation

to remove missing values. It is denoted as pSVD. Note that neither of them considers

auxiliary information so only the rating matrix is used.

The experiments measure the prediction errors and the time cost on three proposed

algorithms as well as iSVD and pSVD. The prediction error is measured by MAE

defined in Eq. (3.12).

The basic procedure of the experiments is as follows:

1. Perform Algorithm 5.1 and Algorithm 5.2 on R;

2. Append the new data to R by iCluster-NMF, iAux-NMF, and naive Cluster-

NMF (nCluster-NMF for short), yielding the updated rating matrix R̃r;

3. Measure the prediction error and the time cost of the updated rating matrix

R̃r;

4. Compare and study the results.

79

5.2.3 Results and Discussion

5.2.3.1 Parameter Setup

The parameters that have to be determined by iAux-NMF are listed in Table 4.2 in

Chapter 4.

The iCluster-NMF and nCluster-NMF are in general the same as iAux-NMF but

with different clustering approaches and NMF recomputation strategies. In Algorithm

5.1, the maximum number of clusters maxK, the initial radius threshold s, and

the radius decreasing step ds must be determined in advance. Table 5.1 gives the

parameter setup for iCluster-NMF and nCluster-NMF. It is worth noting that the

LibimSeTi dataset has maxK = 3 for user clusters and maxK = 1 for item clusters.

Table 5.1: Parameter setup for iCluster-NMF and nCluster-NMF

Dataset maxK s ds
MovieLens 10 1 0.1
Sushi 10 1 0.1
LibimSeTi 3/1 1 0.1

As far as iSVD and pSVD, the only parameter involved is the rank of the singular

matrix. To determine this value, both algorithms were run for multiple times with

different ranks. The numbers that achieved the optimal outcomes were selected. The

best ranks for the MovieLens, the Sushi, and the LibimSeti datasets are 13, 7, and

10, respectively.

5.2.3.2 Experimental Results

Figure 5.1 shows the time cost for updating new rows and columns by iAux-NMF,

iCluster-NMF, nCluster-NMF, as well as iSVD and pSVD. In most cases, nCluster-

NMF and pSVD took significantly longer time than others. This is because nCluster-

NMF was used to probe all possible cluster quantities to find out the choices that

achieve the best MAE’s. That is to say, it tries to cluster users into k groups and

80

items into l groups, where k, l = {1, 2, ..., 10}, which results in 100 combinations. In

addition, nCluster-NMF needs to re-cluster the whole data every time the new portion

arrives. This requires even more time. As for pSVD, since it uses the mean value

of each column to impute all missing values in that column, when a large amount of

data is involved in the update (e.g. the row update on MovieLens and the column

update on Sushi), the time cost can be high. The performance of iSVD is not as

sensitive as pSVD to the data size but it also suffers from high matrix dimensionality,

as shown in Figure 5.1(e).

0.0

2.0

4.0

6.0

8.0

10.0

12.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

MovieLens (Row update)

(a)

0.0

3.5

7.0

10.5

14.0

17.5

21.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

MovieLens (Column update)

(b)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

Sushi (Row update)

(c)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

Sushi (Column update)

(d)

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

LibimSeTi (Row update)

(e)

0.0

25.0

50.0

75.0

100.0

125.0

150.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ti
m

e
(S

ec
s)

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

LibimSeTi (Column update)

(f)

Figure 5.1: Time cost variation with split ratio

81

Comparing iAux-NMF and iCluster-NMF, it can be seen that their time costs were

close in the process, though the former was slightly faster than the latter. This is

because iCluster-NMF not only updates the clusters’ content as iAux-NMF does, but

also combines existing clusters or creates new clusters when necessary. The cluster

update itself does not cost more time but since the number of clusters changes in

some cases, the NMF has to be recomputed, which requires additional time.

0.70

0.83

0.96

1.09

1.22

1.35

1.48

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

MovieLens (Row update)

(a)

0.70

0.83

0.96

1.09

1.22

1.35

1.48

10% 20% 30% 40% 50% 60% 70% 80% 90%
M

AE

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

MovieLens (Column update)

(b)

0.890

0.940

0.990

1.040

1.090

1.140

1.190

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

Sushi (Row update)

(c)

0.850

0.890

0.930

0.970

1.010

1.050

1.090

1.130

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

Sushi (Column update)

(d)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

LibimSeTi (Row update)

(e)

1.10

1.40

1.70

2.00

2.30

2.60

2.90

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
AE

iAux
iCluster
nCluster
iSVD
pSVD

Split Ratio

LibimSeTi (Column update)

(f)

Figure 5.2: MAE variation with split ratio

As a reference, Table 5.2 lists the optimal number of clusters on the Sushi dataset.

Note that the split ratio determines how many rows or columns should be present in

82

Table 5.2: Optimal number of clusters on Sushi dataset

Split Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

iCluster (Row)
#UserClusters 10 10 10 10 10 10 9 10 8
#ItemClusters 10 10 10 10 10 10 10 10 10

iCluster (Col)
#UserClusters 5 5 5 5 5 5 5 5 5
#ItemClusters 5 5 5 5 4 4 7 9 10

nCluster (Row)
#UserClusters 7 7 7 7 7 7 7 7 7
#ItemClusters 7 7 7 7 7 7 7 7 7

nCluster (Col)
#UserClusters 6 6 6 6 6 6 6 6 6
#ItemClusters 10 10 10 10 10 10 10 10 10

the starting matrix. iCluster-NMF first runs Algorithm 5.1 on R to find the optimal

number of clusters for users and items. Then they will be updated when new data is

added to R. The numbers shown in this table are the final cluster quantities. When

the rows were being updated, the model kept the columns unchanged and vice versa.

This is why the number of item clusters remained the same when performing the

row update and the number of user clusters remained the same when performing the

column update. From the table, one can see that the best combinations obtained by

nClsuter-NMF were 7 user clusters / 7 item clusters for the row update and 6 user

clusters / 10 item clusters for the column update. Although the numbers are different

from the ones obtained by iCluster-NMF, their MAE’s are nearly the same.

The mean absolute errors of the predictions are plotted in Figure 5.2. iSVD

performed worst on all datasets while nCluster-NMF reached the best results in most

cases. Due to the way that nCluster-NMF works, the MAE’s were consistently at

the same level. They did not change significantly with varying split ratios. The only

exception was the row update on the Sushi dataset, where iCluster-NMF achieved

lower MAE than nCluster-NMF when the split ratio became higher. This to some

extent means that updating the number of clusters in iCluster-NMF benefited the

lower global prediction error. The figures show that iCluster-NMF outperformed

iAux-NMF on all three datasets. It is interesting to look at the errors of pSVD, which

were very close to iCluster-NMF on LibimSeTi but were worse on other datasets.

83

Remember that LibimSeTi only provides user gender information. In other words,

the proposed models did not receive any extra helpful information from this dataset.

Thus, its prediction accuracy was almost identical to pSVD’s, which does not utilize

auxiliary information at all.

The promising results can be attributed to not only the incremental clustering but

also the recomputations of NMF. On one hand, clusters are updated when the new

data comes in. This strategy ensures that the cluster membership indicator matrices

CU and CI in Eq. (4.10) always maintain up-to-date relationships between either

rows or columns. This, in turn, benefits the NMF update. On the other hand, due

to the accumulated error in the incremental updates, NMF needs to be recomputed

to maintain the accuracy. It is not convenient for the data owner to determine when

to perform recomputations and update the dimensions of the factor matrices. In this

situation, iCluster-NMF recomputes NMF when the number of clusters changes. It

also explains why the MAE’s of iAux-NMF and iCluster-NMF tend to be close when

the split ratios become higher —since iAux-NMF does not recompute NMF, the more

data it starts with, the less accumulated update error it has. Nevertheless, with more

data available, the error will inevitably become larger.

Essentially, the iCluster-NMF data update algorithm produced higher prediction

accuracy while costing just slightly more time, if not the same as iAux-NMF did. More

importantly, the former does not require the data owner to determine the number of

user and item clusters and can recompute NMF when necessary.Once useful auxiliary

information became available, both algorithms outperformed the incremental SVD

based algorithms with respect to the prediction accuracy.

84

5.3 Summary

In this chapter, an improved NMF based data update approach, named iCluster-

NMF, is proposed. It can automatically determine the dimensions for NMF during the

data update process. iCluster-NMF integrates the incremental clustering technique

into the NMF based data update algorithm. This approach utilizes the auxiliary

information to build the cluster membership indicator matrices of users and items.

These matrices are regarded as the constraints in updating the weighted nonnegative

matrix tri-factorization. iCluster-NMF does not require the data owner to determine

when to recompute the NMF and the dimensions of the factor matrices. Instead, it

sets the dimensions of the factor matrices according to the clustering result on users

and items and updates them automatically. Experiments conducted on three different

datasets demonstrate the high accuracy and performance of iCluster-NMF.

Copyright c© Xiwei Wang 2015

85

Algorithm 5.1 Initial Cluster Builder

Input:
Object feature matrix: D ∈ Rm×f , where there are m objects and f attributes;
Maximum number of clusters: maxK;
Initial radius threshold: s;
Radius decreasing step: ds;
Empty cluster collection: CS;
Initial cluster feature: CF .

Output:
Updated radius threshold: s′;
Updated cluster collection: CS ′;
Updated cluster feature: CF ′;

1: Set CS ′ to empty and maxScore to 0;
2: for numK = 1 to maxK do
3: Reset D, s, CS, and CF ;
4: while D is not empty do
5: Read a new object O from D;
6: if CS is empty then
7: Create a cluster with O and place it into CS;
8: else
9: Calculate the distance between O and each cluster in CS and find out the

smallest distance minDisoc;
10: if minDisoc < s then
11: Insert O into the nearest cluster and update CF ;
12: else
13: Create a cluster with O and place it into CS;
14: end if
15: end if
16: if |CS| > numK then
17: Calculate the distance between any two clusters and merge the two clusters

with the minimum distance minDiscc;
18: if minDiscc > s then s = minDiscc;
19: end if
20: end while
21: if |CS| < numK then s = s− ds; Goto 3;
22: Calculate the inter-cluster distance and inner-cluster distance to obtain the

clustering score lScore.
23: if lScore > mScore then mScore = lScore; CS ′ = CS; CF ′ = CF ; s′ = s;
24: end for

86

Algorithm 5.2 Cluster-NMF

Input:
User-Item rating matrix: R ∈ Rm×n;
User feature matrix: FU ∈ Rm×kU ;
Item feature matrix: FI ∈ Rn×kI ;
Coefficients in objective function: α, β, and γ;
Number of maximum iterations: MaxIter.

Output:
Factor matrices: U ∈ Rm×k, S ∈ Rk×l, V ∈ Rn×l;
User cluster membership indicator matrix: CU ∈ Rm×k;
Item cluster membership indicator matrix: CI ∈ Rn×l;

1: Cluster users based on FU by Algorithm 5.1 → CU ;
2: Cluster items based on FI by Algorithm 5.1 → CI ;
3: Initialize U , S, and V with random values;
4: Build weight matrix W by Eq. (4.7);
5: Set iteration = 1 and stop = false;
6: while (iteration <= MaxIter) and (stop == false) do

7: Uij ← Uij · {α(W◦R)V ST +βCU}ij
{α[W◦(USV T)]V ST +βU}ij ;

8: Vij ← Vij · {α(W◦R)TUS+γCI}ij
{α[W◦(USV T)]TUS+γV }ij ;

9: Sij ← Sij · {UT (W◦R)V }ij
{UT [W◦(USV T)]V }ij ;

10: L← α · ‖W ◦ (R− USV T)‖2
F + β · ‖U − CU‖2

F + γ · ‖V − CI‖2
F ;

11: if (L increases in this iteration) then
12: stop = true;
13: Restore U , S, and V to their values in last iteration.
14: end if
15: iteration = iteration+ 1;
16: end while

87

Algorithm 5.3 Incremental clustering algorithm

Input:
Object feature matrix: ∆D ∈ Rm×f , where there are m objects and f attributes;
Maximum number of clusters: maxK;
Radius threshold: s′;
Cluster collection: CS ′;
Cluster feature: CF ′.

Output:
Updated radius threshold: s′′;
Updated cluster collection: CS ′′;
Updated cluster feature: CF ′′;

1: while ∆D is not empty do
2: Read a new object O from ∆D;
3: Calculate the distance between O and each cluster in CS ′ and find out the

smallest distance minDisoc;
4: if minDisoc < s′ then
5: Insert O into the nearest cluster and update CF ′;
6: else
7: Create a cluster with O and place it into CS ′;
8: end if
9: if |CS ′| > maxK then

10: Calculate the distance between any two clusters and merge the two clusters
with the minimum distance minDiscc;

11: if minDiscc > s′ then s′′ = minDiscc;
12: end if
13: end while
14: CF ′′ = CF ′; CS ′′ = CS ′; s′′ = s′;

88

6 Trust-aware Privacy-Preserving Recommender System

It has been discussed in the previous chapters that almost all online shopping websites

store users’ sensitive information on their central servers, such as users’ purchase

history as well as their ratings and comments on products. When writing reviews,

some websites allow users to choose publishing or saving them as drafts. If the

reviews are not sensitive, they can be simply published by their authors. However,

if users just want to save those comments for personal purposes and do not hope to

share with others, they can keep the drafts unpublished. By doing so, people can

ensure that these comments are only visible to themselves. With that said, people’s

published reviews are exposed to the public so anyone can read them freely. Though

these comments might not be considered as customers’ privacy, malicious users are

able to identify customers’ private preferences on particular products by cheating

recommender systems. In a typical attack model, the attackers create fake user

profiles containing real customers’ public comments and then obtain recommendations

from the system [48]. Due to the connections (either implicit or explicit) between

users’ public preferences and private preferences, if a recommender system fails to

distinguish the real customers from the malicious users, it would be highly possible

that the private preferences of the real customers can be exposed.

On some product review websites, such as Epinions.com and Ciao.com, in addition

to leaving reviews on items, users can also tag trust votes based on their opinions on

others’ reviews [30]. In other words, every user maintains a list of the users that he

trusts. Now an assumption is added to the aforementioned attack model - attackers

are not easily trusted by other people because they only duplicate real customers’

reviews and ratings and create the fake profiles in a relatively short time. This

assumption is made because before a user tags his trusted users, he must have read

many of their reviews in the past. If a newly created account has very similar or the

89

same product reviews and ratings as his trusted users, people might suspect that this

account is fake so they would not trust it.

This chapter proposes a privacy-preserving recommendation framework, named

TrustRS, which preserves users’ private preferences when providing accurate recom-

mendations. The framework uses NMF based CF techniques that work on both

users’ rating information and their trustworthiness to provide personalized recom-

mendations. The procedure is divided into two stages: unknown rating predictions

and unrelated entries filtering. The raw ratings and trustworthiness information par-

ticipate in the weighted nonnegative matrix tri-factorization [20] to approximate the

original rating matrix. User and item groups are then established according to the

factor matrices. The framework utilizes the group information to filter out unrelated

entries so that a majority of real users’ items of interest are concealed from the at-

tackers. The experiments examined TrustRS on the Epinions [52] and Ciao datasets

[69] in two aspects: (1) unknown rating prediction accuracy, and (2) user’s privacy

preservation level. The results show that the proposed framework can tell the real

customers from the attackers to a great extent without compromising the prediction

accuracy.

6.1 Problem Description

Assume the data owner has two matrices: a user-item rating matrix, denoted by

R ∈ Rm×n, and a user-user trust matrix, denoted by T ∈ Rm×m, where there are m

users and n items. An entry rij in R represents the rating left on item j by user i.

The trust matrix T indicates the trust relationships among users. Possible values of

the entry tik in T are 1, 0, and -1. tik = 1 means user i is trusted by user k, while

tik = −1 means user i is distrusted by user k. If the trust relationship is unknown,

then tik = 0.

90

As discussed in the previous chapters, since most users rate only a few items and

most items are rated by a small amount of users, R is incomplete. The main task of

recommender systems is to predict the unknown ratings in R, which are further used

to make recommendations. The collaborative filtering based recommender systems

predict ratings by using relevant users’ preferences. In this scheme, if two users have

very similar preferences, they are very likely to receive close or same recommendations.

Malicious users can take this advantage to obtain real users’ private interests, which

are considered sensitive information. Definition 6.1 gives the formal description of

the attack model.

Definition 6.1. An Attack model is a 4-tuple: Attack(u, a) = {Ru, Ra, Lu, La},

where u is a real user and a is the attacker; Ru and Ra are their rating vectors; Lu

and La are their recommendation lists1.

To attack a recommender system, the attacker makes a fake profile with Ra ac-

cording to the real users’ preferences Ru and receives the recommendations from the

system. The closer Lu and La are, the more successful of an attack is achieved.

As mentioned earlier, an attacker can easily collect real users’ public preferences.

However, it is not easy for the attackers to be trusted by the same people who trust the

attackees. Therefore, in the proposed attack model, it is assumed that the attackers

only possess attackees’ partial ratings but are not in other people’s trust lists.

The purpose of the proposed recommendation framework is to distinguish the real

users from the attackers by differing their recommendation lists without degrading

the accuracy of the unknown rating predictions.

1The recommendation list in this framework contains all relevant items to the active user. They
might receive either low or high ratings from this user.

91

User u

Attackter a

 u s ratings Ru

 u s partial ratings Ra

co
lle
ct

Recommender
System (RS)

Figure 6.1: An attack model

6.2 Trust-aware Privacy-Preserving Recommenda-

tion Framework

This section introduces the proposed recommendation framework —TrustRS in two

phases: unknown rating predictions and unrelated entries filtering.

6.2.1 Unknown Rating Predictions

In Chapter 4, the model uses the weighted and constrained nonnegative matrix tri-

factorization for privacy-preserving data updates. In TrustRS, users’ trustworthiness

information is incorporated into a similar matrix factorization to approximate the

original rating matrix. The proposed approach will be presented as follows: develop-

ing the objective function, deriving the update formulas, and analyzing the conver-

gences.

92

6.2.1.1 Objective Function

Recall that in Chapter 4, a conventional NMF is defined in Eq. (4.4) and the goal is to

find a pair of orthogonal nonnegative matrices U and V that minimize the Frobenius

norm ‖R− UV T‖F . Thus the objective function for NMF is

minU≥0,V≥0f(R,U, V) = ‖R− UV T‖2
F . (6.1)

It is also discussed that R must not contain missing values as NMF is not suitable

for such matrices. If all missing values in R are replaced with zeros and NMF is

performed on the imputed rating matrix, it will lead to very biased results. Moreover,

the trustworthiness is expected to be incorporated into the matrix factorization, and

the users as well as items are expected to be grouped in terms of the factor matrices.

Therefore, additional constraints need to be applied to NMF. To do so, the trust-

incorporated NMF as illustrated in Eq. (6.2) is proposed.

minU≥0,S≥0,V≥0,B≥0f(R,WR, T,WT , U, S, V,B) = α · ‖WR ◦ (R− USV T)‖2
F

+ β · ‖WT ◦ (T − UBT)‖2
F + γ · (‖U‖2

F + ‖S‖2
F + ‖V ‖2

F + ‖B‖2
F).

(6.2)

where U ∈ Rm×k
+ , S ∈ Rk×l

+ , V ∈ Rn×l
+ , and B ∈ Rm×k

+ . U , V , B are orthogonal

matrices. ◦ denotes the element-wise multiplication.

In this equation, R is a rating matrix and T is a trust matrix. Since both R and T

are incomplete, two weight matrices WR and WT are introduced to resolve the missing

value issues [87]. They indicate the locations of the observed entries in R and T as

wRij =

 1 if rij 6= 0

0 if rij = 0
(wRij ∈ WR, rij ∈ R) (6.3)

93

wT ij =

 1 if tij 6= 0

0 if tij = 0
(wT ij ∈ WT , tij ∈ T) (6.4)

While the first two terms focus on optimizing R and T , the third term of this

equation is adopted to avoid overfitting. Coefficients α, β, and γ are used to control

the weight of each term.

6.2.1.2 Update Formulas

This section follows the derivation procedure in Section 4.2.1.1 to derive the update

formulas to minimize the objective function in Eq. (6.2).

Let L = f(R,WR, T,WT , U, S, V,B), and take the derivatives of L with respect to

U , S, V , and B:

∂L

∂U
= 2αWR ◦ (USV T)V ST − 2α(WR ◦R)V ST

+ 2β[WT ◦ (UBT)]B − 2β(WT ◦ T)B + 2γU

(6.5)

∂L

∂S
= 2αUT [WR ◦ (USV T)]V − 2αUT (WR ◦R)V + 2γS (6.6)

∂L

∂V
= 2α[WR ◦ (USV T)]TUS − 2α(WR ◦R)TUS + 2γV (6.7)

∂L

∂B
= 2β[WT ◦ (UBT)]TU − 2β(WT ◦ T)TU + 2γB (6.8)

The corresponding update formulas are:

Uij = Uij ·
{α(WR ◦R)V ST + β(WT ◦ T)B}ij

{α[WR ◦ (USV T)]V ST + β[WT ◦ (UBT)]B + γU}ij
(6.9)

94

Sij = Sij ·
{αUT (WR ◦R)V }ij

{αUT [WR ◦ (USV T)]V + γS}ij
(6.10)

Vij = Vij ·
{α(WR ◦R)TUS}ij

{α[WR ◦ (USV T)]TUS + γV }ij
(6.11)

Bij = Bij ·
{β(WT ◦ T)TU}ij

{β[WT ◦ (UBT)]TU + γB}ij
(6.12)

Assuming k, l � min(m,n), the time complexities of each update is O(mn(k +

l) + (m2 + n2)k).

6.2.1.3 Convergence Analysis

The proof of convergence of the derived update formulas is similar to Section 4.2.1.3.

The convergences of the update formulas (6.9), (6.10), (6.11), and (6.12) will be

proved by showing that they are equivalent to Eq. (4.26) in Chapter 4, with proper

auxiliary functions defined.

Let us rewrite the objective function L,

L = tr{α(WR ◦R)T · (WR ◦R)}+ tr{−2α(WR ◦R)T · [WR ◦ (USV T)]}

+ tr{α[WR ◦ (USV T)]T · [WR ◦ (USV T)]}+ tr[β(WT ◦ T)T (WT ◦ T)]

+ tr{−2β(WT ◦ T)T · [WT ◦ (UBT)]}

+ tr{β[WT ◦ (UBT)]T · [WT ◦ (UBT)]}

+ tr(γUTU) + tr(γSTS) + tr(γV TV) + tr(γBTB)

(6.13)

where tr(∗) is the trace of a matrix.

Eliminating the irrelevant terms, we define the following functions that are only

95

related to U , V , S, and B, respectively.

L(U) =

tr{−2α(WR ◦R)T · [WR ◦ (USV T)] + α[WR ◦ (USV T)]T · [WR ◦ (USV T)]

− 2β(WT ◦ T)T · [WT ◦ (UBT)] + β[WT ◦ (UBT)]T · [WT ◦ (UBT)] + γUTU}

= tr{−2[α(WR ◦R)V ST + β(WT ◦ T)B]UT + UT [γU + αWR ◦ (USV T)V ST

+ β[WT ◦ (UBT)]B]}

(6.14)

L(S) = tr{−2α(WR ◦R)T · [WR ◦ (USV T)] + γSTS

+ α[WR ◦ (USV T)]T · [WR ◦ (USV T)]}

= tr{−2[αUT (WR ◦R)V]ST + ST [γS + αUT [WR ◦ (USV T)]V]}

(6.15)

L(V) = tr{−2α(WR ◦R)T · [WR ◦ (USV T)] + γV TV

+ α[WR ◦ (USV T)]T · [WR ◦ (USV T)]}

= tr{−2[α(WR ◦R)TUS]V T + V T [γV + α[WR ◦ (USV T)]TUS]}

(6.16)

L(B) = tr{−2β(WT ◦ T)T · [WT ◦ (UBT)] + γBTB

+ β[WT ◦ (UBT)]T · [WT ◦ (UBT)]}

= tr{−2[β(WT ◦ T)TU]BT +BT [γB + β[WT ◦ (UBT)]TU]}

(6.17)

Lemma 4.2 is used to build an auxiliary function for L(U). Since L(U) is similar

to L(V) and L(S), their convergences will not be discussed.

96

Lemma 6.1.

H(U,U ′) = −2
∑
ij

{[α(WR ◦R)V ST + β(WT ◦ T)B]UT}ij

+
∑
ij

{γU ′ + αWR ◦ (U ′SV T)V ST + β[WT ◦ (U ′BT)]B}ijU2
ij

U ′ij

(6.18)

is an auxiliary function of L(U) and the global minimum of H(U,U ′) can be achieved

by

Uij = U ′ij ·
{α(WR ◦R)V ST + β(WT ◦ T)B}ij

{γU + αWR ◦ (USV T)V ST + β[WT ◦ (UBT)]B}ij
(6.19)

Proof. We need to prove two conditions as specified in Definition 4.1 in Chapter 4.

It is apparent that H(U,U) = L(U). According to Lemma 4.2, we have

∑
ij

{γU ′ + αWR ◦ (U ′SV T)V ST + β[WT ◦ (U ′BT)]B}ijU2
ij

U ′ij

=
∑
ij

{γU ′}ijU2
ij

U ′ij
+
∑
ij

{αWR ◦ (U ′SV T)V ST}ijU2
ij

U ′ij

+
∑
ij

{β[WT ◦ (U ′BT)]B}ijU2
ij

U ′ij

≥ tr{γU}+ tr{αWR ◦ (USV T)V ST}+ tr{β[WT ◦ (UBT)]B}.

(6.20)

Therefore, H(U,U ′) ≥ L(U) and H(U,U ′) is an auxiliary function of L(U).

To find the global minimum of H(U,U ′) with U ′ fixed, we can take the derivative

of H(U,U ′) with respect to Uij and let it be zero:

∂H(U,U ′)

∂Uij
= {−2[α(WR ◦R)V ST + β(WT ◦ T)B]}ij

+ 2
{γU + αWR ◦ (USV T)V ST + β[WT ◦ (UBT)]B}ijUij

U ′ij

= 0

(6.21)

97

Solving for Uij, we have

Uij = U ′ij ·
{α(WR ◦R)V ST + β(WT ◦ T)B}ij

{γU + αWR ◦ (USV T)V ST + β[WT ◦ (UBT)]B}ij
(6.22)

Since F (U0) = H(U0, U0) ≥ H(U1, U0) ≥ F (U1) ≥ ..., F (U) is monotonically

decreasing and updating U by Eq. (6.22) can reach global minimum.

Similarly, the convergences of update formulas (6.10), (6.11), and (6.12) can be

proved as well.

6.2.2 Unrelated Entries Filtering

In the previous section, an NMF model that considers rating as well as trustworthiness

is developed. By updating the formulas, the objective function’s global minimum can

be achieved. Thus R̂ = USV T is the approximated original rating matrix with all un-

known entries filled. To make personalized and privacy-preserving recommendations,

TrustRS filters unrelated ratings before it generates the recommendation lists.

To this purpose, users and items are grouped based on U and V in Eq. (6.2) so

that only relevant items would be presented to the users. The following definitions

define the user group and the interest group that would be used next.

Definition 6.1. A user group gUp = {TUp, DUp}, where TUp is the set of users that

belong to this group; DUp contains the membership degree of each user in TUp.

Definition 6.2. An interest group gI q = {TI q,MI q, g
′
Uq}, where TI q is the set of

items that belong to this group; MI q contains the average rating of each item in TI q;

g′Uq is the group of users (with their membership degrees) who have rated at least one

item in TI q.

Interest groups, denoted by GI = {gI1, gI2, ..., gI l}, can be established in terms

98

of matrix V according to the equivalence between NMF and the K-Means clustering

algorithm [19]. For a given V ∈ Rn×l
+ , items are clustered into l groups by Eq. (6.23).

ci = argmax
1≤j≤l

Vij (6.23)

where ci is the index of the group that item i belongs to.

For each item group TI q, the average rating of every item is calculated and the

related users are also identified. In this case, a single user may belong to multi-

ple groups. This way of user grouping is called the interest based grouping. The

membership degree of user u to interest group g can be calculated by Eq. (6.24).

dug = (1− disug) · waug · wbug (6.24)

where disug is the normalized distance between user u’s ratings and the corresponding

average ratings in MI q of interest group g; waug is the fraction of user u’s ratings left

on items in g; wbug is the fraction of items in g that are rated by user u. wa and wb

are used to weight (1− disug) so the greater they are, the higher dug will be.

In addition to the interest based grouping, users are also clustered by matrix U

like the way that items are clustered by matrix V . Note that U ∈ Rm×k
+ is updated

by taking into account both rating matrix R and trust matrix T . Hence the groups

obtained in this way, denoted byGT = {gU 1, gU 2, ..., gUk}, reflect users’ rating patterns

as well as their trustworthiness. This grouping strategy is named the trust based

grouping.

Algorithm 6.1 illustrates the procedures to recommend items to a user u. The

general idea of this algorithm is to recommend user u the items that are rated by u’s

neighbors. The corresponding ratings are predicted by the NMF model proposed in

the previous section.

99

Algorithm 6.1 Rating filtering algorithm

Input:
Raw rating matrix: R;
Imputed rating matrix: R̂ ∈ Rm×n;
User groups: GT = {gU 1, gU 2, ..., gUk};
Interest groups: GI = {gI1, gI2, ..., gI l};
User index: u;
Membership degree threshold: mu;

Output:
Recommendation list: Lu;

1: maxdegree = 0, gI closest = ∅, NLI , NLT = ∅;
2: for i = 1 to l do
3: if dui ≥ mu and dui > maxdegree then
4: maxdegree = dui;
5: gI closest = gI i;
6: end if
7: end for
8: Add users in gI closest with membership degree ≥ mu to u’s interest neighbor list
NLI ;

9: Search in GT and identify the user group gUu that u belongs to;
10: Add all users in gUu to u’s trust neighbor list NLT ;
11: Take the intersection of NLI and NLT . The result is saved in NLu;
12: Search in R to find items that are rated by users in NLu. Save them in ILu;
13: Lu ← (j, R̂uj), where j ∈ ILu.

6.3 Experimental Study

6.3.1 Data Description

The experiments adopted the Epinions [52] and Ciao [69] datasets to examine TrustRS.

Both provide rating and trustworthiness information. Table 6.1 collects the statistics

of the datasets.

Table 6.1: Statistics of the data

Dataset #users #items #ratings #trusts
Ciao 2,056 1,458 53,312 36,432
Epinions 7,260 2,440 172,497 49,248

The raw Epinions dataset has 22,166 users and 296,227 items with 912,441 ratings

100

and 355,217 trust values. Due to the memory limit, 7,260 users (who have rated at

least 10 items) and 2,440 items with 172,497 ratings and 49,248 trust values were

selected for testing. The ratings were divided into two subsets: a training set and

a test set. To build the test set, users with more than 100 ratings and 20 trust

values were chosen. For each of these users, 20 ratings were randomly selected and

added into the test set. The rest of the ratings were added into the training set.

Consequently, there are 171,577 ratings in the training set and 920 ratings in the test

set.

Similarly, only partial ratings were selected from the Ciao dataset for the exper-

iments. In this case, there are 2,056 users and 1,458 items with 53,312 ratings and

36,432 trust values. The test set contains 2,960 ratings from users who have at least

60 ratings and 20 trust values. The remaining ratings form the training set.

It is worth noting that both datasets provide the helpfulness of the ratings. For

example, a user left 5 stars on an item and another user thought the helpfulness

of this rating was 7 out of 10. This additional “rating of a rating” makes users’

feedback more reliable. Therefore, in the experiments, all the ratings were pre-

processed by considering their helpfulness. In this example, the user’s rating becomes

original rating×helpfulness degree = 5×(7/10) = 3.5 as opposed to 5 accordingly.

For each dataset, some of the test users were chosen and 30% of their ratings

were used to create the attackers2. For instance, if a test user has 100 ratings in the

training set and 20 ratings in the test set, 30 of his training ratings are used to create

an attacker profile. The test ratings of this attacker are identical to the real user’s,

meaning that the attacker has 20 ratings in the test set as well. Moreover, attackers

are not trusted by anyone, so they do not have trust values.

2In this chapter’s experiments, the active users include both test users and attackers.

101

6.3.2 Evaluation Strategy

The experiments tested TrustRS in two aspects: unknown rating predictions and user

privacy preservation. The error measurement of the experiments was MAE.

To obtain the privacy preservation level,the recall rates derived from Eq. (6.25)

were calculated for both the real users and the corresponding attackers. The experi-

ments then measured how much the recall rate is reduced. More specifically, higher

recall rates for the real users and lower recall rates for the attackers are expected

because fewer items that are related to the real users would be recommended to the

attackers. Therefore the higher privacy preservation level is achieved.

Recallu =
|Lu ∩ Tu|
|Tu|

(6.25)

where Lu is the set of items that are recommended to user u; Tu is the set of items

that appear in the test set and are rated by user u.

The proposed recommender system was compared against three existing algo-

rithms that are discussed in Section 1.2: the SVD based CF with random perturba-

tion [60] (referred to as RandSVD), the NMF based CF with random perturbation

[47] (referred to as RandNMF), and the naive Baysian classifier based PPCF with

pre-processing [8] (referred to as PRNBC).

Since RandSVD and RandNMF focus on perturbing rating matrix instead of re-

fining the recommendation list, no ratings are filtered out, and the recall rates will

always be 1. Thus the experiments only compared them with TrustRS in unknown

rating predictions. PRNBC, in contrast, has a filtering step so both prediction accu-

racy and privacy preservation level were investigated on this algorithm.

102

6.3.3 Results and Discussion

In this section, the experimental results with respect to privacy preservation level and

the prediction accuracy are studied.

6.3.3.1 Privacy Preservation

As mentioned in Section 1.2, PRNBC applies a pre-processing step to the naive

Baysian classifier based PPCF to filter out the less important neighbors. By doing

so, the online performance of PPCF is improved. A side effect is that the number of

recommended items can be controlled – greater number of neighbors result in more

recommended items. This facilitates the comparisons because different neighbor sizes

can be probed for PRNBC to obtain the real users’ recall rates that are very close to

the recall rates produced by TrustRS. Then how much the recall rate is reduced from

the real users to the attackers on both methods can be measured.

Note that the authors in [8] did not study MAE of PRNBC but converted the

integer ratings to binaries. Whereas in this chapter’s experiments, it is expected to

examine both MAE’s and recall rates so this conversion is not carried out. However,

more classes (e.g., 5 classes in a 1-5 rating system, and 2 classes in a binary rating

system) require significantly more computation time. To compensate for it, the one-

group scheme was used as opposed to the multi-group scheme.

Table 6.2: Parameter setup for TrustRS

Dataset α β γ k l mu

Ciao 0.1 0.3 0.6 20 13 0.0005
Epinions 0.1 0.7 0.2 20 20 0.0017

Table 6.2 lists the parameter setup for TrustRS. α, β, and γ are the coefficients that

control the weight of each term in Eq. (6.2). k and l are utilized as the dimensions of

the factor matrices as well as the number of user/item clusters. mu is the membership

degree threshold required by Algorithm 6.1.

103

The parameters were determined by probing different combinations. The exper-

iments first fixed k, l, and mu to test α, β, and γ in {0.1, 0.2, ..., 0.9} under the

constraint α + β + γ = 1. Then k and l were probed in {1, 2, ..., 20} with everything

else unchanged. mu was obtained last. The parameters were selected by taking into

account both MAE’s and the reductions of the recall rates.

In this table, β is greater than α on both datasets. It means that the trust matrices

play a more important role than the rating matrices. Two k’s and one l are 20, which

is the largest number that were probed so it is very likely that better results might

exist if giving larger numbers. Nonetheless, the more clusters that are produced, the

longer computation time will be required.

The privacy protection levels, measured by the recall rate reduction percentages,

are illustrated in Table 6.3. “RecallU” represents the average recall rate for real users,

and “RecallA” represents that of the attackers. It can be seen that TrustRS has

greatly reduced the recall rates from the real users to the attackers. For example, the

Ciao dataset has 2,960 ratings in its test set. TrustRS recommended 2, 960×0.9297 ≈

2, 751 items to the real users but only 2, 960× 0.4595 ≈ 1, 360 items to the attackers.

It protected half of the real users’ relevant items from being exposed to the attackers.

PRNBC, on the contrary, merely reduced the recall rates. The reduction percentages

of TrustRS on the Epinions dataset are not as high as those on Ciao, but it still

outperformed PRNBC to a great extent.

Table 6.3: Privacy protection level

Dataset Method RecallU RecallA %Reduced

Ciao
PRNBC 0.9295 0.9228 0.007%
TrustRS 0.9297 0.4595 50.581%

Epinions
PRNBC 0.8886 0.8815 0.008%
TrustRS 0.8870 0.5935 33.088%

The recall rates with varying membership degree threshold mu were also recorded.

Since a user might belong to multiple interest groups, this value affects the results in

104

two aspects: (1) it determines which groups are considered as the active users’ interest

groups; (2) it controls the number of similar users that would be recognized as the

active users’ interest neighbors. A smaller mu causes higher recall rates and vice versa.

With that said, mu should not be extremely small because the filtering step will fail to

distinguish the real users from the attackers thus no privacy can be preserved. Figure

6.2 plots the recall rates on two datasets, in which mu ∈ {0.0001, 0.0002, ..., 0.01}.

With the increasing mu, both recall rates decreased but they tended to be closer when

mu was very small or very large.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.002 0.004 0.006 0.008 0.01

Re
ca

ll

mu

RecallU

RecallA

Epinions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.002 0.004 0.006 0.008 0.01

Re
ca

ll

mu

RecallU

RecallA

Ciao

Figure 6.2: Recall rates with varying mu in TrustRS

It is depicted in Algorithm 6.1 that TrustRS filters the unrelated items based on

user groups GT and interest groups GI . While mu directly affects the selection of a

user’s interest neighbors, there is no extra constraint on the formation of his trust

neighbors. That is to say, all users in the same group as an active user are saved

in his trust neighbor list NLT . In Eq. (6.2), U is optimized for both R and T .

Therefore, the user groups established from U are highly related to customers’ rating

patterns and trustworthiness, which are consequential to identifying malicious users.

To investigate the impact of NLT on the final recall rates, each active user’s list was

sorted according to the membership degrees of the users in the list, and the top n

neighbors were kept for filtering.

Figure 6.3 charts the recall rates with multiple n’s. The curves in this figure

105

indicate that when just a few trust neighbors were used, TrustRS was not able to

tell the real users from the attackers. With more neighbors’ participation, the recall

rates increasingly differed but kept stable after some points. The results imply the

importance of the trustworthiness.

As a reference, the recall rates for PRNBC with different numbers of neighbors

were also studied in Figure 6.4. When more neighbors were retained, the recall rates

increased subsequently. Nevertheless, the algorithm failed to tell the real users from

the attackers as their recall rates were almost identical.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600

Re
ca

ll

n

RecallU

RecallA

Epinions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600

Re
ca
ll

n

RecallU

RecallA

Ciao

Figure 6.3: Recall rates with varying #neighbors in TrustRS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100 125 150 175 200

Re
ca

ll

#neighbors

RecallU

RecallA

Epinions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100 125 150 175 200

Re
ca

ll

#neighbors

RecallU

RecallA

Ciao

Figure 6.4: Recall rates with varying #neighbors in PRNBC

106

6.3.3.2 Prediction Accuracy

The prediction accuracy was judged in terms of MAE on all the ratings in the test set.

Thus the second step of TrustRS, which is unrelated entries filtering, was ignored.

The experiments used the same parameter setup presented in the previous section.

For both RandSVD and RandNMF, the experiments calculated the z-scores for

each user and replaced the values in the original rating matrix R with z-scores. The

missing entries were imputed by the users’ mean ratings. The noise drawn from the

normal distribution was added to the imputed matrix for perturbation purposes.

Table 6.4: Prediction accuracy

Dataset Method MAE

Ciao

RandSVD 0.4124 rank = 4
RandNMF 0.4162 rank = 1
PRNBC 1.7851 -
TrustRS 0.2725 -

Epinions

RandSVD 0.5362 rank = 16
RandNMF 0.5480 rank = 1
PRNBC 1.0202 -
TrustRS 0.4084 -

The MAE’s of all four methods are shown in Table 6.4. It is worth noting that

the rank of RandSVD and RandNMF were probed in {1, 2, ..., 20} and the lowest

MAE’s were taken. As one can see, TrustRS produced the lowest prediction errors

on both datasets. RandSVD and RandNMF had very close values which were not

significantly worse than TrustRS. This result is considered as normal owing to the

inherent connections between SVD and NMF: they both focus on reducing the di-

mensionality of rating matrices and finding the latent factors. TrustRS is based on

NMF but it uses weight matrices to avoid biased missing value imputation and incor-

porates trustworthiness to improve the prediction accuracy. Thus TrustRS achieved

lower MAE’s than other two matrix factorization based algorithms. PRNBC, the

naive Bayesian classifier based recommendation algorithm, performed worst and the

107

prediction errors were remarkably higher than others. It is attributed to the random-

ized response techniques (RRT) used in the one-group scheme [34]. Because in this

scheme, each user’s ratings are placed in the same group. According to the RRT, they

either remain unchanged or are completely reversed (e.g., change 1 to 5, 2 to 4). It

perturbs the ratings to a certain degree and protects the privacy, but the prediction

errors would increase as well.

It can be concluded that the proposed recommendation framework TrustRS out-

performed three existing privacy-preserving recommendation algorithms with regard

to unknown rating prediction accuracy and privacy preservation level. The results

demonstrate that the trustworthiness information makes a substantial contribution

to correctly filtering out unrelated ratings. The membership degree threshold needs

to be carefully determined as it directly affects the recall rates for both the real users

and the attackers.

6.4 Summary

This chapter studies an attack model that aims at finding customers’ potentially in-

terested items by cheating recommender systems. A weighted nonnegative matrix tri-

factorization based privacy-preserving recommendation framework, named TrustRS,

is proposed to neutralize this type of attack. TrustRS utilizes customers’ trustwor-

thiness to filter out unrelated ratings so that their privacy can be preserved. Exper-

iments conducted on two popular rating datasets show that TrustRS can preserve

users’ privacy to a great extent without compromising the prediction accuracy.

Copyright c© Xiwei Wang 2015

108

7 Conclusions and Future Work

This dissertation presents the research work in privacy-preserving algorithms for the

collaborative filtering based recommender systems. This work involves the empirical

study of classical recommendation algorithms, singular value decomposition based

privacy-preserving data updates, incorporating auxiliary information into the NMF

based collaborative filtering, the incremental clustering based data updates, and a

trust-aware privacy-preserving recommender system. This chapter summarizes the

dissertation work and proposes some future research topics.

7.1 Research Accomplishments

Over the past 20 years, the Internet has served as the major technology connecting

our world. Economists have discovered the great potential that lies in that piece of

technology. They have tried and are still trying to find suitable ways to make it as

easy and pleasant as possible to spend money while surfing the Internet. Almost

every shop now has an online presence that makes it possible to search, compare, and

buy specific items or groups of items without the necessity of personal presence. To

sell their products better, most online shopping websites provide recommendations

to the customers who have visited their websites in the past. It is well known that

recommender systems have achieved great success in providing product recommen-

dations for online shopping. With recommender systems, customers can find their

desired merchandise in a timely manner. It not only facilitates customers’ purchases,

but also promotes the sales. While recommender systems can predict customers’

preferences accurately, they suffer from privacy leakage in many aspects.

This dissertation addresses several topics in collaborative filtering based recom-

mender systems. In general, it can be divided into three parts: (1) Empirical study

109

on classical recommendation algorithms; (2) Matrix factorization based recommender

systems that preserve user privacy in data sharing; (3) A trust-aware recommender

system that can tell the normal users from the attackers who attempt to cheat rec-

ommender systems.

Empirical Study on Classical Recommendation Algorithms

The empirical study in Chapter 2 presents several classical recommendation algo-

rithms and studies the experiments on the clicking history data from a retargeting

company. The predictions produced by different models have varied accuracies. It

demonstrates that when selecting recommendation algorithms, people should care-

fully examine the data to identify what kinds of algorithms (e.g., user/item correla-

tion based models, latent factor based models, and genetic algorithm based models)

might be suitable. It also suggests that multiple methods can be combined to provide

optimal predictions.

SVD based Privacy-Preserving Data Updates

Chapter 3 proposes an SVD based privacy-preserving data update scheme that makes

use of the incremental SVD update technique to update the fast growing collaborative

filtering data and preserve user privacy during data sharing. It protects the privacy by

performing the truncated SVD on the original rating matrix with randomization and

post-processing techniques. It also takes into account the missing value imputation

during the update process to provide high quality data for accurate recommendations.

Results of the experiments conducted on the MovieLens and Jester datasets show

that the proposed scheme can handle data growth efficiently and keep a low level of

privacy loss. The prediction accuracy is still at a satisfactory level compared to most

published results.

110

Incorporating Auxiliary Inforamtion into NMF based Data Update Scheme

Performance analysis shows that the time complexity of the scheme proposed in Chap-

ter 3 contains a cubic term with respect to the number of new rows or columns. It is

a potentially expensive factor in the update process, especially when a large amount

of new data comes in. Therefore, a better technique is needed to improve the update

process so that it can be done faster. Chapter 4 uses NMF instead of SVD as the

fundamental matrix factorization technique to reduce the dimensionality of the rat-

ing matrix and impute the missing values. By selecting reasonable iteration counts

and the factor matrix dimensions in NMF updates, the scheme can be very efficient.

Furthermore, the auxiliary information of users and items, e.g., user demographic

information and item category information, is considered additional constraints in

the NMF objective function. This behavior brings new knowledge into the update

process and the experimental results indicate that it has improved both prediction

accuracy and the privacy level.

Automated Dimension Determination for NMF based Incremental Collab-

orative Filtering

As a prerequisite, the dimensionality of the factor matrices in NMF has to be deter-

mined in advance. Moreover, data is growing fast. Thus in some cases, the dimensions

need to be changed to reduce the approximation error. Recommender systems should

be capable of updating new data in a timely manner without sacrificing the predic-

tion accuracy. However, the data update scheme proposed in Chapter 4 does not

consider these issues. In Chapter 5, an incremental nearest neighborhood based clus-

tering algorithm is exploited to automatically determine and update the dimensions

of the factor matrices in NMF updates. Experiments on three different datasets were

conducted to examine the proposed approach. The results show that this approach

can update the data quickly and provide encouraging prediction accuracy without

111

needing predetermined matrix dimensions.

Trust-aware Privacy-Preserving Recommender System

In Chapters 3, 4, and 5, the privacy issues that are studied occur when two data

owners are sharing/transferring their customer preference information. In real world

scenarios, there are also quite a few other privacy issues on the Internet. Chapter 6 ad-

dresses an attack model in which an attacker holds some of the real customers’ ratings

and attempts to obtain their private preferences by cheating recommender systems.

Due to the connections between users’ public preferences and private preferences,

if a recommender system fails to distinguish the real customers from the malicious

users, it would be highly possible that the real customers’ private preferences can be

exposed. To neutralize this problem, a trust-aware privacy-preserving recommender

system is proposed in this chapter. The system makes use of the trustworthiness in-

formation in online social networks to detect attackers and makes reasonably differed

recommendations to the normal users and the attackers. The results demonstrate

that this recommender system can distinguish between the real customers and the

attackers to a great extent without compromising the prediction accuracy.

7.2 Suggestions for Future Work

In the future, it would be interesting to investigate more details of the collaborative

filtering problem together with the privacy issue. In general, the following three topics

would be studied:

(1) Utilization of the temporal information;

(2) Handling data growth with privacy preservation in distributed scenarios;

(3) Large scale recommender systems.

112

Privacy-Preserving Data Updates with Temperal CF

“There is nothing permanent except change.”, said by Heraclitus (540-480BC), the

Greek philosopher. In other words, the only thing that does not change is change

itself. This is the case for people’s shopping habits. For example, a person who

was initially interested in digital SLR cameras a few years ago is now interested

in cars. People cannot predict what will be attractive to this person in the near

future. Therefore, his product preferences vary from time to time. The conventional

collaborative filtering techniques may not work properly for him because most of

the techniques assume that users’ shopping patterns do not change. To make better

recommendations, the corresponding temporal information should be fully utilized as

it reveals the time-evolving trends of both user shopping patterns and item popularity.

While there are some temporal CF algorithms proposed in the past[21, 41, 78,

61, 36, 54, 1], they did not address the privacy issues that arise in this case. As

it is stated in Chapter 3, users’ privacy includes the exact ratings of a user left on

particular items and on which items that this user has rated. When time factor is

considered, this privacy information is extended to a further step: at what time this

user rated which item with what rating. This motivation needs a conversion on the

problem space from 2-D to 3-D which requires a tensor structure to process the data.

In the future, nonnegative tensor factorization (NTF) would be used to handle the

additional dimension – the temporal information, so that the approximated rating

tensors are capable of providing more accurate predictions.

Similar to SVD and NMF that are used to protect user privacy in the accomplished

works, NTF also has to preserve the privacy information. Some regular techniques

would be used, e.g., applying random noise, manipulating the dimensionality of the

factor matrices (which works like the truncated SVD), as well as perturbing the over-

all distribution of the samples while preserving the local distribution. Additionally,

various kinds of information like trustworthiness and friendship, would also be con-

113

sidered.

The NTF model would be extended to the incremental case, as shown in Figure

7.1. In this scenario, once new items or users arrive in different time slots, the time

factor matrix must be updated.

= + … + +
lnmR ×× lnmE ××

:,1T

:,1V

:,1U

:,DT

:,DV

,:DU

Figure 7.1: Incremental nonnegative tensor factorization

The Distributed Scenario

Collaborative filtering has proved to be one of the most effective techniques in recom-

mender systems. An inevitable issue is, as data grows, the computational complexity

of conventional centralized CF algorithms increases dramatically. It requires not only

more memory but also faster processors to handle the large scale data. It is unrealistic

to extend the memory to the unlimited size and the processor to unlimited fast speed

on a single computer. Thus the distributed CF was proposed to resolve the problem.

Tveit[70] first proposed a distributed CF algorithm for the Peer-to-Peer mobile

recommender systems. After that, the P2P based collaborative filtering techniques

have been extensively studied, e.g., [81], [5], [24], [77], etc. Zhang et al. [85] studied

the similar problem but in the cloud computing environment.

In future work, a distributed CF model that has one central server and sev-

eral worker servers would be designed. This distributed model is inspired by the

MapReduce[16] framework which was proposed by Google for processing large datasets.

Figure 7.2 shows how MapReduce works.

114

Send task to the
central server

Get results
from the server

Central Server

Worker Server

Worker Server

Worker Server

Figure 7.2: The MapReduce framework

However, the problems that need to be solved are: (1) how to manage the cluster

membership indicator matrices in the MapReduce operations; (2) how to handle the

partition of matrices as there are more than two matrices in the multiplication; (3)

how to address the data growth issue.

To overcome the above three problems, insightful investigations of the update

formulas in iAux-NMF are expected so that a good strategy to partition the matrices

can be developed in order to adapt the update process to the MapReduce model.

Large Scale Recommender Systems

With the increasing popularity of online applications, the problem of managing fast

growing data has become one of the major research topics in data science. Although

the accomplished works in this dissertation have addressed the data update issues, the

algorithms still need to be verified on huge datasets. Conventional CF models focus

on the complete rating data to find the underlying correlations. However, if the size of

the data is extremely large, the time cost would be unacceptable. A feasible solution

is to sample the data. In other words, the models need to extract information that

115

is manageable in size and can maximally represent the complete set. The subsequent

CF algorithms can be performed only on the sample data to maintain the online

performance.

In the future, the sampling techniques that can be used on large collaborative

filtering data would be studied. It is expected that efficient and effective algorithms

can be proposed to identify and obtain the representative features of the original

rating and auxiliary data. These features are then fed to the existing collaborative

filtering algorithms for real time fast recommendations. Nevertheless, the computa-

tion ability of single servers is limited so the sampling models should be adapted to

the distributed scenarios. By doing so, the overall performance can be guaranteed.

Copyright c© Xiwei Wang 2015

116

Bibliography

[1] E. Acar, D. M. Dunlavy, T. G. Kolda and M. Mrup, Scalable Tensor Fac-
torizations with Missing Data, In Proceedings of the 2010 SIAM International
Conference on Data Mining, 701-712 (2010)

[2] G. Adomavicius and A. Tuzhilin, Toward the Next Generation of Recommender
Syetems: A Survey of the State-of-the-Art and Possible Extensions, IEEE Trans-
actions on Knowledge and Data Engineering, Vol. 17, 6:734-749 (2005)

[3] D. Agrawal and C. C. Aggarwal, On the Design and Quantification of Pri-
vacy Preserving Data Mining Algorithms, In Proceedings of the 20th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
247-255 (2001)

[4] J. Bennet and S. Lanning, The Netflix Prize, In Proceedings of KDD Cup and
Workshop 2007 (2007)

[5] S. Berkovsky, Y. Eytani and L. Manevitz, Efficient CF in Content-addressable
Spaces, International Journal of Pattern Recognition and Artificial Intelligence,
Vol. 21, 2:265-289 (2007)

[6] S. Berkovsky, Y. Eytani, T. Kuflik and F. Ricci, Enhancing Privacy and Pre-
serving Accuracy of a Distributed Collaborative Filtering, In Proceedings of the
2007 ACM Conference on Recommender Systems, 9-16 (2007)

[7] M. Berry, Large-scale Sparse Singular Value Computations, North-Holland,
ISBN 0-444-19451-7 (1976)

[8] A. Bilge and H. Polat, Improving Privacy-Preserving NBC-based Recommenda-
tions by Preprocessing, In Proceedings of 2010 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology, Vol. 1, 143-147
(2010)

[9] M. Brand, Fast Low-Rank Modifications of the Thin Singular Value Decompo-
sition, Linear Algebra and its Applications, Vol. 415, 1:20-30 (2006)

[10] J. Breese, D. Heckerman and C. Kadie, Empirical Analysis of Predictive Algo-
rithms for Collaborative Filtering, Technical Report, MSR-TR-98-12, Microsoft
Research, Microsoft Corporation (1998)

[11] L. Brozovsky and V. Petricek, Recommender System for Online Dating Service,
In Proceedings of Znalosti 2007 Conference, Ostrava, Czech Republic (2007)

[12] J. Canny, Collaborative Filtering with Privacy, In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, 45-57 (2002)

[13] G. Chen, F. Wang and C. Zhang, Collaborative Filtering Using Orthogonal Non-
negative Matrix Tri-factorization, In Proceedings of the 7th IEEE International
Conference on Data Mining Workshops, 303-308 (2007)

117

[14] R. Chen, M. Xie, L. Lakshmanan, Thwarting Passive Privacy Attacks in Col-
laborative Filtering, Database Systems for Advanced Applications, Vol. 8422,
218-233 (2014)

[15] P. Cremonesi, Y. Koren and R. Turrin, Performance of Recommender Algorithms
on Top-N Recommendation Tasks, In Proceedings of the 4th ACM Conference
on Recommender Systems, 39-46 (2010)

[16] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large
Clusters, In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, 137-149 (2004)

[17] A. Dempster, N. Laird and D. Rubin, Maximum Likelihood from Incomplete
Data via the EM Algorithm, Journal of the Royal Statistical Society. Series B
(Methodological), Vol. 39, 1:1-38 (1977)

[18] M. Deshpande and G. Karypis, Item-Based Top-N Recommendation Algorithms,
ACM Transactions on Information Systems, Vol. 22, 1:143-177 (2004)

[19] C. Ding, X. He and H. Simon, On the Equivalence of Nonnegative Matrix Factor-
ization and Spectral Clustering, In Proceedings of the 2005 SIAM International
Conference on Data Mining, 606-610 (2005)

[20] C. Ding, T. Li, W. Peng and H. Park, Orthogonal Nonnegative Matrix Tri-
Factorizations for Clustering, In Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 126-135 (2006)

[21] Y. Ding and X. Li, Time Weight Collaborative Filtering, In Proceedings of the
14th ACM International Conference on Information and Knowledge Manage-
ment, 485-492 (2005)

[22] K. Goldberg, T. Roeder, D. Gupta and C. Perkins, Eigentaste: A Constant
Time Collaborative Filtering Algorithm, Information Retrieval, Vol. 4, 2:115-
132 (2001)

[23] D. Goldberg, D. Nichols, B. Oki and D. Terry, Using Collaborative Filtering to
Weave an Information Tapestry, Communications of the ACM, 35:61-70 (1992)

[24] P. Han, B. Xie, F. Yang and R. Shen, A Scalable P2P Recommender System
Based on Distributed Collaborative Filtering, Expert Systems with Applications,
Vol. 27, 2:203-210 (2004)

[25] J. Herlocker, J. Konstan, A. Borchers and J. Riedl, An Algorithmic Framework
for Performing Collaborative Filtering, In Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, 230-237 (1999)

[26] C. Hsu, H. Chung and H. Huang, Mining Skewed and Sparse Transaction Data
for Personalized Shopping Recommendation, Machine Learning, Vol. 57, 35-59
(2004)

118

[27] Z. Huang, A Fast Clustering Algorithm to Cluster Very Large Categorical Data
Sets in Data Mining, Research Issues on Data Mining and Knowledge Discovery,
1-8 (1997)

[28] Z. Huang, S. Deng and X. Xu, Improving K-modes Algorithm Considering Fre-
quencies of Attribute Values in Mode, Computational Intelligence and Security
- Lecture Notes in Computer Science, Vol. 3801, 157-162 (2005)

[29] Z. Huang, D. Zeng and H. Chen, A Link Analysis Approach to Recommen-
dation under Sparse Data, In Proceedings of the 10th Americas Conference on
Information Systems, 1997-2005 (2004)

[30] J. Huang, F. Nie, H. Huang, Y. Lei and C. Ding, Social Trust Prediction Using
Rank-k Matrix Recovery, In Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, 2647-2653 (2013)

[31] M. Jamali and M. Ester, A Matrix Factorization Technique with Trust Propa-
gation for Recommendation in Social Networks, In Proceedings of the 4th ACM
Conference on Recommender Systems, 135-142 (2010)

[32] S. Kabir, A. Youssef and A. Elhakeem, On Data Distortion for Privacy Preserving
Data Mining, In Proceedings of Canadian Conference on Electrical and Computer
Engineering, 308-311 (2007)

[33] C. Kaleli and H. Polat, Privacy-Preserving Trust-based Recommendations on
Vertically Distributed Data, In Proceedings of the 5th IEEE International Con-
ference on Semantic Computing, 376-379 (2011)

[34] C. Kaleli and H. Polat, Providing Private Recommendations Using Naive
Bayesian Classifier, Advances in Intelligent Web Mastering - Advances in Soft
Computing, Vol. 43, 168-173 (2007)

[35] T. Kamishima and S. Akaho, Efficient Clustering for Orders, In Proceedings of
the 2nd International Workshop on Mining Complex Data, 274-278 (2006)

[36] A. Karatzoglou, X. Amatriain, L. Baltrunas and N. Oliver, Multiverse Recom-
mendation: N-dimensional Tensor Factorization for Context-aware Collaborative
Filtering, In Proceedings of the 4th ACM Conference on Recommender Systems,
79-86 (2010)

[37] J. Kim and H. Park, Sparse Nonnegative Matrix Factorization for Clustering,
Technical Report, Georgia Institute of Technology, (2008)

[38] O. Koch and C. Lubich, Dynamical Low-Rank Approximation, SIAM Journal
on Matrix Analysis and Applications, Vol. 29, 2:434-454 (2007)

[39] T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM
Review, Vol. 51, 3:455-500 (2009)

119

[40] J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon and J. Riedl, Grou-
pLens: Applying Collaborative Filtering to Usenet News, Communications of
the ACM, 40:77-87 (1997)

[41] Y. Koren, Collaborative Filtering with Temporal Dynamics, In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 447-456 (2009)

[42] Y. Koren, Factorization Meets the Neighborhood: a Multifaceted Collabora-
tive Filtering Model, In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 436-434 (2008)

[43] H. Kuhn and A. Tucker, Nonlinear Programming, In Proceedings of the 2nd
Berkeley Symposium on Mathematical Statistics and Probability, 481-492 (1951)

[44] G. Lawler, Introduction to Stochastic Processes, Second Edition, Chapman &
Hall, ISBN(13) 978-1584886518 (2006)

[45] D. Lee and H. Seung, Algorithms for Non-negative Matrix Factorization, Ad-
vances in Neural Information Processing Systems, Vol. 13, 556-562 (2001)

[46] M. Li, B. Dias, I. Jarman, W. EI-Deredy and P. Lisboa, Grocery Shopping
Recommendations Based on Basket-Sensitive Random Walk, In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 1215-1223 (2009)

[47] T. Li, C. Gao and J. Du, A NMF-based Privacy-Preserving Recommendation
Algorithm, In Proceedings of the 1st International Conference on Information
Science and Engineering, 754-757 (2009)

[48] D. Li, Q. Lv, H. Xia, L. Shang, T. Lu and N. Gu, Pistis: A Privacy-Preserving
Content Recommender System for Online Social Communities, In Proceedings
of 2011 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), 79-86 (2011)

[49] C. Liu, H. Yang, J. Fan, L. He and Y. Wang, Distributed Nonnegative Matrix
Factorization for Web-Scale Dyadic Data Analysis on MapReduce, In Proceedings
of the 19th International World Wide Web Conference, 681-690 (2010)

[50] H. Liu and Z. Wu, Non-Negative Matrix Factorization with Constraints, In Pro-
ceedings of the 24th AAAI Conference on Artificial Intelligence, 506-511 (2010)

[51] J. MacQueen, Some Methods for Classification and Analysis of Multivariate Ob-
servations, In Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability, Vol. 1, 281-297 (1967)

[52] P. Massa and P. Avesani, Trust-aware Bootstrapping of Recommender Systems,
ECAI 2006 Workshop on Recommender Systems, 29-33 (2006)

120

[53] F. McSherry and I. Mironov, Differentially Private Recommender Systems:
Building Privacy into the Netflix Prize Contenders, In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 627-636 (2009)

[54] N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the American
Statistical Association, Vol. 44, 247:335-341 (1949)

[55] M. Papagelis and D. Plexousakis, Qualitative Analysis of User-based and Item-
based Prediction Algorithms for Recommendation Agents, Engineering Applica-
tions of Artificial Intelligence, Vol. 18, 7:781-789 (2005)

[56] S. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste, Naive Filterbots for
Robust Cold-Start Recommendations, In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 699-705
(2006)

[57] A. Paterek, Improving Regularized Singular Value Decomposition for Collabo-
rative Filtering, In Proceedings of KDD Cup and Workshop, 39-42 (2007)

[58] V. Pauca, F. Shahnaz, M. Berry and R. Plemmons, Text Mining Using Nonnega-
tive Matrix Factorizations, In Proceedings of 2004 SIAM Interational Conference
on Data Mining, Vol. 54, 452-456 (2004)

[59] H. Polat and W. Du, Privacy-Preserving Collaborative Filtering, International
Journal of Electronic Commerce, Vol. 9, 4:9-35 (2005)

[60] H. Polat and W. Du, SVD-based Collaborative Filtering with Privacy, In Pro-
ceedings of the 2005 ACM Symposium on Applied Computing, 791-795 (2005)

[61] S. Rendle, L. B. Marinho, A. Nanopoulos and L. Schmidt-Thieme, Learning
Optimal Ranking with Tensor Factorization for Tag Recommendation, In Pro-
ceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 727-736 (2009)

[62] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl, GroupLens:
An Open Architecture for Collaborative Filtering of Netnews, In Proceedings of
the 1994 ACM Conference on Computer Supported Cooperative Work, 175-186
(1994)

[63] R. Sandler and M. Lindenbaum, Nonnegative Matrix Factorization with Earth
Mover’s Distance Metric for Image Analysis, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 33, 8:1590-1602 (2011)

[64] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, Application of Dimensionality
Reduction in Recommender Systems – A Case Study, In Proceedings of ACM
WebKDD Workshop (2000)

[65] S. Shang, Y. Huiy, P. Huiz, P. Cuff and S. Kulkarni, Privacy Preserving Recom-
mendation System Based on Groups, http://arxiv.org/abs/1305.0540, (2013)

121

[66] U. Shardanand and P. Maes, Social Information Filtering: Algorithms for Au-
tomating “Word of Mouth”, In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 210-217 (1995)

[67] G. Stewart, Perturbation Theory for the Singular Value Decomposition, Techni-
cal Report, CS-TR-2539, Computer Science Department, University of Maryland
(1990)

[68] X. Su, Y. Lan, R. Wan and Y. Qin, A Fast Incremental Clustering Algorithm,
In Proceedings of the 2009 International Symposium on Information Processing,
175-178 (2009)

[69] J. Tang, H. Gao and H. Liu, mTrust: Discerning Multi-faceted Trust in a
Connected World, In Proceedings of the 5th ACM International Conference on
Web Search and Data Mining, 93-102 (2012)

[70] A. Tveit, Peer-to-peer Based Recommendations for Mobile Commerce, In Pro-
ceedings of the 1st International Workshop on Mobile Commerce, 26-29 (2001)

[71] N. Thapa, L. Liu, P. Lin, J. Wang and J. Zhang, Constrained Nonnegative
Matrix Factorization for Data Privacy, In Proceedings of the 7th International
Conference on Data Mining, 88-93 (2011)

[72] J. Tougas and R. Spiteri, Updating the Partial Singular Value Decomposition in
Latent Semantic Indexing, Computational Statistics & Data Analysis, Vol. 52,
174-183 (2007)

[73] S. Vucetic and Z. Obradovic, Collaborative Filtering Using a Regression-based
Approach, Knowledge and Information Systems, Vol. 7, 1:1-22 (2005)

[74] J. Wang, W. Zhong and C. Zhang, NNMF-Based Factorization Techniques for
High-Accuracy Privacy Protection on Non-negative-valued Datasets, In Pro-
ceedings of the 6th IEEE International Conference on Data Mining Workshops,
513-517 (2006)

[75] J. Wang, J. Zhan and J. Zhang, Towards Real-time Performance of Data Value
Hiding for Frequent Data Updates, In Proceedings of the IEEE International
Conference on Granular Computing, 606-611 (2008)

[76] S. Warner, Randomized Response: A Survey Technique for Eliminating Evasive
Answer Bias, Journal of the American Statistical Association, Vol. 60, 309:63-69
(1965)

[77] B. Xie, P. Han, F. Yang, R. Shen, H. Zeng, Z. Chen, DCFLA: A Distributed
Collaborative-filtering Neighbor-locating Algorithm, Information Sciences, Vol.
177, 1349-1363 (2007)

[78] L. Xiong, X. Chen, T. Huang, J. Schneidery and J. G. Carbonellz, Tempo-
ral Collaborative Filtering with Bayesian Probabilistic Tensor Factorization, In
Proceedings of SIAM Data Mining, 211-222 (2010)

122

[79] W. Xu, X. Liu and Y. Gong, Document Clustering Based On Non-negative
Matrix Factorization, In Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Informaion Retrieval, 267-
273 (2003)

[80] B. Yang, Y. Lei, D. Liu and J. Liu, Social Collaborative Filtering by Trust, In
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
2747-2753 (2013)

[81] F. Yuan, J. Liu, C. Yin and Y. Zhang, A Distributed Recommendation Mecha-
nism Based on Collaborative Filtering in Unstructured P2P Networks, Journal
of Computational Information Systems, Vol. 4, 3:1111-1118 (2008)

[82] K. Yu, S. Zhu, J. Lafferty and Y. Gong, Fast Nonparametric Matrix Factorization
for Large-scale Collaborative Filterings, In Proceedings of the 32nd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
211-218 (2009)

[83] J. Zhan, C. Hsieh, I. Wang, T. Hsu, C. Liau and D. Wang, Privacy-Preserving
Collaborative Recommender Systems, IEEE Transactions on Systems, Man and
Cybernetics, Part C (Applications and Reviews), Vol. 40, 4:472-476 (2010)

[84] S. Zhang, J. Ford and F. Makedon, A Privacy-Preserving Collaborative Fil-
tering Scheme with Two-way Communication, In Proceedings of the 7th ACM
Conference on Electronic Commerce, 316-323 (2006)

[85] Y. Zhang, H. Liu and S. Li, A Distributed Collaborative Filtering Recommen-
dation Mechanism for Mobile Commerce Based on Cloud Computing, Journal
of Information & Computational Science, Vol. 8, 16:3883-3891 (2011)

[86] J. Zhang, Image Fusion Based on Nonnegative Matrix Factorization, In Pro-
ceedings of 2004 International Conference on Image Processing, Vol.2, 973-976
(2004)

[87] S. Zhang, W. Wang, J. Ford and F. Makedon, Learning from Incomplete Rat-
ings Using Non-negative Matrix Factorization, In Proceedings of the 6th SIAM
International Conference on Data Mining, 548-552 (2006)

123

Vita

Personal Data:

Name: Xiwei Wang

Place of Birth: Wuhu, Anhui, China

Educational Background:

• M.Eng. in Computer Software and Theory, University of Science and Technol-

ogy of China, Hefei, China, 2009.

• B.Sc. in Information and Computing Science, Hefei University of Technology,

Hefei, China, 2006.

Professional Experience:

• Teaching Assistant, 08/2010 - 05/2015. Department of Computer Science, Uni-

versity of Kentucky, Lexington, KY, USA.

• Research Assistant, 08/2009 - 05/2010. Department of Computer Science, Uni-

versity of Kentucky, Lexington, KY, USA.

• Teaching Assistant, 09/2007 - 02/2008. School of Computer Science and Tech-

nology, University of Science and Technology of China, Hefei, China

• Research Assistant, 09/2006 - 06/2009. School of Computer Science and Tech-

nology, University of Science and Technology of China, Hefei, China

Awards:

• Verizon Communication Graduate Fellowship, University of Kentucky, August

2014.

124

• Student travel grant from IEEE International Conference on Information Reuse

and Integration, July 2014.

• Student travel support from Graduate School Fellowship, University of Ken-

tucky, July 2014.

• Third prize in 27th Annual Eastern Kentucky University Symposium in Math-

ematical, Statistical and Computer Sciences, April 2014.

• ACM Outstanding Teaching Assistant, University of Kentucky, April 2014.

• Student travel support from Graduate School Fellowship, University of Ken-

tucky, May 2012.

• First category in International Teaching Assistant screening test, University of

Kentucky, January 2011.

• First prize in 24th Annual Eastern Kentucky University Symposium in Mathe-

matical, Statistical and Computer Sciences, April 2010.

Publications:

• Xiwei Wang, Jun Zhang and Yin Wang, Trust-aware Privacy Preserving Rec-

ommender System. Under revision for Information Processing & Management,

(2015).

• Xiwei Wang, Jun Zhang and Ruxin Dai, Automated Dimension Determina-

tion for NMF-based Incremental Collaborative Filtering. Under review by EAI

Endorsed Transactions on Collaborative Computing, (2014).

• Xiwei Wang and Jun Zhang. Using Incremental Clustering Technique in Col-

laborative Filtering Data Update. In Proceedings of the 15th IEEE International

Conference on Information Reuse and Integration, 420-427 (2014).

125

• Xiwei Wang, Jun Zhang, Pengpeng Lin, Nirmal Thapa, Yin Wang and Jie

Wang, Incorporating Auxiliary Information in Collaborative Filtering Data Up-

date with Privacy Preservation. International Journal of Advanced Computer

Science and Applications, Vol. 5, 4:224-235 (2014).

• Xiwei Wang and Jun Zhang, Handling the Data Growth with Privacy Preser-

vation in Collaborative Filtering. IAENG Transactions on Engineering Tech-

nologies, Vol. 229, 231-243 (2013).

• Xiwei Wang and Jun Zhang, SVD-based Privacy Preserving Data Updating in

Collaborative Filtering. In Proceedings of the World Congress on Engineering

2012, Vol. I, 377-384 (2012).

• Xiwei Wang, Erik von der Osten, Xuzi Zhou, Hui Lin, and Jinze Liu, A Case

Study of Recommendation Algorithms. In Proceedings of the 2011 International

Conference on Computational and Information Sciences, 410-417 (2011).

• Xiwei Wang, Haifeng You, Xufa Wang, Interest-based Trust Propagation in

Blog Community. In Proceedings of the 6th International Conference on Fuzzy

Systems and Knowledge Discovery, Vol. 7, 555-560 (2009).

• Xiwei Wang and Xufa Wang, An Approach of Blogshpere Construction by

Using Bloggers’ Interests. Journal of Chinese Computer Systems, Vol. 30,

12:2424-2427 (2009). (In Chinese)

• Kiho Lim and Xiwei Wang, NMF-based Privacy Preservation in Vehicular

Communication. Accepted by the IEEE SoutheastCon 2015 Conference, (2015).

• Ruxin Dai, Yin Wang and Xiwei Wang, Effects of Different High Order Com-

pact Computations for Solving Boundary Layer Problems on Nonuniform Grids.

Journal of Computational Intelligence and Electronic Systems, Vol. 3, 3:200-211

(2014).

126

• Pengpeng Lin, Jun Zhang, Xiwei Wang and Art Shindhelm, Simultaneous

Pattern and Data Hiding in Supervised Learning. In Proceedings of the 13th

IEEE International Conference on Information Reuse and Integration, 385-392

(2012).

• Haifeng You, Xiwei Wang, Xiang Xu and Xufa Wang, A Multi-user Interactive

Genetic Algorithm and Its Application in Group Design. Journal of University

of Science and Technology of China, Vol. 40, 4:425-430 (2010). (In Chinese)

127

	University of Kentucky
	UKnowledge
	2015

	Data Privacy Preservation in Collaborative Filtering Based Recommender Systems
	Xiwei Wang
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	Dissertation Organization
	Related Work

	CHAPTER 2
	Description of the Models
	Notational Conventions
	Item Popularity Based Model
	Item Similarity Based Model
	SVD Based Latent Factor Model
	Bipartite Graph Model

	Experimental Study
	Data Description
	Evaluation Strategy
	Results and Discussion
	Parameter Study
	Prediction on Datasets

	Summary

	CHAPTER 3
	Problem Description
	Privacy-Preserving Data Update Scheme
	Row Update
	Column Update

	Experimental Study
	Data Description
	Prediction Model and Error Measurement
	Privacy Measurement
	Evaluation Strategy
	Results and Discussion
	Truncation Rank (k) in SVD
	Split Ratio 2
	Split Ratio 1
	Impact of Randomization in Data Updates

	Summary

	CHAPTER 4
	Problem Description
	Using iAux-NMF for Privacy-Preserving Data Updates
	Aux-NMF
	Objective Function
	Update Formulas
	Convergence Analysis
	Detailed Algorithm

	iAux-NMF
	Row Update
	Column Update

	Experimental Study
	Data Description
	Data Pre-processing
	Evaluation Strategy
	Results and Discussion
	Test on Full Training Data
	The Incremental Case
	Parameter Study

	Summary

	CHAPTER 5
	Using iCluster-NMF for Collaborative Filtering Data Updates
	Clustering the Auxiliary Information
	Detailed Algorithm
	iCluster-NMF

	Experimental Study
	Data Pre-processing
	Evaluation Strategy
	Results and Discussion
	Parameter Setup
	Experimental Results

	Summary

	CHAPTER 6
	Problem Description
	Trust-aware Privacy-Preserving Recommendation Framework
	Unknown Rating Predictions
	Objective Function
	Update Formulas
	Convergence Analysis

	Unrelated Entries Filtering

	Experimental Study
	Data Description
	Evaluation Strategy
	Results and Discussion
	Privacy Preservation
	Prediction Accuracy

	Summary

	CHAPTER 7
	Research Accomplishments
	Suggestions for Future Work

	BIBLIOGRAPHY
	VITA

