
Cipher and Hash Function Design
Strategies based on linear and differential

cryptanalysis

Joan Daemen

March 1995

i

Note: This version has been compiled in January 2004. With respect to the original
version, the formatting of some formulas was modified for layout purposes and some
sentences were rephrased to allow easier line breaks.

ii

Voorwoord

In deze inleiding maak ik van de gelegenheid gebruik om al diegenen te bedanken
die er voor hebben gezorgd dat dit doctoraat tot stand is gekomen in een informele
en vriendschappelijke werksfeer met veel ruimte voor samenwerking, creativiteit en
persoonlijk initiatief.

In de eerste plaats denk ik hierbij aan mijn promotoren Prof. René Govaerts en
Prof. Joos Vandewalle, die mij op weg hebben geholpen met concrete voorstellen voor
onderzoek. Door mij steeds te wijzen op het belang van de praktische toepasbaarheid
van onderzoeksresultaten hebben zij voor een belangrijk deel de toon gezet voor deze
verhandeling.

Voorts wil ik graag de overige leden van het leescomité bedanken, Prof. Bart De
Decker van het Dept. Computerwetenschappen en Prof. Jean-Jacques Quisquater
van de UCL. Mijn oprechte dank gaat ook uit naar mijn collega en jurylid Bart
Preneel, die het manuscript op vrijwillige basis heeft nagelezen en met wie ik vele
leerrijke gesprekken gevoerd heb.

Een speciaal woord van dank gaat naar jurylid Prof. Luc Claesen van IMEC
voor zijn inzet en enthousiasme die hebben geleid tot de vlotte implementatie en
demonstratie van de Subterranean chip.

I am also grateful to Prof. Peter Landrock of the university of Århus for serving in
my jury despite his busy agenda. Als laatste jurylid bedank ik voorzitter Prof. Willy
Dutré.

Verder bedank ik graag mijn collega’s met wie ik binnen ESAT heb samengewerkt
en op wie ik nooit tevergeefs een beroep heb gedaan. Ik denk hierbij speciaal aan
Jan Verschuren die meer dan wie ook heeft bijgedragen tot de positieve sfeer. Verder
vermeld ik graag Luc Van Linden, Antoon Bosselaers, Cristian Radu, Vincent Rij-
men, Ria Vanden Eynde, Rita Dewolf, Steven Vanleemput, Patrick Wuytens, Mark
Vandenwauver, André Barbé, Elvira Wouters, Marc Genoe, Gert Peeters en Zohair
Sahraoui.

I would also like to thank all people from the international scientific community
who have supported or helped me during my research. Among them are Tsutomu
Matsumoto, Markus Dichtl, William Wolfowicz, Jorge Davila, Bert Den Boer, Dou-
glas Stinson, Ronald Rivest and Jan Egil Øye.

Ik wil graag besluiten met die mensen te bedanken die mij het nauwst aan het
hart liggen. Mijn ouders, voor hun onvoorwaardelijke steun, hun aanmoedigingen
en hun oprechte interesse. Mijn verloofde Ilse, voor haar voortdurende toewijding
en liefde waardoor het mij nooit aan motivatie en energie ontbroken heeft of zal
ontbreken.

iii

Abstract

This thesis contains a new approach to design block ciphers, synchronous and
self-synchronizing stream ciphers and cryptographic hash functions. The goal of
this approach is the specification of cryptographic schemes that are secure, simple to
describe and that can be implemented efficiently on a wide variety of platforms. Key
words are simplicity, symmetry and parallelism. An overview of the different types of
ciphers, encryption schemes and hash functions is given, the nature of cryptographic
security is discussed and some new security-related definitions are presented. The
design is mainly guided by the resistance against differential and linear cryptanalysis.
The basic mechanisms of these two attacks are investigated and their structure
is clarified by adopting a new formalism for their description and analysis. The
resistance against differential and linear cryptanalysis is obtained by applying the
new wide trail strategy that emphasizes the mechanism of diffusion. The application
of this strategy for the different types of ciphers and hash functions leads to a number
of new structures and specific designs. A new self-reciprocal block cipher structure is
introduced together with a new type of cryptographic component: the stream/hash
module. The design of single-bit self-synchronizing stream ciphers is treated and the
potential weaknesses of ciphers that make use of arithmetic operations are analyzed.
The design approach is supported by a number of new cryptanalytic results.

iv

Contents

1 Introduction 1
1.1 Communication and computer security 1
1.2 Cryptography . 2
1.3 Research goals . 3
1.4 About this thesis . 4

2 Encryption, Ciphers and Hash Functions 7
2.1 Introduction . 7
2.2 The generic encryption scheme . 7

2.2.1 Encryption through transposition 8
2.2.2 The real world . 9
2.2.3 Some definitions . 10
2.2.4 Error sensitivity . 11
2.2.5 Stream versus block encryption 13

2.3 Synchronous stream ciphers . 14
2.3.1 Repeated occurrences . 16
2.3.2 Filtered counter stream ciphers 16

2.4 Self-synchronizing stream ciphers . 18
2.4.1 Repeated occurrences . 19
2.4.2 Output feedback (OFB) mode 19

2.5 Block ciphers . 20
2.5.1 Electronic code book (ECB) mode 21
2.5.2 Cipher block chaining (CBC) mode 22
2.5.3 Output feedback (OFB) mode 24
2.5.4 Filtered counter scheme (FCS) mode 26
2.5.5 Cipher feedback (CFB) mode 26

2.6 Ciphers and encryption schemes . 27
2.7 Cryptographic hash functions . 27

2.7.1 Hierarchical hashing schemes 29
2.7.2 Repeated occurrences . 29

2.8 Conclusions . 31

3 Cryptographic Security 33
3.1 Introduction . 33
3.2 The cryptanalytic setting . 33

v

vi CONTENTS

3.2.1 Ways of access . 34
3.2.2 Exhaustive key search . 35

3.3 Provable security . 36
3.3.1 Information theoretic approach 37
3.3.2 The complexity theoretic approach 38

3.4 Security in practice . 42
3.4.1 The cryptologic activity . 43

3.5 Definitions of security . 45
3.5.1 Super ciphers . 45
3.5.2 Super encryption schemes . 46
3.5.3 Super cryptographic hash functions 46
3.5.4 K-secure primitives . 47
3.5.5 Hermetic schemes . 48

3.6 Manipulation detection in decryption 49
3.7 Conclusions . 52

4 Design Strategies 53
4.1 Introduction . 53
4.2 General requirements . 53

4.2.1 Simplicity . 53
4.2.2 Structural transparency . 54

4.3 Specific requirements . 55
4.3.1 Portability . 55
4.3.2 Dedicated hardware suitability 55

4.4 Block ciphers . 56
4.4.1 Our approach . 58

4.5 Self-synchronizing stream ciphers . 58
4.5.1 Our approach . 59

4.6 Synchronous stream ciphers . 59
4.6.1 Our approach . 61

4.7 Cryptographic hash functions . 62
4.7.1 Our approach . 64

4.8 Choice of basic operations . 65
4.8.1 Bit permutations . 65
4.8.2 Bitwise Boolean operations . 66
4.8.3 Substitution boxes . 66
4.8.4 Modular arithmetic operations 67
4.8.5 Our choice . 68

4.9 Conclusions . 68

5 Propagation and Correlation 69
5.1 Introduction . 69
5.2 The Data Encryption Standard . 69
5.3 Differential and linear cryptanalysis 71

5.3.1 Differential cryptanalysis . 71

CONTENTS vii

5.3.2 Linear cryptanalysis . 72
5.4 Analytical and descriptive tools . 74

5.4.1 The Walsh-Hadamard transform 74
5.4.2 Correlation matrices . 77
5.4.3 Derived properties . 79
5.4.4 Difference propagation . 82

5.5 Application to iterated transformations 85
5.5.1 Correlation . 85
5.5.2 Difference propagation . 87
5.5.3 DES cryptanalysis revisited 89

5.6 The wide trail strategy . 91
5.6.1 Traditional approach . 92

5.7 Conclusions . 92

6 Shift-Invariant Transformations 95
6.1 Introduction . 95
6.2 Shift-invariance and the state space 96
6.3 Local maps . 97
6.4 Invertibility . 97
6.5 Linear shift-invariant transformations 99

6.5.1 Invertibility . 99
6.6 Nonlinear transformations with finite ν 101

6.6.1 Local invertibility . 101
6.6.2 Global invertibility . 103

6.7 Cyclic multiplication . 104
6.8 Diffusion . 105

6.8.1 Diffusion in invertible linear φ 106
6.9 Nonlinearity properties of χ . 109

6.9.1 Difference propagation . 109
6.9.2 Correlation . 110

6.10 Conclusions . 113

7 Block Cipher Design 115
7.1 Introduction . 115
7.2 A self-reciprocal cipher structure . 116
7.3 The Nonlinear transformation γ . 119

7.3.1 Propagation and correlation properties 120
7.4 The linear transformation θ . 121

7.4.1 Propagation and correlation properties 122
7.5 The bit permutations µ and π . 123

7.5.1 Propagation and correlation properties 124
7.6 Propagation analysis . 125
7.7 Symmetry considerations . 127
7.8 3-Way . 128

7.8.1 Specification . 128

viii CONTENTS

7.8.2 Implementation aspects . 128
7.8.3 Decryption . 129
7.8.4 Propagation analysis . 129

7.9 BaseKing . 131
7.9.1 Specification . 131
7.9.2 Decryption . 131
7.9.3 Propagation analysis . 132
7.9.4 Alternative software implementations 132

7.10 Filtered counter stream encryption 132
7.11 Conclusions . 134

8 Design of Stream/Hash Modules 135
8.1 Introduction . 135
8.2 Cipher architecture . 135

8.2.1 The cryptographic hash function 136
8.2.2 The stream cipher . 137

8.3 Subterranean . 137
8.3.1 Specification . 138
8.3.2 Structural analysis . 140
8.3.3 Chip Realization . 144

8.4 Designs preceding Subterranean 145
8.4.1 Sequence generation by cellular automata 145
8.4.2 Cellhash . 147

8.5 Designs derived from Subterranean 149
8.5.1 Jam . 149
8.5.2 Boognish . 150

8.6 StepRightUp . 152
8.6.1 Specification . 152
8.6.2 Discussion . 155
8.6.3 Implementation aspects . 159

8.7 Conclusions . 160

9 Design of Self-Synchronizing Stream Ciphers 161
9.1 Introduction . 161
9.2 Machines with finite input memory 161
9.3 N-reductionist design principles . 162
9.4 Structural cryptanalysis . 164

9.4.1 Differential cryptanalysis . 165
9.4.2 Linear cryptanalysis . 165

9.5 Cipher function architectures . 166
9.5.1 A proposed recursive architecture 166
9.5.2 Conditional complementing shift registers 168
9.5.3 Pipelined stages . 172

9.6 The ΥΓ cipher . 174
9.6.1 The output feedback mode . 174

CONTENTS ix

9.7 Conclusions . 175

10 Supporting Cryptanalytic Results 177
10.1 Introduction . 177
10.2 Resynchronization attacks . 177

10.2.1 A simple general attack . 178
10.2.2 A simple attack for the multiplexor generator 179
10.2.3 A powerful attack for the multiplexor generator 180
10.2.4 The EBU MAC/packet scrambling system 182

10.3 Ivan Damg̊ard’s CA hash function . 185
10.4 The Even-Mansour construction . 188

10.4.1 Differential cryptanalysis . 188
10.4.2 Discussion . 189

10.5 Conclusions . 190

11 Schemes Based on Modular Arithmetic 191
11.1 Introduction . 191
11.2 Collisions for FFT-Hash . 191

11.2.1 The chaining transformation 192
11.2.2 Generating collisions . 192

11.3 Weak keys of IDEA . 194
11.3.1 Description of the cipher . 195
11.3.2 Unfavorable properties of the building blocks 195
11.3.3 Classes of weak keys detectable by LC 197
11.3.4 Classes of weak keys detectable by DC 199
11.3.5 Expanding the classes of weak keys 200
11.3.6 A modified IDEA without weak keys 202

11.4 Cyclic multiplication . 203
11.4.1 Difference propagation properties 203
11.4.2 Implementation aspects . 208

11.5 The block cipher MMB . 209
11.5.1 Specification . 209
11.5.2 Discussion . 210
11.5.3 Problems of MMB and potential solutions 211

11.6 Conclusions . 211

12 Conclusions 213
12.1 Our design approach . 213
12.2 Our specific contributions to design 216
12.3 Further research . 217

A On Shift-Invariant Transformations 219
A.1 Structure of the state-space . 219
A.2 Proof of invertibility . 220
A.3 Tables of invertible nonlinear φ . 221

x CONTENTS

References 225

Nederlandse Samenvatting 235
1 Inleiding . 235
2 Encryptie, cijfers en hashfuncties . 236
3 Cryptografische veiligheid . 239
4 Ontwerpstrategie . 240
5 Propagatie en correlatie . 242
6 Translatie-invariante transformaties 244
7 Blokcijfers . 245
8 Stroom/hash modules . 245
9 Zelf-synchroniserende stroomcijfers 247
10 Rekenkundige schema’s . 248
11 Besluiten . 249

List of Notations

List of Abbreviations

ASCII : American Standard Code for Information Interchange
BB : Bitwise Boolean
BSS : Binary Symmetric Source
CA : Cellular Automaton
CBC : Cipher Block Chaining
CFB : Cipher Feedback
CL : Conserved Landscape
CMOS : Complementary Metal Oxide Semiconductor
CO : Ciphertext-Only
CS : Cyclic Shift
DC : Differential Cryptanalysis
DES : Data Encryption Standard
ECB : Electronic Code Book
EXOR : Exclusive Or
FCS : Filtered Counter Scheme
FFT : Fast Fourier Transform
IDEA : International Data Encryption Algorithm
ISO : International Organization for Standardization
IV : Initial Value
KP : Known-Plaintext
LC : Linear Cryptanalysis
LFSR : Linear Feedback Shift Register
LSB : Least Significant Bit
MD4 : Message Digest 4
MD5 : Message Digest 5
MMB : Modular Multiplication based Block Cipher
MUX : Multiplexer
MSB : Most Significant Bit
NIST : National Institute for Standards and Technology (USA)
NAND : Not And
NOR : Not Or
NP : Nondeterministic Polynomially
NS : Non-Secret

xi

xii LIST OF NOTATIONS

OFB : Output Feedback
P : Polynomially
RSA : Rivest-Shamir-Adleman
SHA : Secure Hash Algorithm

List of Ciphers and Hash Functions

DES : 64-bit block cipher
FFT-hash : hash function
IDEA : 64-bit block cipher
MD4 : hash function
MD5 : hash function
RSA : public key cipher
SHA : hash function
Snefru : hash function

BaseKing : 192-bit block cipher
Boognish : hash function
Cellhash : hash function
Jam : synchronous stream cipher
MMB : 128-bit block cipher
StepRightUp : stream/hash module
Subterranean : stream/hash module
Subhash : Subterranean hash function
Substream : Subterranean synchronous stream cipher
3-Way : 96-bit block cipher
ΥΓ : single-bit self-synchronizing stream cipher

List of mathematical symbols

ZZ2 : set of residues modulo 2, i.e., {0, 1}
ZZn
2 : set of all binary vectors with components in ZZ2

a : a binary vector or state
ai : the component of a with index i
ā : bitwise complement of binary vector a
a + b : bitwise sum of binary vectors a and b
ν : a neighborhood, i.e., a set of indices
a|ν : a confined to its components with indices in ν
0̄ : a state or vector with all components equal to 1
#α : cardinality of set α
�x� : the greatest integer less than or equal to x

xiii

�x� : the least integer greater than or equal to x
δ(w) : Kronecker delta function
δi : vector with a single nonzero component at index i
a‖b : concatenation of strings a and b
M : message
C : cryptogram
K : secret key
Q : public parameter
κ : cipher key
mt : message symbol or block at time step t
ct : cryptogram symbol or block at time step t
wt : (stream) encrypting symbol at time step t
nm : finite memory (in symbols) of finite state machine
ns : symbol length in bits
nκ : length of κ
na : length of the internal state of a finite state machine
nb : block length
nh : length of a hash result
r : relative redundancy
v : length of a message
bs : number of stages in a self-synchronizing stream cipher
m : number of rounds in an iterated block cipher
r : number of bits in the buffer
F[x](y) : Boolean mapping parameterized by x and with argument y
C(f, g) : correlation coefficient of Boolean functions f and g
W : Walsh-Hadamard transform
Vf : support space of Boolean function f
Ch : correlation matrix of Boolean mapping h
Ch
uw : element of Ch in row u and column w

φ : a binary shift-invariant transformation
τr : translation over r positions to the right
Rp : prop ratio
Cp : correlation contribution coefficient
wr : restriction weight
wc : correlation weight
wh : Hamming weight
wt : triplet weight
wm : minimum ternary weight of a number
B : branch number of a linear transformation
C : maximum input-output correlation of a transformation
D : diffusion factor of a transformation
R : maximum prop ratio of a transformation

xiv LIST OF NOTATIONS

Chapter 1

Introduction

1.1 Communication and computer security

In our modern society more and more activities come to rely on telecommunication
networks and computers. It is expected, and can already be observed today, that
this technological revolution will affect many aspects of human interaction. The new
technology has given rise to important new concepts, such as (portable) software and
CPU time sharing .

At present, an important role is played by all kinds of paper documents such
as value documents, administration documents, identification documents, contracts
and treaties. Efficient application of communication and computer technology asks
for the handling of documents that are no longer inseparable from their physical
carrier, but are equivalent to abstract strings of symbols. Moreover, technological
advancements are making it easier and easier to physically forge classical paper
documents. These new technological developments bring with them an acute need
for security mechanisms.

Contracts, identification documents and value documents are examples of com-
mitment carriers. Some organization, individual or group of individuals commits
herself to certain consequences if unable to keep certain promises. The authen-
tication of these classical documents is still realized by physical means such as
signatures or high-tech printing techniques that are considered hard to counterfeit.
Obviously, the authentication of abstract computer documents can only be realized
effectively at the logical level.

In face-to-face communication it is relatively easy to create circumstances in
which eavesdropping is infeasible. In telecommunication applications (communi-
cation) messages travel over easily accessible channels and their privacy can no
longer be taken for granted. Face-to-face communication has the inherent aspect
of authenticity. It can be verified by sensory perception that the communication
partner is the person he or she claims to be and that the utterances attributed to
him or her are actually his or hers. In telecommunication applications the authen-
ticity of received messages is no longer obvious. Messages can be modified during
transmission or an adversary can create messages that are wrongly attributed to the
legitimate communication partner.

1

2 CHAPTER 1. INTRODUCTION

Modern computer and communication technology has given rise to a broad range
of new services. Widespread communication networks, some even world-wide (i.e.,
Internet), connect consumers to millions of computers, large numbers of databases
or the providers of video/audio entertainment. It is widely expected that in the
near future the available services will be integrated in multifunctional networks.
In commercial and political campaigns this is made clear with buzzwords such as
information superhighway , multimedia and B-ISDN (Broadband Integrated Services
Digital Network). Other well-known services include financial transaction systems
with automatic teller machines (ATM) and electronic funds transfer at the point-
of-sale (EFTPoS).

Clearly, the management of these networks is only possible if there are effective
mechanisms of authorization. It should be infeasible for a user to gain access
to services that he is not entitled to. Additionally, these systems are preferably
designed in such a way that possible abuses by the network administration, such
as eavesdropping or blackmail, are prevented as much as possible. The systems
should be robust, i.e., the risk of breakdown due to sabotage should be minimized.
These requirements also hold for local multi-user computer networks. An example
of a desirable feature in the latter systems is the ability of a user to protect the
confidentiality and the integrity of his files with respect to any other user and even
the system administration.

1.2 Cryptography

Cryptographic techniques have been used for many centuries to protect the secrecy
and authenticity of diplomatic and political correspondence and military communi-
cations. A brilliant account of the history of cryptography is given by David Kahn in
[58]. Most historical cryptographic schemes are in fact encryption schemes. These
convert a message into a cryptogram by an invertible operation that depends on a
secret key. Decryption is relatively easy for someone in possession of the key and
is considered infeasible for someone not in possession of the key. However, often
intercepted messages have actually been reconstructed from the cryptogram by ad-
versaries without a priori knowledge of the secret key. This is called cryptanalysis.
The science that studies both cryptography and cryptanalysis is called cryptology.

Until well after World War II, any cryptologic research and practice of signifi-
cance was confined to some isolated sites at army headquarters, secret services and
manufacturing companies. Publications were scarce and cryptologic knowledge was
carefully guarded. The publication of the Data Encryption Standard and the inven-
tion of public-key cryptography at the end of the seventies [31] marked the transition
of cryptology from a rather occult practice to a scientific research area [32]. Under
the impulse of the revolution in communication and computer technology, the field
of cryptology has known a spectacular growth. Today there is a community of cryp-
tologic researchers who organize and attend specialized conferences and workshops,
publish in scientific journals and have their own international association (IACR).
This new openness in cryptologic research has been a fertile soil for the emergence

1.3. RESEARCH GOALS 3

of completely new concepts [68, 81]. The main object of cryptologic research, the
encryption scheme, has been complemented with a wide variety of cryptographic
schemes and corresponding cryptanalytic attacks.

Nowadays, the term cryptography is generally used to refer to the set of mathe-
matical and logical tools for providing communication and computer security. With
the exception of so-called quantum cryptography [3], cryptographic techniques aim at
realizing the security at the logical level, independent of the physical communication
channel or data carrier. Cryptanalysis corresponds to the detection of weaknesses in
cryptographic schemes. In the modern scientific context, cryptanalysis is no longer
a goal in itself, but has become the main set of tools available for cryptographic
design. For a treatment of the most important families of cryptographic schemes
and cryptanalytic attacks we refer to [68, 81, 8].

1.3 Research goals

Our research has concentrated on the design of bulk-processing cryptographic schemes.
By this we mean cryptographic schemes with a work factor proportional to the length
of the messages to be treated. The data throughput attainable by these crypto-
graphic schemes determines for a large part the performance of communication and
computer security systems. Clearly, encryption schemes belong to this class.

Encryption schemes are designed to protect the secrecy of the message contents.
Still, it has often been tacitly assumed that encryption also provides authentica-
tion in that the secret key is needed to construct a cryptogram that decrypts to a
meaningful message. Nowadays it is widely realized that the amount of authenti-
cation protection provided by encryption is very low for some types of encryption
schemes and depends on a characteristic of the message denoted by the term relative
redundancy.

Effective authentication can be realized by a cryptographic checksum mecha-
nism. The basic component of such a checksum mechanism is a cryptographic hash
function. This is a function that maps a message of arbitrary length to a hash re-
sult with fixed length. This mapping can be parameterized by a secret key. In a
checksum mechanism the cryptographic hashing is the only operation with a work
factor proportional to the message length. All other operations act on the short
hash result. Other applications of hash functions include digital signatures and
certain identification protocols. For an extensive overview of the applications of
cryptographic hash functions we refer to the doctoral dissertation of Bart Preneel
[84].

In most applications it is sufficient that a hash function provides a unique imprint
of a message. This may mean that it should be infeasible to find pairs of colliding
messages, i.e., that hash to the same result. Sometimes it may be sufficient that
for any given hash result it is infeasible to find a corresponding message or that,
given a message, finding another message that hashes to the same result is infeasible.
Cryptographic hashing is also proposed to destroy potentially exploitable algebraic
properties of a scheme, as in signature schemes based on the RSA public key scheme

4 CHAPTER 1. INTRODUCTION

[91, 80]. Collision-resistance is an important basic requirement that guides our
design strategy of cryptographic hash functions. Still, in our notion of security with
respect to cryptographic hash functions, collision-resistance is more of a symptom
than a security-defining property.

To our knowledge all bulk-processing in cryptography can be reduced to encryp-
tion or cryptographic hashing.

Preferably security in computer and communication systems is realized without
giving rise to noticeable delay or data overhead. Since the use of modern technology
like optical fiber will allow communication in the Gbit/s range in a few years, there is
a need for encryption and cryptographic hashing at these rates. Still, in the majority
of applications a simple software implementation on a general purpose processor will
probably be sufficient.

At this moment, there are already a large number of specific proposals for the
different types of encryption schemes and cryptographic hash functions. Hence, why
did we choose to study the design of these schemes, resulting in even more proposals?

In fact, our motivation is given in Chapters 3 to 5 and supported by results
in Chapter 10. In short, it is a critique of the design practices that are currently
dominant. There are several problems with these practices that severely limit the
resulting designs. The most important problems belong to one of the following three
classes:

• design goals and criteria that are irrelevant in practice,

• design frameworks that are too narrow,

• disregard for criteria that are essential in practice such as software efficiency
and/or hardware suitability.

Our goal is to contribute to the design of encryption schemes and cryptographic
hash functions that are

1. Portable: they can be implemented cheaply and efficiently on a wide variety
of platforms.

2. Secure: they are as secure as their dimensions (key length, block length, . . .)
suggest, independent of the encrypted data or accessibility of the encryptor
and decryptor.

1.4 About this thesis

This thesis contains the motivation, foundation, formulation, elaboration and illus-
tration of a new approach for the design of single-key encryption schemes, ciphers
and cryptographic hash functions.

In Chapter 2 we introduce the cryptographic schemes to be designed. We describe
the external properties of the different ciphers and encryption schemes, and give a
general model for sequential hashing.

1.4. ABOUT THIS THESIS 5

Chapter 3 is devoted to the essential property of cryptographic schemes, namely
security. We discuss the problems of provable security and provide some new
security-related concepts.

In Chapter 4 we elaborate on our design goals and introduce our design strategies
for the different types of ciphers and cryptographic hash functions.

In Chapter 5 we give a new formalism for the description and analysis of differ-
ence propagation and correlation in cryptographic mappings. These are the most
important analytical tools in our design approach.

Chapter 6 is devoted to a class of transformations to which belong the main build-
ing blocks in all our designs. These are the binary shift-invariant transformations.
We discuss their invertibility, difference propagation and correlation properties.

In Chapter 7 we elaborate on our design strategy for block ciphers, resulting in
two specific designs.

In Chapter 8 we introduce dedicated modules that can be used both as a syn-
chronous stream cipher and as a cryptographic hash function. This includes the
description of our hardware-oriented design Subterranean and a more software-
oriented design.

Chapter 9 is devoted to the design of hardware-oriented single-bit self-synchronizing
stream ciphers. This is illustrated by a design example.

Chapter 10 contains three cryptanalytic results that are particularly illustrative
in the context of this thesis.

Chapter 11 is completely devoted to cryptographic schemes that have modu-
lar arithmetic as their basic operations. After discussing some weaknesses in two
particular schemes, we present a new block cipher design.

Finally, in Chapter 12 we give our conclusions and some directions for further
research.

In Chapters 2 to 6 we clearly indicate what our own contributions are. In Chap-
ters 7 to 12 this has been omitted since these contain only ideas of our own.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Encryption, Ciphers and Hash
Functions

2.1 Introduction

In this chapter we introduce the different types of single-key ciphers, encryption
schemes and cryptographic hash functions. The design of these cryptographic schemes
is the subject of our research.

Encryption schemes can be seen as modes of use of underlying cryptographic
building blocks that are denoted by the term ciphers. The new and seemingly
unnecessary distinction between ciphers and encryption schemes forced itself on us in
trying to categorize the different primitives with respect to external characteristics.
The resulting categorization is compact and elegant.

The different ciphers and encryption schemes are derived from a generic en-
cryption scheme, thereby clearly indicating their mutual similarities, differences and
relations. With respect to cryptographic hash functions, a generic model for sequen-
tial hashing is given.

All resulting primitives can be characterized by a small set of dimensions. For all
cases we demonstrate that the choice of these dimensions is a compromise between
the concern for repeated occurrences on the one hand and for error propagation on
the other hand.

2.2 The generic encryption scheme

Informally, the purpose of a single-key encryption scheme is the transformation of a
message M into a cryptogram C such that

• it is easy to extract M from C with the key,

• it is infeasible to derive M from C without the key.

We present a simple generic model to describe the external behavior of discrete
single-key encryption schemes. In this model, messages are treated as sequences

7

8 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

encryptor decryptor
channel

mt mtct✲ E ✲ E−1 ✲

❄

st st

❄

U U✛ ✲

✻ ✻✻ ✻

J✲

✲

Q

K
J ✛

✛

Q

K✲ s0 ✛s0

Figure 2.1: Generic model for encryption schemes.

of symbols: m1m2 . . . These symbols belong to some finite set, called the plaintext
alphabet . Encryption is performed by transforming the message symbols sequentially
into cryptogram symbols. The cryptogram symbols belong to the (finite) ciphertext
alphabet . A block diagram of the generic model is given in Fig. 2.1. It is described
by three equations:

s0 = J(K,Q) , (2.1)

st+1 = U[ct](st) , (2.2)

ct = E[st](mt) . (2.3)

The encryption transformation E converts a message symbol m into a cryptogram
symbol c in an invertible way, parameterized by an internal state s. The state up-
dating transformation U updates the internal state st to st+1, parameterized by the
last cryptogram symbol ct. In general, the internal state depends on all past cryp-
togram (and corresponding message) symbols. The state updating transformation
U can be designed in such a way that the internal state depends only on the last nm
cryptogram symbols for some finite value of nm. The resulting finite state machine
is said to have finite input memory nm [51]. The initialization mapping J converts
a secret key K and a public parameter Q into the initial internal state s0.

The channel models all possible deformations of the cryptogram between encryp-
tor and decryptor. Typically, the channel represents a communication link or the
process of storage on and retrieval from an information carrier.

2.2.1 Encryption through transposition

In our generic model the message symbols are sequentially substituted in a one-to-one
fashion by cryptogram symbols. For the large class of discrete encryption schemes
that are based on transposition rather than substitution, the given model does
not adequately describe the essential mechanisms involved. In transposition-based
schemes encryption is performed by changing the order of the message symbols in
a key-dependent way. Many historical examples of this type of encryption schemes

2.2. THE GENERIC ENCRYPTION SCHEME 9

can be found in [58]. The application of transposition as encryption mechanism has
some inherent limitations:

• Concealment: transposition fails to conceal some essentials characteristics of
the message. This includes the frequency distribution of symbols in a message.

• Flexibility: for messages consisting of only a few symbols, the number of
possible transpositions is too small to result in effective concealment.

• Storage: encryption and decryption are not simple sequential operations that
can be done on-the-fly. In general, the transposition of message symbols needs
a buffer with a size comparable to that of the complete message.

Because of these disadvantages transposition is nowadays only applied in or proposed
for encryption in systems where substitution is technically infeasible and only a
moderate level of protection is needed. A typical example is the scrambling of
analog video images for pay-TV.

In [70] it is proposed to replace the row-by-row scanning of the analog frames of
a video sequence by a key-dependent scanning pattern based on space-filling curves.
The keys that determine the scanning patterns are renewed for every frame and are
produced by an underlying sequence generator. Cryptanalysis of this proposal in
[4] showed that large parts of the original image could easily be restored from the
cryptogram by exploiting the correlation between subsequent frames.

In a pay-TV system described in [33] every line of a frame is cyclically shifted
with one of 256 possible offsets, generated by a cryptographic number generator. As
can be read in Chapter 10, the correlation between corresponding lines in subsequent
frames can be exploited to gain sufficient information about the output of the specific
number generator to allow for on-line descrambling without the key.

Although in these examples the data to be encrypted are continuous in time and
magnitude, the encryption schemes are discrete since the space of possible trans-
positions in these schemes is finite. It can be observed that in both examples the
transposition scheme is only part of a larger compound system that also involves
the generation of key material to parameterize the transpositions. In both cases
the application of a fixed transposition would be very weak. The security of the
compound systems relies on the security of the key generation mechanisms.

Because of their small application domain and the limitations of the security
that can be attained, the design of transposition-based encryption schemes is not
treated in this thesis.

2.2.2 The real world

Our goal is to design discrete encryption schemes that are competitive in as many
applications as possible in the real world. Therefore it is important to take into
account the biases inherent in modern technology and their impact on certain design
decisions.

To enable storage and transmission, data must be “written” or “coded” in some
alphabet. Before the advent of computer technology and data automation, data

10 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

was stored and transmitted mainly as characters printed on paper. The alphabet
coincided with the “natural” alphabet of the corresponding language the document
was written in, supplemented with punctuation marks, the digits 0 to 9 and possi-
bly some special characters. Superficially, this did not change with the coming of
computer technology. Instead of being written or printed on paper, the alphabet
symbols were now stored on punched cards, magnetic tapes or disks. However, the
symbols are not stored “as they are” but are first coded as sequences of binary values
(called bits). These bits are represented on magnetic disk or tape as differently ori-
ented magnetizations. In electronic circuits these bits are represented by low/high
currents, low/high charges or low/high voltages. In light-based communication, bits
can be represented by the presence or absence of a light pulse or as two orthogonal
polarizations. Clearly, there is a very strong bias towards binary representation in
modern communication and computer technology. Discrete data to be processed by
modern automated systems, whether it represents a readable text, digitized sound
or video or any other type of data, is invariably coded as a stream of bits.

Efficiency dictates that encryption schemes reflect the way messages are coded.
In the rotor-based encryption devices [58] that were extensively used during World
War II encryption was performed by sequentially substituting the message charac-
ters (belonging to the 26-letter natural alphabet) by cryptogram characters. This
substitution was governed by the positions of rotors inside the device that were ro-
tated according to a fixed schedule to make the substitution varying in time. Many
other examples of encryption schemes working on natural alphabets can also be
found in [58].

Efficient present-day encryption schemes process binary coded data. In the most
simple case the plaintext alphabet consists of the two binary symbols that are de-
noted by 0 and 1. For the sake of encryption the bits may be grouped in blocks ,
vectors or symbols. Although it is not inconceivable that schemes could be designed
where the length of these blocks varies during encryption, in practical schemes it
is invariably a constant. If this fixed symbol length is denoted by ns, the size of
the plaintext alphabet is 2ns and the plaintext symbols can be represented by ns-bit
vectors.

The invertibility requirement inherent in encryption implies that the size of the
ciphertext alphabet is not smaller than the size of the plaintext alphabet. If the
size of the ciphertext alphabet is larger than the size of the plaintext alphabet, the
number of bits needed to code a ciphertext symbol is on the average larger than
the symbol length. The resulting expansion is highly undesirable in storage and
transmission. Therefore we will only consider the design of encryption schemes where
the plaintext and the ciphertext symbols can both be denoted by ns-bit symbols,
with ns a constant.

2.2.3 Some definitions

A binary variable or bit is a variable that can have only two values, denoted by 0 and
1. The set {0, 1} is also denoted by ZZ2, i.e., the residues modulo 2. A binary vector
consists of an array of binary-valued components, that are indexed starting from

2.2. THE GENERIC ENCRYPTION SCHEME 11

0. A binary vector a with dimension (or length) n has components a0, a1, . . . , an−1.
The space of all binary vectors with dimension n is denoted by ZZn

2 .

A Boolean function f(a) is a two-valued function with domain ZZn
2 for some n.

A Boolean mapping h(a) maps ZZn
2 to ZZm

2 for some n,m. A Boolean function is a
special case of a Boolean mapping with m = 1. A Boolean mapping can be seen
as the parallel application of m Boolean functions: (h1(a), h2(a), . . . , hm−1(a)). If
m = n, the Boolean mapping is called a transformation of ZZm

2 . This transformation
is called invertible if it is a bijection.

The addition modulo 2 of two binary variables α and β is denoted by α + β.
Hence, α+β equals 0 if α = β and 1 if α �= β. A binary variable can be complemented
by adding 1 modulo 2, i.e., ᾱ = α + 1. The bitwise addition, sum or difference of
two binary vectors a and b is denoted by a + b and consists of a binary vector c
with components ci = ai + bi. Sometimes the plus sign is used to denote arithmetic
addition. The meaning of + will however always be clear from the context.

A Boolean mapping h is linear (with respect to bitwise addition) if

h(a + b) = h(a) + h(b) , (2.4)

for all a, b ∈ ZZn
2 .

The Kronecker delta function δ(x) is equal to 1 if its argument is 0 and equal to
0 if its argument differs from 0. A binary vector with a single nonzero component
at index i is denoted by δi.

2.2.4 Error sensitivity

In many modern applications the channel between encryptor and decryptor cannot
be considered error-free. Transmission errors will occur due to a wide range of
phenomena such as noise and fading in digital carrier modulation schemes. Therefore
it is essential to investigate the operation of encryption schemes in the presence of
transmission errors.

For many cases the transmission error behavior can be approximated by a sym-
metric binary memoryless channel. In this model the probability of a bit error is
independent of its absolute value and independent of time. For typical error rates
(< 1%) the errors are isolated and appear to be randomly distributed over the
stream.

The symmetric binary memoryless channel model describes only sign errors: ev-
ery bit received has been sent, but its value may be altered in the channel. Imperfect
synchronization due to bad recovery of timing can make it appear that bits are “lost”
or that new bits are “created” during transmission. This type of error is called a bit
slip.

In practice there are many transmission channels that cannot be modeled as
memoryless. Due to man-made noise, fading and temporary loss of contact (espe-
cially in mobile communication), errors occur in long bursts interleaved by periods of
relatively few isolated errors. Apart from the loss of data, these bursts also hamper
the synchronization between sender and receiver.

12 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

In the generic model sufficient conditions for correct decryption of a message
symbol mt are:

• Error-free reception: of the cryptogram symbol ct.

• History: internal state of the decryptor is equal to that of the encryptor.
This implies

– Synchronism: internal “clocks” of encryptor and decryptor are synchro-
nized;

– Infinite input memory: all cryptogram symbols that have been sent
from the initialization onwards have been correctly received.

In our generic model a single transmission error can corrupt all following plaintext
symbols. Because of this lack of robustness, almost all practical encryption schemes
are described by restricted versions of the generic model. By imposing different
robustness conditions a number of particular models can be deduced from the generic
model. Every model corresponds in a natural way to a specific class of encryption
schemes.

In the generic model the infinite input memory makes correct decryption of a
cryptogram progressively less likely as the length of the original message grows.
In many applications this accumulation of error probability cannot be tolerated.
Therefore, we restrict ourselves to the design of encryption schemes that have a
finite input memory. The internal state st of an encryption scheme with memory
nm is independent of all cryptogram symbols encrypted before time step t− nm. If
nm = 0, the internal state is independent of the cryptogram symbols. The finite
state machine consisting of the internal state and the state updating transformation
is autonomous.

With the finite input memory requirement imposed, we identify the factors that
determine the robustness behavior of an encryption scheme:

• Symbol length
Because the cryptosystem decrypts the cryptogram one symbol at a time, a
single sign error results in the faulty reception of a complete symbol. Since
the cryptogram symbols consist of ns-bit vectors, the error propagation due to
this effect is proportional to the symbol length. If ns �= 1, a bit slip can result
in a loss of symbol alignment between sender and receiver.

• Need for synchronism
If there is no need for synchronism, bit slips only have a local effect, i.e., only a
limited number of message symbols are corrupted. In synchronous encryption
schemes a bit slip or a burst resulting in loss of synchronization corrupts all
following message symbols.

• Input memory length
If the memory length is 0, a sign error results in the corruption of only a single
message symbol. If the memory length is equal to a nonzero constant nm, a
sign error results in the corruption of up to nm + 1 message symbols.

2.2. THE GENERIC ENCRYPTION SCHEME 13

Maximum robustness would be achieved by an encryption scheme with a mini-
mum symbol length (a single bit), zero input memory and no need for synchronism.
Such a scheme can however not offer any security since for a given key it invariably
maps the symbol 1 to 1 or 0 and 0 to the complementary bit. For this system the
repeated occurrence of a cryptogram symbol leaks information about the message.
In general, the expected probability of repeated occurrences imposes a lower bound
on the most important dimensions of the scheme. In practical encryption schemes
the actual choice of these dimensions is a compromise between robustness and re-
peated occurrence concerns. In the following sections we describe the different types
of encryption schemes that emerge when certain design decisions are made.

2.2.5 Stream versus block encryption

In most stream encryption schemes the message bits mt are encrypted by adding an
encrypting bit zt modulo 2:

ct = mt + zt . (2.5)

Decryption corresponds to adding the encrypting bit again. This is called single-
bit stream encryption. Stream ciphers are not restricted to an encryption rate of
a single bit per time step. In more efficient designs every time step ns encrypting
bits are generated allowing the encryption of ns message bits by simple bitwise
addition. In this scheme every time step a block of ns message bits are encrypted.
Still, the encryption mechanism is clearly stream encryption since the encrypting
transformation operates on the individual bits of the symbol block.

This encryption mechanism can be generalized by allowing more general group
operations over the set of ns-bit vectors. If � denotes a group operation, we have

ct = mt � zt and mt = ct � (zt)−1 . (2.6)

zt is called the encrypting symbol and the sequence of encrypting symbols is called
the encrypting sequence. Although this operation does not encrypt the message
bit by bit, it is not considered a block encryption scheme. In general, we consider
an encryption transformation to be a block cipher if it is hard to reconstruct the
encryption transformation from pairs m, c. In the case of a group operation the
encryption transformation is completely determined by z = c�m−1. The distinction
between block and stream encryption can be summarized as follows.

14 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

mt mtct
zt zt

✲

fo

❄⊕ ✲

fo

❄⊕ ✲

❄

κ at at κ

❄

Fu Fu✛ ✲

✻ ✻

J✲

✲

Q

K
J ✛

✛

Q

K

✲ a0

✲ κ

✛a0

✛κ

Figure 2.2: Synchronous stream encryption.

Given some plaintext-ciphertext symbol pairs,

• Block encryption: reconstruction of the encryption transformation is hard.

• Stream encryption: reconstruction of the encryption transformation is easy.
The security relies on changing this transformation for every symbol in a way
that is hard to predict for an adversary.

In the following it is is assumed that bitwise addition is used, since there is no
additional security in choosing an encrypting transformation different from this. The
encrypting symbol consists of ns bits and is denoted by zt = zt0, z

t
1, . . . , z

t
ns−1. Finally,

like block encryption, stream encryption with ns �= 1 requires symbol alignment for
correct decryption.

2.3 Synchronous stream ciphers

The heart of a synchronous stream encryptor (or decryptor) consists of an au-
tonomous finite state machine, referred to as a synchronous stream cipher or equiv-
alently a cryptographic sequence generator . The internal state of this finite state
machine consists of the actual internal state a that is updated and the cipher key
κ that is fixed during encryption. The updating transformation is parameterized
by κ. The initial internal state and the cipher key are determined by the initializa-
tion mapping J. The encrypting symbol depends on the internal state by the output
function fo. A block diagram of a synchronous encryption scheme is given in Fig. 2.2.
The generation of encrypting symbols is governed by three equations:

(κ, a0) = J(K,Q) , (2.7)

at+1 = Fu[κ](at) , (2.8)

zt+1 = fo[κ](at) . (2.9)

The length of the internal state a is denoted by na and the length of κ by nκ.

2.3. SYNCHRONOUS STREAM CIPHERS 15

If the encryption transformation is implemented by bitwise addition, sign errors
in the cryptogram only affect the corresponding bits in the message. The disadvan-
tage of synchronous encryption is the requirement of perfect synchronization between
encryptor and decryptor. If synchronization is lost, the output of the decryptor is
unintelligible for the receiver and synchronization has to be regained.

If the plaintext has sufficient redundancy to verify correctness of decryption, the
receiver can recover synchronization without the intervention of the sender. This
involves trying different offsets between the sender’s and the receiver’s clock. In
applications where high-speed online decryption is needed, automatic synchroniza-
tion recovery can be technically infeasible. The risk of synchronization loss can be
reduced somewhat at the cost of inserting synchronization patterns in the ciphertext.

In most applications it is essential to limit the consequences of synchronization
loss. This can be achieved by initializing at fixed time steps. For instance, if
initialization occurs every µ symbols, synchronization loss will on the average result
in the loss of µ/2 symbols. The appropriate frequency of initialization depends on
the probability of synchronization loss and the nature of the application. If there is
a channel from the receiver to the sender, the receiver can request initialization to
the sender upon detection of synchronization loss.

The aim of initialization is to ensure that encryptor and decryptor have the
same internal state at a certain time. The presence of the public parameter Q
in the initialization mapping J allows resynchronization without the introduction
of new key material. Initialization consists of simultaneously loading encryptor and
decryptor with a couple (a0, κ) computed from the secret key K and an agreed upon
value for the public parameter Q. For initialization on fixed time steps, Q stands
for its serial number. For initialization upon request, Q can be the time given by a
commonly available clock or a string that is sent along with the request.

Although in applications the possibility of initialization without the need for
new key material is crucial for efficiency and robustness, most synchronous stream
encryption proposals in literature do not mention an initialization mapping. When
these schemes are used in practical systems, there is almost always an initialization
mapping. It is however typically described at a higher architectural level, masking
the interaction with the actual synchronous stream cipher. Chapter 10 shows that
the specific choice of the initialization mapping can have an important impact on
the cryptographic security of the resulting synchronous stream encryption scheme.

Since the encrypting stream is independent of the data to be enciphered, it
can be generated in advance and stored for later use. This makes synchronous
stream encryption the most flexible encryption mechanism, ideal for encryption of
data packets in computer networks. Encryption of the communication between two
nodes sharing a secret key can be performed by bitwise addition of an encrypting
stream that

• corresponds to the key K and a parameter Q specific for the package, i.e., its
(not to be encrypted) identifier,

• corresponds to a substring of a precomputed encrypting stream with the offset
sent along with the package.

16 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

2.3.1 Repeated occurrences

If the same value of Q (and K) is used for two different initializations, the corre-
sponding encrypting sequences are equal. This allows an adversary to calculate the
bitwise difference of the two corresponding message sequences from the cryptogram
sequences and should therefore be avoided. This imposes a lower bound on the
number of possible values for Q.

In practical implementations the number of possible internal states a is finite
and hence the iteration of the cryptographic sequence generator must end up in a
finite cycle. To avoid repetitions in the encrypting sequence, these cycles must be
sufficiently long. It is therefore useful to study the cyclic behavior of the crypto-
graphic sequence generators. In general, it is hard to predict the length of a cycle
starting from a specific initial state. However, for updating transformations that
can be considered as representative members of certain classes of transformations,
fairly reliable statistical predictions can be made. In our analysis we make a distinc-
tion between three classes: the set of transformations of ZZna

2 , the set of invertible
transformations of ZZna

2 and transformations with additional algebraic structure.

Let the state updating transformation be uniformly chosen from the set of trans-
formations of ZZna

2 . After loading an initial state a0, the state updating transforma-
tion is iterated until the internal state aτ1 is equal to a state aτ0 with 0 ≤ τ0 < τ1.
Clearly aτ1 is on a cycle with length τ1 − τ0. The sequence of internal states from
the a0 to aτ0 is called the tail . In [41] it is shown that with a state length of na, the
expected tail and cycle lengths are equal and given by (

√
π/8)2na/2. The expected

total number of states on cycles is only (
√

π/2)2na/2.

Let the state updating transformation be uniformly chosen from the set of in-
vertible transformations of ZZna

2 . Since every state has a single predecessor, all states
are on cycles and there are no tails. According to [41], the cycle length distribution
is flat, i.e., every cycle length between 1 and 2na is equiprobable. The probability
that a cycle starting from a given state is shorter than some value λ is equal to λ/2na

and the expected cycle length is 2na−1. The risk of short cycles cannot be completely
eliminated but it can be made arbitrarily small by augmenting the state length na.
Hence, invertible updating transformations are generally more efficient in the use of
the state space than updating transformations that are not invertible.

If the updating transformation has some additional algebraic structure these
statistical predictions are no longer valid. The most important class of finite state
machines with this type of updating transformation are linear feedback shift registers
[95]. These can be designed in such a way that all internal states (except the all-0
state) lie on a single cycle. In this case the risk of short cycles can be completely
eliminated by choosing the length of the linear feedback shift register sufficiently
large.

2.3.2 Filtered counter stream ciphers

The decryption of small parts of a long cryptogram obtained by synchronous en-
cryption can become very inefficient. Decryption of a single cryptogram symbol mi

2.3. SYNCHRONOUS STREAM CIPHERS 17

mt mtct
zt zt

✲

fo

❄⊕ ✲

fo

❄⊕ ✲

κ at at κ

❄ ❄

✲ ✛

✲ ✛

counter counter

J✲

✲

Q

K
J ✛

✛

Q

K

✲ a0

✲ κ

✛a0

✛κ

Figure 2.3: Filtered counter stream encryption.

requires the knowledge of the corresponding internal state ai. This internal state
can be obtained by loading the state register with the initialization values a0 and
κ corresponding to the known key K and parameter Q and subsequently iterating
the stream cipher i times. The effort is the same as for decryption of all cryptogram
symbols before mi. In general, individual message symbols are not easily accessible
from the cryptogram if encryption is synchronous.

The efficiency problems with decryption of a single cryptogram symbol are due
to the iterations of the cipher necessary to transform a0 to ai. For certain updating
transformations, ai can be calculated efficiently from a0 and i. For example, if the
updating transformation consists of a simple incremental counter, we have ai = a0+i.
Other examples of updating transformations that allow such a shortcut are linear
updating transformations such as in linear feedback shift registers or congruential
generators with an updating transformation given by ai+1 = (uai + v) mod m.

Stream ciphers with the property that Fu
i can be efficiently calculated from Fu

are called filtered counter stream ciphers or, equivalently, cryptographic filtered coun-
ters. The algebraic structure inherent in the updating transformation determines
the cyclic behavior of these finite state machines. By choosing the “counter” pa-
rameters in an intelligent way, all states can be arranged in long cycles. Hence, the
two most important motivations for using filtered counter stream ciphers are the
relative ease of access to individual message symbols and the lack of short cycles. A
disadvantage of most filtered counter stream ciphers is that the updating transfor-
mation is very simple and calls for a “strong” output function fo. The operation of
a filtered counter stream cipher is illustrated in Fig. 2.3.

Repeated Occurrences

For filtered counter stream ciphers the design of the initialization mapping is critical.
Suppose for instance that the counter is a simple arithmetic incrementing counter
and the initialization mapping simply maps K to κ and Q to the initial state. If
the adversary chooses two values of Q that differ only by a small number, one of
the corresponding encrypting sequences is simply a delayed version of the other. In

18 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

mt mtct
zt zt

✲

fc

❄⊕ ✲

fc

❄⊕ ✲

κ · · ·

❄ ❄
· · ·
❄

· · · κ

❄❄
· · ·

❄

✛ ✲

J✲

✲

Q

K
J ✛

✛

Q

K

✲ IV

✲ κ

✛IV

✛κ

Figure 2.4: Self-synchronizing stream encryption.

some cases it may also be possible to choose the difference in Q in such a way that
the input to the output function for some time step after initialization is equal for
both sequences.

2.4 Self-synchronizing stream ciphers

In self-synchronizing stream encryption the encrypting bits only depend on the last
nm (called the memory) cryptogram symbols and a cipher key κ. This is modeled by
a self-synchronizing stream cipher consisting of a shift register that contains the last
nm cryptogram symbols and a cipher function fc. This is in fact only a conceptual
model to illustrate the external dependencies. In a specific design the finite input
memory of the self-synchronizing stream cipher can be realized in numerous ways.
A block diagram of self-synchronizing stream encryption is given in Fig. 2.4. The
generation of encrypting symbols is governed by three equations:

(κ, IV) = J(K,Q) , (2.10)

c−nm+1 . . . c0 = IV , (2.11)

zt = fc[κ](ct−nm . . . ct−1) . (2.12)

Unlike for synchronous stream encryption, the initialization mapping is not an
essential component of the self-synchronizing encryption scheme. Loading the key K
and the initial value IV without the intervention of an initialization mapping would
in no way restrict the application domain. However, the presence of the initialization
mapping is important in the description of certain cryptographic attacks that exploit
relations between keys, such as the so-called chosen-key attacks described by Eli
Biham [7].

Decryption is correct if the last nm cryptogram symbols have been correctly
received. An isolated error on the channel between encryptor and decryptor gives
rise to an extra burst of nm potentially incorrectly decrypted symbols, i.e., nmns
incorrectly decrypted bits at the receiver. If the transmission error behavior can be
modeled by a binary memoryless channel, self-synchronizing stream encryption is

2.4. SELF-SYNCHRONIZING STREAM CIPHERS 19

only practical if the bit error rate is significantly smaller than (nmns)
−1. In this case

the presence of the decryptor multiplies the error rate by a factor of nmns.
For channels that suffer from error bursts, self-synchronizing stream encryption

is the natural solution. In this setting the error propagation effect of encryption
is only an extension of every burst with nmns bits. If ns differs from 1, there can
however be an alignment problem after a burst.

The specific advantage of self-synchronizing stream encryption (especially binary,
i.e., with ns = 1) is that they can be built on top of any digital communication system
with minimum cost. This is what makes self-synchronizing stream encryption a very
popular encryption mechanism.

2.4.1 Repeated occurrences

For a given κ the cipher function maps all vectors consisting of nm symbols to
the ciphertext alphabet. A cryptanalyst with temporary access to the input and
output of a decryptor or encryptor can reconstruct part of this mapping. Observed
cryptograms can then be scanned for occurrences of nm-symbol strings with known
cipher function output, giving a single symbol, i.e., ns bits of plaintext for every
occurrence. The expected ratio of ciphertext that can be decrypted in this way
is equal to the number of observed outputs divided by 2nmns. For example, if the
mapping is reconstructed for 2� inputs, scanning a cryptogram of 2ω symbols yields
on the average 2�+ω−nmns message symbols. This only becomes significant if * +ω is
larger than nmns.

A cryptanalyst with access to the cryptogram only can scan it for multiple occur-
rences of nm-symbol strings. For every repeated occurrence, the bitwise addition of
the two message symbols immediately following these strings is equal to the bitwise
addition of two corresponding cryptogram symbols. This yields ns bits of mes-
sage information. Since every cryptogram symbol depends on all previous message
symbols in a complicated way, the distribution of symbol sequences occurring in
the cryptogram can be considered unbiased. Measurable biases in the distribution
of subsequences in the cryptogram indicate cryptographic weaknesses in the self-
synchronous encryption scheme. The probability of having at least one repeated
occurrence, leaking ns bits of plaintext information, only becomes significant if the
length of the ciphertext is of the order 2nmns/2. This is in fact a manifestation of the
well-known birthday paradox [84, p. 273].

2.4.2 Output feedback (OFB) mode

Feeding the output of the cipher function of a self-synchronizing stream cipher back
into the shift register yields an autonomous finite state machine. This machine can
be used as the cryptographic sequence generator in a synchronous stream encryption
scheme. This is illustrated in the left-hand side of Fig. 2.5.

This straightforward construction has the important drawback that the resulting
updating transformation is not invertible. If the symbol length is 1, it is expected
that half of the states have a single predecessor, one in four has no predecessors and

20 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

fc

❄
zt

κ · · ·

❄ ❄
· · ·
❄

✛

fc

❄
zt

κ · · · ✛✛✛

❄ ❄
· · ·
❄

⊕
✻

J✲

✲

Q

K
J✲

✲

Q

K

✲ IV

✲ κ

✲ IV

✲ κ

Figure 2.5: OFB mode of a self-synchronizing stream cipher. At the left: non-
invertible updating transformation, at the right: invertible updating transformation.

one in four has two predecessors. For larger symbol length ns > 4 the number of
predecessors of a state is expected to have a Poisson distribution with λ = 1, i.e.,
Pr(k) = e−1/k!. This yields a state-transition diagram with tails leading to cycles
with a typical length smaller than the square root of the total number of states.

This undesirable cyclic behavior can be avoided by modifying the feedback in
such a way that the updating transformation is invertible. In the right-hand side of
Fig. 2.5 it is shown how this can be realized by introducing an extra memory cell
and a bitwise addition. The predecessor b of a state a can be obtained by shifting
the contents of the shift register a single cell to the right, where the contents of the
leftmost cell is obtained from the additional memory cell. The predecessor value of
the additional cell can be obtained by bitwise addition of the rightmost shift register
cell of a and fc(κ, b). For this construction the cycle length is expected to have a flat
distribution.

2.5 Block ciphers

A block cipher is an invertible transformation parameterized by a cipher key κ. An
essential property of a block cipher is that it is hard to determine the value of κ given
matching pairs of message and cryptogram blocks. A block cipher is a component
that can be used in many different modes [38]. In this section we present the five
most important modes. Two of these modes constitute block encryption schemes
and three stream encryption schemes. These modes have been standardized by ISO
[52].

In all these schemes there is an explicit initialization mapping. As in the case
of self-synchronizing stream ciphers, the initialization mapping is not an essential
component for all the modes. Using K for κ and (for some of the modes) Q for
IV does not restrict their application domain. The presence of the initialization
mapping is needed to model the resistance against chosen-key attacks [7] and because
it is sometimes actually used in practice.

2.5. BLOCK CIPHERS 21

mt mtct✲ B ✲ B−1 ✲

❄

κ κ

❄

J✲

✲

Q

K
J ✛

✛

Q

K✲ κ ✛κ

Figure 2.6: Block cipher in ECB mode.

2.5.1 Electronic code book (ECB) mode

Simple block encryption or the ECB mode of a block cipher is conceptually the
simplest of encryption methods. Encryption and decryption are described by

κ = J(K,Q) , (2.13)

c = B[κ](m) (2.14)

m = B[κ]−1(c) . (2.15)

The corresponding block diagram is given in Fig. 2.6. The block length is denoted
by nb. Isolated sign errors propagate only over a single block while bit slips may
result in the loss of block alignment between sender and receiver.

Ciphertext stealing

If a message consists of a number of bits that is not a multiple of the block length
nb, the last incomplete block can be padded in some reversible way and encrypted.
An example of reversible padding is appending a single 1 followed by zeroes until
the length is a multiple of the block length. This padding operation results in a
cryptogram that is longer than the message. This can give storage or bandwidth
problems if many relatively short messages have to be encrypted. In [79, p. 78]
a method is given to encrypt all messages not smaller than the block length in a
non-expanding way. The message is simply encrypted block by block except the last
complete block and the incomplete block. This method is called ciphertext stealing
and is illustrated in Fig. 2.7.

Repeated Occurrences

If the statistical distribution of the plaintext blocks can be considered uniform,
the analysis of repeated occurrences is analogous to that for self-synchronizing en-
cryption schemes, with the cipher function mapping replaced by the block cipher
transformation and nmns replaced by the block length nb. However, in most practi-
cal cases the statistical distribution of the plaintext symbols may not be considered

22 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

mn−1 mn c′

❄

❄

❄

❄

B B

cn c′ cn−1

cn−1 cn c′

❄

❄

❄

❄

B−1 B−1

mn c′ mn−1

Figure 2.7: Ciphertext stealing for ECB block encryption (left) and corresponding
decryption (right). The block c′ is just an intermediate result and is not a part of
the cryptogram.

mt mtct✲ E ✲ E−1 ✲

❄

κ at κat

❄

U U✛ ✲

✻ ✻

mt mtct✲ E ✲ E−1 ✲

κ · · ·

❄ ❄
· · ·
❄

· · · κ

❄❄
· · ·

❄

✛ ✲

Figure 2.8: Synchronous (above) and self-synchronizing (below) block encryption.

uniform. Messages often are highly redundant, resulting in repeated blocks, even for
relatively short messages. Since the encryption is context independent, the equal-
ity of message blocks can be detected by checking for repeated cryptogram blocks.
Clearly, the repeated block occurrences in the message could be eliminated by proper
compression before encryption.

Still, ECB block encryption has the important drawback that the quality of
the concealment it offers depends on the structure of the message itself. This has
led to the design of a block cipher mode that makes the block encryption context
dependent without augmenting the system complexity and affecting the robustness
too much: the cipher block chaining mode.

2.5.2 Cipher block chaining (CBC) mode

There are essentially two robust mechanisms to make block encryption context de-
pendent. These are illustrated in Fig. 2.8. In one of them the encryption transforma-
tion is made to depend on time. The encryption transformation is parameterized by

2.5. BLOCK CIPHERS 23

the internal state of an autonomous finite state machine, resulting in a synchronous
block encryption scheme. In fact, most of the rotor-based encryption machines in
use before, during and after World War II [58] perform synchronous block encryp-
tion, with the blocks consisting of characters. This excludes the famous Hagelin
M-209 cipher machine [58], which performs synchronous stream encryption with the
symbols consisting of characters. A more recent example is the proposal of Cees
Jansen and Dick Boekee in [56]. In this system the cipher key of the block cipher
consists of the internal state of an autonomous finite state machine.

The alternative mechanism is to make the encryption transformation depend on
a finite number of past cryptogram symbols, resulting in a self-synchronizing block
encryption scheme.

In many practical block cipher implementations, changing the cipher key κ is
a time-consuming operation, typically a few times slower than performing a single
encryption. Therefore, most schemes avoid the need for frequent changes in κ during
encryption. This restricts the application of the context dependent parameters in the
encryption scheme to bitwise addition (or any efficient invertible operation) before
or after encryption.

In the case of synchronous block encryption, the additional system complexity
can be reduced to a minimum by taking a very simple finite state machine such
as an incrementing counter or a linear feedback shift register. However, due to
the predictability of these finite state machines, addition after encryption will in
general not prevent the detection of repeated blocks in the message. For example,
a sequence of several equal blocks cannot be disguised by the addition of the highly
regular sequence. Addition before encryption, on the other hand, has the problem
that there can be interference between the message and the output of the simple finite
state machine, giving rise to repeated inputs to the block cipher. The concealment is
still not message independent. In both cases the concealment can be made message
independent if the finite state machine is realized by a synchronous stream cipher.
However, if a synchronous stream cipher is needed anyway, one might as well remove
the block cipher from the scheme and just do synchronous stream encryption.

A better alternative is self-synchronizing block encryption. The statistical dis-
tribution of the input to the block cipher can be made uniform by adding a value
to the message block that depends on previous cryptogram blocks. The simplest
and most robust solution is to take for this purpose the previous cryptogram block
itself. We have

(κ, IV) = J(K,Q) , (2.16)

c0 = IV , (2.17)

ct = B[κ](mt + ct−1) and mt = ct−1 + B[κ]−1(ct) . (2.18)

This is called the cipher block chaining (CBC) mode of a block cipher and is il-
lustrated in Fig. 2.9. In this scheme every ciphertext depends in a complicated
way on all past message blocks and can be considered uniformly distributed. Er-
ror propagation is limited since a message block only depends on two cryptogram
blocks.

24 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

mt mtct✲
⊕
✻

c
t−1

❄
✲ B ✲ B−1 ✲

⊕
c
t−1

❄ ✻

✲

❄

κ κ

❄

J✲

✲

Q

K
J ✛

✛

Q

K

✲ IV

✲ κ

✛IV

✛κ

Figure 2.9: CBC mode of a block cipher.

Repeated occurrences

As in the case of the ECB mode, a cryptanalyst with temporary access to the input
and output of a decryptor or encryptor can reconstruct part of the block cipher
mapping. Observed ciphertext can then be scanned for occurrences of cryptogram
blocks of which the corresponding plaintext is known, giving a message block for
every occurrence. The expected ratio of ciphertext that can be decrypted in this
way is equal to the number of obtained plaintext-ciphertext block pairs divided by
2nb.

A cryptanalyst who only has access to the cryptogram can scan it for mul-
tiple occurrences of blocks. Say we find ci = cj . We have B(mi + ci−1, κ) =
B(mj + cj−1, κ), hence mj = mi + ci−1 + cj−1. Since the cryptogram symbols are
freely available to the cryptanalyst, this gives nb bits of information about the mes-
sage. The probability of having at least one repeated occurrence, leaking nb bits of
plaintext information, only becomes significant if the length of the ciphertext is of
the order 2nb/2.

Ciphertext stealing

In [79, p. 81] it is shown that ciphertext stealing is also possible in CBC block
encryption. The mechanism is illustrated in Fig. 2.10.

2.5.3 Output feedback (OFB) mode

The updating transformation of a cryptographic sequence generator can be realized
by a block cipher, resulting in a synchronous stream encryption scheme. The most
obvious way to do this is given in Fig. 2.11. For this construction we have

(κ, s0) = J(K,Q) , (2.19)

at+1 = B[κ](at) , (2.20)

zt+1 = sel(at) . (2.21)

2.5. BLOCK CIPHERS 25

mn−1 mn 0
❄⊕
❄ ❄

⊕❄✲✲cn−2

❄❄

B B

cn c′ cn−1

cn−1 cn c′

❄ ❄

B−1 B−1

❄⊕
❄ ❄

⊕❄✲cn−2✲cn‖0

mn c′ mn−1

Figure 2.10: Ciphertext stealing in CBC block encryption (left) and corresponding
decryption (right). The block c′ is just an intermediate result and is no part of the
cryptogram.

mt mtct
zt zt

B B

❄ ❄
at at

❄ ❄

❄ ❄
sel sel

❄ ❄✲
⊕

✲
⊕

✲

κ κ✲ ✛

J
✲

✲

Q

K
J

✛

✛

Q

K

✲ s0

✲ κ

✛s0

✛κ

Figure 2.11: OFB mode of a block cipher.

26 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

mt mtctzt zt
✲

B

⊕
✲

B

⊕
✲

❄ ❄

❄ ❄

sel sel

κ

at at

κ

❄ ❄

✲ ✛

counter counter

J
✲

✲

Q

K
J

✛

✛

Q

K

✲ a0

✲ κ

✛a0

✛κ

Figure 2.12: FCS mode of a block cipher.

The functional block denoted by “sel” selects ns bits of a. It can be seen that the
updating transformation is invertible. The cycle length starting from a certain initial
state has a flat distribution. The symbol length ns can range between 1 and the
block length nb. The efficiency of this mode relative to the ECB mode is ns/nb.

2.5.4 Filtered counter scheme (FCS) mode

The output function of a filtered counter stream cipher can be realized by a block
cipher, resulting in a synchronous stream encryption scheme. This is illustrated in
Fig. 2.12 and described by

(κ, a0) = J(K,Q) , (2.22)

at+1 = at + 1 mod 2nb , (2.23)

zt+1 = sel(B[κ](at)) . (2.24)

Here (2.23) is just an illustrative example of a counter-like updating transformation.
This can also be a linear feedback shift register or a congruential generator. In the
case of (2.23) all internal states are on a single cycle.

2.5.5 Cipher feedback (CFB) mode

The cipher function in a self-synchronizing stream cipher can be realized by a block
cipher, called the CFB mode of a block cipher. This is illustrated in Fig. 2.13 and
described by

(κ, IV) = J(K,Q) , (2.25)

c−nm+1 . . . c0 = IV , (2.26)

zt = sel(B[κ](ct−nm . . . ct−1)) . (2.27)

2.6. CIPHERS AND ENCRYPTION SCHEMES 27

mt mtct
zt zt

✲
⊕

✲
⊕

✲

B B✛

❄

✲

❄

sel sel

κ κ

...
...

✻ ✻
✛

...

✛

✲

...

✲❄ ❄

J✲

✲

Q

K
J ✛

✛

Q

K

✲ IV

✲ κ

✛IV

✛κ

Figure 2.13: CFB mode of a block cipher.

The symbol length ns can range from 1 to the block length nb. The input memory
of the self-synchronizing stream cipher is �nb/ns�. The efficiency of the block cipher
in this mode relative to the ECB mode is ns/nb.

2.6 Ciphers and encryption schemes

In the preceding sections we identified a number of different types of encryption
schemes and a number of different types of ciphers that can be used in the realization
of these encryption schemes. Table 2.1 gives an overview of the relations between
ciphers and encryption schemes.

type of cipher: sync. stream s.-s. stream block

sync. stream encryption straight OFB OFB/FCS

s.-s. stream encryption - straight CFB

simple block encryption - - ECB

CBC block encryption - - CBC

Table 2.1: Modes of use of ciphers to implement different types of encryption
schemes.

2.7 Cryptographic hash functions

A hash function maps messages of arbitrary length to a hash result with a fixed
length. Cryptographic hash functions are designed to make the mapping “resistant
against analysis.” What we mean by this will be treated in Chapter 3.

Next to ordinary cryptographic hash functions, there are also cryptographic hash
functions that are parameterized by a secret key. The external behavior of a cryp-
tographic hash function is simply described by

h = H(M) , (2.28)

28 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

and of a keyed cryptographic hash function by

h = H[K](M) . (2.29)

The hash result h consists of a bit string of a specified length denoted by nh.

In the hashing of long messages, it may be infeasible to store the complete
message during the computation of the hash result. However, this is no problem for
practical cryptographic hash function proposals. They all operate in a sequential
manner, so that messages can be hashed on-the-fly without the need for external
storage. Almost all existing cryptographic hash function proposals can be described
by the succession of the following operations:

• Segmentation: the input is divided into a number (denoted by s) of blocks
mi of equal length and the last, generally incomplete, block ms is padded in a
unique and reversible way;

• Initialization: the initial chaining state d0 is set equal to a value IV fixed
by the specification;

• Iteration: the chaining state is updated sequentially by a chaining trans-
formation G for all message blocks, starting from m1 and ending with ms;

• Result: the hash result is calculated from the final chaining state by the
output transformation Go.

The chaining of a sequential keyed cryptographic hash function is described by

(d0, κ) = J(K) , (2.30)

di = G[κ](di−1, mi) , (2.31)

h = Go[κ](ds) . (2.32)

For a sequential non-keyed hash function we have

d0 = IV , (2.33)

di = G(di−1, mi) , (2.34)

h = Go(d
s) , (2.35)

with IV fixed by the specification. A block diagram of the generic model for sequen-
tial hashing is given in Fig. 2.14.

In many designs it is proposed to append the length of the input in the padding
operation to avoid attacks based on fixed points, such as described on p. 143. In
the scheme of Fig. 2.14 this can be realized by including a counter in the chaining
transformation. If it is detected that the last (incomplete) block arrives, the chaining
transformation performs the padding operation before updating the chaining state.

2.7. CRYPTOGRAPHIC HASH FUNCTIONS 29

J✲K
✲ d0

✲ κ

M ✲ segmentation
mi

✲
✻

G
❄

✛κ d

Go✲

✲

d

κ
✲ h

Figure 2.14: Generic model for sequential hash functions.

2.7.1 Hierarchical hashing schemes

In some applications the message to be hashed may be a very large data structure,
consisting of a hierarchy of files and (sub)directories. A hash result may be required
for every file and directory. This hierarchy can be reflected in the calculation of the
hash results by a recursive structure. The hash result of a file is given by the simple
application of the hash function on the file itself. The hash result of a directory
is given by the application of the hash function on the message consisting of the
concatenation of the hash results of its subdirectories and files.

Such a hierarchical hashing scheme can also be used for speeding up the hashing
process for a single large file by splitting it up into a number of parts. The parts can
be hashed in parallel by a number of processors. The hash result of the file is obtained
by applying the hash function to the message that consists of the concatenation of
hash results corresponding to the parts. This is a variant of a scheme proposed by
Ivan Damg̊ard in [29].

For the hash results to be reproducible it is necessary that the order of the
intermediate hash results and the splitting of the file are fully specified.

2.7.2 Repeated occurrences

In most applications of cryptographic hash functions it is essential for security that,
given a hash result, it is infeasible to find a message that hashes to this value.
This property is denoted by the term preimage-resistant. The property that, given
a message and its hash result, it is infeasible to generate a second message that
hashes to the same result is denoted by the term 2nd preimage-resistant. Another
important property is collision-resistance, denoting that it is infeasible to find a pair
of colliding messages, i.e., that hash to the same result.

The probability of having a collision in a set of * unrelated messages becomes
large if * is larger than 2nh/2. This is again a manifestation of the birthday paradox.
Finding a collision in such a set of * messages in a straightforward way requires
the generation and storage of the * hash results and finding a matching pair by
cumbersome sorting procedures. In practice the memory requirements of such an
attack are more restrictive than the work factor. However, in [87, 88] Jean-Jacques
Quisquater and Jean-Paul Delescaille presented an elegant algorithm to generate
collisions with an expected work factor of approximately 2nh/2 applications of the
hash function and with negligible memory requirements. In this attack, the hash

30 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

function H(M) is used as a transformation ϑ(a) in the space of nh-bit vectors. Start-
ing from some initial value a0, a sequence is generated by the iterated application of
ϑ, i.e., ai+1 = ϑ(ai). For “good” hash function designs, the state-transition diagram
generated by ϑ(a) has a structure that corresponds to that of a transformation cho-
sen uniformly from the space of all possible transformations (see p. 16). This means
that it can be expected that after (

√
π/2)2na/2 iterations of ϑ, a state aτ1 is reached

equal to some earlier state aτ0 . This state is called the point of contact and marks
the place where the tail is joined to the cycle. Clearly, the state aτ1 (or equivalently
aτ0) has two preimages: aτ1−1 on the cycle and aτ0−1 on the tail. Hence, these two
preimages form a colliding pair of messages: H(aτ0−1) = H(aτ1−1). The point of
contact can be located at the cost of a negligible number of additional iterations by
storing only past states which satisfy a specific condition. This is called the method
of distinguished points and was proposed by the same authors in [86]. Clearly, this
collision-generating attack imposes a lower bound on nh.

If the hash function is sequential, a collision may also appear in an intermediate
chaining state. Two different partial messages leading to equal chaining states can
be turned into colliding messages by simply completing both messages with equal
blocks. Hence, it makes no sense to have a hash result longer than the chaining
state.

It can be argued whether the chaining transformation should be invertible or not.
By invertibility is meant that it is easy to calculate the predecessor of a chaining
state given the corresponding message block. Invertibility allows the generation of a
message with a given hash result by performing a meet-in-the-middle attack. Before
the attack a target final chaining state is chosen that corresponds to the desired hash
result. For a large set of message heads an intermediate chaining state is generated
by forward iteration from the initial state. For another large set of message tails an
intermediate chaining state is generated by backward iteration from the target state.
Subsequently, the two sets are inspected for matches in the intermediate chaining
state. By concatenating a head and tail with matching intermediate chaining states
a message is obtained that hashes to the desired result. The probability of success
becomes significant if the product of the sizes of the two sets of messages is of the
order of magnitude of the size of the state space. The lower bound on the length of
the chaining state imposed by this attack has the same order of magnitude to that
imposed by collisions in the chaining state.

If the chaining transformation is non-invertible, this attack is not possible. How-
ever, in this case there must exist pairs of chaining states mapping to the same
chaining state with equal message blocks. It is not inconceivable that for some
proposals this property could be exploited in a global attack.

Finally, for a hierarchical hashing scheme it can be seen that a collision in some
node implies a collision for the hash function itself.

2.8. CONCLUSIONS 31

2.8 Conclusions

The main part of this chapter has been devoted to our taxonomy of encryption
schemes and ciphers. We have shown that the different families of encryption
schemes and ciphers emerge in a natural way from a generic model by imposing
robustness conditions. The choice of the dimensions is a compromise between ro-
bustness and concern for repeated occurrences.

32 CHAPTER 2. ENCRYPTION, CIPHERS AND HASH FUNCTIONS

Chapter 3

Cryptographic Security

3.1 Introduction

Before attacking the actual problem of designing cryptographic primitives, this chap-
ter focuses on the limits to the specification and realization of their cryptographic
properties. We start by introducing the cryptanalytic setting by defining the dif-
ferent ways of access of the cryptanalyst. This is followed by a description of the
important and universal attack of exhaustive key search.

Given a clear and practically relevant definition of security, it would be very
valuable to have a set of practical cryptographic schemes that can be proved secure
with respect to this definition. The difficulties that arise in trying to achieve this
are discussed in Sect. 3.3. We argue that the traditional approaches to the design of
provably secure schemes are irrelevant to the design of cryptographic hash functions,
single-key ciphers and encryption schemes. In Sect. 3.4 we show that terms such
as “cryptographic security” actually must be seen as carriers of commitment in
the interaction between cryptologic experts and laymen and within the cryptologic
community itself.

We introduce the terms K-secure and hermetic to denote two intuitive security-
related notions about cryptographic schemes. Both notions are formulated as the
security relative to the majority of so called super schemes that model all possible in-
stances of the given types of cryptographic schemes. Finally, we treat the limitations
to manipulation detection realized by the encryption of redundant messages.

3.2 The cryptanalytic setting

One of the basic working assumptions of cryptography was first explicitly formulated
over a century ago by the leading cryptographer Auguste Kerckhoffs (1835-1903)
[58], and is therefore called:

Kerckhoffs’ Principle: a designer should assume that the entire mechanism of
encipherment (or hashing), except for the value of the secret key, will be known to
the enemy cryptanalyst.

33

34 CHAPTER 3. CRYPTOGRAPHIC SECURITY

This can be reformulated to give: the part of the scheme that is unknown to the
enemy cryptanalyst is called the key . If the key of one field application is com-
promised, it should not give away any information on other field keys. Taken to
its ultimate consequence, this implies that every field key must be chosen from the
key space according to a uniform probability distribution. Therefore it is a work-
ing assumption in most cryptologic literature that the cryptanalyst has no a priori
information about the key.

In many real-world applications this is not the case. Non-uniform key selection
occurs for instance when keys are derived from user-chosen passwords. Another
typical situation is the “partial” use of the key in an encryption scheme. Consider
an application for which it has been decided that a key length of 64 bits is sufficient,
and the selected encryption scheme has a key length of 256 bits. This incompatibility
is typically resolved by letting the 256-bit encryption key consist of the 64-bit key
followed by zeros (or any other constant), or the 64-bit key four times repeated.

Non-uniform key selection as compared to uniform key selection diminishes the
level of protection and is widely considered to be bad practice. The solution to
problems related to it should consist in replacing the key selection mechanism itself.
This point of view plainly ignores the reality of systems design. Typically, a working
system has to be assembled using prespecified building blocks, among them cryp-
tographic ones. Allowing only uniform key selection strongly limits the application
domain of specific cryptographic schemes. Therefore it is essential to take the effects
of non-uniform key selection into account.

3.2.1 Ways of access

We consider an encryption scheme consisting of an encryptor and a decryptor, both
loaded with a certain key Kt and connected by a publicly accessible channel. Ac-
cording to the situation at hand, the access of the cryptanalyst can vary greatly. In
analyzing the privacy protection given by encryption schemes, a number of different
access modes for the cryptanalyst can be considered:

1. Seeing cryptograms

(a) while having some statistical knowledge about the messages;

(b) corresponding to (partially) known messages;

(c) corresponding to (partially) chosen messages;

2. Seeing messages corresponding to chosen cryptograms.

1(a) is traditionally called ciphertext-only , 1(b) known-plaintext , 1(c) chosen-plaintext
and 2 chosen-ciphertext . In many cases it is advantageous to base the choices on
information obtained from previous steps. This is denoted by the term adaptive.

3.2. THE CRYPTANALYTIC SETTING 35

Complementary to all these access modes is the ability of the cryptanalyst to
manipulate the initialization mapping:

1. Choose the public parameter Q;

2. choose the initialization mapping itself.

These two additional modes of access are useful if an encryption scheme has to be
designed using a specific cipher. An example of a class of attacks that specifically
exploit these modes of access are the related-key attacks [7].

For a keyed cryptographic hash function the modes of access available to a crypt-
analyst are seeing the hash results

1. and having some statistical knowledge about the messages;

2. corresponding to known messages;

3. corresponding to chosen messages.

For a non-keyed cryptographic hash function, there is no difference between the
access of legitimate users and enemy cryptanalysts since there is no secret informa-
tion involved.

3.2.2 Exhaustive key search

In exhaustive key search the goal of the cryptanalyst is to determine the key Kt

(target key) that is used in a cryptographic scheme. It consists of exhaustively elim-
inating all keys not equal to the target key by establishing that they are inconsistent
with some available piece of information. For keyed hash functions this information
consists of some messages and their corresponding hash results. For encryption
schemes this information is a cryptogram obtained by encryption of a message using
the target key, together with the message itself or some a priori knowledge about the
message. This a priori knowledge can be the fact that the message is ASCII coded
text, contains digitized images or sound or contains checksums that must match.

In most cases the a priori information can be characterized by a certain amount
of redundancy. A message that has a certain amount of redundancy in a given
context can be compressed. The relative redundancy r of a message is the difference
between the length of the message and the length of the message that would be
obtained using an “optimum” coding scheme, divided by the message length. For
example, the ASCII file corresponding to Chapter 1 of this thesis contains 13,442
bytes. After compression with the gnu software compression facility gzip this is
reduced to 5,201 bytes. Hence, the relative redundancy in this file is at least 61 %.

If the message is known, a key is eliminated if it does not map the message to
the observed cryptogram or hash result. A wrong key will map a v-bit message to
the correct cryptogram by chance with probability 2−v. If the key length is nk, the
expected amount of wrong keys that are not eliminated is 2nk−v. This also holds for
keyed hash functions, with v denoting the total number of hash result bits available

36 CHAPTER 3. CRYPTOGRAPHIC SECURITY

to the cryptanalyst. Hence, it is expected that the target key will be uniquely
determined if v > nk.

If the message itself is not known, but only some a priori information, a key
can be eliminated if the key maps the cryptogram to a message that is “invalid”
with respect to the a priori information. The probability that a wrong key maps
the cryptogram to a valid message is equal to 2−rv with v denoting the length of
the cryptogram. Hence, the target key can be uniquely determined if v > nk/r.
The right-hand side of this inequality is called the unicity distance, a term that was
introduced by Claude Shannon [99]. Since it has the relative message redundancy in
the denominator, the unicity distance can be made arbitrarily large by compressing
the message. This may result in a unicity distance larger than the total length of all
cryptograms that are encrypted using the target key. In this situation a cryptanalyst
with only access to the cryptogram is in principle unable to determine the target
key. There are however two problems with this approach:

• No practical compression scheme can squeeze out all redundancy. In fact,
redundancy is not an absolute property of an individual message but depends
on the cryptanalyst’s contextual and a priori knowledge.

• More fundamentally: we want encryption schemes to be secure, independent
of the structure of the encrypted data.

In [49] Martin Hellman showed that the expected work factor of exhaustive key
search for block ciphers can be decreased at the cost of additional storage and pre-
computations. In this attack the cryptanalyst requires the ciphertext corresponding
to a chosen plaintext block. The work factor for finding a single secret key can
be decreased to 22nk/3 encryptions if a table of 22nk/3 blocks is precomputed in a
preprocessing phase. This preprocessing phase has a work factor of 2nk encryptions
and must be done only once for a given block cipher. The attack also applies to
keyed hash functions and can be easily parallelized.

Finally, if the cryptanalyst has some a priori knowledge of the key, the expected
effort of exhaustive key search can be minimized by scanning the key space starting
with the keys with the highest probabilities.

3.3 Provable security

It would be very desirable for a cryptographic scheme to have some provable security
properties, guaranteeing absolute protection or some lower bound on the amount of
work it takes to successfully cryptanalyze the cryptographic scheme. In the following
sections we discuss in an informal way the complications that arise in trying to design
provably secure cryptographic schemes. The design effort of provably secure schemes
is mainly inspired by two distinct theories: information theory and computational
complexity theory.

3.3. PROVABLE SECURITY 37

3.3.1 Information theoretic approach

Information theory was founded by Claude Shannon in [98] and applied to cryptog-
raphy in [99]. It deals with the possibility of attack, without taking the cryptanalytic
effort into account. Encryption and cryptographic hashing can be applied for the
protection of two aspects of communication: its privacy and its authentication.

Privacy

The privacy provided by an encryption scheme is unconditional if the cryptograms
are of no use in trying to guess the messages. Encryption schemes with this property
exist and are called perfect . Shannon [99] defined an encryption scheme to be perfect
if the cryptogram is statistically independent of the message. He showed that perfect
privacy can be achieved only when the secret key is at least as long as the plaintext.
This was already achieved in the so-called one-time pad proposed by Gilbert Vernam
two decades earlier [103]. The fact that the key is as long as the message restricts
the application domain of perfect encryption schemes to some rare exotic instances
such as spy communications and the Washington-Moscou hotline. In virtually all
modern applications encryption is applied to reduce the problem of protecting the
confidentiality of a large message by that of a short key. For this purpose perfect
encryption schemes are useless.

In the remaining part of this section we briefly discuss the concepts of local
randomness and randomized ciphers, both inspired by information theory. For a
thorough information-theoretic treatment of these and some other concepts related
to provably secure privacy we refer to the doctoral dissertation of Ueli Maurer [73].

The concept of local randomness in encrypting sequences of synchronous stream
ciphers was introduced by Claus Schnorr [97]. It is motivated by considering provable
security against an adversary with limited access. The adversary is assumed to be
limited in the number of encrypting bits that he can obtain but is free to choose the
positions of these bits. This unrealistic cryptanalytic setting renders this concept
quasi useless in the context of provably secure stream encryption. An upper bound
for the number of encrypting bits that the adversary is allowed to obtain in this
model is given by the number of key bits. If more encrypting bits are given, the key
can be identified by exhaustive key search.

In [73] Ueli Maurer presents a strongly randomized cipher that is shown to be
“perfect with high probability”. The basic idea of this encryption scheme is that
the adversary obtains no information about the plaintext with probability very close
to one unless he accesses a substantial fraction of a large publicly accessible string
of bits, called the randomizer . It is proved that, if this fraction is below some
limit, the enemy’s entire observation, consisting of the cryptogram and the examined
randomizer bits, is statistically independent of the message. Although this is not
an unconditionally secure encryption scheme, we agree with the designer that, of
all proposals, this is the closest thing to a provably secure cipher. Unfortunately,
the need for the publicly accessible randomizer makes this encryption scheme highly
impractical.

38 CHAPTER 3. CRYPTOGRAPHIC SECURITY

Authentication

Authentication is a more complex concept than privacy. The simplest model is
that of a single sender, a single receiver and an insecure channel. In this model,
authentication is concerned with the fact that every received message was sent by
the legitimate sender and has not been modified during transmission. For a good
treatment of authentication from an information-theoretic point of view we refer to
the third chapter of the doctoral dissertation of Bart Preneel [84]. An extensive
overview of authentication is given by Gus Simmons in [100].

The messages are converted into cryptograms, parameterized by some secret
key that is shared between sender and receiver. These cryptograms may or may
not conceal the message. In the simplest model, a deception attack performed
by an adversary consists of the observation and subsequently the modification of
that cryptogram (substitution attack) or the sending of a cryptogram without prior
observation (impersonation attack). Clearly, unconditional security in the sense that
the probability of detection of substitution or impersonation is 1, is impossible. For,
it is always possible that an adversary sends a random cryptogram that happens to
be valid.

Information theoretically, a lower bound on the probability for a successful de-
ception attack is given by 2−nk/2 if the nk-bit key is only used once [84, 100]. If the
same key is used for more than a single message, this probability drops to 2−nk/(�+1)

with * the number of observed cryptograms. This implies that for a given proba-
bility of success of a deception attack Pd the amount of key bits per authenticated
message must be larger than − log2 Pd. Hence, for a given security level the number
of key bits is proportional to the number of messages that have to be authenticated.

One could argue that this key material could be communicated over the same
channel, using a high-level cryptographic system that ensures the privacy and the
authentication of the communication based on some fixed secret master key. How-
ever, the security of the resulting system consisting of the message authentication
system and this key communication system is also limited by the information theo-
retic bounds. Hence, cryptographic systems that have some (information-theoretic)
provable level of security with respect to authentication are impractical for the same
reasons that encryption schemes providing perfect privacy are impractical.

3.3.2 The complexity theoretic approach

Computational complexity theory is a subdiscipline of computer science that studies
the time and memory resources needed in the execution of algorithms. After the
introduction of public key cryptography by Whitfield Diffie and Martin Hellman
in [31], a growing part of the cryptologic community has concentrated on devis-
ing cryptographic schemes and protocols inspired by this theory. Its popularity in
cryptography is due to different factors. Some researchers have (had) the idea that
computational complexity theory enables one to design cryptographic schemes that
are provably secure under reasonable assumptions. Other researchers believe that,
despite the fact that practical provable security by applying computational com-

3.3. PROVABLE SECURITY 39

plexity seems to be out of reach, it can serve as a guiding light towards sound design
principles.

For a thorough general treatment of computational complexity theory we refer
to [42]. In this section we give an informal discussion on the theory as applied in the
field of cryptography. Complexity theory considers computational problems that
are defined for arbitrary input lengths. The central subject is the asymptotic time
and memory resources, denoted by the term complexity, needed by problem-solving
algorithms for some reasonable model of computation. By emphasizing on the dis-
tinction between polynomial complexity and non-polynomial complexity, the theory
is to a large extent independent of the particular computation model. Problems that
can be solved with resources (time, memory) that grow only polynomially with the
input size are considered easy. Problems for which no solving algorithm has been
found with a complexity that grows polynomially with its input size are considered
difficult.

This is expressed in the central concept in computational complexity theory, the
distinction between two classes of problems: P and NP. The class NP (nondetermin-
istic polynomial) consists basically of all decision problems (that can be answered
by yes or no) that, if the answer is yes, it can be verified in polynomial time. A
typical example of a problem in NP is the traveling salesman problem, i.e., “Given
a set of cities, the distances between them and a bound B, does there exist a tour
of all the cities with a total length B or less?”. If someone claims that the answer is
yes, we can ask him or her to give us the order of the cities that constitutes the tour
and simply verify the answer by adding the corresponding distances. The class P
(polynomial) is the subset of NP that can be solved in polynomial complexity. It is
still an open question whether P equals NP, and many computer scientists consider
this to be the single most important open question in computational complexity
theory.

The principal technique in finding interrelations and bringing structure in this
theory is that of reducing one problem to another. This involves a constructive
transformation of any instance of the first problem to an equivalent instance of the
second. Such a transformation provides the means for converting any algorithm
that solves the second problem into a corresponding algorithm for solving the first
problem. A transformation is called polynomial if the input length of the second
problem is polynomial in the input length of the first problem. The reduction of one
problem to another must be realized by a polynomial transformation.

Any problem that can be reduced to a problem in P, belongs to P itself. In this
way, another subset of NP is defined as the set of problems to which any problem
in NP can be reduced. This set has been shown to be non-empty and its elements
are called NP-complete. These can be considered the “hardest” problems in NP.
If a single NP-complete problem could be reduced to a problem in P, this would
imply P = NP. The fact that nobody has succeeded in doing this, is taken as
strong circumstantial evidence that P differs from NP. Related to the NP-complete
problems are the NP-hard problems. This is a larger class of not necessarily decision
problems, that can be proved to be at least as hard as an NP-complete problem.

From the computational complexity theoretic point of view, the best one can

40 CHAPTER 3. CRYPTOGRAPHIC SECURITY

do is to base a cryptographic scheme on some NP-hard problem. Intuitively, this
means that some NP-hard problem can be reduced to a problem of which the so-
lution consists of successfully cryptanalyzing the cryptographic scheme. There are
some constructions and corresponding definitions of security for which this has been
achieved. For example, Russell Impagliazzo and Moni Naor used the knapsack to
construct a “Pseudo-random String Generator” and a “Universal One-Way Hash
Function” [55]. They proved the equivalence of the security (with their definition)
of these primitives to the intractability of the knapsack problem. Still, the result-
ing “provable security” of schemes this type of must be seen in the framework of
computational complexity theory:

• Computational complexity theory only makes a distinction between polyno-
mial and non-polynomial asymptotic complexity, disregarding constant factors
and the degrees of the polynomials involved. In every practical application of
a cryptographic scheme the dimensions, linked to the input length of the cor-
responding “hard” problem, must be fixed. Hence, computational complexity
does not give any information whatsoever on the security of a specific crypto-
graphic scheme with fixed dimensions.

• The complexity of a class of problems is the minimum complexity of all known
algorithms that solve all problems in that class. This is a worst-case mea-
sure. This is illustrated by the fact that every class of NP-complete problems
has an indefinite number of subclasses that are in P [42]. Hence, even in
the asymptotic framework computational complexity theory fails to provide a
lower bound on the complexity for successful cryptanalysis of a cryptographic
scheme.

The main results of applying computational complexity theory in cryptography
are the constructions of cryptographic schemes and protocols in terms of simpler
building blocks. Families of cryptographic schemes make use of a “general” family
of functions that has some well-defined asymptotic intractability property. The re-
sulting families of schemes have an intractability property that provably holds if the
intractability property of the underlying function family holds. Examples of these
underlying function families are families of “one-way functions” [94] or “claw-free
functions” [28]. The supposed relevance of these constructions is twofold. First
of all, these constructions give a conditional proof of existence for cryptographic
schemes with specific intractability properties based on some simple (albeit unprov-
able) assumption. Second, the constructions can be used to build real cryptographic
schemes by specifying the underlying function family. It is argued that these con-
structions can be useful in the design of cryptographic schemes that have some sort
of provable security. Here the term provable refers to the reduction that makes
successful cryptanalysis of the cryptographic scheme equivalent to solving the in-
tractable problem associated with the underlying function.

Computational complexity theory has contributed to a narrow-minded reduc-
tionistic design approach that we denote by N-reductionism. In this approach the
emphasis is on the provable reduction of the security of a cryptographic scheme to

3.3. PROVABLE SECURITY 41

that of its components. The underlying assumption is that the design of components
with the desired properties is easier than the more general design problem of the
cryptographic scheme itself. We believe the effect of this approach to range between
useless to harmful for several reasons:

• In practice there is no way to verify the underlying assumption. In some
cases it can even be shown that the component functions are in fact harder
to build. The N-reductionist approach is effectively a compartmentalization
of the design problem. The design of the component functions can be seen
as local optimization as opposed to global optimization when a less restricted
design approach is taken.

• By emphasizing the reduction, the real design issues are often neglected. The
reduction is considered to be the “fundamental” and “scientific” part of the
construction, while the design of the underlying component functions is by its
nature “ad hoc” and therefore less interesting.

• The term “provably secure” that is sometimes used in this context gives a false
impression of security if not all assumptions are explicitly stated.

For schemes where the reductions are performed in a computational complexity
theoretic framework, some additional complications occur:

• Reductions that are valid in a computational-theoretic framework can be com-
pletely useless in constructions for cryptographic schemes where some fixed
level of security is expected. For example, a simple block cipher is not con-
sidered secure if an attack exists that is very much faster than exhaustive key
search. In this way it is possible to build a block cipher family that is prov-
ably secure in a computational complexity theoretic framework, but is still
hopelessly insecure and inefficient compared to even the weakest of practical
proposals with the same dimensions.

• Because of the asymptotic nature of computational complexity theory, com-
puter scientists are inclined to postpone the decision of fixing the dimensions
even after specification of the underlying function. Instead of a single function
a complete function family must be specified, one for every dimension value.
This restricts the underlying function to scalable functions that are typically
very inefficient.

Our objections to the N-reductionist approach are illustrated by three specific
examples. In Chapter 4 we discuss the design principle for hash functions proposed
by Ivan Damg̊ard in [29] and by Ralph Merkle in [77]. In Chapter 9 we discuss
two design principles for self-synchronizing stream ciphers proposed by Ueli Maurer
[74] and in Chapter 10 a block cipher construction proposed by Shimon Even and
Yishay Mansour [34].

42 CHAPTER 3. CRYPTOGRAPHIC SECURITY

3.4 Security in practice

From the previous discussions it can be concluded that we have no hope of build-
ing practical ciphers, encryption schemes or cryptographic hash functions that are
provably secure under some realistic assumptions. Still, the need for ciphers and
cryptographic hash functions faces us with the design problem.

The absence of a proof of security for practical cryptographic schemes causes
cryptographic security to be linked to the concept of trust. Even if an objective
definition of cryptographic security is possible, to a proposition such as “cipher X
is cryptographically secure” cannot be attributed a truth value since the validity of
the statement cannot be checked (in principle). However, the proposition “Person B
trusts cipher X to be cryptographically secure” can indeed be true or false, depending
on the willingness of person B to use cipher X in his security implementation. If
a person C makes the statement “Cipher X is cryptographically secure” addressed
to person D, this must not be seen as a transfer of information from C to D, but
as a commitment of person C to cipher X addressed to D. If D can be convinced
that cipher X does not comply with the agreed upon definition of cryptographic
security C, this must have consequences for person C. It is the importance of these
consequences and the reputation of person C in the eyes of person D that make the
strength of the commitment.

The widespread use of a cryptographic scheme implies the widespread trust in
the cryptographic security of the scheme. Every user must be convinced that the
scheme provides the cryptographic security that is needed for his or her application.
Since not everyone considers himself to be an expert in cryptography, most users
are unable to convince themselves of the security by inspecting and analyzing the
cryptographic scheme itself. The trust of the users originates in the commitment
of individuals or institutions that are trusted by the user. This can be applied in a
transitive manner, e.g., a citizen trusts his government that trusts its cryptographers.
Observe however that every chain of trust must originate in a commitment. In this
context, the “cryptographic strength” that is attributed to a cryptographic scheme
is the strength of the original commitment.

When a cryptographic function is first published, the trust in its security is
typically limited to a very small group of people. If the function is an attractive
goal for cryptanalysis, it can gain the trust of more people by resisting cryptanalysis,
despite public scrutiny by colleague cryptologists. When no weaknesses are found
that affect the cryptographic security of the function, the amount of trust in it
grows with the joint cryptanalytic effort against it. This gradual build-up of trust
is abruptly broken off if a weakness is demonstrated.

In this context it is easy to see the appeal of cryptographic schemes of which the
successful cryptanalysis is related to solving some long-standing (typically number
theoretical) open problem. These functions can gain a high trust level almost im-
mediately, based on the widespread belief in the hardness of the long-standing open
problem.

The differences in the implicit understandings of what constitutes security may
give rise to arguments whether certain demonstrated weaknesses are harmful. This

3.4. SECURITY IN PRACTICE 43

can be minimized if the scheme is accompanied by a claim of security and a clear
definition of this security. Ideally, a definition of security would involve the real-
world concerns related to economical cost. This would however exclude a rigorous
formal mathematical definition and make the security depend on the economical
and technological circumstances. The complexity and indeterminism in these areas
would leave room for different interpretations that can give rise to arguments. It
seems plausible that a rigorous definition based on some formal model could elim-
inate all margins of interpretation. However, in that case the appropriateness of
the formal model itself can be questioned. Therefore, our definitions of security are
stated in an informal manner.

A security claim is not something that one should expect to be proved by the
designer. The claim has two different functions. For potential cryptanalysts, it
serves as a challenge. Effective cryptanalysis consists of demonstrating weaknesses
that refute the claim. If the function has withstood public scrutiny through time
by the absence of effective cryptanalysis, the claim serves as the specification of the
security of the cipher for system engineers and users who trust it.

3.4.1 The cryptologic activity

The “cryptologic activity” is the joint effort of the design of cryptographic prim-
itives and the analysis of their possibilities and limitations. The group of people
that are involved in this activity is generally referred to as the cryptologic commu-
nity. Important results are communicated in presentations at scientific and technical
conferences and in papers in the proceedings of these conferences or in journals.

Central in the cryptologic activity is the iterative interaction between cryptog-
raphy and cryptanalysis. Cryptanalysis shapes cryptography by the fact that new
designs and design strategies must be resistant against known attacks or types of
cryptanalysis. New cryptanalytic results in their turn arise from attacks on previ-
ously proposed designs.

Cryptologic results range from specific particular designs and attacks to general
applicable design strategies and cryptanalysis. Many members of the cryptologic
community consider it to be the goal of cryptologic activity to expand our theoretical
cryptologic knowledge by doing fundamental scientific research. In this approach the
emphasis is on general and fundamental results that hold irrespective of the details of
the cryptographic functions to be designed. The design of particular cryptographic
functions is considered to be a mere application of this theory. In our opinion this
point of view does not correspond to what really goes on and gives rise to a false
impression of theoretical knowledge.

On the one hand, some theories have developed in a direction of their own,
detached from the limitations and needs of the real world. In some cases they only
describe aspects of models that are irrelevant in practical applications, in other cases
models have been introduced that can have no application at all. On the other hand,
for many so-called fundamental results it can be observed that they are in fact very
specific for a certain design approach inspired by existing proposals, that are by
nature historical instead of fundamental. The actual influence of existing, specific

44 CHAPTER 3. CRYPTOGRAPHIC SECURITY

designs is so pervasive that it is even implicit in the choice of the research problems
to be addressed.

Even most of the fundamental (in that they are widely applicable) cryptologic
principles have emerged in the context of particular designs. For example, both
differential and linear cryptanalysis, described in Chapter 5, were developed in the
cryptanalysis of particular block ciphers.

In the domain of single-key cryptography and cryptographic hash functions, the
emphasis on theory has given rise to the fact that, for the different types of ciphers
and hash functions, there is only little variation between the different particular
designs. Since most of the widely applicable results originate from particular designs,
we consider this to be an undesirable situation.

In our opinion the useful results of cryptologic activity consist of practical cryp-
tographic designs and a better understanding of their possibilities and limitations.
In the context of cryptology, supporting theories are nothing more than means to
reach that goal. The central activity of cryptology is the iterative interaction of par-
ticular designs and cryptanalysis. It can be argued that the widespread adoption of
this point of view may lead to a chaotic situation with an ever growing number of
competing proposals and attacks. This argument ignores the very important criteria
of cost, performance and portability that will mark some designs as more valuable
than others.

For a new design to be noticed, it should at least be superior in some way to
existing designs with comparable security. Of course, new proposals are not designed
from scratch. Typically, many new proposals will be improved (with respect to
cost, performance and portability) or adapted (to patch up security holes) versions
of existing designs. With the introduction of improved and adapted versions the
previous proposals will disappear from the field of interest. In some cases the new
versions may in fact turn out to be inferior, and the old proposals may surface again.
As time passes, “better” proposals are expected to emerge. The proposals that
combine low cost, high performance, high portability and immunity to cryptanalysis
will demand most of the attention of the cryptologists. In this way inferior designs
would simply disappear into oblivion.

The reputation of a cryptographic design may be affected as much by rumors
and speculation as by effective attacks. A good example is the speculation about
the block cipher DES [37]. The details of the design process of DES have never been
published, and this has given rise to speculation that DES would have a so-called
trapdoor . A trapdoor is a feature built into a cryptographic primitive that gives
the designer the possibility to circumvent in some way the security offered by the
primitive without being noticed by the public. Of course, the risk of rumors and
speculations cannot be eliminated. However, their credibility can be minimized by
completely specifying the design process and fully explaining and motivating every
design decision. In this respect it is a good idea to make the design as simple as
possible.

Finally, it must be mentioned that in practice personal, commercial, political and
strategic interests have an important impact on the course of cryptologic activity.
We realize that the situation described in the previous paragraphs is a remote ideal

3.5. DEFINITIONS OF SECURITY 45

and that even a (miraculous) change of mentality in the cryptographic community
will not be sufficient to reach it.

3.5 Definitions of security

In general, the cryptographic security that is required from a cipher depends on the
application. Therefore, cryptographic security of a cipher can best be defined as
security in the worst possible circumstances. Clearly, a cipher that is claimed to be
cryptographically secure by this definition, is claimed to be secure in all applications.
In this section we introduce two new security-defining terms that capture the high
security requirements that we expect from our designs.

We will define a number of types of cryptographic “super” schemes. The set
of super schemes of a particular type with given dimensions contain all possible
schemes of that type. The essential property of a uniformly chosen super scheme is
the absence of redundancy in the mappings it realizes. The properties of the sets of
super schemes serve as a reference in our definitions of security.

3.5.1 Super ciphers

We distinguish four different classes of super ciphers: synchronous stream ciphers,
filtered counter ciphers, self-synchronizing stream ciphers and block ciphers. For
every super cipher it is assumed that the bits, used to specify it, originate from a
binary symmetric source (BSS). A BSS is a generator of bits, where the probabilities
that particular bits are 1 or 0 are equal and mutually independent.

• Synchronous stream cipher

– dimensions: nκ, ns, na.

– for every value of κ an invertible state updating transformation is specified
by a table with 2na entries containing na-bit states. This cipher can be
described by na2

na+nκ bits. The encrypting symbol zt consists of the state
bits with indices 0 to ns − 1.

• Filtered counter cipher

– dimensions and parameter: nκ, ns, na, specific counter.

– for every value of κ an output function is specified by a table with 2na

entries containing ns bit output symbols. The number of bits needed to
specify this output function is ns2

na+nκ.

• Self-synchronizing stream cipher

– dimensions: nκ, ns, nm.

– for every value of κ a cipher function is specified by a table of 2nsnm entries
containing ns-bit output symbols. The number of bits needed to specify
the cipher function is ns2

nsnm+nκ .

46 CHAPTER 3. CRYPTOGRAPHIC SECURITY

• Block cipher

– dimensions: nκ, nb.

– for every value of κ a permutation is specified by 2nb entries containing
nb-bit blocks. This cipher can be described by nb2

nb+nκ bits.

In the case of the updating functions of the super synchronous stream cipher and
the block cipher mappings, the invertibility condition prevents the straightforward
generation of the tables by simply filling in bits originating from the BSS. Another
procedure must be followed to use the BSS bits to select the transformations of
ZZna
2 (or ZZnb

2) from the set of 2na! (or 2nb!) possible invertible transformations in a
non-biased way.

It is not impossible that a super cipher is generated with an exploitable weakness.
In fact, given the type of cipher and its dimensions, all possible instances have the
same probability of being generated. For instance, in the case of block ciphers this
includes the block cipher consisting of the identity transformation for every key. For
practical values of the dimensions however, these sets of ciphers with exploitable
weaknesses form a negligible minority.

3.5.2 Super encryption schemes

The injudicious choice of an initialization mapping can give rise to an insecure
encryption scheme, even when a super cipher is used as its main building block.
Such an initialization mapping is called unsound . A necessary condition for an
initialization mapping to be sound is that for a given value of K (or Q), its output
determines the value of Q (K) completely. Hence, it is invertible both with respect
to the key K and to the public parameter Q. In a filtered counter cipher the
initialization mapping must also prevent the exploitation of repeated occurrences.

An encryption scheme is a super encryption scheme if its initialization mapping
is sound and the cipher that it contains is a super cipher. A super encryption scheme
is described by a type-dependent set of dimensions.

3.5.3 Super cryptographic hash functions

A super cryptographic hash function has only a single dimension: the length of the
hash result nh. Since its specification would require an infinite number of bits because
there is an infinite number of possible messages, a more “operational” specification
will be given.

We will first describe a non-keyed super cryptographic hash function. The hash
function can be evaluated by requesting the hash result for a given message at a
central site. This site handles the requests in a sequential manner, one message at
a time, and keeps a data base containing all previous messages. When a request is
handled, it is checked whether the given message is in the data base. If not, a new
hash result is generated by a BSS. The data base is updated and the hash result
is sent back to the applicant. If the message is in the data base, the corresponding

3.5. DEFINITIONS OF SECURITY 47

hash result is sent to the applicant. In this way, the same message always gives rise
to the same hash result.

A keyed variant has an additional dimension, the key length nk. It can be specified
by a variant of the above procedure where every occurrence of “message” is replaced
by “(message,key) couple”. This can also be considered as a central site handling
2nk different hash functions, one for each key.

3.5.4 K-secure primitives

Definition 3.1 An encryption scheme is K-secure if all possible attack strategies
for this scheme have the same expected work factor and storage requirements for the
majority of corresponding super encryption schemes. This must be the case for all
possible modes of access for the adversary and for any a priori key distribution.

Definition 3.2 A cipher is K-secure with respect to an initialization mapping if
all possible attack strategies for the resulting encryption scheme have the same ex-
pected work factor and storage requirements for the majority of corresponding super
encryption schemes. This must be the case for all possible modes of access for the
adversary and for any a priori key distribution.

Definition 3.3 A keyed cryptographic hash function is K-secure if all possible attack
strategies for this function have the same expected work factor and storage require-
ments for the majority of corresponding super keyed hash functions. This must be
the case for all possible modes of access for the adversary and for any a priori key
distribution.

One can consider the security of a cipher when used with a variety of initialization
mappings and in a variety of modes of use. For example, the simplest way to turn
a block cipher into an encryption scheme is the ECB mode, with an initialization
mapping that simply maps K to κ without the intervention of a public parameter.

At best, a cipher can be so strong that the specific choice of the (sound) initial-
ization mapping has no influence on the security of the resulting scheme. At worst,
no secure scheme can be built around the cipher without choosing an initialization
mapping that has certain cryptographic properties on its own. For a given cipher,
classes in the space of all possible initialization mappings can be identified with
respect to which the cipher is K-secure. The flexibility of the cipher grows with the
size of these classes.

K-security is a very strong notion of security. It can easily be seen that all the
following weaknesses cannot occur in K-secure encryption schemes or keyed hash
functions:

• existence of key-recovering attacks faster than exhaustive search,

• certain symmetry properties in the mapping,

• occurrence of large classes of weak keys,

48 CHAPTER 3. CRYPTOGRAPHIC SECURITY

• related-key and resynchronization attacks,

• (for keyed hashing) existential forgery attacks more efficient than exhaustive
key search.

Existential forgery [84, p. 41] consists of the determination of the hash result for at
least one plaintext (that may be nonsensical).

K-security is essentially a relative measure. It is quite possible to build a K-
secure block encryption scheme with a 5-bit block and key length. The lack of
security offered by such a scheme is due to its small dimensions, not to the fact that
the scheme fails to meet the requirements imposed by these dimensions.

The term cascade cipher was defined in [99] as a cipher that consists of the
composition of a number of ciphers with independent cipher keys. Hence, a cascade
cipher converts a plaintext symbol into a ciphertext symbol by first applying cipher
mapping 1, followed by cipher mapping 2 and so on. In [75] Ueli Maurer and Jim
Massey prove that a cascade cipher with commutative component ciphers (e.g.,
most synchronous stream ciphers), is as cryptographically secure as its most secure
component cipher. The results are presented in a rather informal manner, since it
is argued that they hold for every reasonable formalism. Remarkably, they do not
hold with respect to K-security.

The ciphers treated in [75, 99] are in fact what we call encryption schemes. A
cascade encryption scheme is composed of a number of encryption schemes. The
global key K is the concatenation of the keys of the component encryption schemes.
The global parameter Q is the concatenation of the parameters of the component
encryption schemes. Since K-security is a type of security that must hold for any
a priori distribution of K, the cascade encryption scheme can only be K-secure if
all of its component encryption schemes are K-secure. This can be seen as follows.
Suppose we have a cascade encryption scheme with a component encryption scheme
Ψ that fails to be K-secure. If K is chosen according to a distribution that fixes all
component keys except KΨ, the access to encryption scheme Ψ is identical to the
case that no other encryption schemes are present. This argument only holds if the
keys are independent, but so does the proof in [75]. K-security is a concept that
discourages the application of N-reductionist design approaches that often trade
efficiency for a false feeling of cryptographic security.

In the context of cryptographic hash functions, K-secure can only be used with
respect to keyed ones. For non-keyed hash functions the definition of K-secure makes
no sense.

3.5.5 Hermetic schemes

It is possible to imagine ciphers that have certain weaknesses and still are K-secure.
An example of such a weakness would be a block cipher with nb ≥ nκ and a single
weak key, for which the cipher mapping is linear. The detection of this would take
at least a few encryptions, while checking whether this key is used would only take a
single encryption. If this cipher would be used in an encryption scheme, this single

3.6. MANIPULATION DETECTION IN DECRYPTION 49

weak key would pose no problem. However, used as a component in a larger scheme,
for instance a hash function, this property could introduce a crucial weakness.

For these reasons we introduce another definition of security, denoted by the
term hermetic.

Definition 3.4 A cryptographic scheme is hermetic with respect to some application
if it does not have weaknesses that are exploitable in that application and are not
present for the majority of corresponding super cryptographic schemes.

Definition 3.5 A cryptographic scheme is hermetic if it is hermetic with respect to
all conceivable applications.

Informally, a cipher or hash function is hermetic if its internal structure cannot
be exploited in any application.

For example, for an hermetic cryptographic hash function, the work factor of
finding a collision is approximately 2nk/2 hash function applications with negligible
storage requirements. For this is the complexity of the best known method for
finding collisions in the majority of super cryptographic hash functions.

3.6 Manipulation detection in decryption

In many applications it is tacitly assumed that encryption guarantees that cryp-
tograms decrypting to meaningful messages originate from the legitimate sender (in
possession of the secret key) and that modifications to the cryptogram by an adver-
sary (not in possession of the secret key) are detected. In this section we give some
upper bounds to the protection that can be offered by different types of encryption.

For detection to be possible, the messages must have a well-defined redundancy.
The best attack strategy and the probability of success depend strongly on the type
of encryption that is applied and the nature of the redundancy. We only consider two
types of redundancy here: an appended cryptographic hash result and distributed
local redundancy. An example of the latter is the knowledge that a message is an
ASCII-coded text.

An obvious type of attack is the replay attack, in which the adversary simply
sends a previously recorded cryptogram to the receiver. This kind of attack can be
thwarted by ensuring that for every message the encryption makes use of a different
public parameter Q. This public parameter can be sent along with the cryptogram
or can be a sequential message number. A disadvantage of this scheme is that
the receiver has to keep a record of the Q parameters and must check for every
incoming message whether its Q parameter has already been used in the past. In
some applications, Q can be derived from external parameters known to both sender
and receiver such as the time or the physical (or logical) address of the encrypted
file on a storage medium.

For distributed redundancy we will consider only redundancy at the symbol level.
It is assumed that only a subset of all possible plaintext symbols is used. In the case
of stream encryption with ns = 1, the bits may be grouped in larger symbols with

50 CHAPTER 3. CRYPTOGRAPHIC SECURITY

respect to this effect. If the relative redundancy is r, only 2(1−r)ns of all 2ns symbols
are allowed in the message. We consider two types of distributed redundancy. In
type A the allowed symbols form a vector space over < ZZns

2 ,+ > while in type B
they form a subset with no exploitable structure.

We consider two types of access for the adversary: ciphertext-only (CO) and
known-plaintext (KP). Although in some circumstances chosen-plaintext attacks
may be plausible, we do not consider them here because of the complexity of the
setting. In a situation where the adversary is completely free to choose the messages,
he has the same access as the legitimate sender and there is no protection at all.
Hence, in any interesting chosen-plaintext situation, additional restrictions (of time
and/or total amount of input) have to be imposed upon the access. It must be
kept in mind that in these restricted chosen-plaintext circumstances the amount
of protection offered can degrade drastically compared to the ciphertext-only and
known-plaintext situations.

In the case that the redundancy originates from a cryptographic hash function,
we have also included the case non secret communication (NS). By this we denote
messages sent in plaintext with an appended hash result that is encrypted with the
specified type of encryption.

A first type of attacks are transposition, omission or insertion of blocks or sym-
bols in the message. If the redundancy results from an appended hash result, these
simple attacks are very unlikely to succeed. In the case of distributed redundancy
however, they are a realistic threat. In ECB block encryption, these attacks can
be executed without a risk of detection. For CBC block encryption and the nb-bit
CFB mode of a block cipher, these attacks require a known-plaintext situation and
the probability of detection is only small if the relative redundancy is very low.

Tables 3.1 and 3.2 give an overview of the success probability of some simple
message modification attacks in which some cryptogram symbols are substituted by
others to change the message. For self-synchronizing stream encryption in Table 3.1
and CBC block encryption in Table 3.2 we have made a distinction between three
cases: attacks that involve the manipulation of the IV by the adversary, substitutions
in the bulk of the message and substitutions in the last symbols or last block of the
message. It is assumed that the block length is at least as large as the hash result,
i.e., that nb ≤ nh.

In these attacks it is assumed that the adversary does not

• perform exhaustive key search,

• exploit the internal structure of the used ciphers and cryptographic hash func-
tions, i.e., the attacks also work for super encryption schemes and hash func-
tions,

• make use of the knowledge gathered from previous cryptograms or message-
cryptogram pairs.

Because of these restrictions for the adversary, the given success probabilities must
be considered as upper bounds to the amount of protection that can be achieved
against substitution attacks .

3.6. MANIPULATION DETECTION IN DECRYPTION 51

stream encryption

sync. self-synchronizing

IV manip. bulk last symbol

dist. red. A 0 *ns nmnsr (*− 1)nsr

dist. KP 0 *ns nmnsr (*− 1)nsr

red. B CO nsr (nm + 1)nsr (nm + 1)nsr *nsr

NS 0 nh nh nh − ns
hash KP 0 nh nh nh

CO nh nh nh nh

Table 3.1: − log2 of the probability that modifications in the cryptogram are not
detected after decryption for stream encryption.

block encryption

ECB CBC

IV manip. bulk last block

dist. red. A nbr 0 nbr nbr

dist. KP nbr 0 nbr nbr

red. B CO nbr nsr (nb + ns)r nbr

NS nh 0 nh nh
hash KP nh nh nh nh

CO nh nh nh nh

Table 3.2: − log2 of the probability that substitutions in the cryptogram are not
detected after decryption for block encryption.

52 CHAPTER 3. CRYPTOGRAPHIC SECURITY

From Tables 3.1 and 3.2 it can be seen that synchronous stream encryption can
only offer protection in the most restricted access modes. For the other types of en-
cryption, the probability of success decreases as the relative redundancy increases.
For block encryption and self-synchronizing stream encryption, fair protection levels
can be attained against the simple substitution attacks. However, as the relative
redundancy increases, another type of attack has to be taken into account that lim-
its the usable lifetime of the cipher keys. In ECB block encryption, the number of
possible plaintext blocks, and hence also the number of possible ciphertext blocks
is 2(1−r)nb . In a ciphertext-only situation, the adversary can build a table of valid
cryptogram blocks that forms a non-negligible fraction of the total set of allowed
cryptogram blocks. In a known-plaintext situation, a substantial part of this re-
stricted encryption table may be reconstructed. This knowledge can be used by the
adversary to form valid cryptograms. This is in general not true for CBC block
encryption and self-synchronizing stream encryption. However, if manipulation of
IV is possible or if IV is chosen from a small subset of all possible values, similar
attacks are possible for these modes. It can be seen that in all cases manipulation of
IV should be prevented. This can be achieved by not allowing the sender to choose
IV himself.

As a general conclusion we can state that if manipulation detection is required,
one can best append a cryptographic hash result and encrypt with block or self-
synchronizing encryption. The corresponding expansion can be compensated by
compressing the message prior to hashing and encryption.

3.7 Conclusions

In this chapter we have given a motivation for our belief that designing practical
cryptographic schemes that have a high degree of provable security is infeasible. It
is argued that the notion of security is closely linked to that of trust. We have given
a description of the cryptologic activity as it is going on, and as we think that it
should be.

Our own contributions in this chapter are:

• expansion of the standard ways of access with key manipulations by means of
the initialization mechanism,

• the removal of the requirement of uniformity of key selection and its implica-
tions,

• the explicit formulation of the role of the cryptographic claim,

• the notions of K-secure and hermetic schemes,

• the systematic treatment of the limitations of manipulation detection by en-
cryption.

Chapter 4

Design Strategies

4.1 Introduction

Our goal is contributing to the design of ciphers, encryption schemes and crypto-
graphic hash functions that are at the same time cheap, portable and secure against
known attacks. First we will show how simplicity and structural transparency can
contribute to realizing these properties. This is followed by a discussion on the re-
strictions imposed by the need for portability and suitability for dedicated hardware
implementation.

The central part of this chapter is devoted to the formulation of our design ap-
proach and its relation to the existing design practice. We discuss the dedicated
design of block ciphers, self-synchronizing stream ciphers, synchronous stream ci-
phers and cryptographic hash functions. In this chapter we only describe the global
design strategies. They are further elaborated in Chapter 7 to 9.

Finally, we discuss the portability and hardware suitability of a number of op-
erations that are the most important candidate building blocks for cryptographic
schemes.

4.2 General requirements

4.2.1 Simplicity

It is an advantage for a cryptographic scheme to have a simple description for a
number of different reasons.

The risk of implementation errors increases with the complexity of the descrip-
tion. It is therefore advantageous to have a succinct and clear specification that
makes an appeal to a pre-understanding of the reader that is as small as possible.
The design is preferably specified at the bit-level. Additionally, a simple design
can be specified in a short software program.

In most practical applications the cryptographic scheme is only a small building
block in a compound system. The system complexity increases with the complexity
of all of its building blocks. Especially important in this respect is the simplicity of

53

54 CHAPTER 4. DESIGN STRATEGIES

the external behavior of the scheme, i.e., the so-called interface.

In general, the work factor of the verification of resistance against known types
of attack grows with the complexity of the design. If the design is too complex, any
verification of this sort may become infeasible.

It is infeasible to prove that a given design has no trapdoor . The designer has
to convince the cryptographic community and the public that there is no trapdoor
by motivating all design decisions. Obviously, this is easier for a simple design than
for a complex design.

4.2.2 Structural transparency

In Chapter 3 we explained why we believe it to be infeasible to prove that a certain
cryptographic scheme is secure against all possible attacks. There are however a
number of generally applicable attacks and cryptanalytic principles for each of the
different types of encryption schemes and hash functions. It is clearly an advantage
if a design can be checked to be secure against these known attacks.

Some keyed schemes have been designed in such a way that the structure of the
transformations used depends strongly on the specific value of key bits. General
analysis of the design with respect to the known attacks is assumed to be simply
impossible since the propagation properties depend strongly on the key. This is
indeed the case in the traditional point of view, where an adversary has no a priori
information about the key. As we stated in Chapter 3, in many practical situations
the adversary actually does have a priori information about the key. Hence, it is
meaningful to consider cryptanalysis scenarios in which a number of key bits are
given specific values and the goal is the determination of the remaining ones. If
an attack can be constructed that is more efficient than exhaustive search over the
reduced key space, the cryptographic scheme is not K-secure. The fixed key bits can
be chosen in such a way that the corresponding transformations have unfavorable
propagation properties. This may lead to a vast amount of different attacks for a
single scheme.

Typical weaknesses of ciphers composed of strongly key-dependent operations
are so called classes of weak keys . A class of weak keys is a subset of the key space
for which the cipher has an easily detectable weakness. In Chapter 11 we show that
there are large classes of weak keys for the block cipher IDEA.

In our opinion, one of the main goals of a sound pragmatic design strategy is to
enable verification of resistance against known types of cryptanalysis. To facilitate
this we impose the restriction that the propagation properties of the component
operations seen at the bit level should be independent of the actual value of the
key bits. In Chapter 5 it can be seen that this restricts key application to bitwise
addition.

4.3. SPECIFIC REQUIREMENTS 55

4.3 Specific requirements

4.3.1 Portability

A design is said to be adapted to a given processor if it efficiently exploits the in-
struction set of this processor to realize its desired properties. For a given processor,
a well adapted design can be translated in a straightforward way to a sequence of
machine instructions. For a cryptographic design that is aimed at widespread appli-
cation, it is advantageous that it is well adapted to a wide variety of processors. In
this respect it is best to use only operations that are widely available as machine
instructions. Clearly, processors such as those in the Intel 80X86 series have more
weight in this context than rare processors.

The number of machine instructions that the execution of the cryptographic
scheme takes is roughly inversely proportional to the processor word length for
processors that it is well adapted to.

4.3.2 Dedicated hardware suitability

In some applications it is appropriate to have dedicated hardware implementations.
When encryption and hashing rates larger than 100 Mbit/s are needed (e.g., optical
fiber), software implementations may not be fast enough. Some applications (e.g.,
GSM) require compact (single-chip) integrated systems, consisting of a number of
dedicated functional modules, including a cryptographic scheme. In such a modular
system, the throughput required from the cryptographic module has to be realized
with minimum area. This is also the case for a cryptographic scheme that has to fit
on a custom smart card .

For these applications it is necessary that a cryptographic design lends itself to
dedicated implementations. Ideally, there is a trade-off between area and processing
speed for a given design. At one end of the spectrum there is a serial implementation
consisting of a small dedicated microprocessor and some memory. At the other end,
there is an implementation that is optimized for speed by applying parallelism.

The degree of parallelism that one can achieve depends on the algorithmic struc-
ture of the cryptographic scheme. The suitability for parallel implementations can be
enforced by first designing a highly parallel finite state machine and later specifying
the functions of the cryptographic scheme in terms of it. This leads to cryptographic
schemes with dedicated implementations that are both fast and compact.

Such a finite state machine, with a uniform and small gate delay and especially
designed for cryptographic implementations, is called a cryptographic finite state
machine. Figure 4.1 gives a model of a cryptographic finite state machine that can
be used in the design of block ciphers, synchronous stream ciphers and cryptographic
hash functions. In this model, the cryptographic finite state machine consists of 4
basic components: the internal state a, the buffer b, the round transformation logic
R and the control- and load logic. By means of the control pins, one can choose
between a number of different operations. The most important function is the round
transformation that updates the state a parameterized by (part of) the contents of

56 CHAPTER 4. DESIGN STRATEGIES

Control

• • C
•

❄
State a

C
• •✲

❄

R

✻
C
•• ✲ Buffer b

•

Figure 4.1: simple model of a cryptographic finite state machine.

the buffer. Possible operations include state update, state or buffer load, state or
buffer hold, state or buffer reset and state read . We have first introduced the concept
of the cryptographic finite state machine in [9].

Important implementation aspects of a cryptographic finite state machine are
the needed number of logical gates, the complexity of the connection pattern and
the number of pins for on/off chip communication.

Since only part of the chips coming from the foundry are without defects, a
very important aspect of dedicated hardware design is testability . Classically, the
testability of an integrated circuit is realized by the inclusion of scan pads . This
consists of some extra circuitry on the chip, connecting all the memory cells on the
chip in a single shift register. In test mode the values of all internal memory cells
can be read out. With the resulting access to the internal memory cells it is possible
to check the correctness of the operation of the chip locally. For a cryptographic
module, the existence of such a test mode can be a threat to the overall security
of the system. Therefore, it is an advantage for a cryptographic design that its
hardware implementations can be tested without the need for scan pads.

4.4 Block ciphers

Block ciphers are the most versatile of the three types of cipher. Their differ-
ent modes enable them to perform ECB block encryption, CBC encryption, self-
synchronizing stream encryption and synchronous stream encryption.

Almost all single-key block cipher proposals are of the iterated type. In these
ciphers the ciphertext is obtained from the plaintext by a specified number m of
iterations of an invertible round transformation. These round transformations are
parameterized by round subkeys, that are derived from κ as specified in the key
schedule. The Data Encryption Standard or DES [37], described in Chapter 5, is

4.4. BLOCK CIPHERS 57

Plaintext

κ

❄

key schedule

Ciphertext
(after m iterations)

✲

❄

✲encryption state

R

round key

Figure 4.2: Cryptographic finite state machine implementation of an iterated block
cipher.

the best known iterated block cipher. Ever since its publication, DES has dominated
the cryptologic activity in the area of block ciphers.

As illustrated in Fig. 4.2, an iterated block cipher can be implemented as a
cryptographic finite state machine in a straightforward way. The state updating
transformation consists of the round transformation. The plaintext is loaded into the
state register and converted into the ciphertext by simply performing m iterations.
The buffer contains the round key that is updated according to the external key
schedule that has as input κ.

For decryption to be practical, the inverse of the round transformation must be
easily implementable. Preferably this inverse can be realized by reusing the same
cryptographic finite state machine in some manner. Hence, the inverse of the block
cipher should have the same structure as the block cipher itself. We denote this by
the term structural self-reciprocity.

In the case of DES the state is split into a left part Li and a right part Ri. The
round transformation consists of two steps. First the left part is updated according
to Li = Li + F (Ri, Ki), with F the so-called F -function. In the second step the left
and the right part are switched. Both steps are involutions. The structure of this
round transformation is named after Horst Feistel, who led within IBM the research
activity that gave rise to iterated block ciphers and more specifically LUCIFER, the
predecessor of DES [35, 36].

The main body of DES consists of 16 iterations of the round transformation with
the left-right switch of the last round removed. This is preceded by a bit permutation
IP and followed by the inverse of this bit permutation IP−1. The round keys Ki

are derived from the global key according to a key schedule.

DES can also be seen as 16 applications of the F -function alternated by left-
right switches. Since both operations are involutions, DES and its inverse have the
same structure with exception of the key schedule. The most important feature of
the Feistel structure is that the involution property does not restrict the design of
the F -function in any way. During the last years, there have been a number of
block cipher proposals with the Feistel structure. All of these can be considered as
variants of DES: different components in a fixed (or only slightly modified) global
computational graph.

58 CHAPTER 4. DESIGN STRATEGIES

4.4.1 Our approach

Our goal is to design iterated block ciphers that have a structural self-reciprocity.
We consider the Feistel structure undesirable since only half of the internal state bits
enter the F -function. As described in Chapter 5, this has been extensively exploited
in recent attacks.

We propose to design the round transformation consisting of a number of dif-
ferent steps. These steps are transformations with a high degree of symmetry and
uniformity, and can be realized in hardware with a small gate delay. In this way
the block cipher can be implemented in hardware as a cryptographic finite state
machine, as illustrated in Fig. 4.2.

One of the round transformation steps is a bitwise addition of the round key, all
others are key-independent. These transformations cannot be chosen freely as the
F -function in the Feistel structure. Self-reciprocity is realized by imposing certain
algebraic conditions on the step transformations and carefully arranging them. The
key schedule is kept as simple as possible. The choice of the step transformations and
their arrangement is mainly governed by the two important types of cryptanalysis
as described in Chapter 5. In Chapter 7 this approach is further elaborated and
illustrated by a completely specified design and some variants.

4.5 Self-synchronizing stream ciphers

Single-bit self-synchronizing stream encryption has a specific advantage over all other
types of encryption. For, in providing an existing communication system with en-
cryption, single-bit self-synchronizing stream encryption can be applied without the
need for additional synchronization or segmentation. In communication systems
that transmit symbols consisting of more than a single bit, this is also the case if
the encryption symbol length ns divides the symbol length in the communication
system. An example of such a communication system is a quadrature phase shift
keying (QPSK) modulation scheme [101], that transmits symbols consisting of two
bits.

The most widely adopted approach to self-synchronizing stream encryption is the
use of a block cipher in CFB mode. For this mode, the attainable encryption speed
is a factor nb/ns slower than the encryption speed of the underlying block cipher
implementation. For the single-bit CFB mode for DES this factor is 64. Hence, the
CFB mode with small symbol length is very inefficient compared to the ECB and
CBC modes. This poor efficiency seems to be inherent in self-synchronizing stream
encryption with small symbol length. Its only appropriate domain of application is
in the addition of encryption in existing systems that have no segmentation or syn-
chronization provisions facilitating block or synchronous stream encryption. For this
reason, we have not spent any efforts in trying to design dedicated self-synchronizing
stream ciphers for portability.

For applications in which single-bit self-synchronizing stream encryption is needed
with rates above 10 Mbit/s, even a hardware implemented block cipher in CFB mode
may not be fast enough. For these high-speed applications it can be worthwhile to

4.6. SYNCHRONOUS STREAM CIPHERS 59

ct−1 ct−i ct−nm shift register. . .✲

❄ ❄
Gi

✛ κ stage i

❄ ❄
. . .

❄ ❄
Gbs

zt

stage bs✛ κ

ct

⊕
mt

Figure 4.3: Self-synchronizing stream cipher with a cipher function consisting of
stages.

design a dedicated hardware-oriented single-bit self-synchronizing stream cipher.

4.5.1 Our approach

We propose to compose the cipher function of a number, denoted by bs, of stages
Gi. In hardware, every stage can be implemented by a combinatorial circuit and
a register storing the intermediate result. This pipelined approach is illustrated in
Fig. 4.3. It can be seen that the encryption speed is limited by the largest occurring
gate delay. The implementation of the cipher function in bs stages causes the output
zt to depend on the contents of the shift register bs time steps ago. Hence, the
encryption equations of Chapter 2 have to be adapted to:

(κ, IV) = J(K,Q) , (4.1)

c1−nm−bs . . . c0 = IV , (4.2)

zt = fc[κ](ct−nm−bs . . . ct−1−bs) . (4.3)

In Chapter 9 we elaborate on the design of high-speed single-bit self-synchronizing
stream ciphers.

4.6 Synchronous stream ciphers

Most of the cryptologic activity in the area of synchronous stream ciphers is con-
centrated in two closely linked subdisciplines:

1. The design and analysis of synchronous stream ciphers with an updating trans-
formation realized by a combination of (most often binary) linear feedback shift
registers (LFSR).

60 CHAPTER 4. DESIGN STRATEGIES

2. The study and description of “randomness criteria” for sequences, especially
those originating from LFSR-type ciphers.

Next to the synchronous stream ciphers of the LFSR type, there have been a num-
ber of practical proposals inspired by specific interdisciplinary theories such as chaos
theory. Our early proposals based on cellular automata that are briefly described
in Chapter 8 are of this type. Finally, we must mention the existence of propos-
als inspired by computational complexity theory and the information-theoretical
concepts of local randomness and randomized ciphers. These proposals are more
theoretically oriented and have no real practical relevance. A good overview of the
scientific activity in the area of synchronous stream ciphers containing an extensive
bibliography is given by Rainer Rueppel in [95].

In the class of the LFSR-based synchronous stream ciphers we can distinguish
the regularly clocked ciphers and the clock-controlled ciphers. The former are in fact
filtered counter ciphers. In the latter, certain parts of the finite state machine are
irregularly clocked. In forward clock control one regularly clocked LFSR is used to
control the clock of another LFSR. In feedback clock control the number of iterations
before the next output symbol is determined by the value of the last output symbol.
For a more detailed overview of clock-controlled shift registers we refer to Dieter
Gollman and William Chambers in [44].

Although indispensable in almost all real-world applications, no initialization
mappings are mentioned in the publications that contain the LFSR-based proposals.
In most cases, the key is directly mapped to the initial state and there is no public
parameter. For all these LFSR-based encryption schemes it can be shown that
they are not K-secure. For the filtered counter ciphers there exist very powerful
correlation attacks that exploit the correlation of encrypting bits with the input bits
to the output function. [46, 95]

Turning the LFSR-based schemes into acceptable synchronous stream encryp-
tion schemes requires the design of initialization mappings in such a way that the
K-security is not jeopardized. The problem with LFSR-based ciphers is that the
simplicity of the updating transformation makes them very weak against attacks
that involve internal states with a specified bitwise difference. It is therefore nec-
essary that the initialization mappings have a certain degree of complexity of their
own. In Chapter 10 a number of attacks are described that exploit the linearity of
the initialization mapping and the updating transformation.

Another very important disadvantage of most LFSR-based ciphers is their limited
speed both in software and dedicated hardware implementations due to the fact
that only a single encrypting bit is produced per iteration. In hardware this is
compensated by the high attainable clock speed resulting in reasonable throughput
rates. In software however, the complete updating transformation and the output
function have to be simulated for every encrypting bit.

The emphasis on LFSR-based ciphers has had its impact on the research of “ran-
domness of sequences”. In the rhetoric of the corresponding literature, a sequence
cannot be classified as “random” if it fails to meet the known criteria. A sequence
meets a given criterion if a characteristic that is extracted by a specific test does

4.6. SYNCHRONOUS STREAM CIPHERS 61

Initial State

κ

ns-bit symbol

✲

❄

✲internal state

U

κ

Figure 4.4: Cryptographic finite state machine implementation of a synchronous
stream cipher.

not show a significant deviation from what can be expected from a uniformly chosen
sequence of equal length.

The most prominent criterion is that of the linear complexity profile. This is in
part thanks to the existence of an efficient algorithm to calculate the linear com-
plexity profile of a sequence in the form of the Berlekamp-Massey algorithm [69].
The linear complexity profile is especially suited for detecting “non-randomness” in
sequences originating from simple LFSR-based ciphers. Alternatively, LFSR-based
ciphers can be designed that have a guaranteed minimum linear complexity. Other
criteria that are considered important are statistical distribution properties, such as
0/1 balance and n-tuple distribution, and generalizations of linear complexity, such
as quadratic span and maximum-order complexity [57].

The only limit to the variety of criteria that can be formulated is ones imagina-
tion. Consider the subset of cryptanalytic attacks on synchronous stream ciphers
that can be described in terms of “randomness” criteria. These attacks consist
of two parts: the choice (or construction) of the criterion and the application of
the test. Clearly, the creative and most important part of the cryptanalysis is the
construction of the criterion, exploiting structural weaknesses of the cipher itself.
Nontrivially breakable ciphers with cryptographic weaknesses that are revealed by
one of the general criteria described in literature invariably belong to one of two
specific categories. The first category is that of academic examples especially de-
signed to demonstrate the supposed relevance of the proposed criterion. The second
category is that of bona-fide proposals designed by cryptologic illiterates.

4.6.1 Our approach

The work factor of the generation of a single encrypting symbol is the execution of
the updating transformation and the output function. In specific implementations,
practical constraints typically impose an upper limit to this work factor. Hence,
we are faced with the problem of dividing the available resources over the updating
transformation and the output function.

Turning a synchronous stream cipher into a synchronous encryption scheme re-
quires the specification of an initialization mapping. Preferably, this initialization
mapping is as simple as possible, requiring a minimum of additional circuitry in

62 CHAPTER 4. DESIGN STRATEGIES

dedicated hardware implementations and a minimum amount of code in software
implementations.

There is a strong difference between the effect of the output function and the
updating transformation. While an execution of the former only affects a single en-
crypting symbol, an execution of the latter affects the evolution of the internal state
and thus all consecutive encrypting symbols. As illustrated by the resynchronization
attacks in Chapter 10, this is especially relevant in attacks that exploit the initial-
ization mapping. It is shown that, in the case of a linear initialization mapping and
updating function, the cryptanalyst has a very high degree of access to the input
of the output function. This access enables the cryptanalyst to reconstruct the key,
even in the presence of a very complex output function.

These considerations have led us to a design approach quite distant from the
LFSR-based ciphers. In our approach, the output function is reduced to a mere
selection of ns bits of the internal state. The resistance against attacks must be
realized by the propagation properties of the (iterated) updating transformation.
The resulting cipher must allow extremely simple initialization mappings, requiring
no additional processing at all. A synchronous stream cipher that has been de-
signed by this approach can be implemented in a straightforward way by means of
a cryptographic finite state machine. This is illustrated in Fig. 4.4.

Clearly, a K-secure synchronous stream encryption scheme can be used for other
purposes than encryption. This includes the generation of large quantities of key
material from a single master key and the simulation of a BSS.

4.7 Cryptographic hash functions

During the last decade, the design and analysis of cryptographic hash functions
have developed into an active field with relatively many specific proposals. For a
thorough treatment of this field we refer to the doctoral dissertation of Bart Preneel
[84].

All cryptographic hash function proposals are of the sequential type, as described
in Fig. 2.14. The padded and segmented message is fed block by block to a process
governed by a chaining transformation that transforms the chaining state parame-
terized by the message block. The initial chaining state is specified and the final
chaining state is used to determine the hash result. Clearly, the component that
is crucial for both performance and resistance against cryptanalysis is the chaining
transformation.

Two important properties that distinguish cryptographic hash functions from
ordinary ones are collision-resistance and (2nd) preimage-resistance. Most of the
cryptologic literature on hash functions has concentrated on these aspects. In [29],
Ivan Damg̊ard presented a design principle for collision-resistant hash functions that
has determined the structure of most hash function proposals. This principle was
also proposed independently by Ralph Merkle in [77]. Essentially, it is a method
to construct a collision-resistant hash function by using as the chaining transforma-
tion a collision-resistant compression function fcom with a fixed-length input. This

4.7. CRYPTOGRAPHIC HASH FUNCTIONS 63

✲IV ⇒ h0

m1

✲

fcom
✲h1

m2

✲

fcom . . .

✲

. . . ms

✲

fcom ✲ hs ⇒ h(M)

Figure 4.5: Traditional iterated hash function construction.

“traditional” hash function construction is shown in Fig. 4.5.

Ivan Damg̊ard proved in a computational complexity theoretic framework that
generating a collision for such a hash function involves either generating a col-
lision for fcom or solving a problem with comparable complexity. This reduced
the problem of designing a collision-resistant hash function to that of designing
a collision-resistant fixed-length input compression function. The weak point of this
N-reductionist approach lies in the uncertainty whether this second problem is in
fact easier . Moreover, seen within our generic model for sequential hash functions,
application of the Damg̊ard-Merkle principle imposes important restrictions.

In the traditional construction the chaining transformation of our generic model,
di = G(di−1, mi) consists of the compression function fcom(mi‖di−1) with fixed-length
input. The output function Go is omitted or, equivalently, taken to be the identity.
Clearly, this restricts the length of the chaining state to that of the hash result. In
the Damg̊ard proof it is an essential condition that the compression function fcom that
forms the chaining transformation is collision-resistant. In this context, a collision
for the chaining transformation denotes two different couples (d,m) and (d∗, m∗)
with G(d,m) = G(d∗, m∗). For an invertible chaining transformation collisions can
be generated ad libitum. Therefore the Damg̊ard-Merkle design principle can only
be applied if the chaining transformation is not invertible.

Despite its restrictions, almost all hash function proposals are designed by the
traditional approach. In many proposals the compression function is realized by
combinations of a block cipher and some simple operations. An important part of
[84] is devoted to the study of these schemes. Other block-cipher based proposals can
be found in [64]. Besides these there are many dedicated designs. The best known
examples are MD4 [92] and MD5 [93] by Ronald Rivest, Snefru [78] by Ralph Merkle
and the standard NIST-SHA [39, 40]. For their description and analysis, together
with that of many lesser known proposals, we refer again to [84].

Most dedicated hash function designs are tailored to run very fast on proces-
sors with a 32-bit word length. Their sequential nature and the use of arithmetic
operations however form an obstacle for feasible hardware realizations that are sub-

64 CHAPTER 4. DESIGN STRATEGIES

stantially faster than their corresponding software implementations. Moreover, none
of them has a short and elegant description.

4.7.1 Our approach

Our goal is the design of simple and portable unkeyed and keyed cryptographic hash
functions that are hermetic.

The basic principle of our approach is derived from the compression function
of an early version of MD4. The operation of this compression function can be
described as encrypting in an invertible way the 128-bit chaining state di−1 to di

with mi as a key, or

di = fMD4(d
i−1, mi) . (4.4)

In a later version this compression function was modified by adding di−1 to the
“encryption result” :

di = di−1 + fMD4(d
i−1, mi) mod 2128 . (4.5)

It can be seen that for the compression function (4.4) collisions can be generated
by simply inverting the encryption. In (4.5) this invertibility is removed and the
Damg̊ard-Merkle principle can be applied. Moreover, in the case of (4.4), a message
that hashes to a given result can be generated by a meet-in-the-middle attack with
a work factor of approximately 264 executions of the compression function. This
attack is not possible in the case of (4.5).

In our design approach the chaining state d is split into two parts: the hashing
state a and the buffer contents b. The application of the chaining transformation
affects both parts. The buffer consists typically of a number of parallel shift registers
with either no or very simple feedback. Without feedback, every bit of the buffer
contents corresponds to some past message bit. With feedback, the bits of the buffer
contents are linear functions of message bits. The buffer can be initialized by setting
it to 0.

The hashing state is updated by a simple nonlinear invertible updating transfor-
mation, called the round transformation that is parameterized by part of the buffer
contents. We have

ai = Gh[sel(bi)](ai−1) , (4.6)

with sel(b) denoting a prespecified subset of the buffer bits. The hashing state is
initialized by setting it to some prespecified value, denoted by IV. Similar to MD4,
the effect of the repeated application of the chaining transformation on the hashing
state can be seen as an encryption of IV to the final hashing state with the variable-
length message as key. The buffer and its updating function can be seen as the key
schedule.

After all message blocks have appeared at the input, a number of extra blank
iterations are performed in order to make the final value of the hashing state depend
in a complicated way on the last message blocks. The hash result is derived from

4.8. CHOICE OF BASIC OPERATIONS 65

Initial Value

Message block

Hash Result

✲

❄

✲hashing state

Gh

buffer

Figure 4.6: Cryptographic finite state machine implementation of a cryptographic
hash function.

this final value by simply taking a subset of its bits, possibly interleaved by some
additional blank iterations of the chaining transformations.

It can be seen that a hash function designed by this approach can be directly
implemented as a cryptographic finite state machine. This is depicted in Fig. 4.6.

To be hermetic, the hashing state must be at least two times as long as the hash
result. Otherwise there exists a meet-in-the-middle attack that is not possible in
the case of a super hash function. This attack can be applied to find a message
that hashes to a given result. This meet-in-the-middle attack is similar to the one
described in Sect. 2.7.2.

Because of the simplicity and invertibility of the round transformation, it is es-
sential for the collision-resistance of the hash function that every linear combination
of message bits affects sel(b) at least two times, preferably with a large number of
iterations in between. This must be realized by carefully tuning the buffer updating
function and the selection function sel(b). It also imposes a minimum size on the
buffer length.

We have only treated the design of non-keyed cryptographic hash functions thus
far. In our approach, the hashing process consists for a large part of the encryption
of IV into the final value of the hashing state with the message as key. For this reason
it seems natural to include the actual key in the message. We propose to turn a non-
keyed hash function into a keyed one by preceding the first message blocks m1m2 . . .
by a number of key blocks and by succeeding the last message blocks . . .ms−1ms by
the same key blocks. In this way the key pervades the complete hashing process.

4.8 Choice of basic operations

In this section we discuss the simplicity and implementation properties of the most
common basic operations that are available to specify cryptographic schemes. From
this discussion we motivate our choice of building blocks.

4.8.1 Bit permutations

A bit permutation of a vector modifies the order of its component bits without
affecting their value. A straightforward description of a bit permutation acting upon

66 CHAPTER 4. DESIGN STRATEGIES

an n-bit vector takes n log2 n bits. Hence, for simplicity of description it is desirable
to introduce some regularity or symmetry. Typical regular bit permutations are
those in which the new bit positions can be calculated from the old ones using a
simple expression. For example, in a simple bit rotation over d positions the bit
with index i moves to position i + d for some d.

In a dedicated hardware implementation, a bit permutation can be implemented
without the need for additional logical gates. The bit permutation is contained in the
interconnection pattern. However, for bit permutations with a non-local character
the interconnections can constitute a large part of the area of the resulting chip.

A bit permutation in which bits are moved individually is not suited for software
implementations on general-purpose processors. The bit permutation can be done
fully serial, moving every individual bit to its desired position. This is however very
slow. A faster method using lookup tables can treat k bits at a time. In general this
method requires �n

k
� tables of 2k elements of size n. The exponential growth of these

tables in the number of input bits limits the feasibility of this method. The subclass
of bit permutations that allows a blocked approach is much better suited for software
implementation. This includes vector rotations and permutations within and acting
on subblocks. These can be implemented by combining the widely available left
and right word shift instructions and bitwise Boolean instructions. The unavoidable
choice of the length of the subblocks favors one specific word length over the others
and therefore limits the portability of these bit permutations.

4.8.2 Bitwise Boolean operations

Bitwise Boolean operations treat all individual components of binary vectors in
the same way. The most important are bitwise complementation and the binary
operations of bitwise and, or and exor. They are in general very simple to describe.

In a dedicated hardware implementation, Boolean operations can be imple-
mented in a straightforward way using their hardware counterparts: compact logical
gates with small gate delay.

In software, bitwise Boolean operations can be implemented in straightforward
way using widespread efficient bitwise Boolean instructions. There are no portability
problems since, for a processor word length of k bits, a bitwise Boolean operation
acting on vectors of length n can be split into the execution of �n

k
� bitwise Boolean

instructions.

4.8.3 Substitution boxes

An s-bit to u-bit substitution box (or S-box) returns an u-bit block if given an s-bit
block. Such a substitution box can be described by a table of 2s elements of u
bits. Hence, for simplicity of description it is desirable to keep these boxes small or
specify their elements by a succinct recipe. Another useful measure in this respect
is limiting the number of different substitution boxes used in a single design.

In dedicated hardware implementations, substitution boxes can be implemented
as a straightforward rom lookup table or as a fully optimized custom cell. Since the

4.8. CHOICE OF BASIC OPERATIONS 67

area of these modules grows exponentially with the the length of the input s, small
boxes are most desirable from this point of view.

In software, a substitution box is implemented as an array of constants that is
indexed by the s-bit input. Although they can sometimes be efficiently implemented,
substitution boxes have in general small portability since there is no benefit in using
processors with a word length larger than the substitution box input length. For
processors with a word length several times the substitution box input length, a
speedup can be obtained by handling two (or more) substitution boxes at the same
time. For this purpose two S-boxes are combined in a single (typically very large)
table with 22s elements.

4.8.4 Modular arithmetic operations

In modular arithmetic operations binary vectors are taken to be binary representa-
tions of integers. If the implicit mapping between vectors and numbers is established,
these operations can be described as compactly as bitwise Boolean operations. The
most important arithmetic operations are addition, subtraction, multiplication and
modular reduction.

At the Boolean level, arithmetic operations can best be described in a recursive
way. Addition consists of an array of simply connected Boolean bit adders, with the
interaction between the adders by carry bits. Multiplication can be expressed as a
number of additions and shift operations. For dedicated hardware implementations
of addition and subtraction, there is a trade-off between gate delay and area due
to the carry propagation. For the simplest serial implementation this gate delay
is proportionate to the length of the numbers to be processed. Still, addition and
subtraction can be efficiently implemented in hardware. Multiplication and modular
reduction are very complicated operations, and fast dedicated implementations lead
to a very large area even for a modest word length.

In software, modular arithmetic operations are implemented using the widespread
arithmetic instructions. If the length of the numbers in the cryptographic scheme is
adapted to the word length of the processor, this can be done very efficiently. As in
the case of substitution boxes there is however no benefit in larger processor word
lengths. If the processor word length is smaller than required, the operations have to
be implemented by cumbersome multiple precision routines. Hence, the portability
of modular arithmetic operations is rather small.

These modular arithmetic operations distinguish themselves from the other ones
by their representative character. While for the other operations the appropriate
level of description is the bit level, this is not the case for modular arithmetic.
The latter is usually described at a higher level carrying with it a rich algebraic
structure. Injudicious use of modular arithmetic operations can enable cryptanalysis
exploiting these algebraic properties, without the need to resort to the bit level. Still,
the inability of exploiting these algebraic properties does not imply that successful
cryptanalysis at the bit level is impossible.

Chapter 11 contains two examples of attacks on cryptographic schemes based on
arithmetic operations and a new block cipher design with modular multiplication as

68 CHAPTER 4. DESIGN STRATEGIES

its main component.

4.8.5 Our choice

From these four classes of basic operations those with the best hardware suitabil-
ity, portability and simplicity properties are the bitwise Boolean operations and the
blockwise bit permutations. However, Bitwise Boolean operations are not directly
usable as transformations in cryptographic schemes. Therefore we propose to com-
bine them into invertible transformations with a high degree of symmetry and a
simple specification. These are the shift-invariant transformations on binary arrays
that will be introduced in Chapter 6.

4.9 Conclusions

This chapter has given a description of and a motivation for our own design approach.
For each of the different types of cryptographic schemes we have highlighted the
differences with the conventional approaches and indicated the origin of the initial
concepts.

Chapter 5

Propagation and Correlation

5.1 Introduction

In this chapter we treat difference propagation and input-output correlation in
Boolean mappings and iterated Boolean transformations. Difference propagation
is specifically exploited in differential cryptanalysis (DC), invented by Eli Biham
and Adi Shamir [5]. Input-output correlation is exploited in linear cryptanalysis
(LC), invented by Mitsuru Matsui [71]. Both DC and LC were successfully applied
on the block cipher DES [37]. DC was the first chosen-plaintext attack, LC the first
known-plaintext attack more efficient than exhaustive key search for DES.

We start with a brief description of DES and the original DC and LC attacks
using the terminology of their inventors. For a more detailed treatment of the
attacks, we refer to the original publications [5, 71]. The only aim of our description
is to indicate the aspects of the attacks that determine their expected work factor.
For DC the critical aspect is the maximum probability for difference propagations, for
LC it is the maximum deviation from 1/2 of the probability that linear expressions
hold.

We introduce a number of algebraic tools that more adequately describe the es-
sential mechanisms of LC and DC. This includes a number of powerful new concepts,
such as the correlation matrix of a Boolean mapping. Using these new concepts a
number of new relations and equalities are derived. These tools are further refined
to describe propagation and correlation in iterated Boolean transformations.

Finally, we formulate and motivate our new structural design strategy for the
round transformation of block ciphers and, more generally, the updating transfor-
mation of cryptographic finite state machines.

5.2 The Data Encryption Standard

The cipher that was the most important object of the attacks to be discussed is the
Data Encryption Standard (DES) [37]. Therefore, we start with a brief description
of its structure.

DES is a block cipher with a block length of 64 bits and a key length of 56

69

70 CHAPTER 5. PROPAGATION AND CORRELATION

Li Ri Xi

❄⊕
❄

✛

❄ ❄

F
✛ Ki

Li+1 Ri+1 Xi+1

Figure 5.1: Computational graph of the DES round transformation.

bits. Its main body consists of 16 iterations of the keyed round transformation. The
computational graph of the round transformation is depicted in Fig. 5.1. It can be
seen that the intermediate encryption value is split into a 32-bit left part Li and
a 32-bit right part Ri. The latter is the argument of the keyed F -function. The
output of the F -function is added bitwise to Li. Subsequently, left and right part
are interchanged.

The computational graph of the F -function is depicted in Fig. 5.2. It can be
seen that it consists of the succession of four steps. In the expansion E the 32 input
bits are expanded to 48 bits. Subsequently, a 48-bit round key is added bitwise
to this 48-bit vector. The resulting 48-bit vector is mapped onto a 32-bit vector
by 8 nonlinear S-boxes that each convert 6 input bits into 4 output bits. As an
example, Fig. 5.3 gives the specification of the second S-box. Finally, these 32 bits
are transposed by the bit permutation P . Observe that the only nonlinear step in
the F -function (and also in the round transformation) consists of the S-boxes. The
48-bit round keys are extracted from the 56-bit cipher key by means of a linear key
schedule.

32 11 2 3 4 ··· 32

:E

Ki
✛⊕⊕

S1 S2 S3 S4 S5 S6 S7 S8

bit permutation P

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10 2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Figure 5.2: Computational graph of the DES F -function.

5.3. DIFFERENTIAL AND LINEAR CRYPTANALYSIS 71

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 : f 1 8 e 6 b 3 4 9 7 2 d c 0 5 a
1 : 3 d 4 7 f 2 8 e c 0 1 a 6 9 b 5
2 : 0 e 7 b a 4 d 1 5 8 c 6 9 3 2 f
3 : d 8 a 1 3 f 4 2 b 6 7 c 0 5 e 9

Figure 5.3: Specification of DES S-box S2. If the 6-bit input is denoted by
a1a2a3a4a5a6 the output is given by the entry in row a1 + 2a6 and column
a2 + 2a3 + 4a4 + 8a5. The 4-bit values are given in hexadecimal notation, e.g., d
denotes 1101.

5.3 Differential and linear cryptanalysis

In this section we summarize differential cryptanalysis as described in [5] and linear
cryptanalysis as presented in [71].

5.3.1 Differential cryptanalysis

Differential cryptanalysis is a chosen-plaintext (difference) attack in which a large
amount of plaintext-ciphertext pairs are used to determine the value of key bits.
Statistical key information is deduced from ciphertext blocks obtained by encrypting
pairs of plaintext blocks with a specific bitwise difference A′ under the target key.
The work factor of the attack depends critically on the largest probability P(B′|A′)
with B′ a difference at some fixed intermediate stage of the cryptographic function,
e.g., at the input of the last round. In a first approximation, the probabilities
P(B′|A′) for DES are assumed to be independent of the specific value of the key.

Key information is extracted from the output pairs in the following way. For each
pair it is assumed that the intermediate difference is equal to B′. The absolute values
of the outputs and the (assumed) intermediate difference B′ impose restrictions upon
a number * of key bits of the last round key. A pair is said to suggest the subkey
values that are compatible with these restrictions. While for some pairs many keys
are suggested, no keys are found for other pairs, implying that the output values
are incompatible with B′. For each suggested subkey value a corresponding entry in
a frequency table is incremented.

The attack is successful if the right value of the subkey is suggested significantly
more often than any other value. Pairs with an intermediate difference not equal
to B′ are called wrong pairs. Subkey values suggested by these pairs are in general
wrong. Right pairs, with an intermediate difference equal to B′, do not only suggest
the right subkey value but often also a number of wrong subkey values. For DES
the wrong suggestions may be considered uniformly distributed among the possible
key values if the value P(B′|A′) is significantly larger than P(C ′|A′) for any C ′ �= B′.

Under these conditions it makes sense to calculate the ratio between the number
of times the right value is suggested and the average number of suggestions per entry,
the so-called signal-to-noise or S/N ratio. If the size of the table is 2� and the average

72 CHAPTER 5. PROPAGATION AND CORRELATION

number of suggested subkeys per pair is γ, this ratio is equal to P(B′|A′)2�/γ. The
S/N ratio strongly affects the number of right pairs needed to uniquely identify the
right subkey value. Experimental results [5] showed that for a ratio of 1-2 about
20-40 right pairs are enough. For larger ratios only a few right pairs are needed and
for ratios that are much smaller than 1 the required amount of right pairs can make
a practical attack infeasible.

Large probabilities P(B′|A′) are localized by the construction of so-called charac-
teristics . An m-round characteristic constitutes an m+1-tuple of difference patterns:
(X ′

0, X
′
1, . . . , X

′
m). The probability of this characteristic is the probability that an

initial difference pattern X ′
0 propagates to difference patterns X ′

1, X
′
2, . . . , X

′
m respec-

tively after 1, 2, . . . , m rounds. In the assumption that the propagation probability
from X ′

i−1 to X ′
i is independent of the propagation from X ′

0 to X ′
i−1, this probability

is given by∏
i

P(X ′
i|X ′

i−1) , (5.1)

with P(X ′
i|X ′

i−1) the probability that the difference pattern X ′
i−1 at the input of

the round transformation gives rise to X ′
i at its output. Hence, the multiple-round

characteristic is decomposed into a number of single-round characteristics (X ′
i−1, X

′
i)

with probability P(X ′
i|X ′

i−1).
In the construction of high-probability characteristics for DES, advantage is

taken from the linearity in the round transformation. Single-round characteristics of
the form (L′

i−1‖R′
i−1, L

′
i‖R′

i) with R′
i = L′

i−1 and L′
i = R′

i−1 = 0 have probability 1
and are called trivial. The most probable nontrivial single-round characteristics have
an input difference pattern that only affects a small number of the eight S-boxes.

Trivial characteristics have been exploited to construct high-probability itera-
tive characteristics, i.e., characteristics with a periodic sequence of differences. The
iterative characteristic with highest probability has period 2. Of the two involved
single-round characteristics, one is trivial. In the other one there is a nonzero dif-
ference pattern at the input of three neighboring S-boxes, that propagates to a zero
difference pattern at the output of the S-boxes with probability 1/234. Hence, the
resulting iterative characteristics have a probability of 1/234 per 2 rounds.

5.3.2 Linear cryptanalysis

Linear cryptanalysis is a known-plaintext attack in which a large amount of plaintext-
ciphertext pairs are used to determine the value of key bits. For the 8-round variant
of DES, linear cryptanalysis can also be applied in a ciphertext-only context.

A condition for applying linear cryptanalysis to a block cipher is to find “effec-
tive” linear expressions. Let A[i1, i2, . . . , ia] be the bitwise sum of the bits of A with
indices in a selection set {i1, i2, . . . , ia}, i.e.,

A[i1, i2, . . . , ia] = A[i1] + A[i2] + · · · + A[ia] .

Let P,C and K denote respectively the plaintext, the ciphertext and the key. A
linear expression is an expression of the following type:

P [i1, i2, . . . , ia] + C[j1, j2, . . . , jb] = K[k1, k2, . . . , kc] , (5.2)

5.3. DIFFERENTIAL AND LINEAR CRYPTANALYSIS 73

with i1, i2, . . . , ia, j1, j2, . . . , jb and k1, k2, . . . , kc fixed bit locations. The effectiveness
of such a linear expression in linear cryptanalysis is given by |p − 1/2| with p the
probability that it holds. By checking the value of the left-hand side of (5.2) for a
large number of plaintext-ciphertext pairs, the right-hand side can be guessed by
taking the value that occurs most often. This gives a single bit of information about
the key. In [71] it is shown that the probability of making a wrong guess is very
small if the number of plaintext-ciphertext pairs is larger than |p− 1/2|−2.

In [71] another algorithm is given that determines more than a single bit of key
information using a similar linear expression. Instead of (5.2), an expression is used
that contains no plaintext or ciphertext bits, but instead bits of the intermediate
encryption values I1 and I15 respectively after a single and all but a single round:

I1[i1, i2, . . . , ia] + I15[j1, j2, . . . , jb] = K[*1, *2, . . . , *c] . (5.3)

By assuming values for a subset νk of the subkey bits of the first and last round,
the bits of I1 and I15 that occur in (5.3) can be calculated. These bits are correct
if the values assumed for the key bits with indices in νk are correct. Given a large
number * of plaintext-ciphertext pairs, the correct values of all bits in νk and the
value of the right-hand side of (5.3) can be determined in the following way. For all
values of the key bits with indices in νk, the number of plaintext-ciphertext pairs are
counted for which (5.3) holds. For the correct assumption the expected value of this
sum is p* or (1− p)*. Thanks to the nonlinear behavior of the round transformation
this sum is expected to have significantly less bias for all wrongly assumed subkey
values. Given a linear expression (5.3) that holds with probability p, the probability
that this algorithm leads to a wrong guess is very small if the number of plaintext-
ciphertext pairs is significantly (say more than a factor 8) larger than |p − 1/2|−2.
In a recent improvement of this attack this factor 8 is reduced to 1 [72]. Hence, in
both variants the value of |p− 1/2| is critical for the work factor of the attack.

Effective linear expressions (5.2) and (5.3) are constructed by “chaining” single-
round linear expressions. An (m− 1)-round linear expression can be turned into an
m-round linear expression by appending a single-round linear expression such that
all the intermediate bits cancel:

P [i1, i2, . . . , ia] + Im−1[j1, j2, . . . , jb] = K[k1, k2, . . . , kc]
+

Im−1[j1, j2, . . . , jb] + Im[m1, m2, . . . , ma] = K[k2, k5, . . . , kd]
=

P [i1, i2, . . . , ia] + Im[m1, m2, . . . , ma] = K[k1, k3, . . . , kd]

In [71] it is shown that the probability that the resulting linear expression holds can
be approximated by 1/2 + 2(p1 − 1/2)(p2 − 1/2), given that the component linear
expressions hold with probability p1 and p2 respectively.

The DES single-round linear expressions and their probabilities can be studied by
observing the dependencies in the computational graph of the round transformation.
The selected round output bits completely specify a selection pattern at the output
of the S-boxes. If only round output bits are selected from the left half, this involves

74 CHAPTER 5. PROPAGATION AND CORRELATION

no S-box output bits at all, resulting in linear expressions that hold with probability
1. These are of the following type:

I�−1[j1 + 32, j2 + 32, . . . , ja + 32] = I�[j1, j2, . . . , ja] ,

This is called a trivial expression. Apparently, the most useful nontrivial single-
round linear expressions only select bits coming from a single S-box. For a given
S-box, all possible linear expressions and their probabilities can be exhaustively
calculated. Together with the key application before the S-boxes, each of these lin-
ear expressions can be converted into a single-round linear expression. The most
effective multiple-round linear expressions for DES are constructed by combining
single-round trivial expressions with linear expressions involving output bits of only
a single S-box. The resulting most effective 14-round linear expression has a prob-
ability of 1/2 ± 1.19 × 2−21.

5.4 Analytical and descriptive tools

In this section we present a formalism and some useful tools for the description
and analysis of difference propagation and the chaining of linear expressions. We
establish a relation between Boolean mappings and linear mappings over real vector
spaces, allowing a much simpler treatment of linear expressions. More importantly,
the proposed formalisms forces us to look at the phenomena from a different angle,
giving new insights. In the original descriptions of LC and DC, the propagation and
chaining are described as probabilistic phenomena, with an emphasis on probabilities
of events. In our formalism we describe the phenomena in terms of ratios and
correlations, reflecting a more deterministic view.

5.4.1 The Walsh-Hadamard transform

Linear cryptanalysis can be seen as the exploitation of correlations between linear
combinations of bits of different intermediate encryption values (or states). The
correlation between two Boolean functions with domain ZZn

2 can be expressed by a
correlation coefficient that ranges between −1 and 1:

Definition 5.1 The correlation coefficient C(f, g) associated with a pair of Boolean
functions f(a) and g(a) is given by

C(f, g) = 2 · Pr(f(a) = g(a)) − 1 .

From this definition it follows that C(f, g) = C(g, f). If the correlation coefficient is
different from zero, the functions are said to be correlated .

A selection vector w is a binary vector that selects all components i of a vector
for which wi = 1. Analogous to the inner product of vectors in linear algebra, the
linear combination of the components of a vector a selected by w can be expressed
as wta with the t suffix denoting transposition of the vector w. A linear Boolean
function wta is completely specified by its corresponding selection vector w.

5.4. ANALYTICAL AND DESCRIPTIVE TOOLS 75

Let f̂(a) be a real-valued function that is −1 for f(a) = 1 and +1 for f(a) = 0.
This can be expressed by f̂(a) = (−1)f(a). In this notation the real-valued function
corresponding to a linear Boolean function wta becomes (−1)w

ta. The bitwise sum
of two Boolean functions corresponds to the bitwise product of their real-valued
counterparts, i.e.,

̂f(a) + g(a) = f̂(a)ĝ(a) . (5.4)

We define an inner product for real-valued functions, not to be confused with the
inner product of vectors, by

< f̂, ĝ >=
∑
a

f̂(a)ĝ(a) , (5.5)

and the corresponding norm by

‖f̂‖ =

√
< f̂, f̂ > . (5.6)

For a Boolean function f(a), the norm of f̂(a) is equal to the square root of its
domain size, i.e., 2n/2. From the definition of the correlation coefficient it follows
that

C(f, g) =
< f̂, ĝ >

‖f̂‖ · ‖ĝ‖
. (5.7)

In the space of all Boolean functions, the real-valued functions corresponding to the
linear Boolean functions form an orthogonal basis with respect to the defined inner
product:

< (−1)u
ta, (−1)v

ta >= 2nδ(u + v) , (5.8)

with δ(w) the Kronecker delta function that is equal to 1 if w is the zero vector
and 0 otherwise. The representation of a Boolean function with respect to this
basis is called its Walsh-Hadamard transform [45, 84]. If the correlation coefficients
C(f(a), wta) are denoted by F̂ (w), we have

f̂(a) =
∑
w

F̂ (w)(−1)w
ta , (5.9)

and dually,

F̂ (w) = 2−n
∑
a

f̂(a)(−1)w
ta , (5.10)

summarized by

F̂ (w) = W(f(a)) . (5.11)

Hence, a Boolean function is completely specified by the set of correlation coefficients
with all linear functions.

76 CHAPTER 5. PROPAGATION AND CORRELATION

Taking the square of the norm of both sides of (5.9) and dividing by 2n yields
the theorem of Parseval [84, p. 223]:

1 =
∑
v

∑
w

F̂ (v)F̂ (w) < (−1)v
ta, (−1)w

ta >=
∑
w

F̂ 2(w) , (5.12)

expressing a relation between the number of linear functions that are correlated with
a given Boolean function and the amplitude of their correlations.

The Walsh-Hadamard transform of the sum of two Boolean functions f(a)+g(a)
can be derived using (5.9):

f̂(a)ĝ(a) =
∑
u

F̂ (u)(−1)u
ta
∑
v

Ĝ(v)(−1)v
ta

=
∑
u

∑
v

F̂ (u)Ĝ(v)(−1)(u+v)
ta

=
∑
w

(∑
v

F̂ (v + w)Ĝ(v)

)
(−1)w

ta . (5.13)

The values of Ĥ(w) = W(f + g) are therefore given by

Ĥ(w) =
∑
v

F̂ (v + w)Ĝ(v) . (5.14)

Hence, addition modulo 2 in the Boolean domain corresponds to convolution in
the transform domain. If the convolution operation is denoted by ⊗ this can be
expressed by

W(f + g) = W(f) ⊗W(g) . (5.15)

For multiplication (bitwise and) of two Boolean functions it can easily be seen that

̂f(a)g(a) =
1

2
(1 + f̂(a) + ĝ(a) − f̂(a)ĝ(a)) . (5.16)

Hence, we have

W(fg) =
1

2
(δ(w) + W(f) + W(g) −W(f + g)) . (5.17)

Given the convolution property it is easy to demonstrate some composition prop-
erties that are useful in the study of linear cryptanalysis.

• Complementation of a Boolean function g(a) = f(a) + 1 corresponds to mul-
tiplication by −1 in the transform domain: Ĝ(w) = −F̂ (w).

• Adding a linear function g(a) = f(a) + uta corresponds to a dyadic shift
operation in the transform domain: Ĝ(w) = F̂ (w + u).

5.4. ANALYTICAL AND DESCRIPTIVE TOOLS 77

The subspace of ZZn
2 generated by the vectors w for which F̂ (w) �= 0 is called

its support space Vf . The support space of the sum of two Boolean functions is a
subspace of the (vector) sum of their corresponding support spaces: Vf+g ⊆ Vf +Vg.
This follows directly from the convolution property. Two Boolean functions are
called disjunct if their support spaces are disjunct, i.e., if the intersection of their
support spaces only contains the origin. A vector v ∈ Vf+g with f and g disjunct
has a unique decomposition into a component u ∈ Vf and a component w ∈ Vg. In
this case the transform values of h = f + g are given by

Ĥ(v) = F̂ (u)Ĝ(w) with v = u + w and u ∈ Vf , w ∈ Vg . (5.18)

A pair of Boolean functions that depend on non-overlapping sets of input bits is a
special case of disjunct functions. Other examples can be found on p. 110.

5.4.2 Correlation matrices

Almost all components in encryption schemes, including S-boxes, state updating
transformations and block ciphers are simply mappings from a space of n-dimensional
binary vectors to a space of m-dimensional binary vectors. Often m = n. These
mappings can be represented by their correlation matrix .

A mapping h : ZZn
2 ← ZZm

2 can be decomposed into m component Boolean
functions: (h0, h1, . . . , hm−1). Each of these component functions hi has a Walsh-
Hadamard transform Ĥi. The vector function with components Ĥi is denoted by
Ĥ and can be considered the Walsh-Hadamard transform of the mapping h. As
in the case of Boolean functions, Ĥ completely determines the transformation h.
The Walsh-Hadamard transform of any linear combination of components of h is
specified by a simple extension of (5.15):

W(uth) =
⊗
ui=1

Ĥi . (5.19)

All correlation coefficients between linear combinations of input bits and those of
output bits of the mapping h can be arranged in a 2m × 2n correlation matrix Ch.
The element Ch

uw in row u and column w is equal to C(uth(a), wta). The rows of
this matrix can be interpreted as

(−1)u
th(a) =

∑
w

Ch
uw(−1)w

ta . (5.20)

In words, the real-valued function corresponding to a linear combination of output
bits can be written as a linear combination of the real-valued functions corresponding
to the linear combinations of input bits.

A Boolean function f(a) can be seen as a special case of a mapping and has
a correlation matrix with two rows: row 0 and row 1. Row 1 contains the Walsh-
Hadamard transform values of f(a) and row 0 the Walsh-Hadamard transform values
of the Boolean function that is equal to 0.

78 CHAPTER 5. PROPAGATION AND CORRELATION

A matrix Ch defines a linear mapping with domain IR2n

and range IR2m

. Let L
be a mapping from the space of binary vectors to the space of real vectors, depicting
a binary vector of dimension n onto a real vector of dimension 2n. L is defined by

L : ZZn
2 → IR2n

: a → L(a) = α ⇔ αu = (−1)u
ta . (5.21)

Since L(a + b) = L(a) · L(b), L is a group-homomorphism from < ZZn
2 ,+ > to

< IR2n

, · >, with “·” denoting the componentwise product. From (5.20) it can easily
be seen that

ChL(a) = L(h(a)) . (5.22)

Consider the composition of two Boolean mappings h = h2 ◦ h1 or h(a) =
h2(h1(a)), with h1 mapping n-dimensional vectors to p-dimensional vectors and with
h2 mapping p-dimensional vectors to m-dimensional vectors. The correlation matrix
of h is determined by the correlation matrices of the component mappings. We have

(−1)u
th(a) =

∑
v

Ch2
uv (−1)v

th1(a)

=
∑
v

Ch2
uv

∑
w

Ch1
vw(−1)w

ta

=
∑
w

(
∑
v

Ch2
uvC

h1
vw)(−1)w

ta .

Hence, we have

Ch2◦h1 = Ch2 × Ch1 , (5.23)

with × denoting the matrix product, Ch1 a 2p×2n matrix and Ch2 a 2m×2p matrix.
The input-output correlations of h = h2 ◦ h1 are given by

C(uth(a), wta) =
∑
v

C(uth1(a), vta)C(vth2(a), wta) . (5.24)

If h is an invertible transformation in ZZn
2 , we have

C(uth−1(a), wta) = C(utb, wth(b)) = C(wth(b), utb) . (5.25)

Using this and Ch × C(h−1) = Ch◦h−1
= I = Ch × (Ch)−1 we obtain

(Ch)−1 = C(h−1) = (Ch)t , (5.26)

hence, Ch is an orthogonal matrix. Conversely, a Boolean mapping with an orthog-
onal correlation matrix is invertible.

5.4. ANALYTICAL AND DESCRIPTIVE TOOLS 79

Special mappings

In the following, the suffix h will be omitted. Consider the transformation that
consists of the bitwise addition of a constant vector k: h(a) = a+ k. Since uth(a) =
uta + utk, the correlation matrix is a diagonal matrix with

Cuu = (−1)u
tk . (5.27)

Therefore the effect of bitwise addition of a constant vector before (or after) a
mapping h on its correlation matrix is a multiplication of some columns (or rows)
by −1.

Consider a linear mapping h(a) = Ma with M an m × n binary matrix. Since
uth(a) = utMa = (M tu)ta, the elements of the corresponding correlation matrix
are given by

Cuw = δ(M tu + w) . (5.28)

If M is an invertible square matrix, the correlation matrix is a permutation matrix.
The single nonzero element in row u is in column M tu. The effect of applying an in-
vertible linear transformation before (or after) a transformation h on the correlation
matrix is only a permutation of its columns (or rows).

Consider a mapping from ZZn
2 to ZZm

2 that consists of the parallel application of
* component mappings (S-boxes) from ZZni

2 to ZZmi
2 with

∑
i ni = n and

∑
i mi = m.

We will call such a mapping a juxtaposed mapping. We have a = (a(0), a(1), . . . , a(�−1))
and b = (b(0), b(1), . . . , b(�−1)) with the a(i) vectors of dimension ni and the b(i) vectors
of dimension mi. The mapping b = h(a) is defined by b(i) = h(i)(a(i)) for 0 ≤ i < *.
With every S-box h(i) corresponds a 2ni × 2mi correlation matrix denoted by C(i).
Since the h(i) are disjunct, (5.18) can be applied and the elements of the correlation
matrix of h are given by

Cuw =
∏
i

C(i)
u(i)w(i)

, (5.29)

with u = (u(0), u(1), . . . , u(�−1)) and w = (w(0), w(1), . . . , w(�−1)). In words this can be
expressed as: the correlation associated with input selection w and output selection
u is the product of its corresponding S-box input-output correlations C

(i)
u(i)w(i)

.
On p. 90 it is explained how these properties can be used to efficiently calculate

the input-output correlations of the DES round transformation.

5.4.3 Derived properties

The concept of the correlation matrix is a valuable tool to demonstrate properties
of Boolean transformations, functions and their spectrum. We will illustrate this
with some examples.

Lemma 5.1 The elements of the correlation matrix of a Boolean transformation
satisfy

C(u+v)x =
∑
w

Cu(w+x)Cvw , (5.30)

for all u, v, x ∈ ZZn
2 .

80 CHAPTER 5. PROPAGATION AND CORRELATION

Proof : Using the convolution property, we have

W((u + v)th(a)) = W(uth(a) + vth(a)) (5.31)

= W(uth(a)) ⊗W(vth(a)) .

Since the components of W(ξth(a)) are given by Cξw, the projection of (5.32) onto
the component with index x gives rise to (5.30).

A Boolean function is balanced if it is 1 (0) for exactly half of the elements in the
domain. Clearly, being balanced is equivalent to being uncorrelated to the Boolean
function equal to 0 (or 1).

Using the properties of correlation matrices we can now give an elegant proof of
the following well-known theorem.

Theorem 5.1 A Boolean transformation is invertible if and only if every linear
combination of output bits is a balanced Boolean function of its input bits.

Proof :

⇒ If h is an invertible transformation, its correlation matrix C is orthogonal. Since
C00 = 1 and all rows and columns have norm 1, it follows that there are no
other elements in row 0 or column 0 different from 0. Hence, C(uth(a), 0) =
δ(u) or uth(a) is balanced for all u �= 0.

⇐ The condition that all linear combinations of output bits are balanced Boolean
functions of input bits corresponds to Cu0 = 0 for u �= 0. If this is the case,
it can be shown that the correlation matrix is orthogonal. The expression
Ct × C = I is equivalent to the following set of conditions

∑
w

CuwCvw = δ(u + v) for all u, v ∈ ZZn
2 . (5.32)

Now, the substitution x = 0 in (5.30) gives rise to

∑
w

CuwCvw = C(u+v)0 .

Since we have Cu0 = 0 for all u �= 0 and C00 = 1, (5.32) holds for all possible
pairs u, v. It follows that C is an orthogonal matrix, hence h−1 exists and is
defined by Ct.

Lemma 5.2 The elements of the correlation matrix of a mapping with domain ZZn
2

and the Walsh-Hadamard transform values of a Boolean function with domain ZZn
2

are integer multiples of 21−n.

5.4. ANALYTICAL AND DESCRIPTIVE TOOLS 81

Proof : The sum in the right-hand side of (5.10) is always even since its value is of
the form (k · (1) + (2n − k) · (−1) = 2k − 2n. It follows that the Walsh-Hadamard
coordinates must be integer multiples of 21−n.

A mapping from ZZn
2 to ZZm

2 can be converted into a mapping from ZZn−1
2 to ZZm

2

by fixing a single component of the input. More generally, a component of the
input can be set equal to a linear combination of other input components, possibly
complemented. Such a restriction is of the type

vta = ε , (5.33)

with ε ∈ ZZ2. Assume that vs �= 0. The restriction can be seen as the result of
a mapping a′ = hr(a) from ZZn−1

2 to ZZn
2 specified by a′i = ai for i �= s and a′s =

ε + vta + as. The nonzero elements of the correlation matrix of hr are

Chr
ww = 1 and Chr

(v+w)w = (−1)ε for all w with ws = 0 . (5.34)

It can be seen that columns indexed by w with ws = 0 have exactly two nonzero
entries with magnitude 1 and those with ws = 1 are all-zero. Omitting the latter
gives a 2n × 2n−1 correlation matrix Chr with only columns indexed by the vectors
with ws = 0.

The transformation restricted to the specified subset of inputs can be seen as the
consecutive application of hr and the transformation itself. Hence, its correlation
matrix C ′ is given by C × Chr . The elements of this matrix are

C ′
uw = Cuw + (−1)εCu(w+v) , (5.35)

if ws = 0 and 0 if ws = 1. The elements in C ′ are the Walsh-Hadamard transform
values of Boolean functions of (n− 1)-dimensional vectors, hence, from Lemma 5.2
they must be integer multiples of 22−n. This can be easily generalized to multiple
linear restrictions on the input.

Applying (5.12) to the rows of the restricted correlation matrices gives additional
laws for the Walsh-Hadamard transform values of Boolean functions. For the single
restrictions of the type vta = ε we have∑

w

(F (w) + F (w + v))2 =
∑
w

(F (w) − F (w + v))2 = 2 . (5.36)

Lemma 5.3 The elements of a correlation matrix corresponding to an invertible
transformation of n-bit vectors are integer multiples of 22−n.

Proof : Consider an element of the correlation matrix Cuw. If the input of the
corresponding transformation is restricted by wta = 0, the correlation of the output
function uth(a) to 0 becomes Cuw + Cu0. According to Lemma 5.2, this value is an
integer multiple of 22−n. From Theorem 5.1 it follows that Cu0 = 0 and hence that
Cuw must be an integer multiple of 22−n.

With a similar argument it can be shown that either all elements of the Walsh-
Hadamard transform of a Boolean function are an integer multiple of 22−n or none
of them is.

82 CHAPTER 5. PROPAGATION AND CORRELATION

5.4.4 Difference propagation

Consider a couple of n-dimensional vectors a and a∗ with bitwise difference a+a∗ =
a′. Let b = h(a), b∗ = h(a∗) and b′ = b + b∗, hence, the difference a′ propagates to
the difference b′ through h. This is denoted by (a′ $ h % b′) or, if h is clear from the
context, simply (a′, b′). In general, b′ is not determined by a′ but depends on the
value of a (or a∗).

Definition 5.2 The prop ratio Rp of a difference propagation (a′ $ h % b′) is given
by

Rp(a
′ $ h % b′) = 2−n

∑
a

δ(b′ + h(a + a′) + h(a)) . (5.37)

If a pair is chosen uniformly from the set of all pairs (a, a∗) with a + a∗ = a′,
the probability that h(a) + h(a∗) = b′ is given by Rp(a

′ $ h % b′). In this specific
experimental set-up the prop ratio corresponds to a probability. This is however not
the case in general and we believe that the widespread use of the term “probability”
to denote what we call “prop ratio” has given rise to considerable confusion.

The prop ratio ranges between 0 and 1. Since h(a+a′)+h(a) = h(a)+h(a+a′),
it must be an integer multiple of 21−n. The difference propagation (a′ $ h % b′)
restricts the values of a to a fraction of all possible inputs. This fraction is given by
Rp(a

′ $ h % b′). It can easily be seen that

∑
b′

Rp(a
′ $ h % b′) = 1 . (5.38)

If Rp(a
′ $ h % b′) = 0, the difference propagation (a′ $ h % b′) is called invalid. The

input difference a′ and the output difference b′ are said to be incompatible through
h.

Definition 5.3 The restriction weight of a valid difference propagation (a′ $ h % b′)
is the negative of the binary logarithm of the prop ratio, i.e.,

wr(a
′ $ h % b′) = − log2 Rp(a

′ $ h % b′) . (5.39)

The restriction weight can be seen as the amount of information (in bits) that is
given by (a′ $ h % b′) on a, or the loss in entropy [98] of a due to the restriction
(a′ $ h % b′). The restriction weight ranges between 0 and n− 1.

If h is linear, b′ = b + b∗ = h(a) + h(a∗) = h(a + a∗) = h(a′), i.e., a′ completely
determines b′. From wr(a

′ $ h % b′) = 0 it can be seen that this difference propagation
does not restrict or gives away information on a.

5.4. ANALYTICAL AND DESCRIPTIVE TOOLS 83

Special mappings

An affine mapping h from ZZn
2 to ZZm

2 is specified by

b = Ma + k , (5.40)

with M a m× n matrix and k a m-dimensional vector. The difference propagation
for this mapping is determined by

b′ = Ma′ . (5.41)

For a juxtaposed mapping h, it can easily be seen that

Rp(a
′ $ h % b′) =

∏
i

Rp(a
′
(i) $ h(i) % b′(i)) , (5.42)

and

wr(a
′ $ h % b′) =

∑
i

wr(a
′
(i) $ h(i) % b′(i)) , (5.43)

with a′ = (a′(0), a
′
(1), . . . , a

′
(�−1)) and b′ = (b′(0), b

′
(1), . . . , b

′
(�−1)).

A mapping h from ZZn
2 to ZZm

2 can be converted into a mapping hs from ZZn
2

to ZZm−1
2 by discarding a single output bit as. The prop ratios of hs can easily be

expressed in terms of the prop ratios of h:

Rp(a
′ $ hs % b′) = Rp(a

′ $ h % ω0) + Rp(a
′ $ h % ω1) , (5.44)

with b′i = ω0i = ω1i for i �= s and ω1s = 1 and ω0s = 0. This can be generalized
to the situation in which only a number of linear combinations of the output are
considered. Let θ be a linear mapping corresponding to an m× * binary matrix M .
The prop ratios of θ ◦ h are given by

Rp(a
′ $ θ ◦ h % b′) =

∑
ω|b′=Mω

Rp(a
′ $ h % ω) . (5.45)

Prop ratios in terms of correlation coefficients

The prop ratios of the difference propagations of Boolean functions and mappings
can be expressed respectively in terms of their Walsh-Hadamard transform values
and their correlation matrix elements. With a derivation similar to (5.14) it can be
shown that the components of the inverse transform of the componentwise product
of two spectra ĉfg = W−1(F̂ Ĝ) are given by

ĉfg(b) = 2−n
∑
a

f̂(a)ĝ(a + b) = 2−n
∑
a

(−1)f(a)+g(a+b) . (5.46)

ĉfg(b) is not a Boolean function. It is generally referred to as the cross correlation
function of f and g. Hence, the cross correlation function of two Boolean functions
is the inverse Walsh-Hadamard transform of the componentwise product of their
spectra. If g = f it is called the autocorrelation function of f and denoted by

84 CHAPTER 5. PROPAGATION AND CORRELATION

r̂f . The components of the spectrum of the autocorrelation function consist of the
squares of the spectrum of f , i.e.,

F̂ 2 = W(r̂f) . (5.47)

This is generally referred to as the Wiener-Khintchine theorem [84].
The difference propagation in a Boolean function f can be expressed easily in

terms of the autocorrelation function. The prop ratio of the difference propagation
(a′ $ f % 0) is given by

Rp(a
′ $ f % 0) = 2−n

∑
a

δ(f(a) + f(a + a′))

= 2−n
∑
a

1

2
(1 + f̂(a)f̂(a + a′))

=
1

2
(1 + r̂f(a′))

=
1

2
(1 +

∑
w

(−1)w
ta′F̂ 2(w)) . (5.48)

The component of the autocorrelation function r̂f(a′) corresponds to the amount
that Rp(a

′ $ f % 0) deviates from 1/2.
For mappings from ZZn

2 to ZZm
2 , let the autocorrelation function of uth(a) be de-

noted by r̂u(a′), i.e.,

r̂u(a′) = 2−n
∑
a

(−1)u
th(a)+uth(a+a′) . (5.49)

Now we can easily prove the following remarkable theorem that expresses the dual-
ity between the difference propagation and the correlation properties of a Boolean
mapping.

Theorem 5.2 The table of prop ratios and the table containing the squared elements
of the correlation matrix of a Boolean mapping are linked by a (scaled) Walsh-
Hadamard transform. We have

Rp(a
′ $ h % b′) = 2−m

∑
u,w

(−1)w
ta′+utb′C2

uw , (5.50)

and dually

C2
uw = 2−n

∑
a′,b′

(−1)w
ta′+utb′Rp(a

′ $ h % b′) . (5.51)

5.5. APPLICATION TO ITERATED TRANSFORMATIONS 85

Proof : we have

Rp(a
′ $ h % b′) = 2−n

∑
a

δ(h(a) + h(a + a′) + b′)

= 2−n
∑
a

∏
i

1

2
((−1)hi(a)+hi(a+a

′)+b′i + 1)

= 2−n
∑
a

2−m
∑
u

(−1)u
th(a)+uth(a+a′)+utb′

= 2−m
∑
u

(−1)u
tb′2−n

∑
a

(−1)u
th(a)+uth(a+a′)

= 2−m
∑
u

(−1)u
tb′ r̂u(a′)

= 2−m
∑
u

(−1)u
tb′

∑
w

(−1)w
ta′C2

uw

= 2−m
∑
u,w

(−1)w
ta′+utb′C2

uw .

5.5 Application to iterated transformations

The described tools and formalisms can be applied to the propagation of differences
and the calculation of correlations in iterated transformations. This includes it-
erated block ciphers such as DES and the repeated application of state updating
transformations in synchronous stream ciphers and the round transformations in
cryptographic hash functions.

The studied iterated transformations are of the form

β = ρm ◦ . . . ◦ ρ2 ◦ ρ1 . (5.52)

In a block cipher the ρi are selected from a set of round transformations {ρ[b]|b ∈
ZZnb
2 } by nb-bit round keys κ(i), i.e., ρi = ρ[κ(i)]. These round keys are derived

from the cipher key κ by the key schedule. In the iterated application of the state
updating transformation of a synchronous stream cipher or a hash function, the
ρi are selected by (part of) the buffer contents. The correspondence between our
formalism and the terminology of the original descriptions of LC and DC is treated
in Sect. 5.5.3.

5.5.1 Correlation

Fixed key

In the Walsh-Hadamard transform domain, a fixed succession of round transforma-
tions corresponds to a 2n×2n correlation matrix that is the product of the correlation
matrices corresponding to the round transformations. We have

Cβ = Cρm × . . .× Cρ2 × Cρ1 . (5.53)

86 CHAPTER 5. PROPAGATION AND CORRELATION

Linear cryptanalysis exploits the occurrence of large elements in this product matrix.
An m-round linear trail Ξ, denoted by

Ξ = (ξ0 @ ρ1 A ξ1 @ ρ2 A ξ2 @ . . . A ξm−1 @ ρm A ξm) , (5.54)

consists of the chaining of m round correlations of the type C(ξi
tρi(a), ξi−1

ta). To
this linear trail corresponds a correlation contribution coefficient Cp ranging between
−1 and +1. We have

Cp(Ξ) =
∏
i

Cρi

ξiξi−1
. (5.55)

From this definition and (5.53) we have

C(utβ(a), wta) =
∑

ξ0=w,ξm=u

Cp(Ξ) . (5.56)

Hence, the correlation between utβ(a) and wta is the sum of the correlation contri-
bution coefficients of all m-round linear trails Ξ with initial selection vector w and
terminal selection vector u.

Variable key

In actual cryptanalysis the succession of round transformations is not known in
advance but is governed by an unknown key or some input-dependent value. In
general, the elements of the correlation matrix of ρi depend on the specific value of
the round key κ(i).

For some block ciphers the strong round-key dependence of the correlation and
propagation properties of the round transformation has been cited as a design crite-
rion. The analysis of correlation or difference propagation would have to be repeated
for every specific value of the cipher key, making linear and differential analysis in-
feasible. A typical problem with this approach is that the quality of the round
transformation with respect to LC or DC strongly depends on the specific value
of the round key. While the resistance against LC and DC may be very good on
the average, specific classes of cipher keys can exhibit linear trails with excessive
correlation contributions (or differential trails with excessive prop ratios).

These complications can be avoided by designing the round transformation in
such a way that the amplitudes of the elements of its correlation matrix are inde-
pendent of the specific value of the round key. As was shown in Sect. 5.4.2, this is
the case if the round transformation consists of a fixed transformation ρ followed
(or preceded) by the bitwise addition of the round key κ(i) to (part of) the state.

The correlation matrix Cρ is determined by the fixed transformation ρ. The
correlation contribution coefficient of the linear trail Ξ becomes

Cp(Ξ) =
∏
i

(−1)ξ
t
iκ

(i)

Cρ
ξiξi−1

= (−1)εΞ+
∑

i ξ
t
iκ

(i)|Cp(Ξ)| , (5.57)

with εΞ = 1 if
∏

i C
ρ
ξiξi−1

is negative and εΞ = 0 otherwise. |Cp(Ξ)| is independent of
the round keys, and hence, only the sign of the correlation contribution coefficient
is key-dependent. Analogous to the restriction weight for differential trails, we can
define:

5.5. APPLICATION TO ITERATED TRANSFORMATIONS 87

Definition 5.4 The correlation weight wc of a linear trail Ξ is given by

wc(Ξ) = − log2 |Cp(Ξ)| . (5.58)

The correlation weight of a linear trail is the sum of the correlation weights of
its linear steps given by − log2 |Cρ

ξiξi−1
|.

The correlation coefficient between utβ(a) and wta can be expressed in terms of
the correlation contribution coefficients of linear trails:

C(utβ(a), wta) =
∑

ξ0=w,ξm=u

(−1)εΞ+
∑

i ξ
t
iκ

(i)|Cp(Ξ)| . (5.59)

The amplitude of this correlation coefficient is no longer independent of the round
keys since the terms are added or subtracted depending on the value of the round
keys.

Correlation analysis

The analysis of a round transformation with respect to its correlation properties
consists of the investigation of two aspects.

The first aspect concerns the basic entities in LC, i.e., linear trails. The round
transformation can be investigated by identifying the critical multiple-round linear
trails, i.e., with the highest correlation contribution coefficient. For block ciphers
the maximum correlation contribution coefficient for linear trails that span all but a
few rounds has to be investigated. An efficient round transformation combines a low
work factor with critical correlation contribution coefficients that decrease rapidly
when the number of rounds increases. We give a strategy for the design of this type
of round transformations at the end of this chapter, called the wide trail strategy .

The second aspect concerns the way in which linear trails combine to multiple-
round correlations. Constructive interference of many linear trails with small cor-
relation contribution coefficients may result in large correlations. Analysis includes
investigating whether the round transformation can give rise to such clustering . For
a well-designed round transformation multiple-round correlation coefficients larger
than 2−n/2 are dominated by a single linear trail.

5.5.2 Difference propagation

Fixed key

An m-round differential trail Ω, denoted by

Ω = (ω0 $ ρ1 % ω1 $ ρ2 % ω2 $. . . % ωm−1 $ ρm % ωm) , (5.60)

consists of the chaining of difference propagations of the type (ωi−1 $ ρi % ωi). These
are called the (differential) steps of the trail. The prop ratio of Ω, denoted by Rp(Ω)
is the relative portion of values of a0 that exhibit the specified differential trail.

A differential step (ωi−1 $ ρi % ωi) imposes restrictions on the intermediate
state ai−1. If the succession of round transformations is assumed to be fixed, ai−1 is

88 CHAPTER 5. PROPAGATION AND CORRELATION

completely determined by a0. Consequently, the restrictions on ai−1 can (in principle)
be converted into restrictions on a0. Since the round transformations are invertible,
the relative size of the subset of allowed a0 values is still given by Rp(ωi−1 $ ρi % ωi).
The relative size of the set of values a0 that satisfy the restrictions imposed by all
the differential steps of a differential trail Ω is per definition the prop ratio of Ω.

Definition 5.5 The restriction weight of a differential trail Ω is the sum of the
restriction weights of its differential steps, i.e.,

wr(Ω) =
∑
i

wr(ωi−1 $ ρi % ωi) . (5.61)

Now consider a two-round differential trail. The first step imposes restrictions
on a0 and the second on a1. Typically, these restrictions involve only a subset of the
components of each of the vectors. If for every selection vector v0 of the involved
components of a0 and every selection v1 of the involved components of a1 the cor-
relation Cρ1

v1v0
= 0, the restrictions are said to be uncorrelated. If this is the case,

imposing values upon the involved components of a0 does not restrict the involved
components of a1 and vice versa. Hence, the two restrictions are independent and
the prop ratio of the two-round differential trail is equal to the product of the prop
ratios of its two differential steps. This can readily be generalized to more than two
rounds.

It is generally infeasible to calculate the exact value of Rp(Ω), while it is easy for
the restriction weight. Under the assumption that the restrictions originating from
the different steps are not (or only very weakly) correlated, the prop ratio can be
approximated by

Rp(Ω) ≈ 2−wr(Ω) . (5.62)

In practice, e.g., for DES, the approximation is very good if the restriction weight
is significantly below n. If wr(Ω) is of the order n or larger, (5.62) can no longer
be a valid approximation. This is due to the inevitable (albeit small) correlations
between the restrictions. The prop ratio multiplied by 2n is the number of inputs
a0 that exhibit the specified differential trail, and it must therefore be an (even)
integer. Of the differential trails Ω with a restriction weight wr(Ω) above n, only a
fraction 2n−wr(Ω) can be expected to actually occur for some a0.

Variable key

If the round transformation consists of a fixed transformation followed by the bitwise
addition of the round key, the distribution of differential steps and their restriction
weight is independent of the round key. Since the restriction weight of a differential
trail consists of the sum of the restriction weights of its differential steps, it is
independent of the cipher key.

The reduction of the restrictions imposed upon ai−1 by (ωi−1 $ ρi % ωi) to
restrictions on a0 involves the round keys, and hence, the prop ratio of a differential
trail is in principle not independent of the cipher key. Or alternatively, the signs of

5.5. APPLICATION TO ITERATED TRANSFORMATIONS 89

the correlations between the different restrictions depend on the round keys. Since
for the proposed round transformations the approximation given by (5.62) is key
independent, differential trails with restriction weight significantly below n have
prop ratios that can be considered independent of the round keys. Differential trails
Ω with restriction weights wr(Ω) above n will only actually occur for an expected
portion 2n−wr(Ω) of the cipher keys.

DC exploits difference propagations (ω0 $ β % ωm) with large prop ratios. Since
for a given input value a0 exactly one differential trail is followed, the prop ratio of
(a′, b′) is given by the sum of the prop ratios of all m-round differential trails with
initial difference a′ and terminal difference b′, i.e.,

Rp(a
′ $ β % b′) =

∑
ω0=a′,ωm=b′

Rp(Ω) . (5.63)

Propagation analysis

The analysis of a round transformation with respect to its difference propagation
properties consists of the investigation of three aspects.

The first aspect concerns the basic entities in DC, i.e., differential trails. The
round transformation can be investigated by identifying the critical multiple-round
differential trails, i.e., with the lowest restriction weights. For block ciphers it is
relevant to check the minimum restriction weight for differential trails that span all
but a few rounds of the block cipher. An efficient round transformation combines a
low work factor with critical restriction weights that grow rapidly as the number of
rounds increases. This type of round transformations can also be designed by the
wide trail strategy , described at the end of this chapter.

The second aspect concerns the approximation of the prop ratio of the differential
trails by the product of the prop ratio of its steps. Specifically for the critical differ-
ential trails it must be checked whether the restrictions imposed by the differential
steps can indeed be considered uncorrelated.

The third aspect concerns the way in which differential trails combine to dif-
ference propagations over multiple rounds. Many differential trails with high re-
striction weight and equal initial and terminal difference may result in difference
propagation with a large prop ratio. As in the case of LC, analysis includes the
investigation whether the round transformation can give rise to such clustering . For
a well-designed round transformation multiple-round difference propagation with
prop ratios larger than 21−n are dominated by a single differential trail.

5.5.3 DES cryptanalysis revisited

In this section we match the elements of linear and differential cryptanalysis as
described in Sect. 5.3 with those of our framework.

Linear cryptanalysis

The multiple-round linear expressions described in [71] correspond to what we call
linear trails. The probability p that such an expression holds is 1

2
(1 + Cp(Ξ)), with

90 CHAPTER 5. PROPAGATION AND CORRELATION

Cp(Ξ) the correlation contribution coefficient of the corresponding linear trail. This
implies that the considered correlation coefficient is assumed to be dominated by
a single linear trail. This assumption is valid because of the large amplitude of
the described correlation coefficients on the one hand and the structure of the DES
round transformation on the other hand.

The correlation of the linear trail is independent of the key and consists of the
product of the correlations of its steps. In general, the elements of the correlation
matrix of the DES round transformation are not independent of the round keys. In
the described linear trails the actual independence is caused by the fact that the
steps of the described linear trail only involve bits of a single S-box.

The input-output correlations of F -function of DES can be calculated by apply-
ing the rules given in Sect. 5.4.2. The 32-bit selection vector b at the output of the
bit permutation P is converted into a 32-bit selection vector c at the output of the
S-boxes by a simple linear transformation. The 32-bit selection vector a at the input
of the (linear) expansion E gives rise to a set α of 22� 48-bit selection vectors after
the expansion, with * the number of neighboring S-box pairs that are addressed by
a.

In the assumption that the round key is all-zero, the correlation between c and
a can now be calculated by simply adding the correlations corresponding to c and
all vectors in α. Since the S-boxes form a juxtaposed mapping, these correlations
can be easily calculated from the correlation matrices of the individual S-boxes. For
* > 0 the calculations can be greatly simplified by recursively reusing intermediate
results in computing these correlations. The total number of calculations can be
reduced to less than 16* multiplications and additions of S-box correlations.

The effect of a nonzero round key is the multiplication of some of these corre-
lations by −1. Hence, if * > 0, the correlation depends on the value of 2* different
linear combinations of round key bits. If * = 0, α only contains a single vector and
the correlation is independent of the key.

Differential cryptanalysis

The characteristics with their characteristic probability described in [5] correspond
to what we call differential trails and their (approximated) prop ratio. The prop
ratio of a differential trail is taken to be the prop ratio of the difference propagation
from its initial difference to its terminal difference. For the DC of DES this is a
valid approximation because of the large prop ratios of the considered differential
trails and the structure of the DES round transformation.

For the DES round transformation the distribution of the differential steps and
their restriction weights are not independent of the round keys. This dependence
was already recognized in [5] where in the analysis the restriction weights of the dif-
ferential steps are approximated by an average value. Lars Knudsen has shown that
the two-round iterative differential with approximate prop ratio 1/234 in fact has a
prop ratio of either 1/146 or 1/585 depending on the value of a linear combination
of round key bits [60].

Recently, Martin Hellman and Susan Langford published an attack on an 8-round

5.6. THE WIDE TRAIL STRATEGY 91

variant of DES that combines the mechanisms of differential and linear cryptanal-
ysis [50]. In their attack they apply plaintext pairs with a specific difference that
propagates with prop ratio 1 to a certain difference in the intermediate state after
3 rounds confined to a subset of its bits. Then a 3-round linear trail is constructed
between the output of round 7 and the input of round 4. The correlation between
certain linear combinations of intermediate bits in the pair is exploited to gain in-
formation about key bits. It can easily be shown that this correlation is the square
of the correlation contribution coefficient of the 3-round linear trail. The number
of required plaintext-ciphertext pairs can be approximated by raising this correla-
tion contribution coefficient to the power −4 while in simple linear cryptanalysis
the required number of pairs is approximately the critical correlation contribution
coefficient to the power −2. This limits the usability of this attack to ciphers with
poor resistance against differential and linear cryptanalysis.

5.6 The wide trail strategy

In this section we present our strategy for the design of round transformations
without low-weight multiple-round linear and differential trails.

For both types of trails, the weight is given by the sum of the weights of its
steps. Let the round transformation consist of three steps: an invertible nonlinear
transformation γ, an invertible linear transformation θ and the round key addition.

Suppose γ is a juxtaposed transformation. As explained on p. 79, a correlation
coefficient Cγ

uw is the product of the corresponding input-output correlation coeffi-
cients of the S-boxes. With the correlation weight of the input-output correlation
of an S-box equal to minus the binary logarithm of its correlation, the correlation
weight of a linear step is given by the sum of the correlation weights of the corre-
sponding input-output correlations of the S-boxes. Similarly, the restriction weight
of a differential step is the sum of the restriction weights of the corresponding dif-
ference propagations of the S-boxes.

An S-box of a specific round is said to be active with respect to a linear trail
if its output selection vector is nonzero for that linear trail. It is said to be active
with respect to a differential trail if its input difference vector is nonzero for that
differential trail. Now, both for linear and differential trails it can be seen that the
weight of a trail is the sum of the active S-boxes.

This suggests two possible mechanisms of eliminating low-weight trails:

• Choose S-boxes with difference propagations that have high restriction weight
and with input-output correlations that have high correlation weight.

• Design the round transformation in such a way that only trails with many
S-boxes occur.

The wide trail strategy emphasizes the second mechanism. The round transfor-
mation must be designed in such a way that linear (or differential) steps with only
few active S-boxes are followed by linear (or differential) steps with many active S-
boxes. This is closely linked to the concept of diffusion, introduced by Shannon [99]

92 CHAPTER 5. PROPAGATION AND CORRELATION

to denote the quantitative spreading of information. The only requirement for the
S-boxes themselves is that their input-output correlations have a certain minimum
correlation weight and that their difference propagations have a certain minimum
restriction weight.

The wide trail strategy does not restrict the nonlinear step to juxtaposed trans-
formations. It can equally well be applied to the shift-invariant transformations that
are treated in the following chapter.

5.6.1 Traditional approach

The wide trail strategy contrasts highly with the approach taken by the majority
of cryptographic researchers working in cipher design. This traditional approach is
dominated by the structure of DES and fully concentrates on the S-boxes. This is
illustrated by the small width of the linear and differential trails in DES. Its most
effective differential trail contains only 3 S-boxes per 2 rounds, its most effective
linear trail only 3 S-boxes per 4 rounds.

Typically, the S-boxes are (tacitly) assumed to be located in the F-function of a
Feistel structure or in some academic round transformation model such as so-called
substitution-permutation (or transposition) networks [1, 82]. These networks consist
of the alternation of parallel S-boxes and bit permutations and were proposed in
[36, 59]. The S-boxes are considered to be the active elements in the cipher and must
be designed to eliminate low-weight trails. In practice this requirement is translated
to “criteria” for S-boxes, such as maximum input-output correlation, maximum prop
ratio and diffusion criteria. These criteria impose conflicting restrictions, and finding
S-boxes that have an acceptable score with respect to all them becomes less difficult
when their size grows.

This has led many researchers to the conclusion that resistance against DC and
LC is best realized by adopting large S-boxes. This one-sided point of view plainly
ignores the potential of high diffusion provided by a well-designed round transfor-
mation.

5.7 Conclusions

We have given a number of tools to describe and investigate the propagation of
differences and the correlations in Boolean mappings and iterated transformations.
An explicit design strategy has been formulated and motivated. Our most important
contributions in this chapter are:

• the concept of the correlation matrix and its properties,

• the relation between the correlations and the prop ratios of a Boolean mapping,

• the systematic treatment of the silent assumptions made in differential and
linear cryptanalysis,

• the wide trail strategy.

5.7. CONCLUSIONS 93

We are convinced that the theory of correlation matrices can further be extended to
provide additional insights in both correlation and difference propagation behavior.
This is an opportunity for doing some further research that is both challenging and
relevant.

94 CHAPTER 5. PROPAGATION AND CORRELATION

Chapter 6

Shift-Invariant Transformations

6.1 Introduction

The defining property of shift-invariant transformations is the commutativity with
translation. Shift-invariant transformations on binary vectors have a number of
properties that make them suitable components for the state updating transforma-
tion of cryptographic finite state machines. In hardware, these transformations can
be implemented as an interconnected array of identical 1-bit output “processors.”
The shift-invariance ensures that the computational load is optimally distributed.
In software, their regularity allows efficient implementations by employing bitwise
logical operations. Moreover, binary shift-invariant transformations can be specified
by a single Boolean function.

Shift-invariant transformations are closely linked with so-called cellular automata
since these are defined as (infinite) automata with a local shift-invariant state updat-
ing function. However, while research on cellular automata focuses on evolution of
long-term structures and patterns in time, this chapter treats the short-term aspects
of invertibility and local propagation and correlation properties.

We make a distinction between two types of invertibility. While local invertibility
is in fact an inherent property of some shift-invariant transformations, global invert-
ibility is context dependent. In this chapter new procedures are given for detection
and proof of both types of invertibility.

The transformations naturally fall into the categories linear (with respect to bit-
wise addition) and nonlinear. In the nonlinear case, a distinction is made between
transformations with finite and those with infinite neighborhood. The most impor-
tant example of the latter corresponds to cyclic multiplication, i.e., multiplication
by a constant modulo 2n − 1.

The last part of this chapter is dedicated to the study of the propagation and
correlation properties of binary shift-invariant transformations with finite neighbor-
hood. This includes the introduction of some new useful tools such as the Hamming
weight distribution table and the branch number of linear mappings and our in-depth
study of the correlation and propagation properties of a particularly useful nonlinear
shift-invariant transformation, denoted by χ.

The propagation and correlation properties of cyclic multiplication require a

95

96 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

different approach and are treated in Chapter 11. A substantial part of this chapter
has already been published in our papers [23] and [24].

6.2 Shift-invariance and the state space

In spite of the fact that in practical implementations the arrays have to be finite,
our theoretical treatment will cover the infinite case. The envisioned finite transfor-
mations are equivalent to restrictions of more general infinite transformations.

The studied transformations operate on a one-dimensional infinite array of binary-
valued (ZZ2) cells with indices i ∈ ZZ. The cells with the higher indices are assumed
to be at the right. The (infinite) set of all possible states is denoted by A. The
ith component of a state a is denoted by ai. More generally, a projection operator
|ν , with ν a subset of ZZ, extracts from a state a the #ν-dimensional vector with
components indixed by the elements of ν, denoted by a|ν . If ν is a singleton, say
{k}, we write a|k to denote a|{k}.

A translation τr over r cells is a transformation that shifts a r positions to the
right.

τr : A → A : a → b ⇔ bi+r = ai, ∀i ∈ ZZ . (6.1)

Shift-invariance can be expressed as

Definition 6.1 A transformation φ : A → A is shift-invariant if

∀a ∈ A, ∀r ∈ ZZ : φ(τr(a)) = τr(φ(a)) .

In the following, shift-invariant transformations are denoted by the symbol φ.
Two states a and b are congruent if there is an integer r ∈ ZZ such that b = τr(a).

This is an equivalence relation and thus establishes a partition of the state space A.
The quotient space is denoted by T .

A state is an assignment of values for an infinite array. Only a limited part of
the infinite array can be realized and boundary conditions have to be specified for
the transformation φ. This must be done in such a way that the shift-invariance of
the transformation is preserved. Therefore periodic states are considered.

Definition 6.2 The period of a state a is the smallest p ∈ IN0 such that a = τp(a).
If there is no such integer the state is said to be aperiodic.

The subset of A of all states with period dividing n is denoted by An. We have
a ∈ An ⇐⇒ a = τn(a). There are two states with period 1, the all-zero state and
the all-one state. These are denoted by 0 and 0̄ respectively.

A state in An is uniquely defined by its components with indices 0 to n − 1.
The φ-image of a state in An must be in An since φ(a) = φ(τn(a)) = τn(φ(a)). The
transformation φ restricted to An can be implemented with the state contained in
the finite array of length n. The transformation φ is applied to a finite vector with
periodic boundary conditions.

6.3. LOCAL MAPS 97

The subset of the quotient space T with period p is denoted by Tp. The con-
gruence quotient space of An is called Zn and can be expressed in terms of the Ti
as Zn =

⋃
d|n Td. For the calculation of the cardinalities of Tn and Zn we refer to

Appendix A.1.
If two states a and b are congruent, φ(a) and φ(b) are congruent. Therefore φ

defines a transformation φτ over the quotient space T .

6.3 Local maps

The kth component of the φ-image of a, φ(a)|k, can be expressed as a Boolean
function f(a). Any other component of the image can be calculated by φ(a)|i =
τk−i(φ(a))|k = φ(τk−i(a))|k = f(τk−i(a)). Hence, φ can be completely specified by
the Boolean function fl(a) describing φ(a)|0.

fl(a) does not necessarily depend on all components of a. The subset of ZZ con-
taining the indices of the components that fl(a) explicitly depends upon is called the
neighborhood ν. We have fl(a) = fl(a|ν). If ν is finite, the transformation is generally
referred to as a cellular automaton mapping . In this case the span of ν is defined by
max(ν) − min(ν) and fl(a) is called the local map. Studying transformations with
infinite ν is significant with respect to finite implementations.

The composition of two transformations φ1 and φ2 yields a new shift-invariant
transformation φ = φ2 ◦ φ1 defined by φ(a) = φ2(φ1(a)). In general, composition of
shift-invariant transformations is not commutative.

The transformations φ with #ν = 1 are called trivial. These contain the identity
transformation 1A : fl(a) = a0, the translations τr : fl(a) = a−r and the bitwise
complementation 1̄A : fl(a) = ā0 = a0 + 1.

6.4 Invertibility

Definition 6.3 A transformation φ is invertible if for every state b ∈ A there is
exactly one state a ∈ A such that b = φ(a).

The definition implies that for an invertible φ there must exist an inverse mapping
φ−1 such that φ−1 ◦φ = φ ◦φ−1 = 1A. Moreover, this inverse is shift-invariant, since
from τr◦φ = φ◦τr follows φ−1◦τr◦φ = φ−1◦φ◦τr and consequently φ−1◦τr = τr◦φ−1.
For transformations with finite ν, D. Richardson proved the following theorem in
[89]:

Theorem 6.1 If a transformation φ with finite ν is invertible, then its inverse φ−1

is a shift-invariant transformation with finite ν.

Therefore an invertible φ with finite ν will be called locally invertible. Observe that
this theorem does not give an explicit method of constructing the inverse transfor-
mation.

Important classes of transformations are not invertible over A, but they are
invertible over subsets of periodic states An.

98 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

Definition 6.4 A transformation φ is globally invertible over An, denoted by φ A@ n
if for every state b ∈ An there is exactly one state a ∈ An such that b = φ(a).

In this case it is possible to define the inverse mapping of φ restricted to An. The
inverse is shift-invariant but it is only defined for states in An. Theorem 6.1 does
not apply in this case.

Proposition 6.1 if φ A@ n, φ preserves the period for all states with a period d that
divides n.

Proof : Let a be a state with period d|n. It follows from a ∈ Ad that φ(a) ∈ Ad

or, equivalently, that the period of φ(a) must divide d. Suppose φ(a) has period
p < d. We have φ(τp(a)) = τp(φ(a)) = φ(a). The consequence that two different
states in An, τp(a) and a, have the same φ-image contradicts the definition of global
invertibility.

If φ A@ n, it follows from Prop. 6.1 that φ A@ d for all d : d|n. Conversely
φ �A@ n ⇒ φ �A@ k if k is a multiple of n. Therefore, the invertibility properties of
a mapping with respect to the period can be expressed in the form of a set ξ of
integers. We have

φ A@ n ⇐⇒ mi � |n, ∀mi ∈ ξ . (6.2)

From one invertible shift-invariant transformation, many other invertible shift-
invariant transformations can be derived by simply composing the original one with
translation, complementation or both. Obviously, these transformations are not
“essentially different.” In order to reveal other obvious relations in the set of all
possible φ, some more transformations are introduced.

The reflection ρ is the transformation that maps a state to its mirror-image
around 0:

ρ : A → A : a → b ⇔ bi = a−i, ∀i ∈ ZZ . (6.3)

It can easily be seen that ρ ◦ φ ◦ ρ, the reflection of φ, is a shift-invariant transfor-
mation.

A decimation ∆ with base e ∈ IN0 is a function that maps one state to a vector
of e states:

∆e : A → Ae : a → (b0, b1 . . . , be−1) ⇔ bji = aei+j , (6.4)

∀i ∈ ZZ, 0 ≤ j < e. The inverse of the ∆e is the interweaving of e states:

∆−1
e : Ae → A : (a0, a1 . . . , ae−1) → b ⇔ bei+j = aji , . (6.5)

∀i ∈ ZZ, 0 ≤ j < e. Let φe be defined by

φe : Ae → Ae : a → b ⇔ bj = φ(aj)0 ≤ j < e . (6.6)

It can be seen that ∆−1
e ◦ φe ◦ ∆e, the expansion of φ by e, is a shift-invariant

transformation.

6.5. LINEAR SHIFT-INVARIANT TRANSFORMATIONS 99

With respect to propagation properties, these cannot be considered essentially
different from φ. The set ξ associated with two transformations that are not essen-
tially different are equal, except for expansions of φ. If φ′ = ∆−1

e ◦ φ ◦ ∆e it can be
derived that

∀mi ∈ ξφ ⇒ mi · gcd(mi, e) ∈ ξφ′ . (6.7)

6.5 Linear shift-invariant transformations

The local map fl(a|ν) must be a linear Boolean function of a|ν , i.e., a sum modulo 2
of the components with indices in ν. Observe that φ is completely specified by the
neighborhood ν.

A linear transformation φ can be described by a polynomial multiplication with
coefficients in ZZ2. A state a can be represented by a double infinite power series

α(x) =
+∞∑
−∞

aix
i .

A linear transformation φ specified by a neighborhood ν is represented by a char-
acteristic dipolynomial c(x) =

∑
i∈ν x

−i. The power series representation of φ(a) is
given by c(x)α(x).

A state a with period n is represented by α(x) = a(x)
∑+∞

j=−∞ xj·n with a(x) =∑n−1
i=0 aix

i completely specifying a. For a state a with period n it can be seen that
(1 + xn)α(x) = 0 since this is equivalent to a + τn(a) = a + a = 0. We have

c(x)α(x) = c(x)a(x)

+∞∑
j=−∞

xj·n = c(x)a(x) mod (1 + xn)

+∞∑
j=−∞

xj·n .

The linear transformation φ restricted to An can therefore be described as a multipli-
cation by a polynomial c(x) in the commutative ring of binary polynomials modulo
1 + xn. If b = φ(a) we have

b(x) = c(x)a(x) mod (1 + xn) . (6.8)

6.5.1 Invertibility

Obviously, the inverse of an invertible linear transformation is linear. From this
it can be derived that there are only trivial locally invertible linear shift-invariant
transformations. Consider an invertible linear φ specified by c(x). Its inverse can
be specified by a dipolynomial d(x) since it must be linear and shift-invariant. This
polynomial must satisfy c(x)d(x)α(x) = α(x) for all possible α(x) or c(x)d(x) =
1. This is only possible if both c(x) and d(x) have only one term, i.e., if φ is a
translation.

On the other hand, finding linear shift-invariant transformations that are glob-
ally invertible over some An is easy. In the following, only dipolynomials without
negative powers will be considered since every linear φ can be decomposed in a
translation and a linear φ′ that can be represented by a polynomial.

100 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

Proposition 6.2 For φ defined by c(x) : φ A@ n ⇐⇒ gcd(c(x), 1 + xn) = 1. The
inverse φ−1 can be described as multiplication modulo 1 + xn by a polynomial d(x)
with d(x)c(x) ≡ 1 (mod 1 + xn).

This proposition follows directly from (6.8) . The inverse polynomial d(x) can
easily be computed with the (extended) Euclidean algorithm.

Example 6.1 Given c(x) = 1 + x + x3. This c(x) is invertible over A8 because
gcd(c(x), 1 + x8) = 1. Its inverse is given by d(x) = 1 + x2 + x5 + x6 + x7. It is not
invertible over A7 because c(x) divides 1 + x7.

Every binary polynomial can be factored in a unique product of powers of distinct
irreducible (or equivalently prime) binary polynomials. The invertibility properties
of c(x) depend on the algebraic order [65] of its irreducible factors. The algebraic
order of a polynomial c(x) is the smallest number m ∈ IN0 such that xm = 1 mod
c(x).

If c(x) is irreducible we have:

Lemma 6.1 An irreducible c(x) of algebraic order m is invertible modulo 1 +xn iff
m � |n. We have ξ = {m}.

Proof :We have xkm ≡ 1 (mod c(x)) for any integer k or, equivalently, gcd(c(x), 1+
xkm) = c(x). Therefore, c(x) is not invertible modulo 1+xkm. On the other hand, for
n no multiple of m we have xn �≡ 1 (mod c(x)) or equivalently gcd(c(x), 1 + xn) �=
c(x). For c(x) irreducible we must have gcd(c(x), 1+xn) = 1, hence, c(x) is invertible
modulo 1 + xn.

Example 6.2 c(x) = 1 + x + x2 : this is an irreducible polynomial of order m = 3.
Hence, c(x) is invertible for all n that are no multiple of 3.

If c(x) is composite then c(x) is invertible for a given length n if all of its factors
are invertible for that length. The transformation with polynomial c(x) can be
seen as the composition of the transformations represented by the factors of c(x). It
immediately follows :

Theorem 6.2 Let the factorization of c(x) in irreducible factors be given by

p1(x)α1p2(x)α2 . . . pg(x)αg ,

and the algebraic orders of the factors pi(x) denoted by mi. Then

ξ = {m1, m2 . . . , mg} .

Example 6.3 c(x) = 1+x+x5 factors in (1+x+x2)(1+x2+x3). These polynomials
have respectively orders m = 3 and m = 7, hence, c(x) is invertible for all lengths
that are no multiple of 3 or 7.

Corollary 6.1 If c(x) contains an even number of terms there is no length n for
which φ is invertible over An. If c(x) contains an odd number of terms there are
always lengths n for which it is invertible.

6.6. NONLINEAR TRANSFORMATIONS WITH FINITE ν 101

If c(x) contains an even number of terms then c(1) = 0, i.e., 1 is a root of c(x) or
equivalently (1 + x)|c(x). This means that ξ = {1}. If c(x) contains an odd number
of terms, 1 + x cannot be a factor of c(x). An example of a length n for which such
a c(x) is invertible is n = 1 +

∏
mi∈ξ mi. It can easily be seen that this number is

coprime to all mi.

6.6 Nonlinear transformations with finite ν

Transformations in this class are always specified in terms of a local map. A par-
ticularly useful description of this local map when invertible φ’s are envisioned is
the complementing landscape (CL) specification [102]. Here the local map is spec-
ified by a set of patterns, called the complementing landscapes (CL). The value of
a component is complemented if its neighborhood takes on one of these patterns.
A landscape is a pattern consisting of symbols 1, 0, and denoting “don’t care,”
positioned relative to an origin, denoted by ∗. In this context, the all-zero state will
be denoted by 0∗ and the all-one state by 1∗.

Example 6.4 Say φ is specified by {1∗ 01} and b = φ(a). We have:
bi = āi if ai−1 = 1 & ai+2 = 0 & ai+3 = 1,
bi = ai otherwise.
The value of ai+1 is irrelevant in this calculation. We say ai is complemented if
component i is in landscape 1∗ 01.

The implementation of a transformation in the form of a two layer nand circuit
followed by an exor is given by its complementing landscape specification. In this
respect the CL representation gives a good idea of the implementation complexity
of the transformation.

Definition 6.5 Two landscapes *1 and *2 are called compatible if a component can
be in (the origin of) both landscapes at the same time.

Example 6.5 *1 = 1∗ 01, *2 = ∗111, *3 = ∗1 1. Here *1 and *2 are incompatible,
*3 is compatible with both *1 and *2.

6.6.1 Local invertibility

The only locally invertible binary φ’s that have been described in the literature, are
of the (single) conserved-landscape type [102]. Here φ is defined by a landscape *
with the property that any component partaking it cannot be in the origin of *.
Every cell in the landscape is left unchanged by the transformation and therefore
the whole landscape is preserved. This will be illustrated in the following example
by the only locally invertible φ with span 4.

102 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

Example 6.6 φ is defined by * = 0∗10. If component 0 is in landscape 0∗10,
components −1,1 and 2 must be in landscapes incompatible with *.

• Component −1 is in landscape ∗ 10,

• Component 1 is in landscape 0 ∗0,

• Component 2 is in landscape 0 1∗.

It can be seen that if the neighborhood of component 0 takes on the landscape, this
will still be the case after applying φ.

It follows that the inverse of an invertible φ of the conserved-landscape type is φ
itself, i.e., φ is an involution. This can be useful in applications where φ and φ−1

must both be implemented. If a landscape is given, it can easily be checked whether
it is a conserved landscape.

We discovered that there are also invertible φ’s that are defined by a set of several
landscapes that is preserved by the transformation. A component in a landscape
(not) belonging to this set, will (not) be in a landscape belonging to this set after
application of φ. The simplest example is given by the set {0∗110, 10∗10}.

It can easily be checked whether a given landscape (or set of landscapes) is
conserved. Numerous locally invertible φ’s can be found by searching in the space
of possible landscapes. The search can be optimized by taking into account that
conserved landscapes must have certain “overlap” properties. For instance, there
are no conserved landscapes where the origin is in the rightmost or leftmost position.

In our search for invertible shift-invariant transformations, we found locally in-
vertible φ’s of which the invertibility cannot be explained by the conserved-landscape
principle. From Theorem 6.1 it follows that the inverse of these φ’s can be expressed
as a local map. The invertibility can be proved by giving an algorithm for the cal-
culation of φ−1(a) for all a ∈ A. The algorithms to calculate the inverse of invertible
φ’s that are not involutions consist basically of two operations, denoted by seed and
leap:

1. Seed : For all a ∈ A, one component or a certain pattern of components of
φ−1(a) can be found.

2. Leap : Starting from a seed, other components of φ−1(a) can be reconstructed.

This can best be illustrated by an example. We prove the invertibility of a class of
invertible φ’s that are not of the conserved-landscape type.

Example 6.7 φ is specified by 0 @iA ∗1 @iA 0 . Here @iA denotes the symbol
repeated i times.
Seed: The two 0 symbols of this landscape are preserved. Therefore, if ai is in
landscape 1 @iA ∗ or in ∗ @iA 1 it yields φ−1(a)|i = ai. The only state without seeds
is 0∗, but it can easily be seen that φ−1(0∗) = 0∗.
Leap: If φ−1(a)|i is known, φ−1(a)|i−1 can be found. This can be expressed in
a leap tree. This is a binary tree that summarizes all combinations of relevant

6.6. NONLINEAR TRANSFORMATIONS WITH FINITE ν 103

components of state “a” near the seed. The diagrams in the nodes consist of two
lines. The bottom line denotes a substring of state “a” while the top line denotes
the corresponding part of φ−1(a). In the initial node (at the left) a seed is depicted
with respect to an origin ∗. The component in the origin will be determined by the
leap. For a node there are two possibilities. In one case, the component in the origin
can be determined from the knowledge of components in its neighborhood. This is
denoted by a symbol * or *̄ in the origin. In the other case, more knowledge is
needed from the neighborhood. If there is a component in the neighborhood that can
be determined for the given status of knowledge of “a” in that node, this is denoted
by x. The two cases x = 0 and x = 1 give rise to two new nodes. A leap tree has
the property that a leap is realized in all of its terminal nodes.

∗x
x

✲

�

*0
*

∗1 @iA x
x

✲

✣

x @iA ∗1 @iA 0
x

*1 @iA 1
*

✲

❘

0 @iA *̄1 @iA 0
*

1 @iA *1 @iA 0
*

A remarkable set of invertible transformations contains the φ’s specified by the
sets Γm : {0 @iA @iA ∗10 | 0 ≤ i < m}. For more examples of locally invertible
shift-invariant transformations we refer to Appendix A.3.

6.6.2 Global invertibility

Consider the shift-invariant transformation defined by * = ∗01. Because of its
practical importance in our work we give this transformation a name: χ. A seed and
a leap can easily be found:

1. Seed: If ai is in ∗1, φ−1(a)|i = ai.

2. Leap: If φ−1(a)|i is known, φ−1(a)|i−2 can be found.

∗ x
x

✲

�

* 0
*

∗x1
x

✲

❃
*̄01
*

*11
*

In contrast with the leaps found in the previous section, the leap for χ gives a
new value that has a distance of 2 cells to the seed. In general, two seeds are needed
for the full reconstruction of the state, one for the components with even indices
and one for the components with odd indices. This has important implications for
periodic states. If the period is odd, the presence of a seed on an even indexed
position necessarily implies that there must be a seed on an odd indexed position.
Therefore χ−1(a) can be determined for all states with odd period. By a simple
counting argument, there can be no state a different from 0∗ with odd period such
that 0∗ = χ(a). Hence, we have

104 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

Proposition 6.3 χ is invertible for An with n odd or, equivalently, for χ we have
ξ = {2}.

If n is even, there are states without seeds for the even (odd) indexed components.
Of the 2n states in An, 2n/2−2 have two preimages, 2n/2 have no preimages and the
all-zero state 0∗ has three preimages: the two states with period 2 and 0∗ itself.

For larger neighborhoods the invertibility can sometimes be proved for a set of
transformations at once. For instance, all φ’s that are specified by one of the 16
subsets of {∗0001, ∗0101, ∗0111, ∗01 0} are invertible for odd state lengths. For
the proof, we refer to Appendix A.2.

Globally invertible φ’s can be found by checking landscapes and sets of landscapes
for “seeds” and “leaps.” For larger neighborhoods, the number of globally invertible
φ’s grows exponentially. The sets ξ of the transformations depend on the “length”
of the leaps. The simplest invertible φ’s are listed in Appendix A.3.

Unlike with locally invertible φ, the inverse of globally invertible φ’s cannot be
calculated locally. It can therefore not be implemented in a straightforward parallel
manner. The algorithm for computing the inverse based on the seed and leap method
is inherently sequential.

6.7 Cyclic multiplication

A state a ∈ A that has no nonzero components above a given index λ can be
interpreted as the representation of a positive real number, i.e., aλ2λ + aλ−12λ−1 . . .
A translation τr is interpreted as a multiplication by 2r. Multiplication by a constant
c ∈ IR is shift-invariant because multiplication in IR is commutative: c·2r ·a = 2r ·c·a.

If this constant is an integer (possibly divided by a power of 2), its binary repre-
sentation contains a finite number of 1’s. Although a periodic state does not repre-
sent a real number, the “multiplication” by an integer acting upon periodic states,
or cyclic multiplication, can be given a simple interpretation and implementation.
A state with period n can be represented by a = A ·

∑∞
i=−∞ 2ni with A ∈ ZZ2n . If a

state with period n is multiplied by 2n−1, the result must be the state representing
the number 0 since (2n − 1)a = τn(a) − a = a− a = 0. For a �= 0̄ we have

C · a = C · A
∞∑

i=−∞
2ni = (C ·A mod (2n − 1))

∞∑
i=−∞

2ni .

Hence, multiplication by a constant C restricted to An can be modeled by multipli-
cation modulo 2n − 1. If b = φ(a),

B = C · A mod (2n − 1) . (6.9)

The all-1 state 0̄ corresponds to the number 2n − 1 and can therefore be seen as
an alternative representation of the number 0. Since φ(0) = 0 for all multiplication
factors, invertibility imposes that φ(0̄) = 0̄.

φ defined by a multiplication factor C is invertible if gcd(C, 2n − 1) = 1. The
inverse can be described by the multiplication modulo 2n − 1 with a constant D

6.8. DIFFUSION 105

with CD ≡ 1 (mod 2n − 1). D can be computed with the (extended) algorithm
of Euclid. Since gcd(2p − 1, 2q − 1) = 2gcd(p,q) − 1 [61], the invertibility of these
transformations can again be represented by a set ξ.

6.8 Diffusion

In the wide trail strategy, the resistance against LC and DC is achieved by the
iterated alternation of a nonlinear transformation and a transformation with high
diffusion. In this section we will study the diffusion properties of shift-invariant
transformations. This will be followed by a treatment of the nonlinearity properties
of shift-invariant transformations.

Definition 6.6 The Hamming distance between two binary vectors is the number
of nonzero components of their bitwise difference (modulo 2).

The Hamming distance to 0 is denoted by Hamming weight :

Definition 6.7 The Hamming weight wh is the number of nonzero components of
a vector.

The diffusion factor describes the amount of local diffusion that is realized by a
transformation:

Definition 6.8 The diffusion factor D of a Boolean transformation h is the average
Hamming distance between h(a) and h(a + δi) over all a and i.

In this definition δi denotes the binary vector with a single nonzero component at
position i.

For a shift-invariant transformation D(φ) can be calculated directly from the
local map fl(a|ν). If #ν = k we have

D(φ) = 2−k
∑
i∈ν

(
∑
x

δ(fl(x) + fl(x + δi)) . (6.10)

With some effort it can be shown that the following definition is equivalent:

Definition 6.9 The diffusion factor D(φ) is equal to∑
w

C2(φ(a)|0, wta) wh(w) =
∑
w

F̂l(w)
2
wh(w) .

For a linear φ the diffusion factor is equal to the number of terms in the characteris-
tic polynomial. In Appendix A.3 it can be seen that nonlinear invertible φ’s have in
general a smaller D than even the simplest linear invertible φ. For larger neighbor-
hoods D even decreases. Invertible nonlinear φ’s seem to be inefficient information
diffusers .

On the one hand, the diffusion factor describes the average amount of information
propagation resulting from isolated single-component input differences. On the other

106 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

hand, it describes a kind of average effective neighborhood size. Cryptanalysis often
takes advantage of the worst case behavior of round transformations. In nonlinear
transformations the amount of propagation can depend strongly on the absolute
values of the components in the neighborhood of the complemented component. In
almost all φ’s listed in Appendix A.3 these absolute values can be chosen in such a
way that changing a single input component only affects a single output component.
Alternatively, for all these φ’s there is a large correlation between ai and φ(a)|i. This
means that in the worst case these nonlinear transformations do not accomplish any
diffusion at all.

For linear φ’s, a more detailed picture of the diffusion can be given by also looking
at linear combinations of output bits or differences in more than a single input bit
at once.

6.8.1 Diffusion in invertible linear φ

For linear φ, the difference propagation can be expressed in terms of the multiplica-
tion polynomial:

b′(x) = c(x)a′(x) mod (1 + xn) . (6.11)

If the Hamming weight of a′(x) is equal to 1, b′(x) is just a shifted version of c(x)
and its Hamming weight is equal to the diffusion factor. If the Hamming weight of
a′(x) is higher than 1, the Hamming weight of b′(x) depends on the actual a′(x) at
hand.

The correlation can likewise be expressed in terms of the multiplication poly-
nomial. A selection vector u corresponds to a polynomial u(x) and the linear
combination utb corresponds to the coefficient of x0 in the polynomial given by
u(x−1)b(x) mod (1 + xn). Using b(x) = c(x)a(x) mod (1 + xn) it can be derived that
Cuw = 1 for

w(x) = c(x−1)u(x) mod (1 + xn) , (6.12)

and 0 otherwise.
The diffusion effect of a linear mapping θ can be studied by analyzing pairs

(a, θ(a)). A useful tool in this context is the Hamming weight distribution table. This
is a table that partitions the couples (a, θ(a)) according to the Hamming weights of
a and θ(a). Table 6.1 is an example of such a Hamming weight distribution table.
The element in row i and column j denotes the number of couples (a, θ(a)) with
wh(a) = i and wh(θ(a)) = j.

The single nonzero entry in row 0 (and column 0) corresponds to the couple (0, 0).
The single nonzero entry in row 11 (and column 11) corresponds to the couple (0̄, 0̄).
For invertible linear shift-invariant mappings these rows and columns clearly do not
contain any information. Therefore, they will be omitted in the following.

In Table 6.1 it can be seen that there is a nonzero entry in row 2 and column
2. This indicates output differences with only two nonzero bits that correspond
to input differences with only two nonzero bits, or alternatively, linear equations
involving only two input components and two output components. The minimum

6.8. DIFFUSION 107

0 1 2 3 4 5 6 7 8 9 10 11

0 1 - - - - - - - - - - -
1 - - - - - 11 - - - - - -
2 - - 11 - 11 - 11 - 11 - 11 -
3 - - - - - 110 - 55 - - - -
4 - - 44 - 99 - 110 - 77 - - -
5 - - - 77 - 220 - 165 - - - -
6 - - - - 165 - 220 - 77 - - -
7 - - - 77 - 110 - 99 - 44 - -
8 - - - - 55 - 110 - - - - -
9 - 11 - 11 - 11 - 11 - 11 - -

10 - - - - - - 11 - - - - -
11 - - - - - - - - - - - 1

Table 6.1: Hamming weight distribution table of multiplication by 1+x+x2+x6+x7

modulo 1 + x11.

total Hamming weight of (a, θ(a)) is a measure for the minimum amount of diffusion
that is realized by a linear mapping, and is called the branch number .

Definition 6.10 The branch number B of a linear mapping θ is given by

B(θ) = min
a�=0

(wh(a) + wh(θ(a))) . (6.13)

For modular multiplication by a polynomial c(x) the couple (1, c(x)) imposes
an upper bound of D + 1 on the branch number. Table 6.2 gives an example of a
polynomial multiplication with B = D + 1.

Let B(c(x), n) denote the branch number corresponding to multiplication by
c(x) modulo 1 + xn. The knowledge of B(c(x), n) allows us to determine the branch
numbers of a large set of related polynomials.

108 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

1 2 3 4 5 6 7 8 9 10

1 - - - - 11 - - - - -
2 - - - - - 55 - - - -
3 - - 55 - - - 110 - - -
4 - - - 220 - - - 110 - -
5 11 - - - 369 - - - 55 -
6 - 55 - - - 369 - - - 11
7 - - 110 - - - 220 - - -
8 - - - 110 - - - 55 - -
9 - - - - 55 - - - - -

10 - - - - - 11 - - - -

Table 6.2: Hamming weight distribution table of multiplication by 1+x+x2+x4+x7

modulo 1 + x11.

We have

• ∀i : B(c(x), n) = B(xic(x), n): the branch numbers of two congruent linear
transformations are equal;

• ∀i with gcd(i, n) = 1 : B(c(x), n) = B(c(xi), n): the branch numbers of two
linear transformations that can be converted into each other by expansion are
equal;

• B(c(x), n) = B(c(x)−1 mod (1 + xn), n): the branch number of a linear trans-
formation and its inverse are equal.

Moreover, the branch number corresponding to an invertible polynomial modulo
1 + xn must be even. This is due to the fact that multiplication modulo 1 + xn by
a polynomial with an odd number of terms preserves the parity.

For a given n an upper bound on the branch number of any linear mapping θ
over ZZn

2 is given by the sphere-packing bound for error-correcting codes [67, p. 19].
Consider a (2n, n) linear code where the 2n codewords are given by the couples
(a, θ(a)). The branch number is the smallest Hamming weight of the nonzero code-
words. Since this is a linear code, B is also the minimum Hamming distance between
the codewords. Hence, the sets of neighbors at a Hamming distance of less than B

2

bits from each codeword must be disjoint. We have∑
0≤i<B

2

(
2n

i

)
≤ 2n , (6.14)

with
(
y
x

)
denoting the number of possible combinations of x elements from a set of

y elements.
This equation imposes a lower bound upon the dimension n for a linear trans-

formation if some branch number has to be attained. The minimum dimensions for
odd branch numbers smaller than 20 are listed in Table 6.3. For an even branch
number 2k, (6.14) imposes the same minimum dimension as for 2k − 1.

6.9. NONLINEARITY PROPERTIES OF χ 109

Branch number 3 5 7 9 11 13 15 17 19

Minimum dimension 3 7 11 15 20 24 29 33 37

Table 6.3: Minimum dimension n versus branch numbers.

6.9 Nonlinearity properties of χ

The largest occurring prop ratio is a measure for the minimum amount of nonlinear
difference propagation realized by φ and is denoted by R. The largest occurring
correlation in the correlation matrix of φ is a measure for the minimum amount of
decorrelation effect through φ and is denoted by C.

In Appendix A.3 it can be seen that, despite its simple local map, the shift-
invariant mapping denoted by χ has very good nonlinear properties. Other φ’s with
comparable C and R have much larger implementation complexities. Therefore,
the nonlinear shift-invariant transformations that are used in our own designs are
variants of χ. In this section the nonlinear propagation properties of χ are treated
in detail.

The local map of b = χ(a) is given by

bi = ai + (ai+1 + 1)ai+2 . (6.15)

It can be seen that the local map is quadratic, i.e., has algebraic degree two. This
has interesting consequences for the nonlinear behavior of χ.

6.9.1 Difference propagation

The components of b′ = χ(a) + χ(a + a′) are given by

b′i = χ(a′)|i + a′i+1ai+2 + a′i+2ai+1 . (6.16)

For a given input difference the bits a′i are fixed and the bits ai are variables. It
can be seen that b′i depends in a linear way on the components of a. All possible
difference propagations (a′ $ χ % b′) have the same prop ratio. The space of all b′

that are compatible with a given a′ can be described as an affine variety:

b′ ∈ {x = χ(a′) +
∑
k

aku
k | ∀k ∈ ZZn, a ∈ ZZn

2} ,

with the generating vectors uk specified by uk = a′k+1δk−1 + a′k−1δk−2. In matrix
notation we have



b′0
b′1
b′2
b′3
b′4
...

b′n−2
b′n−1




= [χ(a′)] +




0 a′2 a′1 0 · · · 0 0
0 0 a′3 a′2 · · · 0 0
0 0 0 a′4 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

a′n−1 0 0 0 · · · 0 a′0
a′1 a′0 0 0 · · · 0 0







a0
a1
a2
a3
a4
...

an−2
an−1




110 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

The total number of b′ vectors compatible with a′ depends on the dimension of
the affine variety, i.e., the number of independent vectors in {uk}. This dimension
is equal to the restriction weight of (a′ $ χ % b′). Since it is independent of b′ this
restriction weight can be denoted by wr(a

′). The number of b′ values compatible with
a′ is equal to 2wr(a′). A given difference propagation (a′ $ χ % b′) imposes exactly
wr(a

′) linear Boolean conditions on the bits of a. It can easily be shown that for
a′ �= 0̄, the restriction weight wr(a

′) is equal to the Hamming weight of a′ plus the
number of 001-patterns in a′. For a′ = 0̄ and dimension n, we have wr(0̄) = n− 1.

6.9.2 Correlation

All input selections w with C(utχ(a), wta) �= 0 are called (χ-)compatible with u. We
have

utχ(a) =
∑
i

ui(ai + (ai+1 + 1)ai+2) (6.17)

=
∑
i

ui(ai + ai+2) +
∑
i

uiai+1ai+2 .

The right-hand side of (6.18) is split up into a sum of linear terms and a sum of
quadratic product terms. We will first investigate the effect of adding the product
terms. As shown on p. 77, the effect of adding the linear sum corresponds to a dyadic
shift in the transform domain. For the quadratic product terms we distinguish four
cases:

• a0a1 + a1a2 = (a0 + a2)a1: addition of two adjacent products can be reduced
to a single product,

• a0a1 and a2a3 are disjunct (see p. 77),

• (a0 + a2)a1 and a2a3 are disjunct,

• (a0 + a2)a1 and (a2 + a4)a3 are disjunct.

The product terms corresponding to components of u that are not adjacent are
disjunct. Therefore, the quadratic functions obtained by grouping the product terms
corresponding to the all-one substrings of u separated by zeros are disjunct. Such
a quadratic function is of the form

∑
0<i≤s aiai+1. This expression can be converted

into a sum of disjunct products. The reduction depends on the parity of the length
s. If s is even, we have∑

0<i≤s/2

(a2i−1 + a2i+1)a2i , (6.18)

and if s is odd∑
0<i≤(s−1)/2

(a2i−1 + a2i+1)a2i + asas+1 . (6.19)

6.9. NONLINEARITY PROPERTIES OF χ 111

Hence, the number of disjunct product terms corresponding to an all-1 substring of
length s is �s+1

2
�. This gives us a general procedure to split (6.18) up into a single

linear term and a number of quadratic product terms that are mutually disjunct.
Let the result of this reduction be denoted by

utχ(a) = zta +
∑
0<i≤r

(v2i−1
t
a)(v2i

t
a) . (6.20)

The vectors vi correspond to a basis with respect to which the quadratic Boolean
function utχ(a) has the normal form according to Dickson’s theorem [84, p. 240].

From (5.17) it can be seen that the product of two linear terms (uta)(vta) is cor-
related to the linear functions 0, uta and vta with correlation coefficient 1/2, and to
the linear function (u + v)ta with correlation coefficient −1/2. Its Walsh-Hadamard
transform is described by

W((uta)(vta)) =
1

2
(δ(w) + δ(w + u) + δ(w + v) − δ(w + u + v)) . (6.21)

Hence, the support space of (u + v)ta is generated by u and v.
Since the product terms in (6.20) are mutually disjunct, (5.18) can be applied

here. From this, it immediately follows that the amplitudes of the Walsh-Hadamard
transform values of (6.20) are given by

|F̂ (w)| = 2−r if w ∈ {z +
∑
i

xiv
i | ∀i ∈ ZZn, x ∈ ZZ2r2 } , (6.22)

and 0 otherwise. This has also been proven in [84, p. 246]. Hence, a linear combina-
tion of output components is correlated to 22r different linear combinations of input
components. The correlation is equal to 2−r for all of these input combinations.
The correlation weight of (w @ χ A u) is therefore given by r. Since r is completely
determined by u, it is denoted by wc(u).

We conclude this section with an example that illustrates the effect of adding
quadratic product terms in the transform domain.

Example 6.8 Say u = δ0 + δ1 + δ2. The expression utχ(a) is given by

a0 + (a1 + 1)a2 + a1 + (a2 + 1)a3 + a2 + (a3 + 1)a4 .

This can be converted into

(a0 + a1 + a3 + a4) + (a1 + a3)a2 + a3a4 .

The effect of the addition of the product terms and the linear terms is illustrated in
Fig. 6.1. The domain is represented by Karnaugh maps [51]. It can be seen that
adding a quadratic product has a flattening effect on the Walsh-Hadamard transform.

It is clear that for χ there is a correspondence between the two types of nonlinear
behavior. This correspondence is described in Table 6.4.

112 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

v1v2
v3v4

v0 = 0
00 01 11 10

00

01

11

10

v1v2
v3v4

v0 = 1
00 01 11 10

00

01

11

10

+1

A = W(a0 + a1 + a3 + a4)

+1 +1

−1 +1

2W((a1 + a3)a2) 2W(a3a4)

+1

+1

−1

+1

4W((a1 + a3)a2 + a3a4) 4W(utχ(a))

+1

+1

−1

+1

+1

+1

−1

+1

−1

+1

−1

−1

+1

−1

+1

+1

+1

+1

+1

−1

−1

−1

−1

+1

−1

+1

+1

+1

−1

+1

+1

+1

Figure 6.1: Graphical representation of the calculation of the Walsh-Hadamard
transform of utχ(a) from example 6.8. Zero entries have been omitted.

Differential Cryptanalysis Linear Cryptanalysis

input difference a′ output selection u

restriction weight wr(a
′) correlation weight wc(u)

2wr(a′) comp. output differences 22wc(u) comp. input selections

with prop ratio 2−wr(a′) with correlation 2−wc(u)

Table 6.4: Summary of the described nonlinear properties of χ.

6.10. CONCLUSIONS 113

6.10 Conclusions

This chapter has been devoted to the invertibility and the propagation and corre-
lation properties of shift-invariant transformations. Our own contributions in this
chapter are:

• the idea of global invertibility and the corresponding proof method based on
seeds and leaps,

• the treatment of multiplication modulo 2n− 1 as a shift-invariant transforma-
tion,

• the Hamming weight distribution table, the branch number and its upper
bound imposed by the sphere-packing bound,

• the study of the specific propagation and correlation properties of χ.

Globally invertible shift-invariant transformations will be the most important build-
ing blocks in our cryptographic finite state machine designs.

114 CHAPTER 6. SHIFT-INVARIANT TRANSFORMATIONS

Chapter 7

Block Cipher Design

7.1 Introduction

In this chapter we further elaborate our block cipher design strategy that was intro-
duced in Chapter 4. We start with describing a new type of self-reciprocal cipher
structure that is a widely applicable alternative for the Feistel round structure. The
round transformation is composed of a small number of simple basic transformations
that must satisfy certain algebraic conditions.

We describe a number of transformations that are especially suited for the pro-
posed cipher structure. For each of these transformations the difference propagation
and correlation properties are treated. We show that, for the proposed cipher struc-
ture and basic transformations, the behavior of differential and linear trails are
governed by the same equations. This allows the evaluation and optimization of
the resistance against LC and DC in a single effort. We also discuss the risk of
weaknesses due to symmetry and the measures that have to be taken with respect
to these aspects.

This chapter contains two fully specified block ciphers with high portability and
a short and elegant description. For both we give our findings with respect to LC
and DC. We conclude with describing an example filtered counter stream encryption
scheme that can be built using one of the two proposed block ciphers. A large part
of this chapter has already been published in our paper [22].

115

116 CHAPTER 7. BLOCK CIPHER DESIGN

7.2 A self-reciprocal cipher structure

The basic building blocks of our block ciphers are a number of different invertible
transformations, each with its own specific contribution:

γ: a local nonlinear transformation,

θ: a local linear transformation for diffusion,

σ: bitwise addition of a round key κj ,

πi: blockwise bit permutations for bit dispersion.

These transformations must be arranged into a portable and simple block cipher.
For block encryption and decryption to be executable by a single cryptographic
finite state machine, this cipher must be structurally self-reciprocal. In this section
we show how such a nontrivial self-reciprocal structure can be built by introducing
a simple bit permutation µ and imposing that the basic transformations interact
with µ in a specific way.

The block cipher consists of a certain number m of iterations of a round transfor-
mation ρ[κj], followed by an output transformation ω[κm] and the bit permutation
µ. The round keys κi are derived from the cipher key κ by the key schedule. The
round transformation ρ and the output transformation ω are composed from the
basic transformations in the following way:

ρ[κj] = π2 ◦ γ ◦ π1 ◦ θ ◦ σ[κj] , (7.1)

ω[κm] = θ ◦ σ[κm] . (7.2)

Consider the simple single-round block cipher

B1[κ0, κ1] = µ ◦ ω[κ1] ◦ ρ[κ0] (7.3)

or

B1[κ0, κ1] = µ ◦ θ ◦ σ[κ1] ◦ π2 ◦ γ ◦ π1 ◦ θ ◦ σ[κ0] . (7.4)

Its inverse is given by

B1[κ0, κ1]
−1 = σ[κ0] ◦ θ−1 ◦ π−1

1 ◦ γ−1 ◦ π−1
2 ◦ σ[κ1] ◦ θ−1 ◦ µ−1 . (7.5)

Since θ is linear we can switch θ and σ resulting in

B1[κ0, κ1]
−1 = θ−1 ◦ σ[θ(κ0)] ◦ π−1

1 ◦ γ−1 ◦ π−1
2 ◦ θ−1 ◦ σ[θ(κ1)] ◦ µ−1 . (7.6)

We choose the basic transformations in such a way that they satisfy the following
conditions:

θ−1 = µ−1 ◦ θ ◦ µ , (7.7)

γ−1 = µ−1 ◦ γ ◦ µ , (7.8)

π−1
2 = µ−1 ◦ π1 ◦ µ, (7.9)

π−1
1 = µ−1 ◦ π2 ◦ µ . (7.10)

7.2. A SELF-RECIPROCAL CIPHER STRUCTURE 117

Using these relations, we can eliminate all occurrences of inverse transformations in
(7.6), with the exception of µ−1, i.e.,

B1[κ0, κ1]
−1

= θ−1 ◦ σ[θ(κ0)] ◦ π−1
1 ◦ γ−1 ◦ π−1

2 ◦ θ−1 ◦ σ[θ(κ1)] ◦ µ−1

= θ−1 ◦ σ[θ(κ0)] ◦ π−1
1 ◦ γ−1 ◦ π−1

2 ◦ µ−1 ◦ θ ◦ σ[µ(θ(κ1))]
= θ−1 ◦ σ[θ(κ0)] ◦ π−1

1 ◦ γ−1 ◦ µ−1 ◦ π1 ◦ θ ◦ σ[µ(θ(κ1))]
= θ−1 ◦ σ[θ(κ0)] ◦ π−1

1 ◦ µ−1 ◦ γ ◦ π1 ◦ θ ◦ σ[µ(θ(κ1))]
= θ−1 ◦ σ[θ(κ0)] ◦ µ−1 ◦ π2 ◦ γ ◦ π1 ◦ θ ◦ σ[µ(θ(κ1))]
= µ−1 ◦ θ ◦ σ[µ(θ(κ0))] ◦ π2 ◦ γ ◦ π1 ◦ θ ◦ σ[µ(θ(κ1))] .

(7.11)

By imposing the additional condition

µ−1 = µ , (7.12)

we have

B1[κ0, κ1]
−1 = B1[κ

′
0, κ

′
1] , (7.13)

with the inverse round keys given by κ′
j = µ(θ(κ1−j)). If line 5 of (7.11) is rewritten

in terms of the round transformation and the output transformation, we have for
j ≥ 1,

ρ[κj−1]−1 ◦ ω[κj]
−1 ◦ µ−1 = ω[κj−1]−1 ◦ µ−1 ◦ ρ[µ(θ(κj))] . (7.14)

A cipher Bm with m rounds is defined by

Bm[κ0, κ1, κ2, . . . , κm] = µ ◦ ω[κm] ◦ ρ[κm−1] ◦ . . . ◦ ρ[κ1] ◦ ρ[κ0] .

By iteratively applying (7.14) we obtain

Bm[κ0, κ1, κ2, . . . , κm]−1 = Bm[κ′
0, κ

′
1, κ

′
2, . . . , κ

′
m] , (7.15)

with κ′
j = µ(θ(κm−j)).

We propose to use a cipher key κ of length equal to the block length. The round
keys κj are derived from this cipher key by the bitwise addition of so-called round
constants cj :

κj = κ + cj . (7.16)

If κ′ = µ(θ(κ)) is considered to be the inverse cipher key, the inverse round keys κ′
j

can be derived from κ′ in a similar manner: κ′
j = κ′ + c′j with

c′j = µ(θ(cm−j)) . (7.17)

This cipher structure lends itself to a straightforward implementation as a cryp-
tographic finite state machine. Encryption and decryption can be performed by the
same finite state machine with ρ as updating transformation. An encryption op-
eration consists of initializing the state register by loading the plaintext and doing
m state updating iterations. During these iterations the key schedule is executed
by a separate round-constant generating module. The additional application of the

118 CHAPTER 7. BLOCK CIPHER DESIGN

⊕
cj

κ

a

θ π2 ◦ γ ◦ π1

µ

✲ ✲ ✲

✲ ✲

✻

✛✛

❄

✻

Figure 7.1: Cryptographic finite state machine for the proposed cipher structure.

output transformation can be accomplished by reading out the intermediate stage
after θ of the round transformation logic, instead of the internal state itself. The bit
permutation µ can be hardwired in the connections to the output pins. The block
scheme of the resulting cryptographic finite state machine is shown in Fig. 7.1. Ad-
ditionally, it can be observed from this scheme that if the cipher key is loaded into
the state register and the key register is set to 0, the inverse cipher key appears at
the output. Hence, the calculation of the inverse cipher key from the cipher key can
be executed by the module itself.

If the specific permutation µ is hard to implement in software and the inverses of
θ, γ, π1 and π2 are easy, a variant of the proposed structure may be more suitable.
In this variant the final application of µ in the encrypting operation is omitted.
This must be compensated by an additional application of µ at the beginning of
decryption. We have

Bm[κ0, κ1, . . . , κm] = ω[κm] ◦ ρ[κm−1] ◦ . . . ◦ ρ[κ1] ◦ ρ[κ0] , (7.18)

and

Bm[κ0, κ1, . . . , κm]−1 = µ ◦ Bm[κ′
0, κ

′
1, . . . , κm] ◦ µ , (7.19)

with κ′
j = µ(θ(κm−j)).

The cryptographic finite state machine implementation scheme of this variant
differs from that given in Fig. 7.1 by the presence of two functional blocks responsible
for µ in decryption mode. One of these is placed at the input, the other at the output.
These blocks are switched “off” for encryption and “on” for decryption.

In software implementations of this variant the encrypting transformation does
not contain µ. In the decrypting transformation the need for µ can be avoided by
implementing it using the inverses of θ, γ, π1 and π2.

7.3. THE NONLINEAR TRANSFORMATION γ 119

⇓ γ

arrange as:
2k to nb − 1
k to 2k − 1
0 to k − 1

0 nb − 1

Figure 7.2: Arrangement of the bits in the transformation γ. The bits of an individual
triplet are marked in black.

7.3 The Nonlinear transformation γ

The transformation γ is defined for vectors with a dimension nb divisible by 3. Let
b = γ(a) with a and b vectors of length nb = 3k. We have

bi = ai + (ai+k + 1)ai+2k + 1 . (7.20)

This is in fact a simple variant of the invertible shift-invariant transformation χ.
Every 3-tuple, or triplet (bi, bi+k, bi+2k) is completely determined by the triplet
(ai, ai+k, ai+2k), i.e., γ is a juxtaposed transformation consisting of k equal 3-bit
substitution boxes. The arrangement of the bits in triplets is illustrated in Fig. 7.2.
In this figure it can also be seen that in software implementations a number of sub-
stitution boxes equal to the processor word length can be handled simultaneously
by using bitwise Boolean operations. The block length nb must be a multiple of 3.
Since computer word lengths are typically powers of 2, we restrict the block length
to nb = 2�3 for some *.

x 000 001 010 100 110 101 011 111

γ(x) 111 010 100 001 011 110 101 000

Table 7.1: The 3-bit γ substitution box.

The γ substitution box is given in Table 7.1. Its effect can be described as: a
single 1 at the input is shifted one position to the left, a single 0 one position to the
right and three equal input bits are complemented. The description of the inverse
of γ is obtained by simply interchanging the words “left” and “right”. Hence, for

γ−1 = µ−1 ◦ γ ◦ µ (7.21)

to hold, µ must respect the division in triplets and invert the order of the components
within the triplets.

120 CHAPTER 7. BLOCK CIPHER DESIGN

000 001 010 100 011 101 110 111

000 1 - - - - - - -
001 - 1/4 - - 1/4 1/4 - 1/4
010 - - 1/4 - 1/4 - 1/4 1/4
100 - - - 1/4 - 1/4 1/4 1/4
011 - 1/4 1/4 - - 1/4 1/4 -
101 - 1/4 - 1/4 1/4 - 1/4 -
110 - - 1/4 1/4 1/4 1/4 - -
111 - 1/4 1/4 1/4 - - - 1/4

Table 7.2: Prop ratios for the γ substitution box.

000 001 010 100 011 101 110 111

000 1 - - - - - - -
001 - −1/2 - - −1/2 1/2 - −1/2
010 - - −1/2 - 1/2 - −1/2 −1/2
100 - - - −1/2 - −1/2 1/2 −1/2
011 - 1/2 −1/2 - - 1/2 1/2 -
101 - −1/2 - 1/2 1/2 - 1/2 -
110 - - 1/2 −1/2 1/2 1/2 - -
111 - −1/2 −1/2 −1/2 - - - 1/2

Table 7.3: Correlation matrix of the γ substitution box.

7.3.1 Propagation and correlation properties

Table 7.2 lists the prop ratios of difference propagation in the γ substitution box.
The input differences are listed above and the output differences at the left. Every
nonzero input (output) difference is compatible with exactly four output (input)
differences. All nontrivial difference propagations have a prop ratio of 1/4 and a
restriction weight of 2. An input difference triplet and an output difference triplet
are compatible if they have an odd number of 1-bits in common, i.e., if the parity of
their bitwise product (AND) is odd.

An input difference and an output difference to γ are compatible if all their
component triplets are compatible. If an input difference has * nonzero triplets it is
compatible with 22� different output differences. All possible difference propagations
from this input difference have restriction weight 2*. Hence, wr(a

′), the restriction
weight of a difference vector a′ with respect to γ, is equal to twice the number of
nonzero component triplets in a′.

Table 7.3 gives the correlation matrix of the γ substitution box. Every nonzero
output selection triplet is correlated with exactly four input selection triplets, all
with correlation ±1/2. By comparing Tables 7.3 and 7.2 it can be seen that the
condition for compatibility between input and output selection triplets is the same
as that between input and output differences. This is not the case in general but a

7.4. THE LINEAR TRANSFORMATION θ 121

arrange as:

0 nb − 1

⇓ θ

0 to h − 1

...

11h to nb − 1

Figure 7.3: Arrangement of the bits in the transformation θ. The bits of an individual
12-tuple are marked in black.

consequence of the symmetry properties of γ.
An input selection and an output selection to γ are compatible if all their com-

ponent triplet selections are compatible. Since linear combinations corresponding
to different triplets are disjunct, C(utγ(a), wta) is equal to ±2−� with * the number
of nonzero component triplets in u. Every output selection vector is compatible to
exactly 22� input selection vectors. Hence, the correlation weight of a selection vec-
tor wc(u) is equal to the number of nonzero component triplets in u. We introduce
the triplet weight wt(a) to be the number of nonzero triplets in a vector. We have

wc(a) = wt(a) and wr(a) = 2wt(a) . (7.22)

7.4 The linear transformation θ

The transformation θ is defined for vectors with a dimension nb divisible by 12. Let
b = θ(a), with a and b vectors of length nb = 12h. We have

b(x) = e(xh)a(x) mod (1 + x12h) , (7.23)

with

e(x) = 1 + x + x2 + x3 + x5 + x6 + x10 . (7.24)

Every 12-tuple (bi, bi+h, bi+2h, . . . , bi+11h) is completely determined by the 12-tuple
(ai, ai+h, ai+2h, . . . , ai+11h), i.e., θ can be seen as a juxtaposed transformation with
h linear 12-bit substitutions boxes. This is illustrated in Fig. 7.3. Similar to γ, in
software implementations a number of linear θ substitutions can be handled simul-
taneously using bitwise Boolean addition.

122 CHAPTER 7. BLOCK CIPHER DESIGN

The inverse of θ consists of multiplication by the inverse polynomial of e(xh)
modulo 1 + xnb . The selected polynomial has been chosen from the subclass of
polynomials with the following property:

e(x)−1 ≡ e(x−1) (mod 1 + x12) , (7.25)

hence, the inverse of θ is given by

a(x) = e(x−h)b(x) mod 1 + x12h . (7.26)

The effect of substituting x by x−1 in the argument of a polynomial a(x) corresponds
to a bit permutation in the vector a. It can be seen as a reflection around component
0, interchanging the components in pairs (i, nb − i). We can rewrite (7.26) as

a(x−1) = e(xh)b(x−1) mod 1 + x12h , (7.27)

i.e., the inverse of θ applied to the reflected vectors corresponds to θ itself. Hence,
for

θ−1 = µ−1 ◦ θ ◦ µ (7.28)

to hold, µ must respect the division in 12-tuples and invert the order of the compo-
nents within the 12-tuples.

The selection of e(x) was governed by two additional design decisions. To have
high diffusion we decided that e(x) should have a Hamming weight of 7. This
has the additional benefit that in hardware the combination of θ and σ[κj] can be
implemented with balanced-tree circuits consisting of three stages with respectively
4, 2 and 1 exor gates. The modulus exponent m was chosen to be the smallest
value larger than 7 of the form 2�3, since m must divide the block length nb.

7.4.1 Propagation and correlation properties

As explained in Chapter 6, the difference propagation through θ can be expressed
as

b′(x) = e(xh)a′(x) mod (1 + xnb) , (7.29)

and a linear combination of output bits specified by u is equal to the linear combi-
nation of input bits specified by w with

w(x) = e(x−h)u(x) mod (1 + xnb) . (7.30)

Using (7.25) this can be converted to

u(x) = e(xh)w(x) mod (1 + xnb) . (7.31)

Hence, for θ difference propagation and correlation are governed by essentially the
same equation. This is not the case in general, nor is it a coincidence. It is the
consequence of the design decision specified in (7.25).

7.5. THE BIT PERMUTATIONS µ AND π 123

1 2 3 4 5 6 7 8 9 10 11

1 - - - - - - 12 - - - -
2 - - - - - 60 - - - 6 -
3 - - - - 180 - - - 40 - -
4 - - - 255 - - - 240 - - -
5 - - 180 - - - 600 - - - 12
6 - 60 - - - 804 - - - 60 -
7 12 - - - 600 - - - 180 - -
8 - - - 240 - - - 255 - - -
9 - - 40 - - - 180 - - - -

10 - 6 - - - 60 - - - - -
11 - - - - 12 - - - - - -

Table 7.4: Hamming weight distribution table of polynomial multiplication by e(x)
modulo 1 + x12.

The combination of the shift-invariance and (7.25) causes the matrix Mθ corre-
sponding to θ to be orthogonal with respect to ZZnb

2 , i.e.,

Mθ
−1 = Mθ

t . (7.32)

The Hamming weight distribution table (see p. 106) of modular multiplication
by e(x) is given in Table 7.4. It can be observed that the branch number B of this
linear shift-invariant transformation is 8, the maximum attainable value both for a
polynomial with 7 terms and for a polynomial multiplication modulo 1 + x12 (see
p. 108).

7.5 The bit permutations µ and π

µ is a bit permutation with µ−1 = µ that respects the grouping of the triplets and 12-
tuples, but inverts the order of the components within them. The simplest example
of such a bit permutation is µ1, that simply inverts the order of the components of
the vector. Hence, if b = µ1(a) we have

bi = anb−1−i for 0 ≤ i < nb . (7.33)

This bit permutation requires the handling of individual bits and is not very well
suited for software implementations. This is not the case for the bit permutation µh

that inverts the order of h-bit subblocks. If b = µh(a) we have

bi+jh = ai+(11−j)h , (7.34)

for 0 ≤ i < h and 0 ≤ j < 12.
The bit permutations π1 and π2 treat the vector in 3 or 12 subblocks. The bits

of each subblock are cyclically shifted by a specified number of positions. The bit
permutations can be specified by an array that contains these rotation constants.

124 CHAPTER 7. BLOCK CIPHER DESIGN

↓ ↓ ↓

↓ ↓ ↓

⇓ rot p0
⇓ rot p1

⇓ rot p2

Figure 7.4: The arrangements of bits in the π bit permutation with 3 blocks specified
by (p0, p1, p2) = (2, 11, 28). The effect is shown on the three bits of a triplet.

The effect of a bit permutation b = π(a) specified by the 3-tuple (p0, p1, p2) is
described by

bi = ai−p0 mod k

bi+k = a(i−p1 mod k)+k

bi+2k = a(i−p2 mod k)+2k


 for 0 ≤ i < k .

Figure 7.4 illustrates the arrangement of the bits in such a bit permutation. In
software, the transformations π can be implemented using bitwise shift operations.

The choice of one of the π bit permutations and µ determines the other π bit
permutation through (7.9). For µ1 we have

π1 : (p0, p1, . . .) ⇔ π2 : (. . . , p1, p0) . (7.35)

For µh it can easily be checked that the bit permutations must necessarily split the
vector into 12 subblocks. We have

π1 : (p0, p1, . . . , p11) ⇔ π2 : (−p11, . . . ,−p1,−p0) . (7.36)

7.5.1 Propagation and correlation properties

Since bit permutations are linear, the propagation of differences through π1 and π2
is governed by

b′ = πi(a
′) . (7.37)

For the specification of linear combinations of input bits w in terms of output bits
u, we write the bit permutation in a matrix Mπ. We have

w = M t
πu . (7.38)

Using the fact that the permutation of components is an orthogonal transformation
and therefore Mπ

−1 = M t
π, we have u = Mπw, or equivalently

u = πi(w) . (7.39)

7.6. PROPAGATION ANALYSIS 125

As in the case of γ and θ it can be seen that the difference propagation and the
input-output selection correlation are governed by the same equation. This is an
inherent property of bit permutations.

7.6 Propagation analysis

In this section we describe the behavior of differential and linear trails in the pro-
posed block cipher structure.

The block cipher can be described as the repeated application of alternating
nonlinear transformations γ and linear (in fact affine) transformations λ[κj] = π1 ◦
θ ◦ σ[κj] ◦ π2. For the nonlinear step the correlation and difference propagation
properties are described by the compatibility conditions and the triplet weight. The
propagation of differences through λ is governed by

b′ = λ[0](a′) . (7.40)

A linear combination of input bits specified by w is correlated to a linear combination
of output bits specified by u given by

u = λ[0](w) , (7.41)

with correlation (−1)u
tπ1(θ(κj)). In the following we will omit the [0] in λ[0](a).

In the context of propagation analysis we consider a round to be γ ◦λ[κj]. A dif-
ferential step consists of a couple of difference vectors (a′, b′) with λ(a′) γ-compatible
with b′. Its restriction weight is 2wt(b

′). A linear step consists of a couple of selection
vectors (w, u) with λ(w) compatible with u. Its correlation weight is wt(u). Hence, a
couple (a, b) with λ(a) γ-compatible with b can be interpreted both as a differential
and as a linear step and is called a propagation step. These steps can be chained to
form propagation trails.

126 CHAPTER 7. BLOCK CIPHER DESIGN

propagation trail
Differential Linear

x0

x1

x2

x�

v0

v1

v2

v�

λ

λ(x0)

γ

λ

λ(x1)

γ

...

λ

λ(v0)

γ

λ

λ(v1)

γ

...

a0

λ(a0)

compatible with

a1

λ(a1)

compatible with

a2

...

an

−1
2

log2 Rp =
∑

0<j≤� wt(a
j) = − log2 Cp

Figure 7.5: The differential and linear interpretations of propagation trails for the
self-reciprocal block cipher structure.

An *-round propagation trail Ω is specified by an * + 1-tuple

(ω0, ω1, . . . , ω�) ,

with λ(ωi−1) compatible with ωi for 0 < i ≤ *. Its triplet weight is given by

wt(Ω) =
∑
0<i≤�

wt(ω
i) . (7.42)

This propagation trail represents both a differential trail with restriction weight
2wt(Ω) and a linear trail with correlation weight wt(Ω). Figure 7.5 shows the two
interpretations of a propagation trail.

Once the block size nb and the permutation µ have been fixed, all that remains
is the specification of π1. The shift constants must be chosen to eliminate the occur-
rence of propagation trails with low triplet weight, addressing the resistance against
DC and LC in a single effort. The selection of the array of rotation constants in-
volves finding and comparing the critical propagation trails for a small number of
rounds by computer.

After the specification of the rotation constants, it has to be verified that the
triplet weight of the propagation trails appropriately reflects the resistance against

7.7. SYMMETRY CONSIDERATIONS 127

LC and DC. The most important effect that has to be investigated is the potential
systematic clustering of low-weight trails.

7.7 Symmetry considerations

Even if a block cipher is resistant against LC and DC, symmetry in its structure
can be the cause of serious weaknesses. The best known example of a block cipher
with such weaknesses is DES. The first symmetry-based weakness is the existence
of weak and semi-weak keys for DES [30]. For the four weak keys, encryption is an
involution. For the six pairs of semi-weak keys, encryption with one key of a pair
is the same as decryption with the other key of the pair. The second symmetry-
based weakness of DES is the complementation property [6, 48]. This property
can be exploited to reduce exhaustive key search of DES by a factor of 2. More
recent examples can be found in [7], where the regularity in key schedules is used to
construct efficient chosen-key attacks and to speed up exhaustive key search.

Many undesirable symmetry properties are special cases of one of the two fol-
lowing properties:

• There are affine mappings λk, λp and λc, such that for some keys λc◦B[λk(κ)]◦
λp is equal to B[κ] or B[κ]−1;

• There are keys for which the last r − p rounds of the cipher (or its inverse)
under one key perform the same transformation as the first r − p rounds of
the cipher (or its inverse) under another key, with p small.

The round constants cj must be chosen in such a way that all symmetry-related
weaknesses are eliminated. This choice is not affected in any way by propagation
trail considerations. The round constants are derived from the state q of a linear
feedback shift register with length 8. In polynomial representation we have

qj(x) = (1 + x + x3)xj mod (1 + x4 + x8) . (7.43)

The order of the feedback polynomial is 12, hence, x12 = 1 mod (1 + x4 + x8). The
calculation of the round constants cj in polynomial representation is

cj(x) = (x2h + x3h + x8h + x9h)qj(x) , (7.44)

with 12h = nb.

The round constants are chosen in such a way that the difference between the
round constants of any pair of subsequent encryption or decryption rounds is dif-
ferent. The decryption round constants depend on the block length and on the bit
permutation µ.

128 CHAPTER 7. BLOCK CIPHER DESIGN

7.8 3-Way

7.8.1 Specification

3-Way is a block cipher with the self-reciprocal structure. It is designed to be
hermetic and K-secure with respect to sound initialization mappings. It is specified
by

1. nb = 96,

2. µ = µ1,

3. π1 : (10, 0,−1) and π2 : (−1, 0, 10),

4. encryption: 11 rounds and a single output transformation,

5. decryption: 11 rounds and a single output transformation, preceded and fol-
lowed by µ.

µ1 has been chosen to allow the π permutations to act on 32-bit words. The
rotation constants (10, 0,−1) have been selected in the following way. 0 and −1
have been fixed in advance because of their economy. 10 was selected from the
candidate constants {3, 5, 6, 7, 9, 10, 11, 13, 14, 15} as realizing the best propagation
properties in the short term. It would of course be better to select the rotation
constant with the best propagation properties in the long term, but this turns out
to be computationally infeasible.

7.8.2 Implementation aspects

The number of rounds 11 is motivated by its convenience in a cryptographic finite
state machine implementation. The encryption of a single block takes 12 clock cycles:
11 state updating iterations and 1 simultaneous plaintext load and ciphertext read
operation. This results in an encryption (and decryption) rate of 8 bits per clock
cycle. The total gate delay of the cryptographic finite state machine can be made as
small as that of 4 exors, 1 nand and 1 mux (multiplexor), allowing clock speeds
of over 100 MHz and encryption rates of over 800 Mbit/s, even with conventional
technology. The small number of basic operations also allows for extremely compact
hardware implementations with a small 8-bit processor with instructions bitwise
addition, and and shift, some program memory (rom) and some data memory
(ram).

In software, the steps γ and θ can be efficiently programmed using bitwise exor,
or, complementation and shifting. A straightforward C implementation allows an
encryption speed of over 2 Mbit/s on a 66 MHz 80486 processor. We expect that
optimization and the use of coding in assembler language allow a speedup by at
least a factor of 5.

7.8. 3-WAY 129

7.8.3 Decryption

For the inverse round constants in 3-Way we have c′j = µ1(θ(c11−j)). It can be seen
that

c′j(x) = (x2h + x3h + x8h + x9h)q′j(x) , (7.45)

with q′j(x) given by

q′j(x) = (1 + x4 + x5 + x7)xj mod (1 + x4 + x8) . (7.46)

In a cryptographic finite state machine the encryption and decryption round con-
stants can be generated and applied with the same circuitry. The only difference is
the initial value q0 of the 8-bit linear feedback shift register.

7.8.4 Propagation analysis

Propagation analysis mainly consists of the search for propagation trails with low
weight. For this purpose we have written and ran programs that scan the space of
propagation trails in a recursive pruned tree search.

Table 7.5 is the (partial) triplet weight distribution table of λ = π1 ◦ θ ◦ π2 for
3-Way. The element in row i and column j denotes the number of couples (a, λ(a))
with wt(a) = i and wt(λ(a)) = j. This table illustrates the high quality of the
short-term propagation properties of the 3-Way round transformation. It can be
seen that for any couple (a, λ(a)) the sum of their triplet weight is at least 8. It
follows that there are no 2-round propagation trails with triplet weight below 8 and
consequently that the minimum triplet weight for propagation trails of even length
is 4 per round. The triplet weight distribution table inherits this property from the
Hamming weight distribution table of θ. This is a consequence of the application of
the π bit permutations before and after θ. These simple bit permutations contribute
to the single-round diffusion by spreading the bits in a single triplet over several
other triplets.

The number of vectors with a triplet weight wt is given by

7wt

(
nb/3

wt

)
. (7.47)

For nb = 96 and wt = 6 we have 3.4 × 109 vectors. This turned out to be too
large for our exhaustive program to end within a reasonable time span, hence the
question marks in Table 7.5. The values that are actually listed in column 6 and 7
are known because the partial triplet weight distribution table is symmetrical. This
is a consequence of the fact that λ is an orthogonal linear transformation in ZZnb

2 .
The bit permutations play an important role in the multiple-round propagation

properties in preventing the clustering of propagation trails. This can be illustrated
by considering the hypothetical case of all three rotation constants in π1 being 0.
In that case the bits of the 12-tuples are not mixed and the propagation trails are
restricted to stay within the 12-tuples, inevitably giving rise to clustering. Moreover,
the bit permutations π prevent the iterative chaining of propagation steps (wj−1, wj)

130 CHAPTER 7. BLOCK CIPHER DESIGN

1 2 3 4 5 6 7

1 - - - - - - 96
2 - - - - - 480 -
3 - - - - 1440 - -
4 - - - 2040 - 7 168
5 - - 1440 - 25 313 12480
6 - 480 - 7 313 ? ?
7 96 - - 168 12480 ? ?
8 - - 55 5335 71138 ? ?
9 - 19 1122 28012 265865 ? ?

10 - 195 6381 90042 431964 ? ?
11 39 836 18775 119868 457174 ? ?
12 25 1883 20751 113010 776241 ? ?
13 32 2017 17408 159098 2682584 ? ?
14 13 1677 21418 469917 6262878 ? ?

Table 7.5: Partial triplet weight distribution table of λ for 3-Way.

with wt(wj−1)+wt(wj) = 8, by destroying the alignment required for these low triplet
weights.

If 3-Way has no 9-round propagation trails with a triplet weight below 48, there
are no 9-round differential trails with prop ratio above 2−96 and no linear trails with
correlation above 2−48. Both are too insignificant to be exploited in an attack.

From observing Table 7.5 it can easily be seen that there are no (even-length)
differential trails with a prop ratio below 2−8 per round, neither (even-length) linear
trails with a correlation contribution below 2−4 per round. This is more than a factor
2 better than the round function of DES, with its iterative differential trails with
a prop ratio of 2−3.6 per round [5] and its 14-round linear trail with a correlation
contribution of 2−20.2 or 2−1.4 per round [71].

By listing the critical propagation weights of 1,2,. . . rounds, a propagation weight
profile can be specified. We have been able to determine this profile for up to 5 3-

Way rounds: (1, 8, 11, 16, 22). For 6 rounds no propagation trails were found with a
propagation weight below 36. The relatively low weights of the critical propagation
trails for a small number of rounds are due to the inability of π to destroy certain
occurrences of local alignment. As the number of rounds grows, these alignment
conditions become increasingly restrictive and for 6 rounds we were already unable
to exploit it. For this reason we believe the triplet weight of the critical 9-round
propagation trails to be much higher than 48.

We once more indicate that the function of our propagation investigations is to
support the choice of the rotation constants and the verification that 11 rounds are
sufficient, not to give any proof of security. The security will eventually be based
on the inability of cryptologists to find exploitable weaknesses.

Attacks can be devised where part of the key is known. The knowledge of some
key material can be exploited to fix part of a differential trail. The large diffusion

7.9. BASEKING 131

ensures that, already after two rounds, the unknown part of the key is diffused over
the complete encryption state. Squeezing off more than a single round requires the
knowledge of too many key bits to be a threat to K-security.

7.9 BaseKing

7.9.1 Specification

BaseKing is a block cipher with the self-reciprocal structure and is designed to be
hermetic and K-secure with respect to sound initialization mappings. It is specified
by

1. nb = 192,

2. µ = µ16,

3. π1 : (0, 8, 1, 15, 5, 10, 7, 6, 13, 14, 2, 3) and
π2 : (13, 14, 2, 3, 10, 9, 6, 11, 1, 15, 8, 0),

4. encryption: 11 rounds, a single output transformation and µ,

5. decryption: 11 rounds, a single output transformation and µ.

The block and key length impose that the triplet weight of 9-round propagation
trails must exceed 96. From some early experiments it was concluded that this could
not be realized by π permutations with only three rotation constants. Therefore, the
π permutations act on 12 16-bit words, allowing the adoption of µ16 which is easily
implementable in software. The rotation constants have been determined after a
coarse analysis of their most elementary interaction (combined addition) and may
be susceptible of improvement. The hardware and software implementation aspects
of BaseKing are almost identical to those of 3-Way. In most implementations,
encryption with BaseKing requires the same effort per bit as with 3-Way. In hard-
ware, the doubling of the block length with respect to 3-Way allows a multiplication
of the encryption speed by a factor close to two.

The most important advantage of BaseKing over 3-Way is its large block
length. Because of this, BaseKing can be used as the main building block in the
elegant and efficient block cipher based cryptographic hash function and checksum
schemes described and/or proposed by Bart Preneel in [84] and standardized by
ISO in [54, 53]. In this way the different modes of BaseKing cover the complete
spectrum of single-key encryption and hashing.

7.9.2 Decryption

For the inverse round constants in BaseKing we have c′j = µ16(θ(c11−j)). It can be
seen that

c′j(x) = (x2h + x3h + x8h + x9h)q′j(x) , (7.48)

132 CHAPTER 7. BLOCK CIPHER DESIGN

with q′j(x) given by

q′j(x) = (1 + x2 + x3 + x7)x−j mod (1 + x4 + x8) . (7.49)

In a cryptographic finite state machine the encryption and decryption round con-
stants can be generated with two simple linear feedback shift registers and be applied
using the same connection circuitry.

7.9.3 Propagation analysis

Table 7.6 is the (partial) reduced triplet weight distribution table of λ for BaseKing.
Since λ has a rotational symmetry over the 16-bit subblocks, all entries of Table 7.6
would be a multiple of 16. This common factor has been removed.

Because of its key and block length of 192 bits, BaseKing is in principle a
much more ambitious design as 3-Way. The required triplet weight of a 9-round
propagation trail is 96, or almost 11 per round. This is more than a factor 7 better
than DES, i.e., a single application of the round function of BaseKing must be as
effective as seven rounds of DES. However, in experiments with propagation trails for
only a few rounds, the 12-component permutations π appeared to be very powerful
in their task of disrupting locally propagating structures. These observations have
given us a high degree of confidence in the assumption that the triplet weight of the
critical 9-round propagation trails is significantly larger than 96.

7.9.4 Alternative software implementations

Both 3-Way and BaseKing require the handling of words that have a length
smaller than 32, the common processor word length in modern computers. However,
by a simple rearranging of the blocks both can be implemented using only 32-bit
instructions (or any larger power of 2). We illustrate this for the case of BaseKing.

For BaseKing the operations on 16-bit words can be turned into operations on
32-bit words by encrypting the messages in blocks of 384 bits. In this alternative
scheme γ and θ are substituted by their nb = 384 versions and µ16 is substituted
by µ32. The subblock size and the rotation constants of the π bit permutations
are doubled. The key and the round constants are doubled in length by doubling
every bit. The resulting cipher can be considered to be the parallel application
of BaseKing to the 192 bits on the odd positions and the 192 bits on the even
positions.

7.10 Filtered counter stream encryption

The ease of changing the cipher key for 3-Way and BaseKing allows the specifi-
cation of a very simple filtered counter stream encryption scheme.

The state updating is governed by a linear feedback shift register of length nb.
The feedback polynomial must be primitive and needs to have a Hamming weight
of only 3. The initial counter state and cipher key both depend on the parameter

7.10. FILTERED COUNTER STREAM ENCRYPTION 133

1 2 3 4 5 6 7

1 - - - - - - 12
2 - - - - - 60 -
3 - - - - 180 - -
4 - - - 255 - - -
5 - - 180 - - - 624
6 - 60 - - - ? ?
7 12 - - - 624 ? ?
8 - - - 255 1282 ? ?
9 - - 44 509 17547 ? ?

10 - 6 89 6087 88972 ? ?
11 - 4 1254 27588 136398 ? ?
12 - 150 5498 36569 4284 ? ?
13 3 618 6060 689 35274 ? ?
14 9 562 59 5474 167937 ? ?
15 - 1 491 25142 690142 ? ?
16 - 13 2064 103494 2228150 ? ?
17 - 50 8886 324518 4206530 ? ?
18 - 295 27539 563180 4083993 ? ?
19 1 775 42592 479688 2533248 ? ?
20 1 942 31118 233210 4435549 ? ?
21 2 357 11037 346777 12752974 ? ?

Table 7.6: Partial reduced (divided by 16) triplet weight distribution table of the
linear transformation λ for BaseKing.

134 CHAPTER 7. BLOCK CIPHER DESIGN

mt
zt

ct✲

B

⊕
✲❄

κ

a
❄

⊕

✲

⊕
✲

✲

Q

K

✲ a0

✲ κ

Figure 7.6: Proposed filtered counter encryption scheme using 3-Way or BaseKing

as a component.

Q and the key K. The dependence of the cipher key on the parameter Q prevents
the choice of two parameter values that give rise to partly overlapping sequences.
All nb bits can be used for encryption, hence, ns = nb. This scheme is illustrated in
Fig. 7.6 and described by

κ = K + Q ,
a0 = τ1(K) + Q ,
at+1(x) = x · at(x) mod m(x) ,
zt = B[κ](at) .

7.11 Conclusions

In this chapter we have presented a new self-reciprocal structure for block ciphers.
This structure is quite general since it gives the designer a high degree of freedom
in the choice of the specific transformations.

By adopting some specific step transformations, we have shown that it is possible
to build block ciphers that have the unique property that differential and linear trails
are governed by exactly the same equations.

We have shown that applying the wide trail strategy yields efficient and portable
round transformations that are superior to the DES round function with respect to
LC and DC.

The specific designs 3-Way and BaseKing have been investigated with respect
to their propagation behavior. We have not been able to determine the critical
propagation trails for more than a few rounds. We think that it is an interesting op-
portunity for further research to improve the efficiency of the exhaustive propagation
trail search procedures.

Chapter 8

Design of Stream/Hash Modules

8.1 Introduction

In Chapter 4 it was explained that both synchronous stream encryption and cryp-
tographic hashing can be executed by a cryptographic finite state machine. The
requirements for the updating transformation are so similar that the same finite
state machine can be used as the core of both a synchronous stream cipher and
of a hash function. This led us to the conception of a new type of cryptographic
module that efficiently executes both cryptographic bulk operations necessary in the
providing of security. After explaining the proposed general architecture for these
stream/hash modules, we describe the hardware-oriented design Subterranean

with its predecessors and derived schemes. The last part of this chapter is devoted
to StepRightUp, a software-oriented design with very high efficiency.

8.2 Cipher architecture

The core of the stream/hash modules is a cryptographic finite state machine. The
cryptographic hash function and the stream cipher are specified in terms of opera-
tions of this machine.

There are two internal registers, the na-bit state register containing the (hashing)
state a and the buffer register containing b. There is an ni-bit input denoted by p and
an output denoted by z. During a cycle the contents of both registers are subject to
one of several externally specified operations. We have

State operations: hold, reset and iterate;

Buffer operations: hold, reset and load.

The state iterate operation updates the state a according to a buffer-dependent
state updating transformation denoted by ρ[b]. The buffer consists of a simple shift
register with ni-bit stages. The buffer load operation shifts an ni-bit input into this
register and is denoted by λ[p]. For both registers there are also self-explanatory
hold and reset (to 0) operations.

135

136 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

The updating transformation ρ[b] consists of the succession of a number of sim-
ple invertible transformations. As in the case of our block ciphers, each of these
transformations has a specific contribution:

γ: a local nonlinear transformation, a variant of χ,

θ: a local linear transformation for diffusion,

π: a bit permutation for bit dispersion,

σ: bitwise addition of buffer bits,

ς: bitwise addition of a constant vector for asymmetry.

Unlike for block ciphers, these basic transformations are not restricted to have eas-
ily implementable inverses. In fact, the inverse of the simple and highly parallel
transformation χ is most efficiently executed by a recursive sequential procedure. If
θ is a linear shift-invariant transformation specified by a low-weight polynomial, the
polynomial of θ−1 typically has high Hamming weight.

8.2.1 The cryptographic hash function

The preparation phase of the hash function is the segmentation and padding of the
message (and the possible key) to the input sequence of ni-bit blocks. The iteration
phase is the initialization of the state register and the buffer and subsequent block
by block loading of the input sequence into the buffer while the state is iterated. It
concludes with some possible additional iterations and the generation of the hash
result at the output. The iteration phase can be specified in a sequence diagram,
listing the exact sequence of state and buffer operations.

Our main design concern with respect to the hash function is that of collision
resistance. In our approach this is governed by the study of differential trails. A
difference pattern in the input sequence gives rise to a differential trail in the internal
state. The difference propagation with respect to two input sequences with different
length can be modeled by including an initial difference vector in the state at the
time step where the iteration phase of the shortest input sequence starts. The
differential trail analysis consists of investigating whether:

1. The restriction weight of the potential differential trails is significantly higher
than the degrees of freedom (in bits) available in the message blocks for any
number of rounds. This must be the case for any initial difference pattern
in state and buffer, resulting from a pair of partial hashing processes. This
implies that it is impossible to control differential trails by manipulating the
message blocks.

2. The restrictions imposed by the steps of differential trails with low-weight can
be considered uncorrelated.

3. Clustering of differential trails cannot be exploited.

8.3. SUBTERRANEAN 137

In our case the design process mainly consists of observing that these conditions
fail to hold for some intermediate prototypes and convincing ourselves that they do
hold for others.

The differential trails emerge in the interaction of the state updating transfor-
mation and the buffer load operation through the selected buffer blocks as defined
in σ[b]. Hence, all these three components are very important in this respect.

Additionally, it must be investigated whether there are detectable correlations
between the hash result and the input sequence. This analysis is governed by the
study of linear trails.

8.2.2 The stream cipher

In stream encryption, the initialization mapping converts the key K and the public
parameter Q into a number of initialization blocks. The cryptographic finite state
machine is initialized by resetting buffer and state and subsequently loading the
initialization blocks into the buffer. As in the case of the hash function, this can
be specified in a sequence diagram. During cryptographic sequence generation an
encrypting symbol z, consisting of q state bits, is presented at the output for every
iteration of the state updating transformation. In some designs the buffer contents
is constant during this process, in others the buffer may be updated, with its input
consisting of part of the internal state.

The state bits are naturally subdivided into the bits that are part of the encrypt-
ing symbol z, called the output bits, and the complementary bits, called the hidden
bits. For a given state updating transformation and a buffer load operation, the
positions of the output bits in the internal state must be chosen very carefully to
avoid reconstruction of hidden bits or buffer bits and detectable correlations between
encrypting symbols. The most important tools in the analysis of these properties
are linear trails.

By manipulating the public parameter Q, a cryptanalyst can apply a variant of
differential cryptanalysis. With a linear initialization mapping, a difference in Q
completely determines a difference in the initial state and buffer contents. From
observing the differences in the encrypting symbols, state or buffer bits may be
derived.

8.3 Subterranean

Subterranean is a stream/hash module designed to be implemented as a cryp-
tographic coprocessor chip. It is not suited for software implementation and has
therefore only a limited application domain. Subterranean has been realized as
a prototype chip at IMEC. The Subterranean hash function is called Subhash,
its stream cipher Substream.

138 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

8.3.1 Specification

The Subterranean cryptographic finite state machine has a 257-bit state register,
a 256-bit buffer b, a 32-bit input p and a 16-bit output z. The buffer is divided into
eight 32-bit blocks denoted by bi with 0 < i ≤ 8. The buffer load operation λ[p] is
specified by

λ(b)|1 = p and
λ(b)|i = b(i−1) for 1 < i ≤ 8 ,

(8.1)

hence, the buffer consists of a shift register of width 32 and length 8.

The state updating transformation ρ[b] is specified by:

ρ[b] = π ◦ σ[b] ◦ θ ◦ ς ◦ γ . (8.2)

θ and γ are shift-invariant transformations defined by

θ(a) = (1 + x−3 + x−8)a(x) mod 1 + x257 , (8.3)

γ(a)|i = ai + (ai+1 + 1)ai+2 + 1 . (8.4)

γ and θ are both invertible for na = 257 since ξγ = {2} and ξθ = {7, 31}. The bit
permutation π and the transformation ς are specified by

π(a)|i = a12∗i mod 257 , (8.5)

ς(a)|i = ai + δ0 , (8.6)

for 0 ≤ i < 257. ς simply consists of complementing a single state bit. For the
bitwise addition of buffer bits σ[b] we have

σ(a)|0 = a0 , (8.7)

σ(a)|i = ai + bji−1 mod 32 with j = 1 +

⌊
i− 1

32

⌋
for 0 < i < 257. (8.8)

Fig. 8.1 gives the computational graph of a single component of the state updating
transformation, clearly indicating the five basic transformations. The 16-bit output
symbol zt+1 consists of the 16 bits of the state at with indices

(11, 24, 37, 48, 60, 73, 84, 98, 117, 130, 143, 154, 168, 200, 235, 249) .

These indices have been chosen in such a way that:

• the ρ[b]|i of the output bits do not depend on output bits,

• the ρ[b]|i of the output bits depend on non-overlapping subsets of state bits,

• the ρ[b]|i of hidden bits depend on not more than a single output bit.

8.3. SUBTERRANEAN 139

a0 . . . a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 . . . t

π

σ[b]

θ

ς

γ❄⊕✛

/◦

☛✙❄⊕

❄⊕

❄

◦
◦

✛ ❄⊕
◦
◦

✛ ❄⊕
◦
◦

✛

☛✙ b310✛
⊕

64 88 100 112 124 136

a0 . . . a91 a92 a93 . . . t + 1

Figure 8.1: Computational graph of ρ[b](a)|92.

Time step t State Buffer Input Output

−6, . . . , 0 hold load 0 –
1 reset load pt –
2, . . . , � iterate load pt –
� + 1, . . . , � + 8 iterate load 0 –
� + 9, . . . , � + 8 + ω iterate hold – ht−�−9

Table 8.1: The sequence diagram of the iteration phase of Subhash. The hash
result consists of the concatenation of h0 to hω−1.

Subhash

The arguments of Subhash are a message M , an optional key K and a parameter
ω with 0 < ω ≤ 16. The length of the key must be a multiple of 32 bits and may
not exceed 256 bits. The length of the hash result is a multiple ω of 16 bits.

In the preparation phase M is converted into a string M ′ with a length that
is a multiple of 32 by appending a single 1 followed by a number d of 0 bits with
0 ≤ d < 32. Subsequently, P is formed by

P = K‖M ′‖K , (8.9)

with ‖ denoting concatenation. P can be seen as an array of * 32-bit blocks pi, i.e.,
P = p1p2 . . . p�. The iteration phase of Subhash is specified in Table 8.1. The first
7 iterations are needed to reset the state and buffer to 0. Subsequently, the first
block of P is loaded and the state updating iterations start. When the last block of
P has left the buffer, ω additional iterations are performed. The output symbols of
these iterations are concatenated to form the hash result.

The number of machine cycles to hash an *-block input sequence is * + ω + 15.
The invertibility of the state updating transformation allows the generation of

a message to a given result by a meet-in-the-middle attack with a work factor of
approximately 2128 applications of Subhash. This restricts the length of the hash

140 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

Time step t State Buffer Input Output

−31 reset load pt –
−30, . . . ,−24 hold load pt –
−23 iterate load pt –
−22, . . . ,−16 hold load pt –
−15, . . . , 0 iterate hold – –
1, . . . iterate hold – zt

Table 8.2: The sequence diagram of Substream.

result to 128 bits for a hermetic hash function, hence, no claims are made for ω > 8.
For ω ≤ 8, Subhash is claimed to be hermetic and, if there is a secret key, also
K-secure.

Substream

Substream is initialized by first loading sixteen 32-bit initialization blocks p−31 to
p−16 followed by sixteen additional blank iterations, i.e., without delivering encrypt-
ing symbols at the output. During cryptographic sequence generation the buffer
operation is ‘hold’.

Turning Substream into a stream encryption scheme takes the specification of
an initialization mapping. For example, a 128-bit key K and a 128-bit parameter Q
can be converted into the initialization blocks by

p−23p−22p−21p−20 = p−19p−18p−17p−16 = K ,
p−31p−30p−29p−28 = p−27p−26p−25p−24 = Q .

(8.10)

The sequence diagram of Substream is given in Table 8.2. It can be seen that the
first 8 initialization blocks determine the initial state at time step t = −23 and the
following 8 initialization blocks determine the buffer contents. After 16 additional
“blank” iterations, the generation of encrypting symbols starts.

Substream is claimed to be hermetic and K-secure with respect to all sound
initialization mappings with a keylength of 128 bits and a parameter length of 128
bits.

8.3.2 Structural analysis

In Fig. 8.1 it can be seen that every bit of a state at depends on 9 bits of its
predecessor state at−1. Thanks to the particular choice of π these bits depend in
their turn on non-overlapping subsets of bits of at−2, hence, every bit of at depends
on 81 bits of at−2. Alternatively, every state bit occurs in 9 components of ρ[b] and
in 81 components of ρ[b] ◦ ρ[b].

The inverse of the state updating transformation differs strongly from the trans-
formation itself. The polynomial of the inverse of θ has a Hamming weight of 127.
This severely complicates reverse calculation.

8.3. SUBTERRANEAN 141

The state updating transformation can be split up into the nonlinear transfor-
mation γ and an affine transformation consisting of the other four transformations.
The effect of this affine transformation in differential and linear trails is completely
determined by π ◦ θ. The absence of a self-reciprocity condition for θ and π allows
the realization of much better long-term diffusion than in the case of a block cipher.
The relatively small diffusion factor 3 of θ is compensated by the high effectiveness
of the bit permutation π in dispersing the individual trail bits all over the state.

In the following sections we give our design motivations for both cryptographic
schemes of Subterranean .

Motivations for Substream

The correlations between linear combinations of output bits and linear combina-
tions of state bits wta in previous time steps can be investigated using linear trails
terminating in specific selection vectors. The 216− 1 different nonzero linear combi-
nations of output bits of a given time step correspond to the selection vectors that
are restricted to 0 outside the 16 output bit indices.

The combination of the high multiple-round diffusion of ρ[b] and the specific
choice of the output bit indices should cause all linear trails terminating in one of
the 216−1 selection vectors to have very high weight, even for a few (4 or 5) number
of rounds. This results in only small correlations with initial selections that all have
high Hamming weight.

Nonzero correlations between linear combinations of output bits of different time
steps require linear trails with initial and terminal selection vectors that belong to
the allowed set of 216 − 1 selection vectors. This imposes severe restrictions that
should enforce the resulting linear trails to have intermediate selection vectors with
very high correlation weight. This results in very small correlations that only become
nonzero for linear combinations of output bits that are separated by a substantial
number of time steps.

Assume for simplicity that the buffer contents is known and the state is unknown
to the cryptanalyst. The knowledge of the 16 bits of the encrypting symbol zt re-
stricts at to 2257−16 values. The knowledge of zt+1 can be converted into 16 equations
for the bits of at using ρ[b]. In this stage at is restricted to 2257−32 values. By doing
this iteratively for 15 more rounds, a sufficient number of equations is collected to
uniquely determine at. The problem with this approach is that the complexity of
these equations grows so dramatically with the number of rounds that even trying
to store them is problematic. We believe it to be highly unlikely that these com-
plex sets of highly nonlinear Boolean equations could be solved by a method more
efficient than exhaustive search over the space of 128-bit keys.

Instead of working with the exact equations, one could approximate them by a
simpler, more manageable set of equations that only hold in a majority of cases.
By adopting the set of linear (in fact affine) equations in this approach, this corre-
sponds to linear cryptanalysis. The small values of the multiple-round correlations
illustrate the volatility of the knowledge of specific state bits at given time steps.
One could imagine that other manageable sets of equations must exist. However,

142 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

Buffer State registert

i

i + 1

i + 2

i + 3

i + 4

i + 5

i + 6

i + 7

i + 8

i − 8

i − 7

i − 6

i − 5

i − 4

i − 3

i − 2

i − 1

i

Figure 8.2: Difference propagations in Subhash (1:black,0:white). Top: initial effect
of input differences. Bottom: difference pattern of an internal collision.

we believe that such sets do not exist for high-diffusion bit-level designs such as
Subterranean.

The non-secrecy of the public parameter Q allows the cryptanalyst to observe
different encrypting sequences resulting from initial states and buffer contents that
have a known relation. If the initialization mapping is linear, as in our example, the
bitwise difference in Q completely determines the bitwise difference in the initializa-
tion blocks p and therefore in a−16 and b. If the cryptanalyst can actually choose the
public np-bit parameter Q, he can choose from 2np − 1 possible difference patterns
in a−16 and b.

In the 16 blank iterations the difference vector in a−16 follows a differential trail
to a difference pattern in a0. Because of the large diffusion, the probability that there
are 16-round differential trails with a restriction weight below 257 is extremely small.
Hence, the difference pattern in a−16 does not give any usable information on the
difference pattern in a0. This excludes the exploitation of relations between two
different initializations to find correlations between the two encrypting streams or
to derive the value of buffer or hidden state bits.

The clustering of linear or differential trails should be prevented by the powerful
dispersion caused by π.

Motivations for Subhash

Most of this section is devoted to the collision-resistance of Subhash.

From the sequence diagram of Subhash, Table 8.1, it follows that the hash result
is completely determined by a�+8, called the terminal hashing state. The converse is
however not true, and pairs of input sequences may be found with different terminal
hashing states both consistent with the same hash result. The collision actually

8.3. SUBTERRANEAN 143

occurs in the derivation of the hash results from the hashing states and is called
terminal . Collisions in which two different input sequences give rise to equal states
and buffer contents at a certain point are called internal .

In Subhash every time step a new input block is shifted into the buffer. An
input block resides in the buffer during 8 time steps, every time affecting the hashing
state through the state updating transformation. This is reflected in the difference
propagation in buffer and hashing state. Two examples of difference propagation
patterns in Subhash are given in Fig. 8.2.

The top of this figure displays the difference propagation resulting from a pair of
input sequences that are identical in the first i blocks and have differences starting
from block pi+1. The bottom displays a difference propagation that corresponds to
an internal collision taking place at time step i. In this collision it is not necessary
that the two input sequences of the pair have equal length. If the difference in length
consists of d blocks, the index i in the difference propagation diagram corresponds
to the index i′ = i − d for the longest of the two input sequences. At i = 0, i′ = d
and the first d blocks of the longest input sequence have already been shifted into
the buffer. This is modeled by a nonzero initial (i = 0) difference pattern in the
buffer and hashing state.

The difference patterns in the buffer induce a differential trail in the hashing
state. This differential trail depends in two ways on the input. Directly, the dif-
ference pattern in the input has an instantaneous impact on the difference pattern
in the successor of the hashing state. Indirectly, the absolute values of the input
bits influence the absolute values of the state bits and hence the evolution of the
differential trail.

From the given point of view, the problem of generating collisions, both internal
and terminal, is one of differential trail control by input block manipulation. An
internal collision corresponds to a differential trail with a dead-end. This control,
while theoretically possible, is assumed to be infeasible because of the large diffusion
and distributed nonlinearity of the state updating transformation combined with the
fact that every input block resides in the buffer for 8 time steps.

A possible strategy for finding internal collisions would be to look for an input
difference pattern that can give rise to a dead-end differential trail Ω with a low
restriction weight. Such a differential trail would have a small number of rounds
and/or difference vectors with low restriction weight. If the restrictions can be con-
sidered independent, a collision would be found after trying 2wr(Ω)−1 different pairs
of input sequences with the specific difference. For Subhash the structure of the
state updating transformation and its interaction with the buffer should eliminate
the existence of such differential trails with low restriction weight.

Since the state updating transformation is invertible, it is possible to reverse
the hashing process, starting from the terminal hashing state and terminating in an
intermediate hashing state and buffer contents. This could be used to find colliding
input tails . This “reduces” the problem of generating a collision to finding an input
head that converts the initial state into a given intermediate hashing state with
matching intermediate buffer contents. The control required in this operation is
comparable to that needed in finding collisions themselves.

144 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

Another potential weakness would be in fixed points. A fixed point consists
of a hashing state a and a buffer contents b that are left unchanged by the state
updating transformation and the buffer loading operation for some input block pf .
Clearly, the buffer contents must consist of 8 identical blocks that are equal to pf .
An input that exhibits this fixed point during the hashing process must have some
sequence of at least 8 blocks pf . Adding some extra blocks pf to this subsequence
of the input sequence does not affect the hash result, and hence, gives rise to a
collision. This concept of fixed points can be generalized to multiple time steps,
where the application of more than a single iteration leaves the internal state and
the buffer contents unchanged for some input sequence. The difficulty in generating
this kind of collisions lies in finding an input that converts the initial hashing state
into a fixed point. In our view this is of a difficulty comparable to finding an input
sequence that gives rise to a prespecified terminal hashing state.

8.3.3 Chip Realization

The Subterranean module has been implemented as an integrated circuit in the
thesis project of student Gert Peeters [83] of the institute KIH De Nayer in Mechelen.
The work was supervised by Prof. Luc Claesen and Marc Genoe of IMEC and
myself. Additionally, Luc Claesen built a real-time video encryption/decryption
demonstrator. In this demonstrator a PAL color composite video signal, generated
by a camera, is digitized, encrypted by a Subterranean chip, sent over a “wire
channel”, decrypted with another Subterranean chip, converted back to analog
and shown on a monitor. If the two Subterranean chips have been loaded with
the same keyword and are in synchronism, the monitor displays the image recorded
by the camera. If synchronism is lost or the keywords of the two chips differ, the
only thing that can be seen is white noise.

The implementation technology has been the 2.4µm CMOS standard cell technol-
ogy of MIETEC. The active area is 5.00mm x 7.01mm (35mm2). The area including
bonding pads is 6.00mm x 7.85mm (47mm2). The correct operation of this chip has
been measured up to a clock period of 56 nsec on a Tektronix LV-500 tester. This is
a clock frequency of 17.8 MHz and corresponds to a stream encryption/decryption
throughput of 286 Mbit/s, and a hashing speed of 572 Mbit/s. To our knowledge,
this makes Subhash the cryptographic hash function with the fastest implementa-
tion in the world. The applied technology is in fact conservative and the use of a
more advanced technology will without a doubt push encryption and hashing rates
into the Gbit/s range.

The design has been realized in such a way that it fits into a 40 pin package.
From the sequence diagrams of Substream and Subhash it can be seen that no
simultaneous input and output occurs. All input and output to the chip goes through
a 32-bit bus. It provides a parallel 32-bit input at the rate of the overall clock for
the (buffer) load operation. If the buffer operation is hold, it provides a 16-bit
input x and a 16-bit output y, likewise at the rate of the overall clock. The output
consists of the bitwise addition of the 16-bit input of the previous time step and
the encrypting symbol z, hence, the stream encryption is performed on chip. The

8.4. DESIGNS PRECEDING SUBTERRANEAN 145

encrypting symbol z can be obtained at the output by applying 0 at the input.

To avoid the possibility of reading out the state and buffer registers, there is
no additional internal test circuitry in the form of scan pads. The only external
access to the internal registers are the output bits. In general this would have
serious consequences for the testability, which is very important in the elimination
of malfunctioning chips after fabrication. However, in the case of Subterranean

this is no problem. Thanks to the high diffusion of the finite state machine, the
effects of stuck-at (0 or 1) faults propagate very fast over all bits in the state and
consequently manifest themselves at the output of the chip. A set of test sequences
(with a maximum length of 43 iteration cycles) has been determined that allow for
a 100% testability of all “stuck-at” faults at the inputs and outputs of the standard
cells.

8.4 Designs preceding Subterranean

The design of Subterranean was preceded and influenced by two other design
proposals. Our first proposal has been presented in [10] and is a synchronous stream
cipher consisting of a specific cellular automaton configuration. Our second design
proposal has been presented in [11] and is a cryptographic hash function called
Cellhash. Subhash can be seen as an improved version of this hash function.

8.4.1 Sequence generation by cellular automata

In [104] Stephen Wolfram proposed to generate cryptographic sequences using cel-
lular automata. A cellular automaton is an automaton with a shift-invariant state
updating transformation and can therefore be described by a local map. In his pa-
per Wolfram concentrated on two one-dimensional binary cellular automata both
specified by nonlinear local maps with neighborhood ν = {−1, 0, 1}. He proposed
to build a cryptographic sequence generator from a finite cellular automaton with
periodic boundary conditions, with the output consisting of a single specific state
bit per iteration.

The combination of simplicity, efficiency and potential for cryptographic strength
made this proposal an attractive subject for further research. After the suggestion
of our promotors to study this subject, we embarked with running a number of
statistical tests.

From our experiments we discovered that for one of the two local maps the cel-
lular automata with odd length have an expected cycle length in the order of mag-
nitude of the total number of states. From this we deduced, and later proved, that
the corresponding shift-invariant transformation must be invertible for odd lengths,
a fact that apparently was overlooked by Wolfram. This local map corresponds to a
variant of the shift-invariant transformation that we denote by χ. Still, exhaustive
cycling tests showed that the state-transition diagrams of these cellular automata
exhibit large numbers of undesirable short cycles. We discovered that this could be
attributed to the small diffusion in the state updating transformation.

146 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

This triggered our search for cellular automata with a better cyclic behavior.
An exhaustive search was performed for nonlinear globally invertible shift-invariant
transformations with neighborhoods ν = {−1, 0, 1, 2} and ν = {−1, 0, 1, 2, 3}. The
results of this search were 7 cellular automata with experimental cycle distributions
completely in accordance with the distribution expected from a uniformly chosen
permutation. Of these 7 shift-invariant transformations, the first 5 have a simple
description in terms of complementing landscapes and their invertibility can easily
be proved using seeds and leaps. The two remaining ones have a considerably more
complex description and initially we were unable to prove their invertibility. One of
them, denoted by φ7, is described by local map

φ7(a)|0 = a−1 + (a1 + 1)(a0 + a2) + (a2 + 1)a3 . (8.11)

Later we found that this shift-invariant transformation could be factored in two
shift-invariant transformations with neighborhood size 3, hence φ7 = φα ◦ φβ with
the two component transformations given by

φα|0 = a−1 + a0 + a1 , (8.12)

φβ|0 = a0 + (a1 + 1)a2 . (8.13)

Clearly, φβ = χ and φα is a linear mapping with polynomial x−1 + 1 + x. The local
map of φ6, the other complicated mapping, simply consists of the complement of
the local map of φ7.

During our research, Willi Meier and Othmar Staffelbach described a powerful
attack on the schemes proposed by Wolfram in [76]. Their attack consists of a
simple and efficient algorithm to reconstruct the initial internal state from the output
sequence. For example, the expected work factor for reconstructing the internal state
of a cellular automaton with length 200 is equivalent to that of exhaustive key search
with a key length of only 15 bits for the “best” of the two local maps.

Upon investigation we found that their attack also works for each of the first five
local maps we proposed. For φ6 and φ7 the attack loses its efficiency, thanks to the
much larger diffusion of these rules. We found no way of generalizing the attack for
these local maps.

The Meier and Staffelbach attack depends crucially on the overlap of dependen-
cies of subsequent output bits, i.e., every output bit is partially determined by the
previous output bit. This is no longer the case if the state updating transformation
is altered by also including an extra cyclic shift τr. This can also be modeled by
a cyclic shift of the output bit position for every iteration. If r is chosen near the
square root of the length of the cellular automaton, the output bits are distant both
in time and space. Figure 8.3 illustrates this for an automaton length of 127 and a
rotation constant of 11.

In [10] these ideas resulted in a concrete proposal for a synchronous stream
cipher. Its finite state machine consists of a cellular automaton with length 127 and
state updating transformation τ11◦φ7. The output of an iteration consists of a single
state bit at position 0.

The combination of the large diffusion of the state updating transformation and
the large distances between the output bits should prevent attacks significantly more

8.4. DESIGNS PRECEDING SUBTERRANEAN 147

Figure 8.3: The samples of the space-time pattern that form the output sequence
in a configuration with length 127 and r = 11.

efficient than exhaustive key search of the space of initial states. No attacks have
been reported on this cipher.

In retrospect the cellular automaton proposal already contained most of the
elements present in our later designs. Its state updating transformation is invertible
and composed of different simple transformations. Each of these transformations
has its own specific contribution:

• χ for nonlinearity,

• a linear shift-invariant transformation for diffusion,

• a bit permutation (cyclic shift) for the bit dispersion.

8.4.2 Cellhash

Subterranean is in fact both an extension and an improvement of an earlier
hash function design, called Cellhash. The improvements consist mainly of an
adaptation of the state updating transformation and a simplification of the global
hashing process.

In Cellhash the state updating transformation is also given by the succession of
5 transformations, as expressed in (8.2). The only differences with Subterranean

are in θ and π. For Cellhash the polynomial corresponding to θ is given by

x−3 + 1 + x3 . (8.14)

This is the simplest polynomial which causes every component of the state updating
transformation to depend on 9 bits. The bit permutation π for Cellhash is specified
by

π(a)|i = a10∗i mod 257 . (8.15)

The factor 10 was the result of the following process. With respect to 2-round
dispersion as discussed on p. 8.3.2, it should be larger than 8. In a comparison

148 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

1 2 3 4 5

1 - - 1 - -
2 - 1 - 1 -
3 - - 3 - ≈ n
4 - 1 - ≈ n/2 -
5 - - 5 - ≈ 3n

1 2 3 4 5

1 - - 1 - -
2 - - - 3 -
3 - - 1 - 9
4 - - - 7 -
5 - - 2 - 30

Table 8.3: Partial reduced Hamming weight distribution table of multiplication by
x−3 + 1 + x3 (left) and 1 + x3 + x8 (right) modulo 1 + xn.

between the (simple) candidates 9, 10, 11 and 12, the factor 10 gave rise to the least
amount of short-term regularity.

The adaptation of θ was motivated by the better local diffusion properties of
the new polynomial. The improvement becomes apparent upon inspection of the
partial reduced Hamming weight distribution tables given in Table 8.3. With the
new polynomial the factor 10 in π had to be augmented. The factor 12 was chosen
from a small set of simple candidates, realizing the least amount of short-term
regularity.

Cellhash is only defined as a hash function without a key. In the padding and
segmentation operation the message is converted into a sequence of at least eight
32-bit blocks. Subsequently, the first 8 input blocks are loaded into the buffer and
the hashing state is reset to 0. During the hashing process a new block is loaded
every iteration. After the last input block has been loaded, the 7 first input blocks
are repeated. At this point the 257-bit contents of the state register is taken to be
the hash result.

The repeating of the first 7 input blocks at the end of the hashing process re-
quires their temporary storage and complicates the description. Therefore this has
been replaced by a simpler scheme in Subhash. In a hardware implementation
of Cellhash the reading out of the hash result requires the need for a state read
operation. For Subterranean abuses of the presence of such an operation could
compromise the security of Substream. Therefore the hash result has been de-
fined as a sequence of outputs obtained during a number of additional iterations,
removing the need for this operation.

To our knowledge there has been no successful cryptanalysis of Cellhash since
its publication. Still, the invertibility of the state updating transformation allows the
generation of an input sequence with a prespecified hash result with an expected
work factor of about 2128 applications of Cellhash. Although this is not a real
threat, to be hermetic this work factor should correspond to approximately 2256

applications of Cellhash.

8.5. DESIGNS DERIVED FROM SUBTERRANEAN 149

ρ[p]

Internal State a

✲ ✲
✲

✻

p z

Figure 8.4: Block diagram of the Jam finite state machine.

8.5 Designs derived from Subterranean

In this section we present two designs that can be seen as simplifications of Subter-

ranean. The first design is a hardware-oriented cryptographic sequence generator,
called Jam. This component is designed in the context of the Eureka project VADIS.
ESAT-COSIC was engaged in this project in the working group systems, division
conditional access. In this group we proposed Jam to be used as the crypto-
graphic sequence generator of the video/audio scrambling module. Jam was first
specified in [25] but was never officially published.

The second design is a cryptographic hash function, called Boognish. It was an
attempt to design a portable cryptographic hash function with the same structure
as Subhash. Boognish was presented in the rump-session of Eurocrypt ’93. There
is an internal report [26] describing the function.

8.5.1 Jam

The Jam finite state machine can be considered a downscaled and simplified version
of the Subterranean finite state machine. It is given here mainly to illustrate the
scalability of the Subterranean design.

Since its internal state a consists of only 61 bits, it cannot be used in applications
that require a high level of security. There is a 4-bit input p, a 4-bit output w and
no buffer. A block scheme of the Jam finite state machine is given in Fig. 8.4.

The state updating transformation ρ[p] is composed of 5 transformations, i.e.,

ρ[p] = π ◦ θ ◦ σ[p] ◦ ς ◦ γ , (8.16)

γ and ς are the same as for Subterranean and are specified respectively by (8.4)
and (8.6). The linear shift-invariant transformation θ is specified by the polynomial

1 + x−3 + x−6 , (8.17)

and the bit permutation π by

π(a)|i = a9∗i mod 61 . (8.18)

150 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

The transformation σ[p] is specified by

σ1 = a1 + p0 ,
σ18 = a18 + p1 ,
σ33 = a33 + p2 ,
σ50 = a50 + p3 ,
σi = ai for i �∈ {1, 18, 33, 50} .

(8.19)

Finally, the positions of the output bits are

{1, 18, 33, 50} . (8.20)

There are three operations for the internal state: reset (to 0), hold and iterate.
Initialization consists of resetting the internal state and subsequently iterating the
state updating transformation 15 times while loading 4-bit initialization blocks.
After 16 additional blank iterations the initialization process is finished and the
generator is ready for use.

We propose to use the Jam cryptographic sequence generator with a 60-bit key
K and a 15-bit parameter Q. In the initialization mapping the initialization vector is
obtained by bitwise addition of the key K and the concatenation of 4 15-bit strings
equal to Q.

The Jam finite state machine is designed to fit on a small area. Its components
are 61 flip-flops, 61 nand (or nor) gates and 157 exor gates and its expected
area in 1.2 µ CMOS technology is smaller than a single square mm.

8.5.2 Boognish

The Boognish hash function is defined in terms of operations on 32-bit words.
The Boognish finite state machine has a single-word input p, a single-word output
z and a state register containing 5 words a(0) to a(4). The buffer is a shift register
containing 25 words b1 to b25.

The state updating transformation ρ[b] is composed of 5 transformations:

ρ[b] = σ[b] ◦ π ◦ θ ◦ π ◦ γ . (8.21)

These transformations are most easily described in terms of wordwise operations.
We have (indices i must be taken modulo 5):

γ(a)|i = ai + (ai−1 + 0̄)ai−2 , (8.22)

with 0̄ the all-1 32-bit word. For θ, we have

θ(a)|i = ai + ai−1 + ai−2 , (8.23)

i.e., the polynomial corresponding to θ is 1 +x+x2. The bit permutation π consists
of cyclic word shifts and can be specified (as π1 and π2 in Chapter 7) by the 5-tuple
of shift constants:

(0, 1,−3, 6, 8) . (8.24)

8.5. DESIGNS DERIVED FROM SUBTERRANEAN 151

Time step t State Buffer Input Output

−23, . . . , 0 hold load 0 –
1 reset load pt –
2, . . . , � iterate load pt –
� + 1, . . . , � + 25 iterate load 0 –
� + 26, . . . , � + 26 + ω iterate hold – ht−�−26

Table 8.4: The sequence diagram of the iteration phase of Boognish. The hash
result consists of the concatenation of h0 to hω−1.

σ[b] consists of the bitwise addition of both the buffer bits and the constant (for
asymmetry):

σ(a)|0 = a0 + 10204081hex ,
σ(a)|1 = a1 + b1 ,
σ(a)|2 = a2 + b9 ,
σ(a)|3 = a3 + b17 ,
σ(a)|4 = a4 + b25 .

(8.25)

The output z is given by a0.
The arguments of Boognish are a message M , an optional key K and a param-

eter ω with 0 < ω ≤ 5. The length of the key must be a multiple of 32 bits and may
not exceed 160 bits. The hash result consists of the concatenation of ω words. This
is formally expressed by

h = Boognish(M,K, ω) . (8.26)

In the preparation phase M and K are concatenated, message first. The resulting
string is padded by appending one 1-bit, followed by a number d of 0-bits with
0 ≤ d < 32. This results in the input sequence P , that can be seen as an array of *
32-bit words p1p2 . . . p�. The iteration phase of Boognish is specified in Table 8.4.
The total number of machine iterations is * + ω + 48.

The basic operations of the round transformation can be implemented by bitwise
Boolean operations and bitwise shift operations. The π shift constants have been
chosen to optimize the short-term diffusion with respect to difference propagation.
Every word pi of the input sequence affects the state updating transformation 4
times, spread over 25 iterations. The collision-resistance should be realized by the
fact that a single input bit affects the internal state over a range of 25 iterations of
the highly effective state updating transformation.

Weak points

In retrospect, we came to the conclusion that the length of the internal state of
Boognish is too small, giving rise to some potentially weak points.

The most important consequence is of an external nature. Because of the invert-
ibility of the state updating transformation, the hash function cannot be hermetic
if the hashing state is shorter than twice the length of the hash result. Hence,

152 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

Boognish can only be hermetic for ω < 3. For ω = 5 the expected work factor of
generating an input with a given hash result by a general meet-in-the-middle attack
is approximately equal to that of generating a collision with a birthday attack. Both
are of the order of 280 executions of Boognish .

The small number of words in the hashing state limits the diffusion properties of
the state updating transformation. In the case of Subterranean the polynomial
corresponding to the inverse of θ has a large Hamming weight and the description of
the inverse of γ is complicated. This seriously hampers calculations that involve the
inverse of ρ[b] and the construction of low-weight differential and linear trails. For
Boognish the polynomial corresponding to the inverse of θ is given by 1 + x3 + x4

and the inverse of γ has a simple expression. Hence, the inverse of ρ[b] only has a
complexity that is comparable to that of ρ[b] itself.

8.6 StepRightUp

StepRightUp is a stream/hash module that is designed to be very efficient in
software implementations. Its basic operations are on 32-bit words, as in Boognish.
In comparison with Boognish, the work factor per encrypted or hashed bit has been
divided by 2 while its claimed security level is much higher. To achieve this, it was
necessary to have a very long internal state and buffer. Another important new
element is the introduction of linear feedback in the buffer shift register, similar to
that applied in the compression function of NIST-SHA [39, 40].

The price paid for the low per-bit work factor is a relatively high fixed com-
putational overhead for every execution of the hash function. This makes the
StepRightUp hash function less suited for the hashing of messages shorter than
the equivalent of a typewritten page. For the stream cipher it results in a relatively
long initialization procedure. Hence, in applications where speed is critical, too
frequent resynchronization should be avoided.

After specifying the StepRightUp hash function and stream cipher, we discuss
the particular design strategy and the implementation aspects. The StepRightUp

design has not been published before.

8.6.1 Specification

The 544-bit state a of the StepRightUp finite state machine consists of seventeen
32-bit words a0 to a16. The 8448-bit buffer is a linear feedback shift register with 33
stages, each consisting of eight 32-bit words. An 8-word stage is denoted by bj and
its words by bji . Both stages and words are indexed starting from 0.

There are three possible modes for the StepRightUp finite state machine: reset,
input and auto(nomous). In reset mode all state and buffer bits are set to 0. The
input and auto modes differ only slightly and are specified in this section. Both
consist of a simultaneous buffer load operation and a state update operation.

For the buffer load operation λ, in general λ(b)|j = bj−1 except for j ∈ {0, 1, 26}.

8.6. STEPRIGHTUP 153

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

❄ ❄
✲p

❄❄
ρ[b]

✻
a
✻

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

❄ ❄
✲

❄❄
ρ[b]

✻
a ✲ z
✻

Figure 8.5: Input (above) and auto (below) modes of StepRightUp.

For these stages we have

λ(b)|0 = p ,
λ(b)|1 = b0 + b32 ,
λ(b)|26i = b25i + b32i+1 mod 8 ,

(8.27)

For 0 ≤ i < 8. In auto mode the input block p consists of a part of the internal state
a. Its 8 component words are given by

pi = a2i+2 , (8.28)

for 0 ≤ i < 8.
The state updating transformation ρ[b] is specified by:

ρ[b] = σ[b] ◦ θ ◦ π ◦ γ . (8.29)

θ and γ are shift-invariant transformations defined by

θ(a)|i = ai + ai+1 + ai+4 , (8.30)

γ(a)|i = ai + (ai+1 + 0̄)ai+2 + 0̄ . (8.31)

The permutation π combines cyclic word shifts and a permutation of the words
relative to one another. We have

π(a)|i = τk(aj) , (8.32)

with

j = 7i mod17 and
k = i(i + 1)/2 mod32 .

(8.33)

154 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

The bitwise addition of the buffer bits and the constant is given by

σ(a)|0 = a0 + 00000001hex ,
σ(a)|2i+1 = a2i+1 + bki ,
σ(a)|16−2i = a16−2i + b17i ,

(8.34)

for 0 ≤ i < 8. In the input mode k = 0 and in the auto mode k = 5. In the auto
mode the output z consists of 8 words given by

zi = a2i+1 . (8.35)

The input and auto modes of the StepRightUp module are illustrated in Fig. 8.5.

The StepRightUp hash function

The arguments of the StepRightUp hash function are a message M and an op-
tional 256-bit key K. The length of the hash result is 256 bits. In the preparation
phase M is converted into a string M ′ with a length that is a multiple of 256 by ap-
pending a single 1 followed by a number d of 0-bits with 0 ≤ d < 256. Subsequently,
the input sequence P = p1p2 . . . p� is formed by

P = K‖M ′‖K , (8.36)

with ‖ denoting concatenation. The iteration phase is specified in Table 8.5, with
the hash result denoted by h. It can be seen that after all input blocks have been
loaded, an additional 33 (blank) auto iterations are performed. The number of input
and auto cycles to hash an *-block input sequence is * + 33.

The StepRightUp hash function is designed to be K-secure and hermetic.

The StepRightUp stream cipher

The stream cipher is initialized by first loading two 8-word initialization blocks p−33

and p−32, followed by 32 additional blank auto iterations. During cryptographic
sequence generation an 8-word block z is delivered at the output for every iteration.

Turning this stream cipher into a stream encryption scheme takes the specifi-
cation of an initialization mapping. For example, a 256-bit key K and a 256-bit
parameter Q can be mapped to the initialization blocks by

p−33 = Q ,
p−32 = K .

(8.37)

Time step t Mode Input Output

0 reset – –
1, . . . , � input pt –
� + 1, . . . , � + 32 auto – –
� + 33 auto – h

Table 8.5: The sequence diagram of the iteration phase of the StepRightUp hash
function.

8.6. STEPRIGHTUP 155

Time step t Mode Input Output

−34 reset – –
−33, . . . ,−32 input pt –
−31, . . . , 0 auto – –
1, . . . auto – zt

Table 8.6: The sequence diagram of the StepRightUp stream cipher.

The sequence diagram of the StepRightUp stream cipher is given in Table 8.6.
This stream cipher is designed to be hermetic and K-secure with respect to all

sound initialization mappings with a key length of 256 bits and a parameter length
of 256 bits.

8.6.2 Discussion

The state updating transformation

The nonlinear transformation γ is a simple variant of χ. The multiplication polyno-
mial of the linear shift-invariant transformation θ is selected from the polynomials
with Hamming weight 3. It is the simplest of the class with the most favorable
Hamming weight distribution table and has ξ = {15}. Since the number of words in
the state is 17 and neither 2 or 15 divide 17, both γ and θ are invertible, and hence
also the state updating transformation.

The cyclic shift coefficients of π, described by the simple expression in (8.33),
form an array of 17 different constants. The word permutation factor 7 is chosen to
let every component of ρ depend on 9 state bits. For the chosen π parameters it has
been verified that ρ ◦ ρ has propagation and correlation properties that are close to
optimal with respect to the space of possible π parameters.

In the transformation σ[b], one stage of the buffer is injected in the odd-indexed
words and another in the even-indexed words to obtain an immediate nonlinear
interference. For the constant that is added to a0 we have chosen 00000001hex for
its simplicity.

The hash function

For the StepRightUp hash function, a meet-in-the-middle attack for the construc-
tion of a message with a given hash result, as was described for Subhash, has an
expected work factor of the order of 2272 applications of the hash function. As op-
posed to Subhash and Boognish, this is no threat to the “hermetic” claim for the
StepRightUp hash function.

Our belief in the collision-resistance is based on arguments similar to those given
in the case of Subhash. There are however some important differences. In Subhash

a difference pattern in a block of the input sequence shifts unaltered through the
buffer and disappears after 8 time steps. In the buffer of StepRightUp this is no
longer the case. Because of the linear feedback, a difference pattern in a single input

156 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

❄ ❄

✲1

50

57

64

71

.

❄ ❄

✲

✲

✲

1

8

33

18

25

Figure 8.6: Difference propagation in the buffer of StepRightUp.

8.6. STEPRIGHTUP 157

- d0 - d1 - d2 - d3 - d4 - d5 - d6 - d7 -

- d1 - d2 - d3 - d4 - d5 - d6 - d7 - d0 -

- - d7 - d6 - d5 - d4 - d3 - d2 - d1 - d0

- - d0 - d7 - d6 - d5 - d4 - d3 - d2 - d1

- d0 - d1 - d2 - d3 - d4 - d5 - d6 - d7 -

t = 1

t = 8

t = 18

t = 25

t = 33

Figure 8.7: Difference vectors in σ for a simple finite difference propagation.

block gives rise to an ever-continuing difference propagation in the buffer. This is
illustrated in the left-hand side of Fig. 8.6. Only difference patterns in the input
sequence that meet a particular condition give rise to a finite difference propagation
in the buffer. This can easily be illustrated by a simple example.

Suppose we have a binary linear feedback shift register (LFSR) with internal
state denoted by b(x) and input p. The updating transformation of such a LFSR is
specified by

λ[pt](b(x)) = (pt + x · b(x)) mod m(x) , (8.38)

with m(x) the feedback polynomial. If the input sequence p1−n, . . . , p1, p0 is denoted
by a polynomial p(x) = p1−nx

n−1 + . . . + p−2x2 + p−1x + p0, multiple iterations are
described by

λn[p(x)](b(x)) = (p(x) + xn · b(x)) mod m(x) . (8.39)

The propagation of differences is described by the same equations where b(x) and
p(x) must be interpreted as bitwise differences. Input difference sequences that,
starting from an initial difference equal to 0, give rise to a terminal difference equal
to 0 must satisfy

p(x) mod m(x) = 0 . (8.40)

Hence, the polynomial corresponding to the input difference sequence must be a
multiple of the feedback polynomial of the linear feedback shift register. A similar
condition can be found for the buffer of StepRightUp. The simplest difference
pattern that gives rise to a finite difference propagation in the buffer is illustrated in
the right-hand side of Fig. 8.6. All other input differences that give rise to a finite
difference propagation are superpositions (linear combinations) of shifted (in time
and space) instances of this difference pattern.

In Fig. 8.6 it can be seen that even the simplest difference pattern affects the state
updating transformation during 5 different iterations, spread over 32 time steps.
Fig. 8.7 shows the difference vectors in σ resulting from a similar difference pattern
in p that gives rise to a finite difference propagation and that has p1

′
= d0, d1, . . . , d7.

It can be seen that 4 of the 5 difference vectors are in general different. For more

158 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

complicated difference patterns in the input sequence, the number of iterations that
the state updating transformation is affected and the number of different difference
vectors in σ are both larger.

If the difference pattern in the internal state is not equal to 0 after the loading
of the last input block, the evolving difference pattern in the buffer and state will
affect the internal state heavily during the 33 final auto iterations. This excludes
internal collisions during these final iterations. Because of the large number of
blank iterations and the strong difference propagation properties of ρ, we assume
that terminal collisions cannot be obtained efficiently enough to be a threat to a
“hermetic” claim.

In internal collisions the difference pattern in the state and buffer is 0 before the
final hashing state has been reached. Clearly, this restricts the difference pattern
in the input sequence to superpositions of instances of the simple difference pattern
given in the left-hand side of Fig. 8.6. These input difference patterns give rise to
nonzero difference vectors in σ over a span of at least 32 time steps. We believe
that controlling the differential trails in the internal state over these large numbers
of iterations to obtain a collision is too hard to be a threat to a “hermetic” claim.
There is however a strategy that avoids the need for control over large numbers of
iterations.

The basic idea of this strategy is that of the elimination of differences in the
state, immediately after they have been created. Consider for example the difference
pattern described by (d0, d1, . . . , d7) that gives rise to the difference vectors shown
in Fig. 8.7. Suppose this is followed by a similar difference pattern described by
(e0, e1, . . . , e7) that gives rise to nonzero difference vectors in σ at time steps 2, 9,
19, 26 and 34. It is conceivable that, for a given d vector, an e vector can be found
such that for some values of the internal state the difference pattern after iteration
2 is 0. Hence, the difference vector in σ at time step 1 is compensated by the
difference vector at time step 2. This can in principle be further extended to time
steps 8 and 9, 18 and 19, 25 and 26, and 33 and 34. Hence, a couple of difference
vectors d and e for which there exists a differential trail in the internal state that
is 0 for time steps 2, 9, 19, 26 and 34 can be used to construct a collision. This
can be further generalized to 3-tuples or 4-tuples of difference vectors. The usability
of these difference patterns depends on the restriction weight of the corresponding
differential trails in the internal state. The smaller these weights, the easier it will
be to exploit them to generate collisions.

The described strategy for the generation of collisions has shaped two compo-
nents of the StepRightUp design. First of all, the feedback term in the expression
for γ(b)|26 in (8.27) does an additional in-block cyclic shift of the words. In this way
it is ensured that the difference vectors shown in Fig. 8.7 at t = 1 and t = 8 (and
consequently t = 18 and t = 25) are different, resulting in 4 different vectors. For
more complicated difference patterns in the input sequence there are always more
than 4 different vectors.

The parameters of the bit permutation π have been chosen to make it strongly
position-dependent. In this way the conditions for the different difference prop-
agations in the described strategy give rise to conflicting requirements for simple

8.6. STEPRIGHTUP 159

low-weight difference patterns.

We did some tests for simple difference patterns and no weaknesses were found.
Still, we think there is a need to explore the possibilities of the attack if more
complicated difference patterns are taken.

The stream cipher

For every auto iteration 16 words of the buffer are injected into the state and 8 state
words are given at the output. In the short term, the number of buffer bits that are
injected into the state is twice as large as the number of bits that are given at the
output. It can be checked that this is the case for any number of iterations smaller
than 12. The feedback from the state to the buffer causes the buffer contents to
be renewed every 32 iterations. These factors cause correlations between output
bits and linear combinations of state and buffer bits to be of no practical use for
cryptanalysis.

Resynchronization attacks should be made infeasible by the 32 blank auto itera-
tions after loading the initialization blocks. Because of the feedback from the state
to the buffer in the auto mode, the state and almost all buffer stages depend in a
complicated way on these blocks at the end of the initialization phase. We expect
that there are no exploitable 32-round differential trails.

Finally, it can easily be checked that the auto mode corresponds to an invertible
updating transformation of both buffer and state.

8.6.3 Implementation aspects

Clearly, its heavy use of 32-bit words makes the StepRightUp biased towards
32-bit architectures. Still, all bitwise Boolean operations can also be implemented
easily on processors with smaller word lengths. For the cyclic shifts this poses a
somewhat larger problem. They can however easily be implemented by combining
simple shifts with bitwise addition. Because of the high length of the state and the
buffer, it is advantageous to have a processor with an on-chip data cache of at least
2 Kbyte.

The work factor of the auto and the input mode are equal. We express the work
factor in 32-bit word operations. The buffer updating takes only 16 bitwise additions,
the state updating 16 cyclic shifts, 68 bitwise additions, 17 bitwise and operations
and 17 complementations. Hence, the work factor of an iteration is 118 bitwise
Boolean operations (BB) and 16 cyclic shifts (CS). For hashing this corresponds to
a work factor of 4012 BB and 544 CS and an additional 3.7 BB and 0.5 CS per
input byte. Hashing becomes efficient for inputs longer than 2000 bytes, roughly
the equivalent of a single typewritten page. For stream encryption the initialization
phase takes 4012 BB and 544 CS and the generation of a byte 3.7 BB and 0.5 CS.
These are very low work factors.

In dedicated hardware, the StepRightUp module is too large to be directly
implemented as a finite state machine with contemporary technology. It can however

160 CHAPTER 8. DESIGN OF STREAM/HASH MODULES

be implemented as a set of dedicated very simple 32-bit processors and some memory,
giving rise to a compact and cheap ultra-high speed module.

8.7 Conclusions

In this chapter we have given a global architecture and a number of concrete designs
of a new type of cryptographic primitive, the stream/hash module. The hardware-
oriented design Subterranean has been implemented as an integrated circuit that
is capable of both stream encryption and cryptographic hashing at very high speeds.

The StepRightUp module is a more software-oriented proposal with a very
low work factor per encrypted or hashed bit.

In our opinion, a more thorough investigation of the linear and differential trail
propagation in Subterranean and StepRightUp can be the subject of some
challenging and relevant further research.

Chapter 9

Design of Self-Synchronizing
Stream Ciphers

9.1 Introduction

Because of its simple add-on property, single-bit self-synchronizing stream encryp-
tion is probably the most widely adopted encryption method in industrial, diplo-
matic and military communications. Still, self-synchronizing stream ciphers have not
received the attention in cryptologic literature that block ciphers and synchronous
stream ciphers have. The silence was broken by Ueli Maurer at Eurocrypt ’91 [74].

One of the central ideas in [74] is the concept of building a cipher function from
a (finite input memory) finite state machine with a cryptographically secure state
updating transformation and a cryptographically secure output function. In this
chapter we show that this is a vacuous concept. The other main idea in [74] is
that of building a finite state machine with an internal state larger than the input
memory nm, by means of “serial” and “parallel” composition of smaller finite state
machines. We show that a straightforward application of this design strategy leads
to cipher functions with easily detectable and potentially exploitable weaknesses.

Subsequently, we perform a propagation analysis of a structure proposed in [74].
The conclusions of this analysis are used to further refine our design strategy as
introduced in Chapter 4 and to propose a new structure, called a conditional com-
plementing shift register. Our strategy is illustrated by a fully specified hardware-
oriented single-bit self synchronizing stream cipher.

Some of the ideas in this chapter have already been published in our paper [15].

9.2 Machines with finite input memory

In Chapter 4 it was proposed to build the cipher function as a pipeline of a number
(denoted by bs) of relatively simple stages with small gate delay. The input to the
first stage consists of the last nm cryptogram bits, contained in a shift register. This
structure guarantees that the encrypting bit zt only depends on the cipher key κ
and cryptogram bits ct−nm−bs to ct−1−bs .

161

162 DESIGN OF SELF-SYNC. STREAM CIPHERS

Replacing the shift register by a finite state machine with finite input memory nm
can improve the propagation properties without violating this dependence restric-
tion. By imposing that the gate delay of this finite state machine must be smaller
than the gate delay of the stages, the obtainable encryption speed is not affected.

The idea of replacing the shift register by a finite state machine with finite
memory is related to that introduced in [74] of building the cipher function from
a finite state machine with finite input memory and a combinatorial (memoryless)
output function. The difference is that in our case the output function with respect
to the finite state machine that replaces the shift register is not memoryless but
consists of a number of pipelined stages.

A finite state machine with finite input memory has some specific propagation
properties. Let q be the internal state and G the state updating transformation.
We have

qt+1 = G(qt, ct) , (9.1)

with ct the cryptogram bit at time t.
With every component of the internal state q can be associated an input memory,

equal to the number of past cryptogram bits that it depends on. The internal state,
confined to the components with input memory j is denoted by q(j), with q

(j)
i its

ith component. Although it is not a part of the internal state, c can be considered
as a component with input memory zero: q(0). The input memory of the finite state
machine is equal to the largest occurring component input memory.

Clearly, q
(j)
i must be independent of all components with equal or higher input

memory through G and must depend on q(j−1). From this, it follows that the input
memory partitions the components of the internal state into non-empty subsets with
input memory 1 to nm. The components of the state updating transformation are
of the form:

q
(j)
i

t+1
= G[κ]

(j)
i (ct, q(1)

t
, . . . , q(j−1)

t
) , (9.2)

for 0 < j ≤ nm.

9.3 N-reductionist design principles

In [74] it is proposed to design the cipher function with a cryptographically secure
state updating transformation G as well as a cryptographically secure output func-
tion h. In this context the term “cryptographically secure” is explained as follows:

• Output function zt+1 = s[κ](qt): it should be infeasible for an adversary to
determine the output of the finite state machine, even if the (actually hidden)
state sequence is given.

• State updating transformation: a state updating transformation can be
defined to be cryptographically secure if it is infeasible to determine the state
for a given cryptogram sequence of nm bits, even when the state would be
provided for any other cryptogram bit sequence of nm bits.

9.3. N-REDUCTIONIST DESIGN PRINCIPLES 163

To demonstrate the gravity of the restrictions this imposes, we describe a straight-
forward procedure to reconstruct the subkeys κ

(j)
i in these circumstances. The sub-

key κ
(j)
i is that part of the key that G

(j)
i explicitly depends on.

The component functions G
(j)
i can be considered as subkey-dependent tables.

If the adversary is given a number of output values corresponding to a number of
inputs of G

(j)
i that is larger than the length of κ

(j)
i , this subkey can be determined

by exhaustive key search over the subkey space. In the given circumstances the
adversary can obtain outputs corresponding to as many inputs as he likes by applying
cryptogram bit sequences with length nm + 1 and observing the internal state. The
internal state after loading the first nm bits of this sequence is the input to the
component functions G

(j)
i that results in the internal state one time step further.

The work factor of this attack depends critically on the length * of the longest
subkey κ

(j)
i . The attack requires the application of * cryptogram bit sequences. The

effort consists mainly of the exhaustive key search of the *-bit subkey. For this
attack to be infeasible, at least one subkey κ

(j)
i should be very long.

In general, the access that the adversary has to the keyed Boolean functions G
(j)
i

is that of getting the output corresponding to known input. The state updating
transformation can only be cryptographically secure by the above definition if at
least one of its components G

(j)
i can resist attacks by an adversary with this type of

access. This resistance includes hiding the key κ
(j)
i . This can only be realized if G

(j)
i

has excellent propagation properties. This also holds for the output function, since
the access of the adversary to the output function is the same as to the components
of the state updating transformation.

Keyed Boolean functions with the required resistance against structural crypt-
analysis can in practice only be implemented as the succession of a considerable
number of implementable round mappings. Since the state updating transformation
of a finite state machine is per definition memoryless, this iterated structure must
be realized as a combinatorial circuit. The gate delay of this circuit grows with the
number of rounds. Hence, the design approach gives rise to an output function and
a state updating transformation with large gate delay, while the main objective of
[74] was the design of self-synchronizing stream ciphers that are substantially faster
than block ciphers in CFB mode.

A remarkable aspect of the attacks in the context of the proposed security defi-
nitions is that they only work if the adversary has access to the internal state of the
self-synchronizing stream cipher. This is a highly artificial situation with no con-
nection to any realistic threat or attack whatsoever. The described design principle
seems to impose that the design contains big “lumps”, i.e., complex combinatorial
blocks that are “cryptographically secure”.

These combinatorial blocks could be developed into a number of stages using
pipelining in such a way that the external behavior would be the same except for
some extra delay in the encrypting bit. This new structure can again be represented
by a simple finite state machine with combinatorial state updating transformation if
the internal state is supplemented with all the intermediate values of these additional
stages. For this structure, it is however no longer the case that combinatorial blocks

164 DESIGN OF SELF-SYNC. STREAM CIPHERS

with some kind of cryptographic security can be identified. One could circumvent
this by also allowing the cryptographically secure output function and components
of the state updating transformation to have memory. However, this imposes a
division of the bits of the physical internal state into two classes: the logical internal
state and the memory of the components of the state updating transformation and
the output function. This would make the design principle even more artificial.

The second major N-reductionist design principle that is presented in [74] is
that of building a self-synchronizing encryption scheme with several keyed cipher
functions in parallel. The encrypting bit is obtained as the bitwise sum of the
outputs of the cipher functions. A theorem is given stating that if all the keys are
independent, the resulting cipher is at least as cryptographically secure as any of the
component ciphers. By basing the design of every component cipher on an entirely
different principle, the risk that the cipher will be broken is equal to the risk that
all design strategies fail simultaneously. The enthusiasm should be quenched by
the fact that all effective design strategies available today consist of the study of
propagation based on differential and linear cryptanalysis.

If we look at this construction within our framework, we get an even worse
picture. Limiting the number of cipher functions to two, the resulting encryption
scheme is described by

(κ1, κ2, IV) = J(K,Q) , (9.3)

c−nm . . . c−1 = IV , (9.4)

zt = fc1[κ1](c
t−nm . . . ct−1) + fc2[κ2](c

t−nm . . . ct−1) . (9.5)

If κ1 and κ2 are independent, the resulting encryption scheme is only K-secure if
both cipher functions are K-secure with respect to the initialization mapping. This
is a consequence of the fact that the definition of K-secure does not impose the
uniformity of the a priori key distribution. One of the cipher keys, say κ1, can be
given a certain value. This gives the cryptanalyst full access to the output of cipher
function fc1. Hence, building a K-secure self-synchronizing stream encryption scheme
from several component cipher functions with independent cipher keys requires all
of the component cipher functions to be K-secure with respect to the initialization
mapping. If the cipher keys are not independent, this no longer holds, but neither
does the theorem in [74].

Moreover, seen in the context of design, it is obvious that splitting the available
resources into several independently operating cipher functions is a practice that
severely limits the potential for internal propagation.

9.4 Structural cryptanalysis

In this section we treat the differential and linear cryptanalysis specific for single-
bit self-synchronizing stream ciphers. If the symbol size is larger than a single bit,
the situation generally becomes more complex. For examples of differential attacks
on self-synchronizing stream ciphers with a symbol size larger than 1, we refer to

9.4. STRUCTURAL CRYPTANALYSIS 165

[90, 85]. These publications contain some powerful attacks of DES variants in the
8-bit CFB mode.

9.4.1 Differential cryptanalysis

For every pair of nm-bit input (cryptogram) sequences with a specific difference a′,
a pair of outputs each consisting of only a single bit is returned. The usability of
Rp(a

′ $ fc % 1) is determined by its deviation from 1/2. If this prop ratio is 1/2(1±
*−1), the number of input pairs needed to detect this deviation is approximately *2.

Consequently, a cipher function should not have difference propagations with
prop ratios that deviate significantly more than 2−nm/2 from 1/2. The input differ-
ences a′ with the highest deviations should depend in a complex way on the cipher
key.

The differential attacks can be generalized in several ways. One generalization
that proved to be powerful in the cryptanalysis of some weak proprietary designs
can be labeled as second order differential cryptanalysis. Here the inputs to the
cipher function are applied in 4-tuples. The 4 inputs denoted by a0, a1, a2 and a3
have differences a′ = a0+a1 = a2+a3 and a′′ = a0+a2 = a1+a3. By examining the 4
corresponding output bits it can be observed whether complementing certain input
bits (a′′) affects the propagation of a difference (a′). This can be used to determine
useful internal state bits or even key bits. Typically these attacks exploit properties
very specific to the design under analysis. This can be generalized to even higher
order DC in a straightforward way.

9.4.2 Linear cryptanalysis

The number of inputs needed to detect a correlation C of the encrypting bit with
a linear combination of input bits is C−2. Hence, a cipher function should not have
input-output correlations significantly larger than 2−nm/2. The selection vectors va
with the highest correlations should depend in a complex way on the cipher key.
By imposing a number k of affine relations on the input bits, the cipher function
is effectively converted to a Boolean function in nm − k variables. These functions
should have no correlations significantly larger than 2−(nm−k)/2 for any set of affine
relations.

A special case of a selection vector is the zero vector. An output function that
is correlated to the constant function is unbalanced. A correlation of C to the
constant function gives rise to an information leakage of approximately C2/ln2 bits
per encrypted bit for C < 2−2.

In linear cryptanalysis correlations between the output and linear combinations
of input bits are exploited. This can be generalized by allowing for a wider range
of functions. An example of this is given by the table reconstruction attack as
described in [74]. The idea is to find a low degree function that approximates the
cipher function and can be used to diminish the uncertainty about the plaintext. It
is shown that the construction of such an approximation using a limited number of
samples can be seen as a (de)coding problem.

166 DESIGN OF SELF-SYNC. STREAM CIPHERS

The feasibility of this attack is limited by the amount of high order terms in
the algebraic normal form of the cipher function. Although this restriction severely
limits the applicability of the attack, its basic idea is powerful and can inspire
dedicated attacks. The process of fixing the class of approximating functions and
deducing conditions for the cipher functions can be reversed. Depending on the
specific design, the internal structure of the cipher function can possibly be used to
define a manageable class of functions that is likely to contain a usable approximation
for the cipher function.

9.5 Cipher function architectures

A finite state machine with finite input memory nm realizes a mapping R from a
length-nm sequence of cryptogram bits ct−nm , . . . , ct−1 to an internal state qt. Its
components are described by

q
(j)
i

t
= R[κ]

(j)
i (ct−j , . . . ct−1) . (9.6)

The finite state q serves as the input to the stages that map it to the enciphering
bit z. We have

zbs+t = s[κ](qt) . (9.7)

In this context the cipher function zbs+t = fc[κ](ct−nm , . . . , ct−1) is decomposed into

fc = s ◦ R . (9.8)

This section is devoted to the study of the propagation properties of the mapping
R as realized by different state updating transformations.

Because of the asymmetry inherent in the finite input memory requirement, the
symmetry-based design approach of Chapters 7 and 8 cannot be applied here. This
results in structures with a more cumbersome description. Moreover, the asymmetry
prevents that difference propagations in R are dominated by a single differential trail
or that correlations between the cryptogram bits ci and q are dominated by a single
linear trail.

First we will describe a specific architecture to illustrate some typical undesired
properties that are present in many designs. This is followed by the introduction
of conditional complementing shift registers and pipelined stages, structures that are
much better adapted to their role in the cipher function.

9.5.1 A proposed recursive architecture

In [74] it is proposed to build the finite state machine with finite input memory
by the application of parallel and serial composition of cipher functions. Parallel
composition denotes bitwise addition of the output bits of two cipher functions fed
with the same input. In serial composition the output of one of the automata is fed
into the input of the other. In Fig. 9.1 an elegant recursive design is depicted that

9.5. CIPHER FUNCTION ARCHITECTURES 167

s[κ]

❄✲
⊕

✲

✛

✛

✛

✛

✻

✻

✻

✻

✻

✻

✻

✻

✲ ✛
⊕✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✲ ✛
⊕✻

✛

✛

✛

g[κ]

✻

✻

Figure 9.1: The Ψ architecture.

was given in [74] to illustrate the applicability of these composition modes. We will
refer to this architecture as Ψ.

The rightmost box depicts the basic component: a 3-bit shift register with a
keyed Boolean output function g[κ]. Four of these components are arranged in the
parallel composition of two serial compositions of two components. On the next
level, four of the resulting blocks are arranged by serial composition. At the two
following levels these arrangements are repeated. The resulting finite state machine
has an input memory of 192, with exactly 4 component bits for every input memory
value. The internal state of this finite state machine serves as the input to the
keyed output function s[κ]. It is not specified how the keyed Boolean functions g[κ]
should be constructed. The most obvious way would be to expand the cipher key κ
into 256 vectors of 8 bits that can serve as the tables for the functions g[κ]. More
sophisticated key schedules typically impose that the tables fulfill certain criteria
such as balancedness or completeness (output is not independent of any of the input
bits).

We did some difference propagation experiments with the Ψ structure. A crypto-
graphic sequence generator, loaded with a specific initial state, was used to generate
the 8-bit tables of the functions g[κ]. Two input strings, differing in a specific pat-
tern of bits, were applied and the difference propagation in the internal state was
observed. This was repeated for a number of different keys and sequences. Figure
9.2 gives a typical differential trail for Ψ with an initial difference pattern with a
Hamming weight of 1. It can be seen that this differential trail has already com-
pletely dissolved about 160 cycles after it has started. Our experiments show that
flipping cryptogram bits c−j with j between 192 and 180 leaves q0, and therefore
zbs , virtually always unaffected.

For a super self-synchronizing stream cipher every input difference c′ has an
expected prop ratio Rp(c

′ $ fc % 0) of 1/2. For Ψ the input differences c′ that are 0
in the last 180 bits have Rp(c

′ $ R % 0) ≈ 1. Since always Rp(0 $ s % 0) = 1, this
propagation defect of Ψ cannot be compensated by any output function. We have
experienced that this type of propagation defect can serve as a lever in cryptanalysis

168 DESIGN OF SELF-SYNC. STREAM CIPHERS

to pry open the cipher.
The observed defective difference propagation is due to the bad difference propa-

gation inherent in serial composition of cipher functions. For the vast majority of su-
per self-synchronizing ciphers with input memory nm, the prop ratio Rp(c

′ $ fc % 1),
with c′ a vector that is only 1 in component c−nm and 0 elsewhere, is 1/2. For
the serial composition of * uniformly chosen cipher functions with input memories
adding up to nm, this prop ratio is only 2−�. Serial composition as proposed in [74]
should therefore be avoided.

An unlucky choice of the component cipher functions with the lowest input mem-
ory can cause even more serious problems. In Ψ there are four 3-bit shift registers
that are fed with the input (cryptogram) bits themselves. Let the four correspond-
ing key-dependent Boolean functions be denoted by g1, g2, g3 and g4. Assume that
for all these functions

gi(000) = gi(001) = gi(010) = gi(100) .

In that case pairs of cryptogram bit sequences that only differ in a single bit preceded
and followed by two zeroes (i.e., . . . 00000 . . . and . . . 00100 . . .) give rise to pairs of
output sequences with pairwise identical members for all four functions. This implies
that the resulting differential trail does not reach beyond the four shift registers
with lowest input memory. Totally there are 16 different cases corresponding to
the possible combinations of values in the two following and preceding bits. If
the functions g are uniformly generated, the differential trail stops at least for one
of these 16 cases for exactly 1 cipher key in 256. For balanced functions gi, the
proportion of cipher keys with prematurely dissolving differential trails is larger
than 1 in 6000.

9.5.2 Conditional complementing shift registers

In this section we introduce a new architecture for finite state machines with finite
input memory. In this architecture the discussed propagation defects are prevented
by imposing (partial) linearity on the components of the state updating transfor-
mation. For simplicity we impose the preliminary restriction that all q(j) have only
one component, i.e., that there is only one bit for every input memory value. The
components of the state updating transformations are of the form

q(j)
t+1

= q(j−1)
t
+ E[κ](j)(q(j−2)

t
, . . . , q(1)

t
, ct) . (9.9)

Since the new value of q(j) is equal to the sum of the old value of q(j−1) and some
Boolean function, we call this type of finite state machine a conditional complement-
ing shift register (CCSR).

Proposition 9.1 The mapping R corresponding to a CCSR is an injection.

Proof : We describe an algorithm for the reconstruction of ctq(1)
t
. . . q(j−1)

t
from

q(1)
t+1

. . . q(j)
t+1

. The components are reconstructed starting from c and finishing
with q(j−1). For q(1) (9.9) becomes

q(1)
t+1

= q(0)
t
+ E[κ](1) = ct + E[κ](1) ,

9.5. CIPHER FUNCTION ARCHITECTURES 169

Υ

input memory →
time

↓

Ψ

Figure 9.2: Difference propagation patterns in Ψ and Υ. There are in general several
state bits for every input memory value. A black mark at time coordinate t and
input memory coordinate i denotes that at time t there is a difference in at least
one of the bits of input memory i.

170 DESIGN OF SELF-SYNC. STREAM CIPHERS

since E[κ](1)() depends only on κ. From this we can calculate ct. The values of q(k−1)
t

for k from 2 to j can be calculated iteratively from the previously found values by

q(k−1)
t

= q(k)
t+1

+ E[κ](j)(q(k−2)
t
, . . . , q(1)

t
, ct) .

ct−nm . . . ct−1 can be calculated uniquely from q(1)
t
. . . q(nm)t by iteratively applying

the described algorithm. Hence, R is an injection.

Since R is an injection, a nonzero difference in ct−nm . . . ct−1 must give rise to a
nonzero difference in qt. Therefore in a CCSR there is no premature dissolving of
differential trails as for instance in Ψ.

The CCSR has the undesired property that a difference in c−nm−t propagates to
q(nm)t with a prop ratio of 1. This can be avoided by “expanding” the high input
memory end of the CCSR, i.e., taking more than a single state bit per input memory
value near memory value nm. We will illustrate this in our design example.

An elaborated CCSR design example

In this section we describe the design of a finite state machine Υ of the CCSR
architecture. The main design goal is the elimination of difference propagations
with a prop ratio larger than 2−15 for the mapping R corresponding to Υ, while
keeping the gate delay very small and the description as simple as possible.

Υ has an input memory of 96. The CCSR is expanded at the high input memory
end, with 2 bits per input memory starting from j = 89, four starting from 93, eight
of 95 and sixteen of 96, resulting in 128 state bits. The cipher key κ corresponding
to Υ consists of 96 bits: κ0 . . . κ95.

For reasons of simplicity, area and gate delay, the majority of the components of
the state updating transformation consist of a very simple Boolean function of the
form

G[κ]
(j)
i (q, c) = q

(j−1)
i + κj−1 + (q

(v)
i)(q

(w)
i + 1) + 1 , (9.10)

with 0 ≤ v, w < j−1. We have chosen for key application by simple bitwise addition
and let the remaining part of E consist of the simplest nonlinear function possible.
A combinatorial circuit that implements one component of the state updating trans-
formation is depicted in Fig. 9.3. It can be seen that this circuit has a gate delay of
only 2 exor gates. The figure also shows the expansion of the CCSR at the high
input memory end and the corresponding indexing. The v and w values for almost
all components G

(j)
i are specified in Table 9.1. For j ≤ 4, the q(v) and q(w) entries

are taken to be 0. In some cases terms q
(j)
i specified by Table 9.1 do not correspond

to existing components. In that case the i-index must be diminished by iteratively
subtracting the largest power of 2 contained in i until the term corresponds to an
existing component (e.g., q

(93)
14 → q

(93)
6 → q

(93)
2).

The 15 components G
(96)
i with i > 0 are of a different type. These are specified

by

G[κ]
(96)
i (q, c) = q

(95)
i (q

(95−i)
0 + 1) + q

(94)
i (q

(94−i)
1 + 1) . (9.11)

9.5. CIPHER FUNCTION ARCHITECTURES 171

i
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0· · ·

(j) (88) (89) (90) (91) (92) (93) (94) (95) (96)

88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104

105 106 107 108

109 110 111 112

113 114

115 116

117 118

119 120

121

122

123

124

125

126

127

128

G
(j)
i :

q or a〈0〉 :

q
(j−1)
i

κj−1 q
(v)
i q

(w)
i⊕ ◦

◦⊕

q
(j)
i

Figure 9.3: A circuit implementing a component of the state updating transforma-
tion and expansion of the CCSR in the high memory region. The q indexing (CCSR)
is given at the right and the bottom, the a〈0〉 indexing (pipelined stages, see p. 173)
inside the boxes.

v w
(i + j) mod 3 = 0 j − 4 + (i mod 2) j − 2
(i + j) mod 3 = 1 j − 6 + (i mod 2) j − 2
(i + j) mod 6 = 2 j − 5 + (i mod 2) 0
(i + j) mod 6 = 5 0 j − 2

Table 9.1: v and w values for the components G
(j)
i with 4 < j < 96 and G

(96)
0 .

172 DESIGN OF SELF-SYNC. STREAM CIPHERS

Observe that these are unbalanced functions and will cause a bias in the correspond-
ing components.

In Fig. 9.2 a typical propagation pattern is shown for Υ. The diagonal trailing
edge is caused by the linear forward propagation of the CCSR ensuring that differ-
ential trails do not prematurely dissolve. The difference pattern at time 0 resulting
from a difference pattern in the cryptogram symbols ending in c−96 is restricted to
q(96). The partial linearity in (9.10) guarantees that the difference pattern is 1 in

q
(96)
0 . The difference value of each of the 15 remaining components is determined

by balanced key-dependent functions of the absolute values of the cryptogram sym-
bols c−95 to c−1. This results in 215 equiprobable nonzero difference patterns. The
difference patterns in q0 resulting from difference patterns that end in cryptogram
symbol c96−e for small e are not uniformly distributed. However, all prop ratios are
well below the 2−15 limit.

Care was taken that difference propagations (c′ $ R % 0) with c′ different from 0
cannot occur because these typically give rise to detectable propagation defects. This
can be seen as follows. Assume that for the output function Rp(q

′ $ s % 0) = 1/2 for
all nonzero difference patterns q′. In that case a difference propagation (c′ $ R % 0)
with a prop ratio of p gives rise to a difference propagation (c′ $ fc % 0) with a prop
ratio of approximately (1 + p)/2.

As opposed to Ψ, in Υ the input difference pattern diffuses immediately to com-
ponents all over the internal state. This is a consequence of the fact that ct is not
only injected in q(1), but in many components at once. These are represented by the
zero v and w entries in Table 9.1 (keep in mind that q(0) = c). Depending on the

value of q
(j−3)
0 , a difference in c propagates to either q

(j−1)
0 or q

(j+2)
0 . Since there are

more than 15 of these “double injections”, the prop ratios are below 2−15. In subse-
quent iterations this pattern is subject to the nonlinearity of the Υ state updating
transformation.

9.5.3 Pipelined stages

In our architecture, the cipher function consists of a CCSR followed by a number of
pipelined stages. The stage transformations are similar to the round transformation
in a block cipher but are less restricted.

A round transformation of an iterated block cipher must be invertible, and its
inverse must be easily implementable. A stage transformation does not have this
restriction and the length of its output can be different from that of its input. The
output of the last stage transformation is a Boolean function of the components of
the state q some cycles ago. This Boolean function can be forced to be balanced
by imposing that all the stage transformations are semi-invertible. We call an n-bit
to m-bit mapping b = f(a) semi-invertible if there exists an n-bit to (n − m)-bit
mapping b′ = f ′(a) so that a is uniquely determined by the couple (b, b′). In that case
the output bit can be seen as a component of the output of an invertible function
of the state q.

The last round transformation of an iterated block cipher must be followed by a
key application or include a key dependence. This is necessary to prevent the crypt-

9.5. CIPHER FUNCTION ARCHITECTURES 173

analyst to calculate an intermediate encryption state thereby making the last round
transformation useless. For the cipher function of a single-bit self-synchronizing
stream cipher the calculation of intermediate values is impossible since only a single
output bit zt is given per input. Therefore, key dependence is not a strict necessity
for the stage transformations.

An elaborated design example

In this section we describe a staged output function Γ for use with Υ. Γ consists
of 7 stages in total. The output of stage 〈i〉 is stored in a register denoted by a〈i〉.
Register a〈0〉 corresponds to q and has a length of 128. For ease of notation a〈0〉 has
been given a different indexing than q. This is specified in Fig. 9.3.

The components of the registers 〈1〉 to 〈7〉 are indexed starting from 0. Registers
a〈1〉 to a〈5〉 have length 53. For the component state updating transformation of stage
1 we have

G
〈1〉
4i mod 53 = a

〈0〉
128−i + a

〈0〉
i+18 + a

〈0〉
113−i(a

〈0〉
i+1 + 1) + 1 , (9.12)

for 0 ≤ i < 53. The stages 2 to 5 are specified by

G
〈j〉
4i mod 53 = a

〈j−1〉
i + a

〈j−1〉
i+3 + a

〈j−1〉
i+1 (a

〈j−1〉
i+2 + 1) + 1 , (9.13)

for 0 ≤ i < 53. If a lower index in the right-hand side of these equations becomes
larger than 52, the corresponding term is taken to be 0, e.g., a

〈j−1〉
53 = 0. Register

a〈6〉 has a length of 12. Stage 6 is defined by

G
〈6〉
i = a

〈5〉
4i + a

〈5〉
4i+3 + a

〈5〉
4i+1(a

〈5〉
4i+2 + 1) + 1 . (9.14)

Register a〈7〉 consists of 3 bits. We have

G
〈7〉
i = a

〈6〉
4i + a

〈6〉
4i+1 + a

〈6〉
4i+2 + a

〈6〉
4i+3 . (9.15)

Finally the encrypting bit is given by

z = a
〈7〉
0 + a

〈7〉
1 + a

〈7〉
2 . (9.16)

The input to the first stage consists of the state bits of the CCSR. Special care
has been taken with respect to difference patterns restricted to the high-memory
region of Υ and those resulting from a difference in the most recent cipher bit. The
purpose of stages 〈1〉 to 〈6〉 is the elimination of low-weight linear and differential
trails. The components of these stage transformation combine diffusion, nonlinearity
and dispersion respectively in the linear term, in the quadratic term and in the
arrangement of inputs and outputs. Their effectiveness is reinforced by the diffusion
in stage 〈7〉 and the output function that computes the encrypting bit as the bitwise
addition of all 12 bits of a〈6〉 to the output.

Finally, it can easily be checked that all the stages are semi-invertible.

174 DESIGN OF SELF-SYNC. STREAM CIPHERS

Υ Υ

✻ ✻

❄ ❄ ❄

❄

d d d⊕
❄⊕

✲
⊕

✲ d ✲❄

⊕
❄✲

⊕
✲
⊕

✲ d ✲mt ct ct−1 mt−1 mt−2

at−1 at−1

Figure 9.4: Encryption and decryption with the ΥΓ architecture.

9.6 The ΥΓ cipher

Figure 9.4 shows a self-synchronizing stream cipher consisting of the combination
of Υ and Γ. The gate delay of the combination of the output function and the
encryption (or decryption) is 2 exor gates, equal to the gate delay of the state
updating transformation. This necessitates the introduction of extra intermediate
storage cells, denoted in Fig. 9.4 by boxes containing a d. In the encryptor this cell
is located between the encryption and the input of Υ. For correct decryption this
necessitates an extra delay of 1 clock cycle after the last stage of Γ in the decryptor.
In Fig. 9.4 it can be seen that the operation of encryption and subsequent decryption
takes only two clock cycles. The clock speed is limited by the gate delay of only 2
exor gates, allowing throughput rates in the range of 100 Mbit/s with present-day
technology.

This cipher can be seen as an improvement of our earlier design called KNOT
that was presented in our paper [15]. We discovered that the output function of
KNOT has a detectable imbalance. This has been avoided in the present design by
imposing that the stages of Γ are semi-invertible. The ΥΓ cipher has the additional
benefit that it has a more compact description than KNOT.

The ΥΓ cipher can be turned into a self-synchronizing stream encryption scheme
by the specification of an initialization mapping. As an example of a simple and
effective initialization mapping we have:

κ = K ,
IV = Q .

(9.17)

9.6.1 The output feedback mode

In Chapter 2, a method was described for building a cryptographic sequence gen-
erator with an invertible state updating transformation from a self-synchronizing
stream cipher. As can be seen in Fig. 2.5, this requires a feedback from the last
cell of the shift register that contains the previous nm ciphertext symbols. This
cannot be applied in a straightforward way in the case of ΥΓ since the shift register
is replaced by a CCSR and the stages introduce additional delay. The scheme in

9.7. CONCLUSIONS 175

Γ

κΥ

✲

✻

z

✛✛✛ d ⊕
q
(96)
0

Figure 9.5: OFB mode for ΥΓ with invertible state updating.

Fig. 2.5 can however be adapted for ΥΓ by simply replacing the single-bit register
by a bs + 1-bit shift register. This is illustrated in Fig. 9.5. The invertibility of this
state updating transformation can easily be proved using the injection property of
the CCSR. The expected cycle length of this structure is 2nm+bs, equal to 2104 in this
case.

As initialization mapping for this synchronous encryption scheme we propose the
following procedure. First the internal states of Υ and Γ are reset to 0. Then κ and
the initial state are specified by

κ = K ,
d−104 . . . d−1 = Q ,

(9.18)

9.7 Conclusions

It has been shown that there are serious problems with the design approach for
self-synchronizing stream ciphers presented in [74]. We have presented our own de-
sign strategy for single-bit self-synchronizing stream ciphers containing new, better
adapted architectures. We have illustrated this design strategy by an actual design
that can be implemented in hardware to give a high-speed cipher.

We believe that there is an interesting opportunity for further research in extend-
ing our design strategy to dedicated ns-bit self-synchronizing stream ciphers with
ns > 1.

176 DESIGN OF SELF-SYNC. STREAM CIPHERS

Chapter 10

Supporting Cryptanalytic Results

10.1 Introduction

This chapter contains some of our cryptanalytic results that have played an impor-
tant role in the conception of our design strategies and goals.

First we describe our resynchronization attacks. These attacks show the destruc-
tive impact that resynchronization can have on the security of synchronous stream
ciphers. The point is that the initialization mapping, a necessary component of any
practical synchronous encryption scheme, must be seen as part of the encryption
scheme and therefore included in the cryptanalytic phase of the design.

Subsequently, we show how to generate collisions for a cryptographic hash func-
tion based on cellular automata designed by Ivan Damg̊ard. This attack has been
included to illustrate that the application of theoretical design principles does not
remove the need for basic correlation and propagation evaluation prior to publica-
tion.

Finally, we treat the security of a block cipher construction that was proposed
by Shimon Even and Yishay Mansour. The actual consistency of the results of our
cryptanalysis with the computational complexity theoretic analysis of the designers
clearly illustrates the limitations of the computational complexity theoretic point of
view.

10.2 Resynchronization attacks

In this section we present some examples of a new class of powerful attacks for syn-
chronous stream encryption schemes, called resynchronization (or resync) attacks.
These attacks exploit the relations between encrypting bits resulting from different
initializations with the same key K and different values of the public parameter Q
and were originally published in our papers [17] and [19].

The objects of all attacks presented here are filtered counter stream encryption
schemes. We concentrate on schemes with a linear state updating transformation
and a linear initialization mapping. The initialization and the state updating trans-

177

178 CHAPTER 10. SUPPORTING CRYPTANALYTIC RESULTS

formation can be described by matrix equations:

s0i = MK + ri , (10.1)

st+1i = Fsti , (10.2)

with M and F binary matrices and F nonsingular. In these equations sti denotes the
internal state t time steps after the ith initialization. The ri are vectors determined
by the public parameter in the different initializations.

The attacks focus on the full reconstruction of sτp, the internal state of the counter
at a certain time step τ . From this internal state, s0p can be computed and subse-
quently the initial states s0i corresponding to all other initializations:

s0p = F−τsτp , (10.3)

s0i = s0p + ri + rp . (10.4)

The bitwise sum of any two states with equal time indices, sti and stj , is completely
determined by the ri vectors:

sti + stj = Ft(ri + rj) . (10.5)

The output function (or filter) computes the encrypting symbol from the internal
state. In order to simplify the notation, only binary encrypting symbols are consid-
ered. If the symbols consist of more than a single bit, the output function can be
decomposed in its binary components.

In most practical proposals, the encrypting bit only depends on a small set
of ϕ (independent) linear combinations of state bits. Suppose the values of these
linear combinations of state bits form the components of the binary vector u with ϕ
components. The relation between the vector u and the internal state s is expressed
in a matrix equation

ut
i = Gsti . (10.6)

We can write z = fo(u) with fo the output function.
The linear relations between the internal states can be exploited to reinforce

existing attacks or to construct new ones. In the following we describe four differ-
ent attacks, ranging from a general known-plaintext attack to a scheme for on-line
cracking of a commercial video encryption system.

10.2.1 A simple general attack

We start with describing a procedure to reconstruct uτ
p for some τ (in the rest of

this discussion the superscript τ has been omitted). Suppose zp is known to the
cryptanalyst. The correct up has to fulfill fo(up) = zp. Every zi that is known to
the cryptanalyst gives rise to a similar equation: fo(ui) = zi. Substitution of ui by
up + GFt(ri + rp) yields a condition for up:

fo(up + GFt(ri + rp)) = zi . (10.7)

10.2. RESYNCHRONIZATION ATTACKS 179

This results in a set of nonlinear Boolean equations with ϕ variables. If the number
of equations is larger than ϕ, the number of solutions is expected to converge to
1. If ϕ is small enough, the solution can be found by performing exhaustive search
over the space of all possible u-vectors. This involves on the average 2ϕ evaluations
of fo().

Substitution of the known values of the bits of uτ
p in uτ

i = Gsτi gives rise to ϕ
affine equations in sτp. These can in their turn be converted to affine equations in s0p
using the relation Fτs0p = sτp.

The procedure described above can be repeated for a number of different time
steps τ until the number of linearly independent affine equations in the bits of
s0p is larger than the number of state bits na. The resulting set of equations can
be efficiently solved by methods of linear algebra. Hence, the reconstruction of
approximately �na

ϕ
� different uτ

p vectors is sufficient to completely determine s0p.
For this attack to be possible, the number of initializations must be larger than

ϕ. The cryptanalyst must know at least ϕ encrypting bits for a number of �na

ϕ
� time

steps. The expected work factor is⌈
na
ϕ

⌉
2ϕ (10.8)

evaluations of fo() and some additional linear algebra computations. The attack can
easily be parallelized by distributing the search over a number of different processors.
It can be observed that the work factor of this attack only grows linearly with the
size of the internal state. For this general attack to be infeasible, it is essential that
ϕ is large and consequently that the output function depends on a large number of
state bits.

This general attack works independent of the specific properties of the output
function. In the following section we show that in some cases a significant speedup
can be attained by exploiting the structure of fo().

10.2.2 A simple attack for the multiplexor generator

A so-called multiplexor generator [95, p. 108] consists of a set of linear feedback shift
registers filtered by a multiplexor output function. A multiplexor with β address
inputs has 2β data inputs. If the address inputs are denoted by a0, a1, . . . , aβ−1,
the data inputs by d[0], d[1], . . . , d[2β − 1] and the output by z, the operation of the
multiplexor can be described by

z = d[a] with a =
∑
0≤i<β

ai2i . (10.9)

Clearly, a is the interpretation of aβ−1 . . . a1a0 as an integer. The vector up is split
into ap and dp and ϕ = β + 2β. Since (sti + stj) is completely determined by ri + rj,
so are (ai + aj) and (di[k] + dj[k]) for any k.

Suppose the cryptanalyst knows the encrypting bits zp and zi for a given time
step t in which (ap + ai) = 0. If zp = zi, the integer ap (and equivalently ai) must
select a bit in d for which dp[ap] + di[ap] = 0. If zp �= zi, we have dp[ap] + di[ap] = 1.

180 CHAPTER 10. SUPPORTING CRYPTANALYTIC RESULTS

In both cases the cryptanalyst can eliminate about half of the possible values for ap.
This can be repeated for every two encrypting bits ze, zf for which (ae + af) = 0.
The correct value for ap will be found after investigating β pairs (or a few more).
After the correct value of ap has been found in this way, the remaining 2β−β values
of dp can systematically be scanned by considering a set of 2β encrypting bits zgi

with the indices gi determined by agi
= ap + i.

The complete process of fixing the u-vector takes about β + 2β = ϕ evaluations
of the multiplexor function. This has to be repeated �na

ϕ
� times. The complexity of

the complete attack can be approximated by⌈
na
ϕ

⌉
ϕ ≈ na (10.10)

multiplexor evaluations and some additional linear algebra computations. In fact,
the linear algebra will be responsible for the largest part of the work factor in realistic
cases.

Because of the particular demands for the difference patterns in a, the number
of initializations should be approximately 2β or larger for this attack to be possible.

10.2.3 A powerful attack for the multiplexor generator

In this section we present a more complicated attack on the multiplexor generator
that takes advantage of even a small number of initializations to reconstruct the
internal state in an efficient way.

In this attack we manipulate binary vectors with components that are partly
unknown. Apart from the symbols 0 and 1, – (unknown) can occur. The set of
indices corresponding to unknown components of a vector q is denoted by ν(q).
If such a partly known vector is the argument of a Boolean function, any output
depending on unknown components of the input is taken to be unknown.

x|ν (with x a binary vector and ν a set of component indices) denotes the ‘pro-
jection’ of the vector x on a vector with components in ν. If ν is a singleton with
element k, this is denoted by x|k. A subset ν of the components of a vector a can be
given a value by the expression a|ν = c with c a constant vector with #ν components.

The set of indices of the components that are used as address inputs of the
multiplexor is denoted by α. If for a state s the part s|α is completely known, the
address index, i.e., the index of the component selected by the multiplexor, can be
calculated and is denoted by sel(s).

The cryptanalytic algorithm tries to reconstruct the internal state in a recur-
sive way using available encrypting bits. The central function in the attack is the
recursive function reconstruct. A C-like description of this function is given in
Fig. 10.1.

The function ‘reconstruct’ takes as input a partly known internal state q and a
recursion depth. The internal state is reconstructed by considering the encrypting
bits at time steps dictated by the time step sequence τ0τ1 . . . The initial call of ‘re-
construct’ has depth 0 and takes a (completely unknown) state q. In ‘reconstruct’,

10.2. RESYNCHRONIZATION ATTACKS 181

reconstruct(q, d)
{
α′ = α ∩ ν(q) ;

for (all c1 ∈ ZZ#α′
2) {

q|α′ = c1 ; .

i = 0 ;
contradiction = FALSE ;
while (i < * and NOT contradiction) {

if (zτd
i = NOT unknown) {

k = sel(q + Fτdri) ;
if (k ∈ ν(q)) { q|k = zτd

i + Fτdri|k ; }
else { if (qk �= zτd

i + Fτdri|k) { contradiction = TRUE ; } }
}

i = i + 1 ; }
if (NOT contradiction) {

if (ν(q) = ∅ and d > dlim) { print(s0 = F−τdq) ; STOP ;}
else {

for (all c2 ∈ ZZ#λ
2) {

q′ = q ;
q′|λ

 = c2 ;
reconstruct(Fτd+1−τdq′, d + 1) } } } }

}

. The unknown components of q with indices in α are assigned a value
such that sel(q) can be calculated.

.. λ ⊆ ν(q) should be the smallest set such that #ν(Fτd+1−τdq′) ≤ #ν(q).

Figure 10.1: The recursive function that forms the core of the attack.

182 CHAPTER 10. SUPPORTING CRYPTANALYTIC RESULTS

α′ is the set of indices in α corresponding to unknown components and λ is typi-
cally the subset of ν(q) corresponding to components that affect many bits of the
successor state of q. The sizes of α′ and λ are important factors in the divergence
and convergence of the recursive procedure. The algorithm is considered successful
if it is able to reconstruct all components of the internal state at a certain time τd
with d large enough to guarantee that the correct internal state is obtained.

In Fig. 10.2 the effect of ‘reconstruct’ is demonstrated on a typical multiplexor
generator with toy dimensions. In this example, α = {18, 21, 24, 27} and λ =
{28} or ∅.

The work factor of the attack can be expressed by the total number of ‘recon-
struct()’ function calls. The algorithm is a recursive tree search, where the tree is
pruned by two mechanisms:

• knowledge from previous steps: as the recursion depth grows, #ν(p)
shrinks and with it #α′ and #λ,

• contradictions: the probability a contradiction grows as ν(p) shrinks.

The most important factor for the efficiency of the attack is the number of initial-
izations. If this is small the efficiency of the attack depends strongly on the specific
feedback polynomials of the linear feedback shift registers and the arrangement of
the multiplexor inputs. The choice of the time step sequence is critical in this case. If
it is approximately 2β, the simple and very efficient attack described in the previous
section can be applied.

10.2.4 The EBU MAC/packet scrambling system

In [33] the European Broadcasting Union (EBU) proposes a video-audio scrambling
system that has already been implemented in a number of systems (some opera-
tional, some in development). In this system the video component of a TV-signal
is scrambled by line rotation. There are two options: in double cut mode both the
luminance component and the color difference component are rotated, and in sin-
gle cut mode only the color difference component is rotated. The range of possible
rotations for a line consists of 256 equidistant rotation intervals. The 8-bit number
specifying the rotation interval is generated by a multiplexor generator consisting of
a 29-bit and a 31-bit linear feedback shift register, filtered by a 32 to 1 multiplexor.

Every 256 frames a fresh key K is supplied. At the beginning of each frame the
encryption scheme is initialized by loading an initial state that is a linear combi-
nation of the 60-bit key K and the 8-bit serial number i of the frame. If a certain
portion of the image contents is known, the attack described in the previous section
is directly applicable. In the case of a completely automated descrambling device
this can however not be assumed. In this case we can exploit the correlations be-
tween corresponding lines in subsequent frames.

10.2. RESYNCHRONIZATION ATTACKS 183

The toy example MUX-LFSR generator

❄ ❄ ❄ ❄ ❄ ❄ ❄
✲

· · · · · · · · · · · · · · · ·

mux ✲ z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

sel(s) =def 23s18 + 22s21 + 2s24 + s27 + 1

Input q to ‘reconstruct’ at depth d with τd = d. Let zdj = 0

· · · · · · · · · · · · · · · ·1 0 − 0 − 0 1 −−− 0 − 1 − 0 −−−− 1 0 0 1 1 0 1 0 0 1

Fdrj

· · · · · · · · · · · · · · · ·0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1

q + Fdrj

· · · · · · · · · · · · · · · ·1 0 − 0 − 1 0 −−− 0 − 0 − 0 −−−− 0 0 1 1 0 0 0 1 0 0

q + Fdrj after assumption q|α′ = 0 : CONTRADICTION

· · · · · · · · · · · · · · · ·1 0 − 0 − 1 0 −−− 0 − 0 − 0 −−− 0 0 0 1 1 0 0 0 1 0 0

sel(p) = 5 �= zdj (= 0)

q + Fdrj after assumption q|α′ = 1

· · · · · · · · · · · · · · · ·1 0 − 0 − 1 0 −−− 0 − 0 − 0 −−− 1 0 0 1 1 0 0 0 1 0 0

sel(p) = 13
✻

zdj (= 0)

. . . resulting in input q′ at depth d + 1 (with τd+1 = d + 1)

· · · · · · · · · · · · · · · ·1 1 1 − 1 − 0 1 −−− 1 − 1 0 0 −−− 1 0 0 0 1 1 0 1 0 0

Figure 10.2: Effect of ‘reconstruct’ demonstrated on a toy example MUX-LFSR
generator.

184 CHAPTER 10. SUPPORTING CRYPTANALYTIC RESULTS

If ri is the 8-bit vector that corresponds to the binary representation of i, we
have

s0i = K + Mri , (10.11)

with M is a 60 × 8 matrix. The bitwise difference between the initial states corre-
sponding to two consecutive frames with numbers 2j and 2j + 1 is equal to

s02j+1 + s02j = M(r2j+1 + r2j) = Mr1 = m , (10.12)

with m the first column of M. The difference between states with index 2j and 2j+1
at time t is

st2j+1 + st2j = Ftm . (10.13)

The output bits are used in chunks of 16 bits per line. In the double cut mode 8
bits are used for luminance rotation and 8 for color difference rotation. In single cut
mode there is no luminance rotation and only 8 of the 16 bits are used. The *th bit
of the 16 bits used for scrambling line p in frame i is equal to z16p+�i .

Let τ be chosen in such a way that zτi is the MSB of an 8-bit word to scramble
a line in frame i, and that

Fτm|α = 0 . (10.14)

In this case we have

sτ2j+1|α = sτ2j |α . (10.15)

In other words, in both cases the multiplexor selects the same bit position. Let
zτ2j+1 + zτ2j be denoted by ej. We have

ej = Fτm|aj
with aj = sel(sτ2j+1) = sel(sτ2j) . (10.16)

If ej was known, all values of aj with ej �= Fτm|aj
could be excluded as candidates

for the correct solution.
In fact, ej is not known but a prediction can be made based on the relative

rotation between the line in frame 2j and the line in frame 2j + 1. If the zτ are the
MSB’s of the rotation intervals of the lines, and ρ is the reduced (to the interval
(−1

2
,+1

2
]) difference in rotation between the two lines, it can easily be shown that

Pr(ej = 1) = |2ρ| . (10.17)

It follows that values of ρ near 0 or 1
2

give reliable predictions.
This leaves us with the problem of finding the relative rotation between two

lines in consecutive frames. If we suppose that the contents of the two unscrambled
lines only differ slightly, ρ is indicated by a peak in the crosscorrelation between the
two lines. The crosscorrelation can efficiently be calculated by A/D converting the
lines to (256 or 512-component) arrays and using the Fast Fourier Transform. The
magnitude of the highest crosscorrelation peak is a measure for the reliability of the
prediction. The reliability can further be augmented by applying nonlinear filtering

10.3. IVAN DAMGÅRD’S CA HASH FUNCTION 185

and/or edge detection. A threshold can be fixed for discarding the least reliable
predictions.

The result of this process is a set of predictions of relative rotations ρi that can
be converted to a set of probabilities pi = Pr(ei = 1). These probabilities can be
used to calculate the most probable value for a0. The vectors a0 and ai are linked
by

a0 + ai = FτM ri|α . (10.18)

For ease of notation the right-hand expression will be denoted by yi.
The values pi can be used to iteratively modify a probability distribution for a0,

denoted by πa0 . Let ζ(a) be defined as ζ(a) = Fτm|a. The contribution of each pi
can be seen as an adaptation of the distribution πa0 to π′

a0
according to

π′
a0

(v) =
ζ(v+yi)pi+(1−ζ(v+yi))(1−pi)∑

w(ζ(w+yi)pi+(1−ζ(w+yi))(1−pi))πa0 (w)
πa0(v) .

(10.19)

A similar adaptation is performed for all obtained pi. It can be shown that the order
of the adaptations does not affect the final distribution. The initial distribution is
flat. For a typical video signal this will converge very fast to a distribution with a
single peak. If there would be no uncertainty about the e�, 5 or 6 values would be
sufficient to fix u0 with certainty.

Execution of the described procedure gives 5 state bits of sτ0. This can be con-
verted to 5 linear equations for the state bits of s00. This state is completely fixed if
60 linear equations are available. Therefore, the procedure has to be performed for
at least 12 lines in the frame. Since the equations obtained for s00 and s01 are always
equal and s00 and s01 are known to be different, in principle only 59 equations can be
found. The remaining bit can easily be fixed by checking the correlation between
subsequent lines in one frame for both possibilities.

The descrambling information for a certain 256-frame block is only known after
reception of the complete block. Therefore, the descrambler will have to be equipped
with a video storage device such as a VCR. All other calculations are straightfor-
ward and can easily be executed by simple (existing) dedicated hardware devices,
controlled by a personal computer.

The sound and data scrambling cannot be attacked in this way. However, in the
assumption that more than 70 consecutive plaintext bits are known to the cryptana-
lyst, this part can be cracked by an attack of the type described in Sect. 10.2.3. The
determination of every key that is used for only 10 seconds takes about 238 function
calls of the ‘reconstruct’ function. On-line cracking would require a parallel machine
with 30,000 dedicated ‘reconstruct’ chips working at a million iterations per second.
Although this attack is no real threat for the system, it is considerably more efficient
than exhaustive key search (key length: 60 bits).

10.3 Ivan Damg̊ard’s CA hash function

In [29] Ivan Damg̊ard presented his well-known design principle for cryptographic
hash functions. The same paper also contained three concrete hash function designs

186 CHAPTER 10. SUPPORTING CRYPTANALYTIC RESULTS

ht−1 mt z

ht

0

257

384

Figure 10.3: Left: Space-time diagram of the cellular automaton of G(m, h). Right:
typical example of a differential trail in this cellular automaton.

based on this principle. One of these has a chaining transformation based on a
cellular automaton (CA) and is inspired by the work of Stephen Wolfram in [104].
In this section we show that for this hash function collisions can be generated ad
libitum. A modification in the first few (< 20) bits of a message block leaves the
hash result unaffected with high probability (> 50%). These results were originally
published in our paper [11].

For the cryptographic hash function under attack the emphasis on N-reductionist
design principles has led to a neglect of even the most basic correlation and propaga-
tion evaluation. The detected weaknesses would have been discovered in doing some
simple general propagation simulations of the type described in [104]. Apparently,
the designer did not carefully read [104] and has neglected to do any propagation
or correlation analysis at all.

The chaining transformation of the proposed hash function computes a 128-bit
chaining state ht from the previous chaining state ht−1 and the message block mt and
is denoted by ht = G(mt, ht−1). This chaining transformation is specified in terms
of a finite cellular automaton of length 512 with periodic boundary conditions. The
initial state, denoted by a(0), consists of the concatenation of mt, ht−1 and a constant
256-bit string z. The state updating transformation of the cellular automaton is
specified by:

a
(j+1)
i = a

(j)
i−1 + (a

(j)
i + 1)(a

(j)
i+1 + 1) . (10.20)

The computation of ht involves 384 iterations of this cellular automaton. The output
ht consists of the concatenation of the bits with index 0 of the internal states a(257)

to a(384). We have ht = a
(257)
0 a

(258)
0 . . . a

(384)
0 .

The work factor of this hash function is approximately 3 iterations of the 512-bit
CA per input bit. For Substream this is only a single iteration of the Subter-

ranean finite state machine per 16 input bits. In the assumption that the attainable
clock rate for the CA would be a factor 3 higher than for Subterranean, a hard-
ware implementation of Subhash would still be a factor 16 faster than a hardware
implementation of the CA hash function. In software, a single iteration of the CA

IVAN DAMGÅRDS CA HASH FUNCTION 187

ht−1 mt z

ht

ht mt+1 z

ht+1

Figure 10.4: The two phases in generating collisions.

takes approximately 64 bitwise Boolean and 64 shift operations on a 32-bit proces-
sor. Hence, the hashing of a single byte takes more than 1500 bitwise Boolean and
1500 shift operations. In contrast, our dedicated design StepRightUp takes less
than 4 bitwise Boolean operations and a single shift per byte.

Figure 10.3 gives the space-time diagram of the cellular automaton computation.
The top line of the diagram is the initial state a0 consisting of the concatenation of
ht−1, mt and z. Because of the periodic boundary conditions, the right and left edge
are in fact adjacent and the diagram can be seen as an unfolded cylinder with a
vertical axis. In this diagram ht is a temporal sequence and ht−1 and mt are spatial
sequences.

The right-hand side of Fig. 10.3 depicts a typical differential trail for the specific
cellular automaton. It can be seen that the small initial difference pattern expands in
time, confined between an irregular left edge and a right edge consisting of a straight
line with slope 1 (bit in space per bit in time). For the differential trail in Fig. 10.3
the left edge can be approximated by a straight line with a very small slope. In [104],
it is stated that empirical measurements suggest that the average asymptotic value
of this slope is about 0.24, but that in individual cases the actual slope can deviate
significantly from this average. This was confirmed in our experiments. Generating
collisions now becomes a matter of some simple geometry.

Suppose we have a difference pattern in the first 16 bits of mt. This gives rise to a
difference pattern between bit 128 and 144 of a0. This has expanded to bit 512 (= 0)
at the right after 512− 144 = 368 iterations. Given a slope of 0.24, it has expanded
at the left to bit 128 − 0.24 · 384 = 35 after 384 iterations. Clearly, the differential
trail affects only the last 384 − 368 = 16 bits of ht. In the subsequent application
of the chaining transformation the difference pattern in ht gives rise to a difference
pattern in a0 between bit 112 and 127. After 384 iterations this difference pattern
has expanded to bit 127 + 384 = 511 at the right and bit 112−0.24 ·384 = 19 at the
left, leaving a0 and therefore ht+1 undisturbed. Hence, complementing a few bits
at the beginning of a message block mt affects the chaining state of two iterations
later, ht+1, only with small probability. This mechanism is illustrated in Fig. 10.4.

188 CHAPTER 10. SUPPORTING CRYPTANALYTIC RESULTS

M

K1

V W

K2

C
✲
⊕

✲ ✲
⊕

✲
❄ ❄

F

Figure 10.5: The Even-Mansour block cipher construction.

10.4 The Even-Mansour construction

In [34] it is proposed to build a block cipher from a key-independent invertible
transformation F and two bitwise key additions. The transformation F is publicly
known and it is easy to compute F(x) and F−1(x) for any given input x ∈ ZZnb

2 .
The cipher key consists of two nb-bit subkeys K1 and K2. The relation between a
plaintext block M and its ciphertext block C is given by C +K2 = F(M +K1). This
is illustrated in Fig. 10.5.

We present two very simple differential attacks that result in a remarkably low
upper bound for the security attainable by block ciphers with this construction.
These attacks were presented at the same conference as the Even-Mansour con-
struction itself and were originally published in [13].

10.4.1 Differential cryptanalysis

A known-plaintext attack

The cryptanalyst knows two plaintexts and their corresponding ciphertexts denoted
by M,M∗, C and C∗. Let the bitwise difference of two blocks be denoted by X ′ =
X + X∗ and let V = M + K1 and W = C + K2. The attack consists of calculating
W ′ = F(V)+F(V +M ′) for all possible values of V . If V = M +K1 or V = M∗+K1,
we have W ′ = C ′. For almost all possible permutations F only a few V values will
be found for which this holds. Wrong values for V are discarded by checking that
F(V) �= M + K1 and F(V ∗) �= M∗ + K1. When the correct value of V is known,
the two subkeys can easily be calculated. This attack takes on the average 2nb−1

applications of F. The work factor of this attack corresponds to that of exhaustive
key search with an effective key length of only 1/2 of the actual key length.

A chosen-plaintext attack

The cryptanalyst chooses * plaintext pairs Mi,M
∗
i with the same bitwise difference

M ′ and obtains the corresponding ciphertexts Ci, C
∗
i . For * < 2nb/2 there are close to

* different C ′
i values, speeding up the search for a W ′ = C ′

i for some i by a factor of
* as compared to the known-plaintext attack. The magnitude of * is limited by the
memory requirement of nb* bits. The expected number of evaluations of F in this
attack is *+2nb/*. This is minimized for * = 2nb/2. Hence, in the absence of memory

10.4. THE EVEN-MANSOUR CONSTRUCTION 189

restrictions the work factor of this attack is comparable to that of exhaustive key
search with an effective key length of only 1/4 of the actual key length.

Both attacks can easily be parallelized. In the described attacks no advantage is
taken from possible internal structure of the permutation F.

Example : Let Ψ be an Even-Mansour type block cipher with block length 64 and
key length 128. Suppose an F-processor is a dedicated chip that computes F in
100 microseconds. A cryptanalyst performing a 2 MByte chosen-plaintext attack
(* ≈ 105) on Ψ using a parallel machine with 106 F-processors will recover the key
in a matter of hours.

10.4.2 Discussion

In [34] computational complexity theory is employed to recommend a construction
that can equally be considered as a restriction on the key schedule of a block cipher.

Even and Mansour prove that a polynomially bounded adversary has a negligible
probability of success when attacking their scheme if permutation F is pseudoran-
domly ‘chosen’. The work factor of an attack with non-negligible probability of
success is a superpolynomial function of the block length nb for large enough nb.
The two presented attacks do not contradict this proof since their work factor is an
exponential function of the security parameter nb. We think this is a nice indication
of the relevance of the proof given in [34], and of computational complexity theoretic
proofs of security in general.

Additionally, the complexity theoretic proof of security is only applicable if the
permutation F is ‘chosen’ in a ‘pseudorandom’ way. This means that F must in some
way be based on a computationally hard problem. One method to obtain this is by
forming F with the construction of Michael Luby and Charles Rackoff presented in
[66]. The “random functions” used in this scheme can be constructed as outlined by
Oded Goldreich, Shafi Goldwasser and Sylvio Micali in [43], using a cryptographic
sequence generator with a security based on some general complexity theoretic as-
sumption. This can be used to define a concrete block cipher by the unavoidable
fixing of the block length. Despite the involved construction, no guarantee on the
security of this block cipher can be given. Moreover, it will definitely be very, very
slow.

A number of statements in the Even-Mansour paper illustrate how awkward their
point of view actually is. In their paper they state that the construction “removes
the need to store, or generate a multitude of permutations.” Furthermore it reads
“The scheme may lead to a system more efficient than systems such as the DES and
its siblings, since the designer has to worry about one thing only: How to implement
one pseudorandomly chosen permutation? This may be easier than getting one for
each key .” (the italics are ours).

190 CHAPTER 10. SUPPORTING CRYPTANALYTIC RESULTS

10.5 Conclusions

Resynchronization attacks are a new type of attack on synchronous stream encryp-
tion schemes. We have shown that most LFSR-based stream ciphers are very weak
if frequent resynchronization is applied and that it is necessary to consider the ini-
tialization mapping as part of the encryption scheme.

The two other attacks have been included to illustrate the limitations of certain
theoretical design principles.

Chapter 11

Schemes Based on Modular
Arithmetic

11.1 Introduction

Arithmetic operations have only moderate portability and are not very well suited
for dedicated hardware implementations. They have however a simple description
and are widely available as fast (co-)processor instructions. An additional stimulus
for the use of arithmetic operations lies in the fact that dedicated cryptographic
coprocessors that also have to perform large-integer based public-key schemes are
especially designed to efficiently execute arithmetic operations.

A disadvantage of arithmetic operations is that their algebraic properties can
possibly be exploited in cryptanalysis. In this chapter we present two examples of
cryptographic designs that have important weaknesses due to the algebraic structure
of their building blocks. First we present a procedure to generate collisions for the
cryptographic hash function FFT-hash, a design of Claus Schnorr [96]. Then we
show that the block cipher IDEA, designed by Xuejia Lai and Jim Massey [63], has
large classes of weak keys.

The weaknesses in FFT-hash and IDEA are due to the fact that arithmetic
operations are used with propagation and correlation properties that are good on
the average but very poor in the worst case. We propose to use cyclic multiplication
as a component and show that there exist multiplication factors that have good
worst-case difference propagation properties. We conclude this chapter with the
treatment of our block cipher design MMB. To avoid confusion, in this chapter
bitwise addition will be denoted by “⊕,” (modular) addition by “+” and (modular)
multiplication by “·”.

11.2 Collisions for FFT-Hash

At the rump session of Crypto ’91 Claus Schnorr presented FFT-Hash, a crypto-
graphic hash function with a hash result of 128 bits [96]. During the Summer of ’91
Antoon Bosselaers and I wrote a program that generates sets of 384-bit messages

191

192 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

with elements that all hash to the same result using FFT-Hash. The CPU time
consumed is of the order of a few hours on a microVAX. Our collisions were an-
nounced at the rump session of Asiacrypt ’91 [12]. Later, collisions were also found
independently by Thierry Baritaud, Henri Gilbert and Marc Girault [2]. In this
section we give a description of our procedure to generate collisions for FFT-Hash.

11.2.1 The chaining transformation

The chaining transformation converts a 128-bit chaining state ht−1 and a 128-bit
message block mt into a new chaining state ht. This is denoted by

ht = G(ht−1, mt) . (11.1)

The input consists of the concatenation of ht−1 and mt. In the computation of
the chaining transformation this 256-bit string is treated as a 16-component vector
(a0, . . . , a15) with the components ai representing integers modulo 216 + 1. The so-
called FFT-step, denoted by b = fft(a), is defined by

b2i =

7∑
j=0

24ija2j mod 216 + 1 , (11.2)

for the even components and by b2i+1 = a2i+1 for the odd components. The so-
called recursion step, denoted by b = rec(a), consists of an invertible nonlinear
transformation. It can best be defined by a pseudo-C program :

for(i = 0; i < 16; i ++)
bi = ai ;
for(i = 0; i < 16; i ++)
bi = (bi + bi−1bi−2 + bbi−3

+ 2i) mod 216 + 1 ,

(11.3)

with all indices taken modulo 16. In the chaining transformation the input is subject
to

rec ◦ fft ◦ rec ◦ fft . (11.4)

The output of G consists of the last 8 components of the resulting vector, i.e.,
ht = a8‖a9 . . . ‖a15, with all occurrences of 216 (= 10000hex) substituted by 0000hex.

11.2.2 Generating collisions

The generation of collisions involves the exploitation of some particular propagation
properties of the chaining transformation.

The FFT step only affects the components with even index. For odd-indexed
components no propagation takes place during this step. Moreover, its linearity can
be exploited to impose certain values upon a number of output components. If for
certain subsets of no more than 8 components, belonging to either the output or the
input, the values are fixed, values for the remaining components can be computed
such that (11.2) holds. This computation involves only linear algebra.

11.2. COLLISIONS FOR FFT-HASH 193

h1︷ ︸︸ ︷ m2︷ ︸︸ ︷
fft

Q α β φ

✙
−2−1 Q −29 α −211 β 0 φ

✯✯ ✯

rec

0 0β Q 0 α 0 φ
fft

Q α φ
✯

rec

0α Q 0.︸ ︷︷ ︸
h2

h2︷ ︸︸ ︷ m3︷ ︸︸ ︷
0 Q 0 γ δ ε

fft
❘✠

−1 Q −22 φ2 γ φ1 δ 0 ε
rec

0 Q 0 γ 0γ δ ε

✙
fft

Q δ ε
rec

0ε Q 0δ ︸ ︷︷ ︸
h3

Figure 11.1: Schematic overview of the collisions of FFT-Hash. The state
(a0, . . . , a15) is depicted before and after every step.

In the recursion step, the diffusion can be eliminated locally by imposing that
certain components are 0. Let b = rec(a) and suppose that b5 = b7 = 0. In that
case both product terms bi−1bi−2 in (11.3) that contain b6 are 0. Suppose also that
b6 has not been addressed in the indirect indexing term bbi−3

in (11.3) for any i. This
is the case if ai mod 16 �= 6 for i > 12 and bi mod 16 �= 6 for i ≤ 12. Under the
described conditions, a change in the 12 MSB’s of a6 only affects the 12 MSB’s of b6.
a6 is said to be isolated . This can be applied to any component. Hence, isolation of
(the 12 MSB’s of) a component in a recursion step requires that the two neighboring
components are 0 and that it is not addressed in the term bbi−3

for any i.

The collision generating attack is a probabilistic procedure that exploits the pos-
sibility of isolating a component during all four steps of the chaining transformation.
The colliding messages consist of 3 blocks: m1, m2 and m3. All effort goes into the

194 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

search for appropriate m2 and m3 values. These steps are illustrated in Fig. 11.1. A
subset of message bits are given randomly chosen values thereby fixing the remain-
ing bits through a number of imposed relations. Starting from intermediate hash
result h1 = G(IV,m1) we have:

1. Calculation of m2. The values are chosen in a way that the second component
of m2 (= a9) has a high probability of staying isolated throughout the calcu-
lation of G(). Certain changes in the 12 MSB’s of this component affect the
intermediate hash value h2 only in the second component. On the average 223

different h1, obtained by trying different m1 values, have to be tested. Only
about 211 of these survive a first check. For each of these remaining m2 values
215 trials have to be performed by varying φ (see Fig. 11.1).

2. Calculation of m3. The values of m3 are chosen in such a way that the second
component of h2 (= a1) has maximum probability of being isolated and thus
does not affect h3. About 222 different values of φ1 and φ2 have to be tried.

In Fig. 11.1 Q indicates the component that is isolated throughout the complete
calculation. An arrow from ai to aj means that aai

= aj or, equivalently, ai mod 16 =
j. Boxes containing a constant indicate that the given value is imposed upon the
component. Boxes containing a Greek letter indicate components that are isolated
(denoted by “ ”) until they are used (as indicated in the down left corner) to
impose a certain value on a component. A “J” in the lower left corner indicates that
we depend on chance (Pr : 2−16). The symbol “ ” indicates that the component
is fixed by an FFT relation. An empty box denotes a component that is fixed by
initial values and/or internal relations.

The first result obtained by this method was a set of 805 colliding messages
(printed as hexadecimal values)

00a1 0000 0000 0000 0000 0000 000c 5b18
9156 XXXd 9e89 67e8 35f8 e2b0 12ec 26c0
570b 06ee ba21 8da5 6ec4 c27e 5d5d e6be ,

where XXX ranges over 1b5 to 4d9 that all hash to

527d c019 d8cb 1d92 162b f04c cfff 26c6 .

11.3 Weak keys of IDEA

In May 1990, a block cipher called PES (Proposed Encryption Standard) was intro-
duced by Xuejia Lai and Jim Massey [62]. PES has a block length of 64 bits and
a key length of 128 bits. The design is based on the concept of “mixing operations
from different algebraic groups.” The group operations involved are addition modulo
216, multiplication modulo 216+1 and bitwise addition of 16-bit words. Triggered by
the emergence of differential cryptanalysis the designers (joined by Sean Murphy)
presented a modification of PES in April 1991, called IPES (Improved PES) [63].

11.3. WEAK KEYS OF IDEA 195

r Z1 Z2 Z3 Z4 Z5 Z6
1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 105–120 121–8 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12 13–28
8 29–44 45–60 61–76 77–92 93–108 109–124
9 22–37 38–53 54–69 70–85 — —

Table 11.1: Derivation of the encryption round keys of the global 128-bit key. The
key bits are indexed starting from 0. The most significant bits (MSB) of the round
keys are the bits with the lowest global index.

This cipher has been commercialized under the name IDEA (International Data
Encryption Algorithm).

In the Fall of ’92 we discovered that there are large classes of keys for which
IDEA has detectable weaknesses. These results were first announced at SPRC ’93
in Rome [18] and were presented at Crypto ’93 [21]. For a general chosen-plaintext
attack that efficiently breaks 2.5 round versions of IDEA, we refer to our paper [27].

11.3.1 Description of the cipher

IDEA is an iterated block cipher consisting of 8 similar rounds and a single output
transformation. With exception of the key schedule, the IDEA decryption process
is the same as its encryption process. For the specification of IDEA we refer to
Fig. 11.2. The encryption round keys are 16-bit substrings of the global key and
are specified in Table 11.1. The decryption round keys must be derived from the
encryption round keys.

11.3.2 Unfavorable properties of the building blocks

In this section we show that the quality of the propagation and correlation properties
of the building blocks strongly depends on the particular value of the key. We also
show that addition modulo 2n and multiplication modulo 2n + 1 by specific values
have exploitable linearities.

Key-dependence of the propagation properties

The propagation and correlation properties of the IDEA round transformation de-
pend strongly on the value of the round keys. The effect of key multiplications with
keys that represent a power of 2 modulo 216 + 1 can be approximated very well by
an (easy to find) affine transformation in the vector space < ZZ162 ,⊕ >. This cate-
gory comprises all multiplicative keys with a single nonzero bit, i.e., of the form δi.

196 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

X1 X2 X3 X4

❄ ❄ ❄ ❄
Z
(1)
1

✲⊙
+✛ Z

(1)
2 Z

(1)
3

✲+
⊙✛ Z

(1)
4

❄

❄

❄

❄

• ✲⊕
•✛

❄

• ✲⊕
•✛

❄
Z
(1)
5

✲⊙ ✲+

❄ ❄
+✛ ⊙✛ Z

(1)
6

MA-structure⊕✛ • ✲⊕

❄

⊕✛ • ✲⊕

❄❄❄...
... (7 more rounds)

...
...

❄ ❄❄ ❄
Z
(9)
1

✲⊙
+✛ Z

(9)
2 Z

(9)
3

✲+
⊙✛ Z

(9)
4

❄ ❄ ❄ ❄
Y1 Y2 Y3 Y4

Xi, Yi, Z
(r)
i : 16-bit plaintext, ciphertext and key subblocks⊕

: bitwise addition + : addition mod 216⊙
: multiplication mod 216 + 1 with 0000hex ≡ 216

Figure 11.2: The encryption process of IDEA.

11.3. WEAK KEYS OF IDEA 197

For all the 32 keys that fall into the category, it can easily be checked that the ex-
pected Hamming distance between the correct output and the affine approximation
is smaller than 1 bit and that the probability that the approximation matches the
correct output is larger than 1/2.

The nonlinearity of the key additions is on the average much smaller than that
of the key multiplications. If an additive key is chosen uniformly from ZZ216 , the
expected Hamming distance between the modular sum and the best affine approxi-
mation over < ZZ162 ,⊕ > is 1.75 bits.

The round keys are substrings of the global key, specified by the key schedule.
All global keys in the (albeit very small) set of 128-bit strings consisting of only few
1’s separated by sufficiently long blocks of 0’s give rise to only ‘weak’ round keys. For
these keys the resistance against differential and linear cryptanalysis of the cipher
must be realized by the nonlinearity of the additions modulo 216 in the MA-structure
(see Fig. 11.2, MA: multiplicative-additive) of the round transformation.

Linearities in the modular arithmetic

Let xi denote the ith bit in the binary representation of the number X, i.e., X =∑
2ixi. The bits of Y = X + W mod 2n are given by

yi = xi ⊕ zi ⊕ ci , (11.5)

with ci a carry bit that only depends on bits with indices smaller than i. The LSB
of Y (y0) is simply equal to x0 ⊕ z0. Difference propagation of the MSB’s of X and
Z into Y is restricted to linear propagation (over < ZZ162 ,⊕ >) into the MSB of Y .

For the multiplication by −1 (0000hex) modulo 216 + 1 as defined in the IDEA
block cipher it can easily be checked that

−1 � A = Ā + 2 mod 216 , (11.6)

with Ā the bitwise complement of A. Therefore, multiplication by −1 inherits the
linearity properties of the addition modulo 2n.

11.3.3 Classes of weak keys detectable by LC

The occurrence of multiplicative subkeys with value 1 or − 1 gives rise to a linear
step with a correlation contribution equal to 1. These linear steps can be revealed
by expressing the linear combination of LSB’s of the output subblocks of an IDEA
round in terms of input and key bits.

As an example, we will express the bitwise sum of the LSB’s of the first and
second output subblock of a round: y1⊕ y2 (with the indices denoting the subblock
number). From Fig. 11.2 it can be seen that y1 ⊕ y2 = (X1 � Z1)|0 ⊕ 1 ⊕ x3 ⊕ z3. If
Z1 = (−)1, i.e., if the 15 MSB’s of the Z1 are 0,

y1 ⊕ y2 = x1 ⊕ x3 ⊕ z1 ⊕ z3 ⊕ 1 . (11.7)

This is a linear step with correlation contribution 1 and is denoted by (1, 0, 1, 0) →
(1, 1, 0, 0). Similar linear steps and their corresponding conditions on subkey blocks
can be found for all 15 combinations of output LSB’s and are listed in Table 11.2.

198 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

linear factor Z1 Z4 Z5 Z6
(0, 0, 0, 1) → (0, 0, 1, 0) - (−)1 - (−)1
(0, 0, 1, 0) → (1, 0, 1, 1) - - (−)1 (−)1
(0, 0, 1, 1) → (1, 0, 0, 1) - (−)1 (−)1 -
(0, 1, 0, 0) → (0, 0, 0, 1) - - - (−)1
(0, 1, 0, 1) → (0, 0, 1, 1) - (−)1 - -
(0, 1, 1, 0) → (1, 0, 1, 0) - - (−)1 -
(0, 1, 1, 1) → (1, 0, 0, 0) - (−)1 (−)1 (−)1
(1, 0, 0, 0) → (0, 1, 1, 1) (−)1 - (−)1 (−)1
(1, 0, 0, 1) → (0, 1, 0, 1) (−)1 (−)1 (−)1 -
(1, 0, 1, 0) → (1, 1, 0, 0) (−)1 - - -
(1, 0, 1, 1) → (1, 1, 1, 0) (−)1 (−)1 - (−)1
(1, 1, 0, 0) → (0, 1, 1, 0) (−)1 - (−)1 -
(1, 1, 0, 1) → (0, 1, 0, 0) (−)1 (−)1 (−)1 (−)1
(1, 1, 1, 0) → (1, 1, 0, 1) (−)1 - - (−)1
(1, 1, 1, 1) → (1, 1, 1, 1) (−)1 (−)1 - -

Table 11.2: Linear factors in the round transformation with conditions on the sub-
keys.

These linear steps can be combined into multiple-round linear trails with correla-
tion contributions equal to 1. For every round this gives conditions on subkeys that
can be converted to conditions on global key bits using Table 11.1. An example is
given in Table 11.3 for the 8-round linear trail with initial selection vector (1, 0, 1, 0)
and terminal selection vector (0, 1, 1, 0). The global key bits corresponding to indices
that appear in this table must be 0. Since key bits with indices in 26-28, 72-74 or
111-127 do not appear, there are 223 global keys that have this linear trail. This
is called a class of weak keys since membership can easily be checked by observing
some corresponding plaintext-ciphertext combinations.

round input term Z1 Z5
1 (1, 0, 1, 0) 0–14 -
2 (1, 1, 0, 0) 96–110 57–71
3 (0, 1, 1, 0) - 50–64
4 (1, 0, 1, 0) 82–96 -
5 (1, 1, 0, 0) 75–89 11–25
6 (0, 1, 1, 0) - 4–18
7 (1, 0, 1, 0) 36–50 -
8 (1, 1, 0, 0) 29–44 93–107
9 (0, 1, 1, 0) - -

Table 11.3: Conditions on key bits for linear factor (1, 0, 1, 0) → (0, 1, 1, 0).

11.3. WEAK KEYS OF IDEA 199

characteristic Z1 Z4 Z5 Z6
(0, 0, 0, η) ⇒ (η, η, η, 0) - (−)1 - (−)1
(0, 0, η, 0) ⇒ (η, 0, 0, 0) - - (−)1 (−)1
(0, 0, η, η) ⇒ (0, η, η, 0) - (−)1 (−)1 -
(0, η, 0, 0) ⇒ (η, η, 0, η) - - - (−)1
(0, η, 0, η) ⇒ (0, 0, η, η) - (−)1 - -
(0, η, η, 0) ⇒ (0, η, 0, η) - - (−)1 -
(0, η, η, η) ⇒ (η, 0, η, η) - (−)1 (−)1 (−)1
(η, 0, 0, 0) ⇒ (0, η, 0, 0) (−)1 - (−)1 (−)1
(η, 0, 0, η) ⇒ (η, 0, η, 0) (−)1 (−)1 (−)1 -
(η, 0, η, 0) ⇒ (η, η, 0, 0) (−)1 - - -
(η, 0, η, η) ⇒ (0, 0, η, 0) (−)1 (−)1 - (−)1
(η, η, 0, 0) ⇒ (η, 0, 0, η) (−)1 - (−)1 -
(η, η, 0, η) ⇒ (0, η, η, η) (−)1 (−)1 (−)1 (−)1
(η, η, η, 0) ⇒ (0, 0, 0, η) (−)1 - - (−)1
(η, η, η, η) ⇒ (η, η, η, η) (−)1 (−)1 - -

Table 11.4: Difference propagation in the round transformation with conditions on
the subkeys.

11.3.4 Classes of weak keys detectable by DC

The use of multiplicative subkeys with value 1 or − 1 gives rise to differential steps
with a prop ratio equal to 1.

Let η be the 16-bit block 8000hex, i.e., η = δ15. Apply an input difference
(X ′

1, X
′
2, X

′
3, X

′
4) = (0, 0, 0, η). If Z4 = (−)1, the difference pattern after the ap-

plication of Z1 to Z4 is still (0, 0, 0, η). The difference pattern at the input of the
MA structure is (0, η). η propagates unchanged through the top right addition to the
bottom right multiplication by Z6. If this subkey is equal to (−)1, the correspond-
ing output difference is again η. This difference propagates unchanged through the
bottom left addition and the difference pattern at the output of the MA structure
is (η, η). This results in an output difference Y ′ of the round equal to (η, η, η, 0).
Hence, if the 15 MSB’s of both Z4 and Z6 are 0, the input difference (0, 0, 0, η) fixes
the output difference to (η, η, η, 0). This is a differential step with a prop ratio equal
to 1 and is denoted by (0, 0, 0, η) ⇒ (η, η, η, 0). A similar analysis can be made for
any of the 15 other possible nonzero input differences where only the MSB’s of the
subblocks are allowed to be 1. The results are listed in Table 11.4.

These differential steps can be combined into multiple-round differential trails
with a prop ratio equal to 1. The conditions on the subkeys can be read in Table
11.4.

An example of an 8-round differential trail with initial difference vector (0, η, 0, η)
is given in Table 11.5. It can be seen that for keys with only nonzero bits on positions
26–40, 72–76 and 108–122 the output difference must be equal to (0, η, η, 0). This
is the largest class we found, comprising a total of 235 keys. Membership can be

200 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

round input difference Z4 Z5
1 (0, η, 0, η) 48–62 -
2 (0, 0, η, η) 41–55 57–71
3 (0, η, η, 0) - 50–64
4 (0, η, 0, η) 2–16 -
5 (0, 0, η, η) 123–9 11–25
6 (0, η, η, 0) - 4–18
7 (0, η, 0, η) 84–98 -
8 (0, 0, η, η) 77–91 93–107
9 (0, η, η, 0) - -

Table 11.5: Propagation of plaintext difference (0, η, 0, η) in IDEA.

checked by performing two encryptions where the plaintexts have a chosen difference
and observing the difference in the ciphertexts. Similar differential trails can be
constructed for the 14 other possible input differences.

11.3.5 Expanding the classes of weak keys

Classes of weak keys can sometimes be significantly expanded at the cost of some
more effort in the checking for membership. Omitting in Table 11.5 the conditions
for the subkeys of round 8 gives rise to the class of 251 keys with nonzero bits on
positions 26–40, 72–83 and 99–122. We will show that both checking for membership
and calculation of the specific key can be performed efficiently.

The membership test

The input difference of round 8 is equal to the output difference of round 7 and is
guaranteed to be equal to (0, 0, η, η) by the conditions on the subkeys of the first 7

rounds. Using the fact that Z
(9)
3 , consisting of global key bits 54–69, is 0 for these

keys it can easily be derived that

Y ′
3 ⊕ η = (Z

(9)
1

−1
� Y ∗

1) ⊕ (Z
(9)
1

−1
� Y1) . (11.8)

This can be verified by inspecting Fig. 11.3. In (11.8) only Z
(9)
1 is unknown. This

subkey consists of global key bits 22–37. For the given class only the 12 LSB’s
may differ from 0. If the global key does not belong to the class of weak keys, the
probability that (11.8) has a solution is 1/16. These solutions can be eliminated by

some additional encryptions. Every pair of encryptions yields an equation for Z
(9)
1

similar to (11.8).

The determination of the unknown key bits

The values of the 12 unknown bits of Z
(9)
1 have already been determined by the

membership test. The following step is the determination of the 3 unknown bits of

11.3. WEAK KEYS OF IDEA 201

0 0 η η

❄ ❄ ❄ ❄
Z
(8)
1

✲⊙
+✛ Z

(8)
2 Z

(8)
3

✲+
⊙✛ Z

(8)
4

❄

❄

❄

❄

0 0 η K

• ✲⊕ •✛

❄

• ✲⊕
•✛

❄
η K

Z
(8)
5

✲⊙ ✲+

❄ ❄
+✛ ⊙✛ Z

(8)
6

M L⊕✛ • ✲⊕

❄

❄

⊕✛ • ✲⊕

❄ ❄
L M L⊕ η M ⊕K

Z
(9)
1

✲⊙
+✛ Z

(9)
2

⊙✛ Z
(9)
4

❄ ❄ ❄
Y1 Y2 Y3 Y4

Figure 11.3: Difference propagation of X ′ = (0, η, 0, η) through the last round of
IDEA for keys with only nonzero bits on positions 26–40, 72–83 and 99–122. The
bitwise differences are indicated in boxes.

202 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

Z
(9)
2 , the 12 unknown bits of Z

(9)
4 and the 7 unknown bits of Z

(8)
4 . A consistency

check can be executed on these bits in the following way. Suppose Z
(9)
2 and Z

(9)
4 are

known. In this case it is possible to compute the difference that is denoted by K in
Fig. 11.3. For this value K there must be a vector A (with MSB 0) such that

K = (Z
(8)
4 � A) ⊕ (Z

(8)
4 � (A⊕ η)) (11.9)

= (Z
(8)
4 � A) ⊕ ((Z

(8)
4 �A) + (Z

(8)
4 � 215)) .

For a given vector K it is easy to find the possible values of Z
(8)
4 . Only values of

Z
(8)
4 with the 9 LSB’s equal to 0 are valid. This information can be calculated in

advance for every value of K and stored in an array of 216 lists. The average number
of possible Z

(8)
4 per K value turns out to be smaller than 1. Through this table, the

observed value of K specifies a set of possible Z
(8)
4 values. If the set is empty, the

chosen values for Z
(9)
2 and Z

(9)
4 must have been wrong. If the set is not empty, the

K value resulting from another pair of encryptions (with input difference at round 8

equal to (0, 0, η, η)) can be observed. The correct value for Z
(8)
4 must be in the list

for both observed values of K. This can be repeated until there is no value for Z
(8)
4

left. The correct values for Z
(9)
2 and Z

(9)
4 are found if there is a value for Z

(8)
4 that is

consistent for all the (say a maximum of 8) encryption pairs. Now 34 bits are fixed.
The remaining 17 bits can easily be found by exhaustively trying all remaining 217

possibilities and comparing it with any plaintext-ciphertext pair obtained during
the attack.

The complete work factor of the key determination consists of 16 chosen plaintext-
difference encryptions, about 215 modular additions, multiplications and table-lookups,
and 217 key search encryptions.

11.3.6 A modified IDEA without weak keys

In the present specification of IDEA the conditions for weak multiplicative round
keys are converted to the condition that global key bits must be 0. In Table 11.3
and 11.5 it can be seen that many global key bits appear more than once in the
conditions.

Now let Ẑ
(r)
i = ∆ ⊕ Z

(r)
i with ∆ a fixed nonzero binary vector. This can be

seen as a kind of subkey biasing . If in IDEA the subkeys Z
(r)
i are replaced by Ẑ

(r)
i ,

the conditions for weak multiplicative keys are converted to the condition that some
global key bits must be 0 and some must be 1. The vector ∆ must be chosen in
such a way that for all potential multiple-round linear and differential trails, the
conditions on the subkeys give conflicting conditions on global key bits. Because of
the large overlap between subkeys, the exact value of ∆ is not critical. For instance,
for δ = 0DAEhex no weak keys were found.

11.4. CYCLIC MULTIPLICATION 203

11.4 Cyclic multiplication

Multiplication of two integers A and B, denoted by C = A · B, achieves very high
average diffusion at the bit level. If however A = 0, C is independent of B. We have
exploited this kind of worst-case behavior, both in the generation of collisions for
FFT-Hash and in the determination of classes of weak keys of IDEA. Moreover, the
bit-level propagation and correlation properties of the multiplication of two integers
are very complicated. The application of modular reduction to reduce C to the size
of A or B makes the analysis even harder.

In Chapter 6 it has been shown that multiplication by a constant modulo 2n−1,
denoted by the term cyclic multiplication, is a shift-invariant transformation. Cyclic
multiplication has the advantage that it is fully specified by the word length n
and a single n-bit number, making it an attractive building block for ciphers. In
the following sections we describe the difference propagation and implementation
properties of cyclic multiplication. Most of the material in this section has already
been published in our paper [14].

The multiplication constant is denoted by G and the resulting mapping by γ. The
n-bit words are denoted by small characters a, b, . . . The bits of a word a are denoted
by ai. The numbers represented by these words are denoted by capital characters
A,B, . . ., hence, A =

∑
i ai2

i. Multiplication modulo 2n − 1 is denoted by ×. For
a �= 0̄ we have

b = γ(a) ⇔ B = G · A mod (2n − 1) = G×A , (11.10)

and γ(0̄) = 0̄.

11.4.1 Difference propagation properties

We have studied the difference propagation properties of cyclic multiplication. Our
most important results are a number of properties that can be used to find the
critical prop ratio of a given multiplication factor in an efficient way.

From ā⊕ a = 0̄ it can be derived that Ā ≡ −A (mod 2n − 1). Therefore,

γ(a⊕ 0̄) = γ(−A) = −γ(A) = γ(a) ⊕ 0̄ . (11.11)

Hence, we have Rp(0̄ $ γ % 0̄) = 1. Together with (0 $ γ % 0), this difference
propagation is called trivial.

Suppose we have two words a, a∗ and their γ-images b = γ(a) and b∗ = γ(a∗).
Since modular multiplication is distributive with respect to modular addition, the
modular difference B′ = B −B∗ mod 2n − 1 is given by

B′ = G×A′ . (11.12)

Modular multiplication is however not distributive with respect to bitwise addition.
The bitwise difference b′ = b ⊕ b∗ is not determined by a′ = a⊕ a∗ but depends on
the specific value of a (or equivalently a∗).

204 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

There is a relation between the bitwise difference of two words and the modular
difference of the corresponding numbers. Let a′ = a⊕a∗ and A′ = A−A∗ mod 2n − 1.
We have

A′ =
∑
i

(ai − a∗i)2
i . (11.13)

Let di = ai − a∗i . Since di ∈ {−1, 0, 1}, the word d can be seen as a (redundant)
ternary representation of the number A′. The bits of the bitwise difference a′ are
given by a′i = ai ⊕ a∗i . Clearly, a′i = 0 ⇔ di = 0 and a′i = 1 ⇔ di = ±1. If the
Hamming weight of a ternary word is defined as the number of nonzero symbols, we
have wh(d) = wh(a

′).

Definition 11.1 A word x is said to be diff-compatible with a number U , denoted
by x ∼ U , if there exists a couple a, a∗ with x = a⊕a∗ and U = (A−A∗) mod 2n − 1.

It can be seen that a word x and a number U are diff-compatible if there exists
a ternary word d with components in {−1, 0, 1} such that

U =
∑
i

dixi2
i . (11.14)

Clearly, (x ∼ U) ⇒ (x ∼ −U).

Definition 11.2 N (x, U) is the set of couples with the bitwise difference x and the
modular difference U and N(x, U) = #N (x, U). N (−, U) and N (x,−) are given by

N (−, U) =
⋃

x,x∼U N (x, U) , (11.15)

N (x,−) =
⋃

U,x∼U N (x, U) . (11.16)

γ(N (x, U)) is the set of couples (γ(a), γ(a∗)) with (a, a∗) ∈ N (x, U).

For any x ∈ ZZn
2 , we have N(x,−) = 2n. By taking into account that both 0

and 0̄ represent the number 0, we obtain N(−, U) = 2n + 1 for all U �= 0 and
N(−, 0) = 2n + 2.

Proposition 11.1 The combination of x and U fixes a ternary word d with com-
ponents di = 0 for xi = 0 and nonzero components fixed by (11.14).

Proof: If in (11.14) the nonzero di are specified by bits ei with di = 2ei−1, we have

U =
∑
i

(2 ∗ ei − 1)xi2
i =

∑
i

eixi2
(i+1) mod n −

∑
i

xi2
i . (11.17)

This equation fixes the values of all occurring ei and therefore of all di that occur
in (11.14). Hence, x and U uniquely determine the ternary word d.

11.4. CYCLIC MULTIPLICATION 205

Proposition 11.2 If x ∼ U and U �= 0, we have

N(x, U) = 2n−wh(x) . (11.18)

Proof: If (a, a∗) ∈ N (x, U), the bits of a and a∗ must obey

ai − a∗i = di , (11.19)

with d the unique ternary word corresponding to x and U . (11.19) fixes all bits of
a and a∗ with di �= 0 and determines that ai = a∗i if di = 0. This gives us n− wh(d)
degrees of freedom in the choice of a, and therefore N(x, U) = 2n−wh(x) different
couples (a, a∗).

Anatomy of the difference propagations

Given a word length n, determining the multiplication factor G with the lowest
critical prop ratio by exhaustive search would take approximately 23n cyclic mul-
tiplications on n-bit words. Using the shift-invariance and the complementation
property it can be derived that

Rp(x
′ $ γ % y′) = Rp(τi(x

′) $ γ % τi(y
′))

= Rp(x
′ ⊕ 0̄ $ γ % y′ ⊕ 0̄) .

(11.20)

Using these relations, the work factor of the exhaustive search can be reduced to
approximately 23(n−1)/n3 cyclic multiplications. This is still only feasible for rela-
tively small values of n (say ≤ 16). In this section we demonstrate some structural
difference propagation properties that enable us to find the critical difference prop-
agations in a much more efficient way.

For a difference propagation (a′ $ γ % b′) with a′ = δ0 (see p. 11), we have

a′ = δ0 =⇒ A′ = ±1 =⇒ B′ = ±G . (11.21)

It follows that only b′ can occur with b′ ∼ G. From (11.15) and Prop. 11.2 it can be
seen that for all b′ with b′ ∼ G,

N(b′, G)/N(−, G) = N(b′,−G)/N(−,−G) ≈ 2−wh(b
′) . (11.22)

Proposition 11.3 For a given factor G, the prop ratios Rp(δ0 $ γ % b′) with b′ ∼ G
can be approximated by

Rp(δ0 $ γ % b′) ≈ 2−wh(b
′) . (11.23)

Proof: Since b′ must be diff-compatible with G, γ(N (δ0,−)) is a subset of N (−, G)∪
N (−,−G). We have

#(N (b′, G) ∪ N (b′,−G))/#(N (−, G) ∪ N (−,−G)) = 2−wh(b
′) .

Hence, if γ(N (δ0,−)) is a representative subset of N (−, G)∪N (−,−G), this is the
value of the prop ratio Rp(δ0 $ γ % b′).

206 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

Experiments confirm that this is generally a good approximation for the bitwise
differences b′ with small Hamming weight. Large deviations only occur for simple
factors G that have high critical prop ratios anyway, such as 3 or 5.

If the input difference a′ has a Hamming weight larger than 1, the situation is
more complicated:

1. For a given difference pattern a′, there are 2wp(a′) different values A′ that are
diff-compatible with a′.

2. For each of these A′ values, there are exactly 2n−wh(a
′) couples in N (a′,−)

with modular difference A′. A modular difference A′ gives rise to a difference
G×A′.

3. If γ(N (a′, A′)) is a representative subset of N (−, G × A′), a relative portion
N(b′, G × A′)/N(−, G × A′) ≈ 2−wh(b

′) of N (a′, A′) will give rise to a bitwise
difference b′ for b′ ∼ (G×A′).

4. Hence, the number of couples in N (a′, A′) that give rise to a bitwise output
difference b′ with b′ ∼ G× A′ is approximately equal to 2n−(wh(a

′)+wh(b
′)).

5. The total number of couples (a, a∗) with input bitwise difference a′ and output
bitwise difference b′ can be approximated by

∑
A′|a′∼A′ and b′∼G×A

2n−(wh(a
′)+wh(b

′)) . (11.24)

If (
∑

A′|a′∼A′ and b′∼G×A
1) is denoted by Np(a

′, b′), we have

Rp(a
′ $ γ % b′) ≈ Np(a

′, b′)2−(wh(a
′)+wh(b

′)) . (11.25)

It can be seen that a modular input difference A′ contributes to a difference
propagation (a′ $ γ % b′) if a′ ∼ A′ and b′ ∼ G × A. The number of couples it
contributes is approximately 2n−(wh(a

′)+wh(b
′)).

Finding the critical difference propagations

The difference propagations (δ0 $ γ % b′) with the highest prop ratios correspond to
the b′ words with the smallest Hamming weight and b′ ∼ G. To every combination
(b′, G) corresponds a word d that is a ternary representation of G. We define

Definition 11.3 The minimum ternary representation of a number A is a ternary
representation with no neighboring nonzero symbols. Its Hamming weight is called
minimum ternary Hamming weight and is denoted by wm(A).

The minimum ternary representation and weight of a number can be calculated very
efficiently. It can be proved that the minimum ternary representation is unique and
has minimum Hamming weight. Moreover wm(A) ≤ n

2
.

11.4. CYCLIC MULTIPLICATION 207

n 5–6 7–10 11–14 15–17 18–22 23–27 28–31 32–?
2 3 4 5 6 7 8 9

Table 11.6: Maximum critical restriction weights.

It can be seen that the highest prop ratio for a difference propagation with
a′ = δi is approximately 2−wm(G). Alternatively, the highest prop ratio for a difference
propagation with b′ = δi is 2−wm(G−1). This gives a lower bound for the critical prop
ratio for a given factor G of

2−min(wm(G),wm(G−1)) .

In general, this imposes a lower bound of 2−�n
2
� for the critical prop ratio for cyclic

multiplication with word length n.
In experiments for n ≤ 16 we did not encounter cases in which the factor Np in

(11.25) for the critical difference propagations differs from 2. This implies that for
the propagation (a′ $ γ % b′), there is only a single pair of numbers A′,−A′ such that
a′ ∼ A′ and b′ ∼ G × A′. These critical propagations can be found by determining
the number A′ that minimizes wm(A′) + wm(G × A′). Therefore, the critical prop
ratio is approximated by

21−minA(wm(A)+wm(G×A)) . (11.26)

If Np in (11.25) is larger than 2, this approximation is an underestimation. It is
however very unlikely that this is the case.

Suppose the difference propagation (a′ $ γ % b′) corresponding to a number A′

is the “candidate” critical propagation. There is a set α of 2wh(a
′) numbers with

elements X for which a′ ∼ X holds and a set β of 2wh(b
′) numbers with elements

Y for which b′ ∼ Y holds. If the elements of α and β are uniformly selected from
ZZ2n−1, the probability that there exists a couple (X, Y) with Y = G × X only
becomes significant if wh(a

′) + wh(b
′) > n. Since

wh(a
′) + wh(b

′) <
⌊n

2

⌋
,

this probability is very small. However, the sets α and β are not uniformly selected.
The difference propagation (a′ $ γ % b′) that determines α and β was selected given
the number A′. It follows that necessarily (−)A′ ∈ α and (−)G × A ∈ β. There is
however no reason that the argument should not apply for all other numbers in α
and β.

The validity of (11.26) has been verified by comparing the predicted value of the
critical prop ratio with the exact value for a large number of factors for n ≤ 16.

The critical restriction weight is minus the binary logarithm of the critical prop
ratio. Table 11.6 illustrates the power of cyclic multiplication with respect to dif-
ference propagation by listing the highest occurring critical restriction weights for
word lengths below 33.

208 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

Correlation properties

A similar analysis may be possible with respect to the correlation properties of
cyclic multiplication. After the publication of linear cryptanalysis in [71] we did
some simple correlation experiments. We found that there definitely is a relation
between the selection vectors corresponding to large correlations and the ternary
representations of G. The relations seemed however to be much more complicated
than in the case of difference propagation. Having more urgent priorities, we decided
to abandon the subject.

Recently we did a search for the “best” multiplication factor for a word length 16.
This multiplication factor combines a low (nearly minimum) critical prop ratio with
a low (nearly minimum) critical correlation. It is given by 635hex, has a critical prop
ratio of exactly 521/16384 (≈ 2−5) and a critical correlation of exactly 869/4096
(≈ 2−2).

11.4.2 Implementation aspects

The portability of cyclic multiplication, as of all other arithmetic operations, is not
excellent. In this section we show however that its symmetry properties enable
reasonably efficient implementations on a wide range of platforms.

Cyclic multiplication with a word length of n can be executed by one ordinary
multiplication with 2n-bit result, one ordinary addition, a shift operation and a
possible incrementation by 1. This follows from the property

G ·A mod 2n − 1 ≡ G · A mod 2n +

⌊
G · A

2n

⌋
. (11.27)

The first right-hand term of this equation is obtained by taking the n least significant
bits of G · A, the second term by taking the remaining bits of G · A and shifting
them n positions to the left. The modular reduction can be performed by deleting
the MSB (at position n) and adding it to the intermediate result. In this way it is
guaranteed that γ maps 0̄ to 0̄. We have

G · (2n − 1) = 2n ·G−G = 2n ·G + Ḡ .

The substitution of the right-hand side expression in (11.27) results in 0̄. The bit in
position n is 0. Hence, the reduction does not convert 0̄ into 0.

The cyclic multiplication can be implemented using look-up tables. This can be
useful in dedicated hardware implementations or to speed up software implementa-
tions on processors where multiplication is not available or too slow. Let n and e be
powers of 2. The n-bit multiplication can be performed by e table look-ups, e − 1
n-bit additions and a single reduction modulo 2n−1. This takes e tables of size 2n/e

containing the values of G × A for A ∈ {a · 2kn/e | 0 ≤ a < 2n/e}. Because of the
shift-invariance, table k simply contains the elements of table 0 shifted cyclically
to the right over k(n/e) positions. Hence, at the expense of e − 1 additional cyclic
shifts, the total table size can be reduced to n2n/e bits instead of ne2n/e.

11.5. THE BLOCK CIPHER MMB 209

We illustrate this with some numbers for a cyclic multiplication with a word
length n of 32. With a table size of 512 Kbyte, the work factor is two table look-
ups, one addition and one reduction modulo 232 − 1. If the table size is only 256
Kbyte, the work factor is augmented by a single cyclic shift over 16-bits. If e = 4,
the total table size is 4 Kbyte and the number of additions is 3. This table size can
be reduced to 1 Kbyte at the cost of 3 additional cyclic shifts per multiplication. In
the extreme case that e = 32, the work factor is on the average 16 additions and a
single reduction modulo 232−1 (and possibly 31 cyclic shifts over a single position).

11.5 The block cipher MMB

MMB (Modular Multiplication based Block cipher) is a block cipher design that
makes use of cyclic multiplication as its most important component. We first pub-
lished MMB in our paper [18] as an alternative for IDEA.

The basic operations of MMB are on 32-bit words since this is the word length in
most modern processors. It is however easy to see that variants can be constructed
for any word length.

11.5.1 Specification

MMB is a block cipher with both block and key length 128 bits. For the specification
the 128-bit encryption state a is split into four 32-bit words (a0, a1, a2, a3). The cipher
key κ consists of (κ0, κ1, κ2, κ3).

The round transformation ρ[κj] is composed of four transformations:

ρ[κj] = θ ◦ ς ◦ γ4 ◦ σ[κj] . (11.28)

The nonlinear transformation γ4 consists of cyclic multiplication of the four 32-bit
words respectively by factors G0, G1, G2 and G3. We have

G0 = 025F1CDBhex ,
G1 = 2 ×G0 ,
G2 = 23 ×G0 ,
G3 = 27 ×G0 .

The linear transformation θ is a shift-invariant transformation defined by

θ(a)|i = ai−1 ⊕ ai ⊕ ai+1 , (11.29)

with all indices modulo 4. The round key application σ[κj] is specified by

σ[κj](a)|i = ai ⊕ κj
i , (11.30)

with the round keys defined by the key schedule. Finally, we specify the asymmet-
rical transformation ς:

ς(a)|0 = a0 ⊕ ∆ if LSB(a0) = 1 and a0 otherwise ,
ς(a)|1 = a1 ,
ς(a)|2 = a2 ,
ς(a)|3 = a3 ⊕ ∆ if LSB(a3) = 0 and a3 otherwise ,

(11.31)

210 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

with

∆ = 2AAAAAAhex . (11.32)

Encryption consists of 6 applications of the round transformation ρ[κj], followed
by an application of σ[κ6]:

MMB[κ] = σ[κ6] ◦ ρ[κ5] ◦ ρ[κ4] ◦ ρ[κ3] ◦ ρ[κ2] ◦ ρ[κ1] ◦ ρ[κ0] , (11.33)

with the round keys given by

κj
i = κi+j mod 4 . (11.34)

MMB decryption

MMB does not have a self-reciprocal structure. It is therefore not trivial to build
a simple cryptographic finite state machine that can handle both block encryption
and block decryption. In software implementations the lack of self-reciprocity poses
no problems. The round transformation ρ′ corresponding to decryption is given by

ρ′[κj] = γ−1
4 ◦ ς−1 ◦ θ−1 ◦ σ[κj] = γ−1

4 ◦ ς ◦ θ ◦ σ[κj] . (11.35)

The transformation γ−1
4 consists of cyclic multiplication by the multiplicative in-

verses of the Gi. We have

G−1
0 = 0DAD4694hex . (11.36)

11.5.2 Discussion

The selected Gi have a critical prop ratio of approximately 2−9, the minimum for
word lengths of 32. The branch number B of θ is 4. From this it can be seen that
any two-round differential trail affects at least four 32-bit cyclic multiplications.
This gives a lower limit of 18 for the restriction weight per round for differential
trails with even length. The actual minimum restriction weight is expected to be
significantly higher because of the additional alignment conditions in the differential
steps. Clearly MMB is not the result of the wide trail design strategy. In MMB we
have a narrow trail consisting of very wide S-boxes.

The step ς has been inserted to prevent the existence of differential trails con-
sisting only of trivial difference propagations. We have Rp(0̄ $ γ % 0̄) = 1. If ς is
removed from the round transformation, there are 15 differential steps with prop
ratio 1 composed of blocks 0 and 0̄. An example:

(0̄, 0, 0, 0̄) $ ρ % (0, 0̄, 0̄, 0) . (11.37)

These could be chained to form 6-round differential trails with prop ratio 1. The
transformation ς converts the differences 0̄ into 0̄⊕∆ thereby preventing the chaining
of the differential steps with a prop ratio of 1.

11.6. CONCLUSIONS 211

11.5.3 Problems of MMB and potential solutions

The most important problem of MMB is the fact that the correlation properties of
cyclic multiplication are not well understood. We suspect that the correlation prop-
erties of cyclic multiplication by the selected multiplication factors is more than
sufficient to provide adequate protection against linear cryptanalysis. Still, the mul-
tiplication factors have carefully been selected only with DC in mind, while LC
is in practice equally, if not even more, important. The solution to this problem
is developing the tools to efficiently investigate the correlation properties of cyclic
multiplication, as we did for difference propagation. Using these new tools in com-
bination with ours, new multiplication factors can be selected.

The different rounds of MMB only differ in the fact that the cipher key is rotated.
This can give rise to exploitable symmetry properties. Eli Biham told us that this
property could be exploited in a chosen-key attack of the type described in [7] to
efficiently calculate the actual cipher key. This attack can easily be prevented by
applying round key biasing, i.e., adding constants to the round keys to remove the
symmetry. For example,

κj
0 = κj mod 4 ⊕ 2jB , (11.38)

with B = 0DAEhex.

11.6 Conclusions

It has been shown that the injudicious use of modular arithmetic in cryptographic
schemes can lead to serious weaknesses. In MMB we have avoided these problems
by concentrating on the worst-case behavior in the design phase.

As an interesting subject for further research, we propose the investigation of the
relation between the correlation properties and the multiplication factor in cyclic
multiplication.

212 CHAPTER 11. SCHEMES BASED ON MODULAR ARITHMETIC

Chapter 12

Conclusions

In this chapter we summarize our most important conclusions. They are divided
into three distinct parts. We start with contrasting our design approach with some
widespread cryptographic design and research practices. Subsequently, we run over
what we consider our most important contributions to design. We conclude with a
short enumeration of some research subjects that naturally follow from our design
approach.

12.1 Our design approach

In many publications it is considered an ultimate goal to have a provably secure
cryptographic scheme, with the actual cryptographic design going on just a tempo-
rary way of dealing with the situation. Information theory provides us with sharp
upper bounds for the achievable security. The only provably secure scheme, the
one-time pad, reduces the problem of protecting the secrecy of a message to that
of protecting the secrecy of a key with equal length and is therefore useless in most
applications.

Much has been expected from the application of computational complexity the-
ory in cryptographic design. It would bring us an essential step closer to the real-
ization of provable security. The example of the Even-Mansour block cipher con-
struction in Chapter 10 is a good illustration of the severe limitations of this theory
in the field of cryptographic design.

A difficulty inherent in provable security is that of formulating the security proof.
This must necessarily be succinct and clear, otherwise it cannot serve to persuade
another individual of the provable security. Apparently, actual historical proofs or
arguments of security only say something about the security with respect to loyal
cryptanalysis. This is cryptanalysis by adversaries (often the designers themselves)
who respect the implicit or explicit assumptions or access restrictions that seem to be
inherent in the formulation of a proof. In practice however, cryptographic schemes
are typically broken through the application of hostile cryptanalysis by “sly skeptics
that maliciously exploit seemingly innocent design flaws”.

In our opinion provable security is nothing more than a phantom, similar to
the perpetuum mobile in thermodynamics. We propose to abandon the quest for

213

214 CHAPTER 12. CONCLUSIONS

provable security and recognize that security is related to the concepts of trust and
commitment. A cryptographic design is accompanied by an explicit or implicit claim
of security that has two distinct functions. With respect to potential cryptanalysts,
this claim serves as a well-defined challenge that instigates the public evaluation
of the design. In the absence of refutation, the claim serves as the specification
of the offered security for users or system designers. The trust of the users in the
cryptographic scheme is based on their belief in the validity of the claim. Directly,
this belief can be built up by the observation that, despite large efforts, no weak-
nesses have been found that refute the claim. Indirectly, this belief can be based
on the commitment of a trusted organization or individual to the claim. The terms
K-secure and hermetic have been introduced to be used in these claims. Both cor-
respond to very strict definitions of cryptographic security, and express the security
relative to the majority of schemes with the same dimensions.

A very powerful strategy for problem solving in science, engineering or any hu-
man activity is that of trying to reduce problems that seem too complex or too
large to solve directly to an equivalent set of smaller, simpler problems. In cryp-
tographic design this strategy has often been applied in an injudicious way. We
have denoted this by the term N-reductionism. As can be read in Chapters 4, 9 and
10, this approach always seems to impose serious restrictions on the design, while
in most cases it only reduces one hard design problem to another. The benefits of
N-reductionistic design principles are only apparent within the narrow framework
in which they have been put forward. If all aspects of the design are taken into con-
sideration, these principles turn out to be meaningless pseudo-goals that seriously
hamper the design of efficient schemes. In our design approach we have tried to
eliminate these pseudo-goals as much as possible. This is especially the case in our
design strategy for cryptographic hash functions as explained in Chapter 4 and that
for self-synchronizing stream ciphers as explained in Chapter 9. Additionally, we
have shown in Chapters 3 and 9 that with our definitions of security, N-reductionistic
constructions are discouraged.

In cryptographic research, there is a tendency to study and describe certain
properties of Boolean functions and S-boxes, or to give constructions for Boolean
functions or S-boxes that satisfy certain criteria. This has resulted in a vast the-
oretical body of work that can provide components for cryptographic designs. In
practice however, there seems to be a missing link between this theory and the com-
ponents that are actually used in real cryptographic designs. In our opinion this
is not surprising, since many of the properties and criteria that have been defined
have no longer a direct connection with existing attacks. In other cases, the impli-
cations of actual attacks are converted to criteria in a short-sighted and simplistic
way. This practice has led to nonsensical statements such as “we have constructed
an S-box that is optimally secure against both DC and LC” and “large S-boxes can
offer better resistance against LC and DC than small S-boxes”.

In our design approach, we start from a global structure that is simple to describe
and easy to implement. For block ciphers and stream/hash modules this is the
cryptographic finite state machine. Within this framework, the design of the actual
functions and transformations is governed by symmetry considerations and the two

12.1. OUR DESIGN APPROACH 215

very powerful types of cryptanalysis of LC and DC. In this context we have developed
some tools for the description and analysis of correlation and difference propagation
properties essential in LC and DC. After a thorough discussion of both LC and DC,
we have explicitly formulated our specific wide trail design strategy. It is this design
strategy that gives rise to our criteria for linear and nonlinear transformations. In
the choice of the component transformations, the concern for simplicity, symmetry
and parallelism has led us to shift-invariant transformations. In our actual designs,
these transformations are combined and arranged in such a way that the specific
schemes appear to be resistant against known attacks.

In several recent cryptographic designs, cryptanalysis is supposed to be impos-
sible because the propagation and correlation properties of the component transfor-
mations depend strongly on the key or intermediate state bits. This is also the case
for most designs based on modular arithmetic. In these designs, analysis exploiting
the properties of the arithmetic operations is thwarted by combining several opera-
tions that are non-distributive. The problem with this approach is that the quality
of the propagation and correlation properties can depend strongly on the specific
key or intermediate state. In Chapter 11 we have shown that this can lead to serious
weaknesses.

In our design approach, the resistance against cryptanalysis is based on trans-
parency rather than on obscurity. The components that are chosen have very simple
propagation and correlation properties. Cipher keys are always applied by means of
bitwise addition and the propagation and correlation properties of the round trans-
formations are independent of the key. This greatly simplifies the analysis of the
multiple-round propagation and correlation properties in the design phase. Still, we
have to make the unproved and in our opinion unprovable assumption that within
our design approach cryptographic security can be realized by ensuring resistance
against LC and DC and eliminating all exploitable symmetry. Our belief in the
validity of this assumption is based on the fact that (bitwise) correlation and dif-
ference propagation appear to be fundamental properties of Boolean mappings. In
our opinion, all attacks on schemes designed by our approach must involve at least
one these two aspects.

In block cipher design we have replaced the classical Feistel structure by a new
self-reciprocal structure. For stream ciphers we have stressed the importance of
the initialization mapping in real-world applications and shown that the presence
of a simple initialization mapping has a destructive impact on the security of most
linear feedback shift register based schemes. Together with the rejection of the
Damg̊ard-Merkle design principle for cryptographic hash functions, this has led us
to the conception of a cryptographic building block that is completely new. In self-
synchronizing stream cipher design, we have pointed out the misconceptions in the
scarce publications on the subject and given an alternative strategy illustrated by a
specific design.

216 CHAPTER 12. CONCLUSIONS

12.2 Our specific contributions to design

In Chapter 2 we have introduced the distinction between ciphers and encryption
schemes. This distinction enables us to give a consistent categorization of the differ-
ent ciphers and encryption schemes with respect to external behavior and internal
structure.

In Chapter 3 we have pointed out the importance of considering non-uniform key
selection and the role of the cryptographic claim. We have introduced the concepts
K-secure and hermetic to be used in these claims. An overview has been given of
the limits to manipulation detection by the encryption of redundant data for three
different types of redundancy.

In Chapter 4 we have introduced the concept of the cryptographic finite state
machine, useful in the design of block ciphers, stream ciphers and cryptographic
hash functions.

In Chapter 5 we have given a new formalism for the description of difference
propagation and correlation properties of Boolean mappings and iterated transfor-
mations. This includes the introduction of correlation matrices and prop ratios and
the derivation of a number of fundamental properties and relations. Motivated by
this analysis, we have formulated the wide trail design strategy.

In Chapter 6 we have given new methods of finding locally and globally invertible
nonlinear binary shift-invariant transformations. We have introduced the Hamming
weight distribution table and the branch number of a linear mapping. We have
treated in detail the difference propagation and correlation properties of the specific
shift-invariant transformation denoted by χ.

In Chapter 7 we have introduced a new self-reciprocal cipher structure and a
number of specific transformations to be used in this structure. The resulting block
cipher constructions have the remarkable property that differential and linear trails
are governed by the same equations. This has led to two concrete proposals that are
very well suited for hardware implementations and have high portability: 3-Way

and BaseKing.

In Chapter 8 we have introduced the stream/hash module as a new type of cryp-
tographic building block. This is basically a cryptographic finite state machine that
is designed for both efficient hashing and efficient cryptographic sequence genera-
tion. We have presented the hardware-oriented design Subterranean that has
been implemented as a chip in 2.4µ cmos standard cell technology in collaboration
with IMEC. These Subterranean coprocessors attain encryption rates of over
280 Mbit/s and hashing rates of over 560 Mbit/s. Finally, we have presented the
software-oriented design StepRightUp that has a work factor of only 3.7 bitwise
Boolean operations and 0.5 cyclic rotations on 32-bit words per encrypted or hashed
byte.

In Chapter 9 we have given a construction for self-synchronizing stream ciphers
consisting of pipelined stages in combination with a new structure called a con-
ditional complementing shift register. This is illustrated by a concrete hardware-
oriented design example.

In Chapter 10 we have introduced the idea of a resynchronization attack. The

12.3. FURTHER RESEARCH 217

power of this type of attack has been illustrated by four specific examples, ranging
from a general attack with theoretical implications to the description of a system
for on-line unauthorized descrambling of a specific commercial Pay-TV system.

In Chapter 11 we have given an analysis of the difference propagation properties
of cyclic multiplication. This operation is the most important component in our
block cipher proposal MMB.

12.3 Further research

We conclude with giving some directions for useful research in the philosophy of the
presented design approach:

• attacking the specific designs described in this thesis,

• design and analysis of portable stream/hash modules, including the analysis
of the StepRightUp design,

• improving the efficiency of the algorithms to find the critical propagation
chains in block ciphers such as 3-Way and BaseKing,

• investigating the correlation properties of cyclic multiplication,

• design of n-bit self-synchronizing stream ciphers with n > 1,

• extending and applying the theory of correlation matrices.

218 CHAPTER 12. CONCLUSIONS

Appendix A

On Shift-Invariant
Transformations

In this appendix we treat some aspects of shift-invariant transformations that have
only affected our cryptographic design in an indirect way, but are nevertheless in-
teresting. We start with a short treatment of the cardinalities of the congruence
classes of the state-space. This is followed by a proof of invertibility for a class of
nonlinear shift-invariant transformations. Finally, we give an overview of the sim-
plest nonlinear shift-invariant transformations and their diffusion and nonlinearity
properties.

A.1 Structure of the state-space

The numbers of elements in Tn, the quotient space of period n, and Zn, the quotient
space corresponding to An, can easily be calculated using the Euler totient function
ϕ(n) and the Möbius function µ(n) [47]. Let T(n) = #Tn and Z(n) = #Zn.

Every integer can be factored into a unique product of powers of distinct primes,
and the Möbius function and the Euler totient function can be defined in terms of
this factorization. If

n =
�∏

i=1

pαi.
i with all pi prime, (A.1)

we have

µ(n) =




1 if n = 1

0 if
∏�

i=1 αi > 1

(−1)� otherwise.

(A.2)

In words, the Möbius function is equal to 1 if n is the product of an even number of
distinct primes, to −1 if n is the product of an odd number of distinct primes, and
to 0 if the factorization of n contains prime powers. For ϕ(n) we have

ϕ(n) =

{
1 if n = 1∏�

i=1 p
αi−1
i (pi − 1) if n > 1 .

(A.3)

219

220 APPENDIX A. ON SHIFT-INVARIANT TRANSFORMATIONS

The Euler totient function equals the number of integers j smaller than and coprime
to n. Using the principle of inclusion and exclusion it can be proved that the number
of different quotient states with period n is given by

T(n) =
1

n

∑
d|n

µ(d)2n/d . (A.4)

The number of different quotient states in Zn is equal to the number of distinct
cycles of the rotating shift register of length n. This has been studied by Solomon
Golomb in [45] and is given by

Z(n) =
1

n

∑
d|n

ϕ(d)2n/d . (A.5)

Since Z(n) =
⋃

d|n Td, these two numbers are linked by the following equations:

Z(n) =
∑
d|n

T (d) , (A.6)

T (n) = Z(n) −
∑

(d<n)&(d|n)
Z(d) . (A.7)

A.2 Proof of invertibility

Proposition A.1 All φ that are specified by one of the 16 subsets of

{∗0001, ∗0101, ∗0111, ∗01 0}

are invertible for odd state lengths.

We prove this proposition by giving a seed and a leap. These two mechanisms
can be used to calculate a unique preimage for every state with odd length.
Let φ(b) = a.

Seed: If a0 is in landscape ∗ 01, b0 and b2 can be fixed. The only states without a
seed are 1∗ and 0∗. However, for all considered φ we have φ(1∗) = 1∗ and φ(0∗) =
0∗.

Proof : If ai is in landscape ∗1, we have bi = ai, since bi cannot be in a comple-
menting landscape.
If a0 is in landscape ∗101, b0 = a0 and b2 = 0.
If a0 is in landscape ∗001, b2 = 0. If it is assumed that b0 is in a complementing
landscape (CL), this must be ∗0001, the only CL that is compatible with ∗ 0. The
consequence that b3 �= a3 implies that b3 must be in a CL. This is however impossible
since the assumption imposes that b4 = 1.
Hence, we have a0 in ∗ 01 ⇒ a0 = b0 & a2 = 0.

A.3. TABLES OF INVERTIBLE NONLINEAR φ 221

Leap : If b0 and b2 are known, b−2 can be fixed. Since seeds on even (odd) positions
only give rise to knowledge of bits on even (odd) positions with this leap, ξ = {2}.

Proof : There are four possibilities for the landscape of b0:
∗ 1 1 : the relevant landscape of b0 is completely known,
∗ 0 1 : b3 is known. If equal to 1 : b0 = a0. Otherwise, b1 is known, revealing
the full landscape,
∗ 1 0 : b1 is known. If equal to 1 : b0 = a0, the landscape is unambiguously

∗01 0,
∗ 0 0 : there is no CL for b0 compatible with this and therefore, b0 = a0.

A.3 Tables of invertible nonlinear φ

During our research a large number of new invertible nonlinear binary shift-invariant
transformations were found. In tables A.1 and A.2 we list the most important, i.e.
simple, instances.

The transformations are specified by their set of complementing landscapes. For
every entry, we have specified the invertibility properties by ξ, the average diffusion
by the diffusion factor D and the nonlinearity by C and R. C corresponds with the
largest correlation that occurs between linear combinations of output bits and of
input bits. R corresponds to the largest occurring prop ratio.

222 APPENDIX A. ON SHIFT-INVARIANT TRANSFORMATIONS

CL ξ D C R
∗01 (χ) {2} 2 1/2 1/4
0∗01 {2} 1.75 3/4 27/64
∗001 {3} 1.75 3/4 7/16
∗100 {3} 1.75 3/4 7/16
0∗ 10 {2} 1.75 3/4 27/64
∗01 1 {2} 1.75 3/4 27/64
∗0 01 {2} 1.75 3/4 27/64
∗01 0 {4} 1.75 3/4 27/64
0 @iA ∗1 @iA 0 ∅ 1.75 3/4 ≥ 27/64
∗0100 {2} 1.5 3/4 35/64
0∗010 {2} 1.5 7/8 75/128
0∗001 {3} 1.5 7/8 151/256
0∗100 {3} 1.5 7/8 9/16
0∗101 {3} 1.5 7/8 9/16
∗0111 {4} 1.5 7/8 39/64
∗0001 {4} 1.5 7/8 39/64
∗0011 {4} 1.5 7/8 37/64
0∗01 0 ∅ 1.5 7/8 75/128
0∗011 ∅ 1.5 7/8 19/32
0 ∗ 11 0 ∅ 1.5 7/8 301/512
00∗10 ∅ 1.5 7/8 75/128
0∗1 @iA 10 ∅ 1.5 7/8 ≥ 143/256
01∗01 ∅ 1.5 7/8 17/32
0 @iA ∗1 @iA 10 ∅ 1.5 7/8 ≥ 9/16
0 ∗100 ∅ 1.5 7/8 301/512

Table A.1: Invertible φ specified by a single landscape.

A.3. TABLES OF INVERTIBLE NONLINEAR φ 223

CL ξ D C R
∗001 ∨ 1∗10 {2, 3} 2.25 1/2 15/64
∗01 0 ∨ ∗0 01 {2} 2.25 1/2 9/32
∗01 0 ∨ ∗0 11 {2} 2.25 1/2 7/32
∗01 ∨ 01∗0 {2} 2.25 5/8 37/128
∗01 ∨ ∗0 01 {2} 2.25 5/8 5/16
∗01 ∨ ∗0 11 {2} 2.25 5/8 19/64
∗01 ∨ 1∗001 {2} 2.25 5/8 93/256
∗001 ∨ 1∗100 {3} 2.25 5/8 1/4
∗110 ∨ 0∗001 {3} 2.25 5/8 31/128
∗01 0 ∨ ∗0001 {2} 2.25 5/8 1/4
0∗ 10 ∨ 1∗100 {2} 2.25 5/8 31/128
0∗01 ∨ ∗011 {3} 2 5/8 41/128
∗010 ∨ 0∗01 {2, 3} 2 5/8 33/128
∗011 ∨ 0∗01 {2, 3} 2 5/8 41/128
∗001 ∨ 1∗ 01 {2, 3} 2 5/8 43/128
∗010 ∨ ∗01 0 {2} 2 5/8 17/64
1∗10 ∨ 0 ∗10 {2} 2 5/8 11/32
1∗10 ∨ 1 ∗10 {2} 2 5/8 39/128
∗011 ∨ ∗01 0 {4} 2 5/8 3/16
∗100 ∨ 0∗101 {5} 2 5/8 19/64
0∗10 ∨ 0 ∗10 ∅ 2 5/8 305/1028
∗01 1 ∨ ∗0001 {2} 2 5/8 11/32
0∗ 10 ∨ 0∗1 0 {2, 3} 2 5/8 73/256
∗0011 ∨ ∗0101 {2} 2 3/4 11/32
∗0111 ∨ ∗0001 {2} 2 3/4 41/128
0∗001 ∨ 0∗110 {3} 2 3/4 81/256
0∗101 ∨ 1∗001 {3} 2 3/4 9/32
1∗110 ∨ 0∗001 {3} 2 3/4 21/64
0∗011 ∨ 1∗100 {6} 2 3/4 21/64
0∗010 ∨ 1∗011 {2, 3} 2 3/4 7/16
0∗001 ∨ 1∗101 {2, 3} 2 3/4 9/32
0∗110 ∨ 10∗10 ∅ 1.875 3/4 9/32
10∗0 ∨ 10∗ 1 ∨ 00∗10 {2} 2.5 1/2 109/512
∗100 ∨ ∗1 01 ∨ ∗0100 {3} 2.5 1/2 1/4
∗011 ∨ ∗01 0 ∨ ∗0001 {6} 2.5 1/2 7/32
0∗10 ∨ 0 ∗10 ∨ 0 ∗10 ∅ 2.125 9/16 305/1024

Table A.2: Invertible φ specified by multiple landscapes.

224 APPENDIX A. ON SHIFT-INVARIANT TRANSFORMATIONS

Bibliography

[1] C. Adams and S. Tavares, The Structured Design of Cryptographically Good
S-Boxes, Journal of Cryptology, Vol. 3, No. 1, 1990, pp. 27–42.

[2] T. Baritaud, H. Gilbert and M. Girault, FFT-Hash is not Collision-free, in
Advances in Cryptology, Proc. Eurocrypt ’92, LNCS 658, R.A. Rueppel, Ed.,
Springer-Verlag, 1992, pp. 35–44.

[3] C. Bennett, F. Bessette, G. Brassard and L. Salvail, Experimental Quantum
Cryptography, Journal of Cryptology, Vol. 5, No. 1, 1992, pp. 3–28.

[4] M. Bertilsson, E.F. Brickell and I. Ingemarsson, Cryptanalysis of Video En-
cryption Based on Space-Filling Curves, Advances in Cryptology, Proc. Eu-
rocrypt ’89, LNCS 434, J.-J. Quisquater and J. Vandewalle, Eds., Springer-
Verlag, 1990, pp. 403–411.

[5] E. Biham and A. Shamir, Differential Cryptanalysis of DES-like Cryptosys-
tems, Journal of Cryptology, Vol. 4, No. 1, 1991, pp. 3–72.

[6] E. Biham and A. Shamir, Differential Cryptanalysis of of the Data Encryption
Standard, Springer-Verlag, 1993.

[7] E. Biham, New Types of Cryptanalytic Attacks Using Related Keys, in Ad-
vances in Cryptology, Proc. Eurocrypt ’93, LNCS 765, T. Helleseth, Ed.,
Springer-Verlag, 1994, pp. 398–409.

[8] E.F. Brickell and A.M. Odlyzko, Cryptanalysis: a survey of recent results, in
Contemporary Cryptology: The Science of Information Integrity, G.J. Sim-
mons, Ed., IEEE Press, 1991, pp. 501–540.

[9] L. Claesen, J. Daemen, M. Genoe, G. Peeters, Subterranean,: a 600 Mbit/sec
Cryptographic VLSI Chip, Proc. ICCD ’93: VLSI in Computers and Proces-
sors, R. Camposano, A. Domic, Eds., IEEE Computer Society Press, 1993,
pp. 610–613.

[10] J. Daemen, R. Govaerts and J. Vandewalle, Efficient Pseudorandom Sequence
Generation by Cellular Automata, in Proc. 12th Symposium on Information
Theory in the Benelux, F.M.J. Willems and Tj.J. Tjalkens, Eds., Werkgemeen-
schap voor Informatie- en Communicatietheorie, 1991, pp. 17–24.

225

226 BIBLIOGRAPHY

[11] J. Daemen, R. Govaerts and J. Vandewalle, A Framework for the Design
of One-Way Hash Functions Including Cryptanalysis of Damg̊ard’s One-Way
Function based on a Cellular Automaton, in Advances in Cryptology, Proc.
of Asiacrypt ’91, LNCS 739, H. Imai, R. Rivest and T. Matsumoto, Eds.,
Springer-Verlag, 1993, pp. 82–96.

[12] J. Daemen, A. Bosselaers, R. Govaerts and J. Vandewalle, Collisions for
Schnorr’s Hash Function FFT-Hash, in Advances in Cryptology, Proc. of Asi-
acrypt ’91, LNCS 739, H. Imai, R. Rivest and T. Matsumoto, Eds. , Springer-
Verlag, 1993, pp. 477–480.

[13] J. Daemen, Limitations of the Even-Mansour Construction, in Advances in
Cryptology, Proc. of Asiacrypt ’91, LNCS 739, H. Imai, R. Rivest and T. Mat-
sumoto, Eds., Springer-Verlag, 1993, pp. 495–498.

[14] J. Daemen, L. Van Linden, R. Govaerts and J. Vandewalle, Propagation Prop-
erties of Multiplication Modulo 2n − 1, in Proc. 13th Symposium on Infor-
mation Theory in the Benelux, G.H.L.M. Heideman, F.W. Hoeksema and
H.E.P. Tattje, Eds. , Werkgemeenschap voor Informatie- en Communicati-
etheorie, 1992, pp. 111–118.

[15] J. Daemen, R. Govaerts and J. Vandewalle, On the Design of High Speed
Self-Synchronizing Stream Ciphers, in Singapore ICCS/ISITA ’92 Conference
Proceedings P.Y. Kam and O. Hirota, Eds., IEEE, 1992, pp. 279–283.

[16] J. Daemen, R. Govaerts and J. Vandewalle, A Hardware Design Model
for Cryptographic Algorithms, in Computer Security – Esorics ’92, Proc.
2nd European Symposium on Research in Computer Security, LNCS 648,
Y. Deswarte, G. Eizenberg and J.-J. Quisquater, Eds., Springer-Verlag, 1992,
pp. 419–434.

[17] J. Daemen, R. Govaerts and J. Vandewalle, Cryptanalysis of MUX-LFSR
Based Scramblers, in Proc. of the 3rd Symposium on the State and Progress
of Research in Cryptography, W. Wolfowicz, Ed., Fondazione Ugo Bordoni,
Roma, 1993, pp. 55–61.

[18] J. Daemen, R. Govaerts and J. Vandewalle, Block Ciphers Based on Modular
Arithmetic, in Proc. of the 3rd Symposium on the State and Progress of Re-
search in Cryptography, W. Wolfowicz, Ed., Fondazione Ugo Bordoni, Roma,
1993, pp. 80–89.

[19] J. Daemen, R. Govaerts and J. Vandewalle, Resynchronization Weaknesses in
Synchronous Stream Ciphers, in Advances in Cryptology, Proc. Eurocrypt ’93,
LNCS 765, T. Helleseth, Ed., Springer–Verlag, 1994, pp. 159–169.

[20] J. Daemen, L. Claesen, M. Genoe, G. Peeters, R. Govaerts and J. Vandewalle,
A Cryptographic Chip for ISDN and High Speed Multi-Media Applications,
in Proceedings of VLSI Signal Processing VI, L.D.J. Eggermont, P. Dewilde,
E. Deprettere and J. van Meerbergen, Eds., IEEE, 1993, pp. 12–20.

BIBLIOGRAPHY 227

[21] J. Daemen, R. Govaerts and J. Vandewalle, Weak Keys of IDEA, in Advances
in Cryptology, Proc. Crypto’93, LNCS 773, D.R. Stinson, Ed., Springer–
Verlag, 1994, pp. 224–231.

[22] J. Daemen, R. Govaerts and J. Vandewalle, A New Approach towards Block
Cipher Design, in Fast Software Encryption, LNCS 809, R. Anderson, Ed.,
Springer–Verlag, 1994, pp. 18–33.

[23] J. Daemen, R. Govaerts and J. Vandewalle, Invertible Shift-invariant Transfor-
mations on Binary Arrays, Journal of Applied Mathematics and Computation,
to appear.

[24] J. Daemen, R. Govaerts and J. Vandewalle, An Efficient Nonlinear Shift-
Invariant Transformation, in Proceedings of the 15th Symposium on Informa-
tion Theory in the Benelux, B. Macq, Ed., Werkgemeenschap voor Informatie-
en Communicatietheorie, 1994, pp. 108–115.

[25] J. Daemen, JAM, a Cryptographic Pseudorandom Sequence Generator,
ESAT-COSIC Report 92-1, Department of Electrical Engineering, Katholieke
Universiteit Leuven, March 1992. (2 pp.)

[26] J. Daemen, R. Govaerts and J. Vandewalle, Fast Hashing Both in Hard- and
Software, ESAT-COSIC Report 92-2, Department of Electrical Engineering,
Katholieke Universiteit Leuven, April 1992. (7 pp.)

[27] J. Daemen, R. Govaerts and J. Vandewalle, Cryptanalysis of 2,5 Rounds
of IDEA, ESAT-COSIC Report 94-1, Department of Electrical Engineering,
Katholieke Universiteit Leuven, March 1994. (10 pp.)

[28] I.B. Damg̊ard, The application of claw free functions in cryptography, PhD
Thesis, Aarhus University, Mathematical Institute, 1988.

[29] I.B. Damg̊ard, Design Principles for Hash Functions, in Advances in Cryp-
tology, Proc. Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990,
pp. 416–427.

[30] D.W. Davies, Some Regular Properties of the DES, in Advances in Cryptology,
Proc. Crypto’82, D. Chaum, R. Rivest and A. Sherman, Eds., Plenum Press,
1983, pp. 89–96.

[31] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Trans. on
Information Theory, Vol. IT–22, No. 6, 1976, pp. 644–654.

[32] W. Diffie, The First Ten Years of Public Key Cryptography, in Contemporary
Cryptology: The Science of Information Integrity, G.J. Simmons, Ed., IEEE
Press, 1991, pp. 135–175.

[33] Specification of the Systems of the MAC/Packet Family. EBU Technical Doc-
ument 3258–E, Oct 1986.

228 BIBLIOGRAPHY

[34] S. Even, Y. Mansour, A Construction of a Cipher From a Single Pseudoran-
dom Permutation, in Advances in Cryptology, Proc. Asiacrypt ’91, LNCS 739,
H. Imai, R. Rivest and T. Matsumoto, Eds., Springer-Verlag, 1993, pp. 210–
224.

[35] H. Feistel, Cryptography and Computer Privacy, Scientific American, Vol. 228,
No. 5, 1973, pp. 15–23.

[36] H. Feistel, W.A. Notz, and J.L. Smith, Some cryptographic techniques for
machine-to-machine data communications, Proc. IEEE, Vol. 63, No. 11, 1975,
pp. 1545–1554.

[37] Data Encryption Standard, Federal Information Processing Standard (FIPS),
Publication 46, National Bureau of Standards, U.S. Department of Commerce,
Washington D.C. , January 1977.

[38] DES Modes of Operation, Federal Information Processing Standard (FIPS),
Publication 131, National Bureau of Standards, US Department of Commerce,
Washington D.C. , December 1980.

[39] FIPS 180, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C., May 1993.

[40] FIPS 180, Proposed Revision of FIPS 180, Secure Hash Standard, Federal
Register, July 11, 1994.

[41] P. Flajolet and A.M. Odlyzko, Random Mapping Statistics, in Advances in
Cryptology, Proc. Eurocrypt ’89, LNCS 434, J.-J. Quisquater and J. Vande-
walle, Eds., Springer-Verlag, 1990, pp. 450–468.

[42] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the
Theory of NP-Completeness, W.H. Freeman and Company, 1979.

[43] O. Goldreich, S. Goldwasser and S. Micali, How to Construct Random Func-
tions, in Proceedings of the 25th Annual Symposium on Foundations of Com-
puter Science, October 24–26, 1984.

[44] D. Gollman and W.G. Chambers, Clock-Controlled Shift-Registers: a Review,
IEEE J. Selected Areas Commun., Vol. 7, 1989, pp. 525–533.

[45] S.W. Golomb, Shift Register Sequences, Holden–Day Inc., San Francisco, 1967.

[46] J.D. Golić, On the Security of Shift Register Based Keystream Generators,
in Fast Software Encryption, LNCS 809, R. Anderson, Ed., Springer–Verlag,
1994, pp. 90–100.

[47] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers (5th
edition), Oxford University Press, 1979.

BIBLIOGRAPHY 229

[48] M. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig,
and P. Schweitzer, Results of an initial attempt to cryptanalyze the NBS Data
Encryption Standard, Information Systems Lab., Dept. of Electrical Eng.,
Stanford Univ., 1976.

[49] M. Hellman, A Cryptanalytic Time-Memory Trade-Off, IEEE Trans. Infor-
mat. Theory, Vol IT-15, 1980, pp. 401–406.

[50] M. Hellman and S. Langford, Differential-Linear Cryptanalysis, in Advances
in Cryptology, Proc. Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-Verlag,
1994, pp. 26–39.

[51] F.J. Hill and G.R. Petersen, Introduction to Switching Theory and Logical
Design, John Wiley & Sons, 1981.

[52] Information Technology – Security Techniques – Modes of Operation of an
n-bit Block Cipher Algorithm, IS 10116, ISO/IEC, 1991.

[53] ISO/IEC 9797, Information technology – Data cryptographic techniques – Data
integrity mechanisms using a cryptographic check function employing a block
cipher algorithm, IS 9797, ISO/IEC, 1993.

[54] Information technology - Security techniques - Hash-functions, Part 1: Gen-
eral and Part 2: Hash-functions using an n-bit block cipher algorithm,”
DIS 10118, ISO/IEC, 1992.

[55] R. Impagliazzo and M. Naor, Efficient cryptographic schemes provably as se-
cure as subset sum, in Proc. 30th IEEE Symposium on Foundations of Com-
puter Science, 1989, pp. 236–241.

[56] C.J.A. Jansen and D.E. Boekee, Modes of Blockcipher Algorithms and Their
Protection Against Active Eavesdropping, in Advances in Cryptology, Proc.
Eurocrypt ’87, LNCS 304, D. Chaum and W.L. Price, Eds., Springer-Verlag,
1988, pp. 327–347.

[57] C.J.A. Jansen, Investigations on nonlinear streamcipher systems: construction
and evaluation methods, Doctoral Dissertation, Technische Universiteit Delft,
1989.

[58] D. Kahn, The Codebreakers. The Story of Secret Writing, MacMillan, 1967.

[59] J.B. Kam and G.I. Davida, Structured design of substitution-permutation
encryption networks, IEEE Trans. on Computers, Vol. C–28, 1979, pp. 747–
753.

[60] L.R. Knudsen, Iterative Characterisitics of DES and s2-DES, in Advances in
Cryptology, Proc. Crypto’92, LNCS 740, E.F. Brickell, Ed., Springer-Verlag,
1993, pp. 497–512.

230 BIBLIOGRAPHY

[61] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag,
1987.

[62] X. Lai and J.L. Massey, A Proposal for a New Block Encryption Standard, in
Advances in Cryptology, Proc. Eurocrypt’ 90, LNCS 473, I.B. Damg̊ard, Ed.,
Springer-Verlag, 1991, pp. 389–404.

[63] X. Lai, J.L. Massey and S. Murphy, Markov Ciphers and Differential
Cryptanalysis, in Advances in Cryptology, Proc. Eurocrypt’ 91, LNCS 547,
D. Davies, Ed., Springer-Verlag, 1991, pp. 17–38.

[64] X. Lai and J.L. Massey, Hash Functions Based on Block Ciphers, in Advances
in Cryptology, Proc. Eurocrypt ’92, LNCS 658, R.A. Rueppel, Ed., Springer-
Verlag, 1992, pp. 55–70.

[65] R. Lidl, H. Niederreiter, Finite Fields, Encyclopaedia of Mathematics and its
Applications Vol. 20, Reading, Mass, Addison-Wesley, 1983.

[66] M. Luby and C. Rackoff, How to Construct Pseudorandom Permutations from
Pseudorandom Functions, SIAM Journal on Computing, Vol. 17, No. 2, 1988,
pp. 373–386.

[67] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland Publishing Company, 1978.

[68] J.L. Massey, Contemporary Cryptology: An introduction, in Contemporary
Cryptology: The Science of Information Integrity, G.J. Simmons, Ed., IEEE
Press, 1991, pp. 1–39.

[69] J.L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Trans. Infor-
mat. Theory, Vol. IT-15, 1969, pp. 122–127.

[70] Y. Matias and A. Shamir, A Video Scrambling Technique Based On Space Fill-
ing Curves, in Advances in Cryptolog, Proc. Crypto’87, LNCS 293, C. Pomer-
ance, Ed., Springer-Verlag 1987, pp. 398–417.

[71] M. Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryp-
tology, Proc. Eurocrypt ’93, LNCS 765, T. Helleseth, Ed., Springer-Verlag,
1993, pp. 386–397.

[72] M. Matsui, The First Experimental Cryptanalysis of the Data Encryp-
tion Standard, in Advances in Cryptology, Proc. Crypto’94, LNCS 839,
Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 1–11.

[73] U.M. Maurer, Provable Security in Cryptography, Doctoral Dissertation ETH
No. 9260, Zürich, 1990.

[74] U.M. Maurer, New Approaches to the Design of Self-Synchronizing Stream Ci-
phers, in Advances in Cryptology, Proc. Eurocrypt ’91, LNCS 547, D. Davies,
Ed., Springer-Verlag 1991, pp. 458–471.

BIBLIOGRAPHY 231

[75] U.M. Maurer and J.L. Massey, Cascade Ciphers: The Importance of Being
First, Journal of Cryptology, Vol. 6, No. 1, 1993, pp. 55–61.

[76] W. Meier and O. Staffelbach, Analysis of Pseudo Random Sequences Gener-
ated by Cellular Automata, in Advances in Cryptology, Proc. Eurocrypt ’91,
LNCS 547, D.W. Davies, Ed., Springer-Verlag 1991, pp. 186–199.

[77] R.C. Merkle, One Way Hash Functions and DES, in Advances in Cryptology,
Proc. Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428–
446.

[78] R.C. Merkle, A Fast Software One-Way Hash Function, Journal of Cryptology,
Springer-Verlag Vol. 3 No. 1, 1990, pp. 43–58.

[79] C.H. Meyer and S.M. Matyas, Cryptography, John Wiley & Sons, 1982.

[80] C.J. Mitchell, F. Piper and P. Wild, Digital Signatures, in Contemporary
Cryptology: The Science of Information Integrity, G.J. Simmons, Ed., IEEE
Press, 1991, pp. 325–378.

[81] J. Nechvatal, Public Key Cryptography, in Contemporary Cryptology: The Sci-
ence of Information Integrity, G.J. Simmons, Ed., IEEE Press, 1991, pp. 177–
288.

[82] L. O’Connor, On the Distribution of Characteristics in Bijective Mappings, in
Advances in Cryptology, Proc. Eurocrypt ’93, LNCS 765, T. Helleseth, Ed.,
Springer-Verlag, 1994, pp. 360–370.

[83] G. Peeters, Implementatie van een Cryptografisch Algoritme (Implementation
of a Cryptographic Algorithm – in Dutch), Katholieke Industriële Hogeschool
De Nayer-Mechelen, Thesis ind. eng., 1993.

[84] B. Preneel, Analysis and Design of Cryptographic Hash Functions, Doct. Dis-
sertation KULeuven, 1993.

[85] B. Preneel, M. Nuttin, V. Rijmen and J. Buelens, Cryptanalysis of the CFB
Mode of the DES with a Reduced Number of Rounds, Advances in Cryptol-
ogy, Proc. Crypto’93, LNCS 773, D.R. Stinson, Ed., Springer-Verlag, 1994,
pp. 212–223.

[86] J.-J. Quisquater and J.-P. Delescaille, Other Cycling Tests for DES, in
Advances in Cryptology, Proc. Crypto’87, LNCS 293, C. Pomerance, Ed.,
Springer-Verlag 1987, pp. 255–256.

[87] J.-J. Quisquater and J.-P. Delescaille, How Easy Is Collision Search? Ap-
plication to DES, Advances in Cryptology, Proc. Eurocrypt’89, LNCS 434,
J.-J. Quisquater and J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 429–434.

232 BIBLIOGRAPHY

[88] J.-J. Quisquater and J.-P. Delescaille, How Easy Is Collision Search. New
Results and Applications to DES, Advances in Cryptology, Proc. Crypto’89,
LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 408–413.

[89] D. Richardson, Tessellation with Local Transformations, J. Comp. Syst. Sci.,
Vol. 6, 1972, pp. 373–388.

[90] V. Rijmen, Cryptanalysis of DES – in Dutch, Cryptanalyse van DES, ESAT
Katholieke Universiteit Leuven, Thesis grad. eng., 1993.

[91] R.L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems, Communications ACM, Vol. 21, February
1978, pp. 120–126.

[92] R.L. Rivest, The MD4 Message Digest Algorithm, Advances in Cryptology,
Proc. Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303–
311.

[93] R.L. Rivest, The MD5 Message Digest Algorithm, presented at the rump ses-
sion of Crypto’91.

[94] J. Rompel, One-way functions are necessary and sufficient for secure signa-
tures, in Proc. 22nd ACM Symposium on the Theory of Computing, 1990,
pp. 387–394.

[95] R.A. Rueppel, Stream Ciphers, in Contemporary Cryptology: The Science of
Information Integrity, G.J. Simmons, Ed., IEEE Press, 1991, pp. 65–134.

[96] C. Schnorr, FFT-Hash, An Efficient Cryptographic Hash Function,Presented
at the rump Session of Crypto’91.

[97] C. Schnorr, On the Construction of Random Number Generators and Ran-
dom Function Generators, in Advances in Cryptology, Proc. Eurocrypt ’88,
LNCS 330, C.Günther, Ed., Springer-Verlag, 1988, pp. 225–232.

[98] C.E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech.
Journal, Vol. 27, No. 3, 1948, pp. 379–423 and pp. 623–656.

[99] C.E. Shannon, Communication Theory of Secrecy Systems, Bell Syst. Tech.
Journal, Vol. 28, 1949, pp. 656–715.

[100] G.J. Simmons, A Survey of Information Authentication, in Contemporary
Cryptology: The Science of Information Integrity, G.J. Simmons, Ed., IEEE
Press, 1991, pp. 379–419.

[101] H. Taub and D.L. Schilling, Principles of Communication Systems, Mc. Graw-
Hill, 1971.

[102] T. Toffoli, N. Margolus, Invertible Cellular Automata: A Review, Physica D,
Vol. 45, 1990, pp. 229–253.

BIBLIOGRAPHY 233

[103] G.S. Vernam, Cipher Printing Telegraph Systems for Secret Wire and Radio
Telegraphic Communications, J. Am. Inst. Elec. Eng., Vol. 55, 1926, pp. 7–10.

[104] S. Wolfram, Random Sequence Generation by Cellular Automata, Advances
in Applied Mathematics, Vol. 7, 1986, pp. 123–169.

234 BIBLIOGRAPHY

Nederlandse Samenvatting

1 Inleiding

In onze moderne maatschappij wordt steeds meer gebruik gemaakt van computers
en telecommunicatienetwerken. Dit heeft aanleiding gegeven tot een revolutie op
het vlak van informatieverwerking en -communicatie. Enerzijds heeft de moderne
informatietechnologie een groot aantal nieuwe diensten mogelijk gemaakt. Anderz-
ijds is het wenselijk dat papieren documenten, dragers van informatie maar ook
van overeenkomsten of waarde, worden vervangen door “abstracte” tegenhangers.
Deze abstracte documenten staan los van hun fysische drager en bestaan louter uit
reeksen van symbolen.

In commerciële en politieke campagnes spiegelt men graag het beeld voor van
de multimedia informatie supersnelweg waarin de consument, de onderzoeker of de
manager alle denkbare diensten, uiteraard tegen betaling, binnen handbereik heeft.
In het aanbod van deze diensten wordt een grote mobiliteit nagestreefd: een abonnee
is niet gebonden aan een bepaalde plaats of een bepaald tijdstip voor het verkrijgen
van een bepaalde dienst. Deze mobiliteit impliceert een grote fysische toegankeli-
jkheid van het communicatienetwerk. De combinatie van deze toegankelijkheid en
de hoge gevoeligheid van vele toepassingen maakt een degelijke beveiliging noodza-
kelijk voor de sociale aanvaardbaarheid van dergelijke netwerken. Deze beveiliging
moet hoofdzakelijk op het logische vlak worden gerealiseerd.

De verzameling wiskundige en logische functies en methoden die ingezet kun-
nen worden in deze logische beveiliging wordt doorgaans aangeduid met de term
cryptografie, hun analyse met de term cryptanalyse en de gezamenlijke wetenschap
van cryptografie en cryptanalyse met cryptologie. Tot voor enkele decennia stond
cryptografie gelijk aan geheimschrift verkregen door middel van encryptie onder in-
vloed van een geheime sleutel. Dit geheimschrift kan terug leesbaar gemaakt worden
door decryptie met diezelfde geheime sleutel. Alle kennis betreffende deze encrypti-
eschema’s en het kraken ervan was voorbehouden aan een kleine elite in dienst bij
militaire hoofdkwartieren, geheime diensten of een enkel produktiebedrijf [58]. On-
der invloed van de revolutie in telecommunicatie- en computertechnologie is de cryp-
tologie gedurende de laatste decennia echter uitgegroeid tot een volwaardige weten-
schappelijke discipline. Deze nieuwe openheid is een vruchtbare bodem gebleken
voor het ontstaan van een aantal zeer nuttige nieuwe cryptografische schema’s en
concepten [68].

Binnen de cryptografie hebben wij ons geconcentreerd op het ontwerp van schema’s

235

236 NEDERLANDSE SAMENVATTING

die grote hoeveelheden gegevens te verwerken krijgen. Deze schema’s zijn in hoge
mate verantwoordelijk voor de haalbare verwerkings- of communicatiesnelheid in
cryptografisch beveiligde toepassingen. Het is duidelijk dat encryptieschema’s, die
de geheimhouding van communicatie kunnen beschermen, tot deze klasse behoren.
Encryptie biedt echter weinig tot geen bescherming tegen ongeoorloofde externe
manipulatie van berichten. Deze bescherming kan wel verkregen worden met een
cryptografisch controlesom mechanisme. In zo’n mechanisme is er maar één com-
ponent die grote hoeveelheden gegevens verwerkt, de cryptografische hashfunctie.
Deze beeldt een bericht van willekeurige lengte af op een hashresultaat met een
bepaalde lengte, al of niet onder invloed van een geheime sleutel. Alle eventuele
andere bewerkingen gebeuren op dit relatief korte resultaat.

Cryptografische hashfuncties hebben in feite een zeer breed toepassingsdomein,
gaande van digitale handtekeningen tot bepaalde identificatieprotocols. Voor een
overzicht van de verschillende toepassingen refereren wij naar de doctoraatsverhan-
deling van Bart Preneel [84]. De eigenschappen die van een cryptografische hash-
functie verwacht worden hangen af van de toepassing. In de meeste toepassingen is
het voldoende dat het ondoenbaar moet zijn botsende berichten te vinden. Dit zijn
verschillende berichten die op hetzelfde resultaat afgebeeld worden.

Op dit moment bestaan er al een groot aantal concrete voorstellen voor encryp-
tieschema’s en cryptografische hashfuncties. Men kan zich dus afvragen of de studie
van het ontwerp van deze bouwblokken nog wel zinvol is. Volgens ons is dit wel
degelijk het geval. In ons proefschrift trachten wij aan te duiden wat er schort
aan de gangbare ontwerpmethoden en stellen wij een nieuwe aanpak voor. Ons
doel is bijdragen aan ontwerpmethoden voor encryptieschema’s en cryptografische
hashfuncties waarin twee aspecten centraal staan. Enerzijds moeten de ontwerpen
zich lenen tot goedkope en snelle implementaties, liefst op een zo groot mogelijke
verscheidenheid van platformen. Anderzijds mag er van deze ontwerpen verwacht
worden dat het beveiligingsniveau zo hoog ligt als de dimensies suggereren.

Na het bespreken van de verschillende soorten schema’s waarvan we het ontwerp
willen bestuderen, behandelen we cryptografische veiligheid. Dit wordt gevolgd door
een korte bespreking van onze algemene ontwerpstrategie. We geven een overzicht
van propagatie en correlatie, de twee belangrijkste aspecten van transformaties
in cryptografische schema’s, en bespreken vervolgens de klasse van de translatie-
invariante transformaties waartoe de meeste basiscomponenten van onze ontwerpen
behoren. Daarna behandelen we achtereenvolgens het ontwerp van zogenaamde
blokcijfers, stroom/hash modules en zelf-synchroniserende stroomcijfers. Na het be-
spreken van schema’s die gebaseerd zijn op rekenkundige bewerkingen, formuleren
we tenslotte onze belangrijkste besluiten en enkele suggesties voor verder onderzoek.

2 Encryptie, cijfers en hashfuncties

Door middel van encryptie wordt een bericht omgezet in een cryptogram. Meestal
gebeurt dit door sequentiële substitutie: de symbolen van het bericht worden één
voor één vervangen door cryptogramsymbolen. In een ander type van schema’s

2. ENCRYPTIE, CIJFERS EN HASHFUNCTIES 237

gebeurt encryptie door transpositie: het wijzigen van de volgorde van de symbolen
in het bericht. Vroeger werden substitutie en transpositie dikwijls gecombineerd.
Door zijn relatief grote implementatiecomplexiteit en gebrekkige bescherming wordt
transpositie tegenwoordig alleen nog maar gebruikt in een klein aantal zeer speci-
fieke toepassingen. Daarom hebben we ons volledig toegespitst op het ontwerp van
substitutieschema’s.

In alle substitutieschema’s kan men encryptie als volgt beschrijven. Een bericht-
symbool wordt omgezet in een cryptogramsymbool door een omkeerbare encrypti-
etransformatie die afhangt van de inwendige toestand van een eindige toestandsma-
chine. Deze eindige toestandsmachine past voor elk nieuw te encrypteren symbool
zijn inwendige toestand aan. De nieuwe toestand hangt af van de vorige toestand
en het laatste cryptogramsymbool. De inwendige toestand hangt als zodanig af van
alle verleden cryptogramsymbolen. In praktijk wordt de eindige toestandsmachine
echter op zo’n manier ontworpen dat de inwendige toestand slechts afhangt van de
m laatste cryptogramsymbolen. Het getal m wordt het ingangsgeheugen genoemd.

Bij het begin van encryptie wordt de initiële inwendige toestand verkregen door
de initialisatie-afbeelding toe te passen op de combinatie van de geheime sleutel
K en de publieke parameter Q. De cryptogramsymbolen worden verzonden via
een zogenaamd kanaal en na ontvangst terug gedecrypteerd. Decryptie verloopt
hetzelfde als encryptie met dit verschil dat de encryptietransformatie vervangen
wordt door zijn inverse. In moderne schema’s bestaan de symbolen uit bits of
bitblokken met een constante lengte en hebben de cryptogramsymbolen dezelfde
lengte als de berichtsymbolen.

De aanwezigheid van transmissiefouten in het kanaal kan de decryptie sterk be-
moeilijken. De juiste ontvangst van een bepaald berichtsymbool veronderstelt de
foutloze transmissie van het overeenkomstige cryptogramsymbool en de gelijkheid
van inwendige toestand bij encryptie en decryptie. Dit laatste impliceert dat encryp-
tor en decryptor synchroon lopen en dat de m laatste cryptogramsymbolen correct
ontvangen zijn. Door bepaalde randvoorwaarden in het ontwerp in te bouwen kan
men de nood aan synchronisme elimineren of ervoor zorgen dat het ingangsgeheugen
gelijk is aan 0 zodat de inwendige toestand onafhankelijk is van de cryptogramsym-
bolen. Met betrekking tot foutengevoeligheid zijn de drie relevante eigenschappen
dus de symbool- of bloklengte, de nood aan synchronisme en de waarde van m.
Deze eigenschappen bepalen ook grotendeels de indeling van de encryptieschema’s
in klassen.

Men spreekt van stroomencryptie als men uit cryptogramsymbolen en de overeenkom-
stige berichtsymbolen gemakkelijk kan achterhalen wat de encryptietransformatie is.
De veiligheid is gebaseerd op het feit dat deze transformatie steeds verandert on-
der invloed van de inwendige toestand. In onze analyse gaan we er van uit dat in
stroomencryptie het bericht wordt omgezet naar een cryptogram door de bitsgewijze
toevoeging van een sleutelstroom. Men spreekt van blokencryptie als het moeilijk is
de encryptietransformatie te bepalen uit een verzameling koppels bestaande uit een
cryptogramsymbool en het overeenkomstige berichtsymbool.

In synchrone stroomencryptie is de sleutelstroom afkomstig van een autonome
eindige toestandsmachine. Deze autonome eindige toestandsmachine noemt men

238 NEDERLANDSE SAMENVATTING

een synchroon stroomcijfer. Door middel van de publieke parameter Q kan men met
eenzelfde sleutel een groot aantal verschillende sleutelstromen genereren. Door het
eindige aantal mogelijke toestanden komt het synchrone stroomcijfer vroeg of laat
in een periodische cyclus terecht. Voor de lengte van deze cycli is het voordelig dat
de toestandsovergang omkeerbaar is. In vele toepassingen is het handig als men uit
de initiële toestand rechtstreeks de toestand na een willekeurig aantal iteraties kan
berekenen. Dit vereist een speciale structuur van de overgangstransformatie. Men
spreekt dan van een cryptografische gefilterde teller.

In zelf-synchroniserende stroomencryptie is de sleutelstroom afkomstig van een
zelf-synchroniserend stroomcijfer bestaande uit een eindige toestandsmachine met
een eindig ingangsgeheugen. Het encrypterende symbool is een functie van de in-
wendige toestand en de cijfersleutel. Decryptie is mogelijk van zodra de laatste
m cryptogramsymbolen correct ontvangen zijn. Het gevaar voor informatielekken
door herhalingen in cryptogrammen wordt bepaald door het produkt van de sym-
boollengte en het ingangsgeheugen. De terugkoppeling van de uitgang van een zelf-
synchroniserend stroomcijfer naar zijn ingang resulteert in een autonome eindige
toestandsmachine. Als die gebruikt wordt voor synchrone stroomencryptie, spreekt
men van de uitgangsteruggekoppelde gebruikswijze. We hebben aangetoond dat het
cyclisch gedrag sterk verbeterd kan worden door op een intelligente wijze terug te
koppelen.

In eenvoudige blokencryptie wordt een bericht blok per blok omgezet in een
cryptogram door middel van een omkeerbare transformatie die afhangt van een ci-
jfersleutel. De sleutelafhankelijke transformatie wordt een blokcijfer genoemd. Een-
voudige blokencryptie heeft het nadeel dat de herhaling van blokken in een bericht
resulteert in een herhaling in het cryptogram. Dit is niet geval bij de kettingblo-
kencryptie, waarbij het blokcijfer wordt voorafgegaan door een bitsgewijze optelling
van het vorige cryptogramsymbool. In deze gebruikswijze wordt het gevaar voor
informatielekken door herhalingen in cryptogrammen bepaald door de bloklengte.

Als men de uitgang van een blokcijfer terugkoppelt naar zijn ingang verkrijgt
men een autonome eindige toestandsmachine die men kan gebruiken voor synchrone
stroomencryptie. Een blokcijfer kan ook gebruikt worden als filter in een cryp-
tografische gefilterde teller. Tenslotte kan men ook zelf-synchroniserende stroomen-
cryptie doen met een blokcijfer. De laatste m cryptogramsymbolen, opgeslagen
in een doorschuifregister, worden afgebeeld op het encrypterende symbool door
tussenkomst van het blokcijfer en een bitselectie.

Alle praktische cryptografische hashfuncties werken op een sequentiele manier
zodat “voorbijkomende” berichten kunnen verwerkt worden zonder een beroep te
moeten doen op uitwendige opslag. Eerst wordt het bericht verdeeld en zo nodig
verlengd tot een ingangsreeks bestaande uit een geheel aantal blokken. Daarna wordt
er aan de zogenaamde kettingtoestand een bepaalde beginwaarde toegekend. Deze
toestand wordt iteratief getransformeerd door voor elk ingangsblok een kettingtrans-
formatie toe te passen. Het hashresultaat wordt berekend uit de kettingtoestand
nadat alle ingangsblokken “aangebracht” zijn. Met betrekking tot de weerstand
tegen botsingen moeten zowel het hashresultaat als de kettingtoestand een bepaalde
lengte hebben.

3. CRYPTOGRAFISCHE VEILIGHEID 239

3 Cryptografische veiligheid

Het principe van Kerckhoffs (1835–1903) is één van de meest elementaire beginselen
van de cryptografie. Het zegt dat een ontwerper moet veronderstellen dat de vijand
op de hoogte is van het volledige encryptie- of hashmechanisme, met uitzondering
van de geheime sleutel. In de definitie, de modellering en de analyse van de veiligheid
gaat men er bijna altijd van uit dat de vijand geen a priori informatie heeft over
de sleutel. Dit is in vele praktische omstandigheden echter niet het geval. Daarom
houden wij in onze definities van veiligheid expliciet rekening met niet-uniforme
sleutelselectie.

De toegang die een cryptanalyst heeft tot een cryptografisch schema wordt
bepaald door de omstandigheden waarin het gebruikt wordt. Bijvoorbeeld, de toe-
gang tot een encryptieschema varieert van de observatie van cryptogrammen tot de
mogelijkheid tot manipulatie van de ingang en de publieke parameter Q. Een be-
langrijke theoretische aanval is exhaustief sleutel zoeken. Als de aanwezige a priori
informatie over een bericht groter is dan de ontbrekende informatie over de geheime
sleutel kan de juiste sleutel doorgaans gevonden worden door voor alle andere sleutels
vast te stellen dat ze het cryptogram naar een inconsistent bericht decrypteren.

Ontwerpers van beveiligingssystemen zouden erg blij zijn met praktische cryp-
tografische schema’s waarvan men zwart op wit kan bewijzen dat ze veilig zijn. In
de praktijk stuiten pogingen tot het ontwerp van bewijsbaar veilige schema’s echter
op grote problemen. Deze pogingen zijn vooral ingegeven door twee verschillende
theorieën: informatietheorie en complexiteitstheorie.

Informatietheorie behandelt de mogelijkheid van aanvallen, zonder rekening te
houden met de grootte van de cryptanalytische inspanning. Ze geeft scherpe boven-
grenzen aan de haalbare onvoorwaardelijke beveiliging. Samenvattend kan men
zeggen dat schema’s die bewijsbaar veilig zijn in informatietheoretische zin een zeer
grote hoeveelheid geheime sleutelbits vereisen, zowel in de realisatie van geheimhoud-
ing als van authentisering.

Complexiteitstheorie is een discipline binnen de computerwetenschappen die
het gebruik van tijd en geheugen van algoritmen bestudeert. Binnen de cryp-
tografie verwacht(te) men door de toepassing van complexiteitstheorie cryptografis-
che schema’s te kunnen ontwerpen die bewijsbaar veilig zijn tegen een vijand met
beperkte middelen. Complexiteitstheorie, zoals ze toegepast wordt binnen cryp-
tografie, laat echter alleen maar asymptotische uitspraken toe over de complexiteit
van aanvallen in het slechtste geval (met betrekking tot de aanvaller). In praktijk
zijn deze volkomen waardeloos. We hebben dit gëıllustreerd met onze aanval op de
zogenaamde Even-Mansour blokcijferconstructie [34]. Onze aanval is vernietigend
voor alle blokcijfers van dit type met een realistische bloklengte. Toch is het bestaan
van onze aanval niet in strijd met het complexiteitstheoretisch bewijs van veiligheid
van de ontwerpers.

Velen geloven dat de toepassing van complexiteitstheorie aanleiding geeft tot
gezonde ontwerpprincipes. Complexiteitstheorie heeft alleszins bijgedragen tot een
manier van ontwerpen die wij aanduiden met de term “N-reductionistisch”. Hierin
ligt de nadruk op het herleiden van de veiligheid van één cryptografische compo-

240 NEDERLANDSE SAMENVATTING

nent tot die van een andere waarvan verondersteld wordt dat die gemakkelijker te
ontwerpen is. In praktijk is het echter onmogelijk om deze veronderstelling te ver-
ifiëren en legt de reductie vrij ernstige beperkingen op. Bovendien leidt deze aanpak
de aandacht af van het echte ontwerp. De reductie wordt beschouwd als het “fun-
damentele” en “wetenschappelijke” gedeelte van het ontwerp, terwijl het ontwerp
van de onderliggende component noodzakelijkerwijs “ad hoc” is, en bijgevolg min-
der interessant. De negatieve gevolgen van deze houding worden gëıllustreerd door
onze vaststelling van ontoelaatbare zwakheden in de cryptografische hashfunctie
gebaseerd op cellulaire automaten van Ivan Damg̊ard [29].

In praktijk is cryptografische veiligheid nauw verwant aan vertrouwen en en-
gagement. Hierin is een belangrijke dubbele rol weggelegd voor de cryptografische
“claim”, een heldere formulering van de cryptografische veiligheid die elk nieuw on-
twerp zou moeten vergezellen. Voor de cryptanalytici moet het een uitdaging zijn om
een zwakheid te vinden die de claim weerlegt. Voor gebruikers en systeemontwerpers
dient de claim als een specificatie van de externe cryptografische eigenschappen van
het ontwerp. Het gebruik van een ontwerp impliceert vertrouwen in de geldigheid
van de begeleidende claim. De enige beschikbare fundering voor dit vertrouwen
bestaat in de vaststelling dat er in de publieke evaluatie van het ontwerp nog geen
zwakheden zijn gevonden die de claim weerleggen, ondanks grote inspanningen.

Een super cryptografische schema heeft binnen zijn klasse en voor zijn dimensies
de kleinst mogelijke voorspelbaarheid. We noemen een cryptografisch schema K-
veilig als voor elke a priori sleutelverdeling een aanval die werkt voor het schema
ook zou werken voor de meerderheid van super schema’s van hetzelfde type en
met dezelfde dimensies. We noemen een cryptografisch schema hermetisch als elke
aangetoonde zwakheid van dat schema ook aanwezig is bij de meerderheid van de
super schema’s met dezelfde dimensies. K-veilig en hermetisch zijn zeer strenge
definities van veiligheid en moeten het eenvoudig maken om bondige en heldere
cryptografische claims te formuleren.

In veel toepassingen wordt er stilzwijgend van uitgegaan dat encryptie een garantie
biedt voor de detectie van ongeoorloofde manipulaties tussen encryptor en decryp-
tor. De geboden bescherming hangt echter sterk af van de relatieve redundantie in
de boodschappen en het gebruikte encryptiemechanisme. We hebben de bovengren-
zen van de geboden bescherming onderzocht met betrekking tot de verschillende
soorten encryptie, twee soorten verdeelde redundantie en de toepassing van een
cryptografische hashfunctie. Hieruit blijkt dat in deze context de toepassing van
een cryptografische hashfunctie in combinatie met blokencryptie de voorkeur geniet.

4 Ontwerpstrategie

Onze ontwerpstrategie is er op gericht te komen tot encryptieschema’s, cijfers en
cryptografische hashfuncties met een aantal specifieke kenmerken. Een eerste wenselijk
kenmerk is eenvoud met betrekking tot beschrijving en implementatie. Een ander
kenmerk is structurele helderheid: de ontwerpen moeten gemakkelijk te analyseren
zijn, zodat men zich kan verzekeren van weerstand tegen bepaalde aanvallen. Boven-

4. ONTWERPSTRATEGIE 241

dien moeten de ontwerpen zich lenen tot efficiënte implementaties in hardware en
software.

Een nuttig nieuw concept in deze context is de cryptografische eindige toestands-
machine. Hiermee kunnen we blokcijfers, synchrone stroomcijfers en cryptografische
hashfuncties bouwen. De cryptografische eindige toestandsmachine bestaat func-
tioneel uit vier blokken: het toestandsregister, de buffer, de overgangstransformatie
en de controlelogica. Door middel van de overgangstransformatie wordt een nieuwe
toestand berekend uit de vorige toestand en de inhoud van de buffer. Dit noemen
we een iteratie. We gaan er van uit dat de overgangstransformatie omkeerbaar is,
een grote uniformiteit heeft en in hardware aanleiding geeft tot een korte cyclustijd.

Door middel van de controlelogica kan men aangeven wat er in een cyclus met
de toestand en de inhoud van de buffer gebeurt. De toestand kan worden geladen,
gëıtereerd, op 0 gezet of behouden. De buffer bestaat meestal uit een doorschuifreg-
ister verbonden met een ingang. Dit register kan worden geladen, behouden of op
0 gezet. De cryptografische schema’s worden gespecifieerd in functie van operaties
van de cryptografische eindige toestandsmachine.

In bijna alle ontwerpen bestaan blokcijfers uit het iteratief toepassen van een
bepaalde omkeerbare sleutelafhankelijke ronde-transformatie. In onze aanpak is
dat niet anders. In onze cryptografische eindige toestandsmachine bestaat de over-
gangstransformatie uit deze ronde-transformatie. De encryptie van één blok bestaat
uit het laden van het berichtblok in het toestandsregister, het uitvoeren van een
aantal iteraties en het uitlezen van het cryptogramblok uit het toestandsregister.
De buffer bevat de cijfersleutel.

Om historische redenen maken de meeste ontwerpen voor synchrone stroomcijfers
veelvuldig gebruik van lineair teruggekoppelde doorschuifregisters. De meerderheid
van deze ontwerpen biedt echter zeer weinig bescherming als er regelmatig hersyn-
chronisatie gebeurt zonder de introductie van nieuw sleutelmateriaal. Wij hebben
aangetoond dat in het geval van een lineaire initialisatie-afbeelding en een lineaire
overgangstransformatie, regelmatige hersynchronisatie leidt tot het volledig verdwi-
jnen van de cryptografische veiligheid.

Wij stellen voor om synchrone stroomcijfers te realiseren met een cryptografische
eindige toestandsmachine. De buffer en het toestandsregister worden gëınitialiseerd
door het laden van enkele initialisatieblokken en het uitvoeren van een aantal blanco
(zonder uitgang) iteraties. Daarna verschijnen er per iteratie een vast aantal toes-
tandsbits aan de uitgang.

Bijna alle ontwerpen van cryptografische hashfuncties zijn gebaseerd op de iter-
atieve toepassing van een compressiefunctie met een ingang van constante lengte.
Bij elke toepassing van de compressiefunctie wordt de tussentijdse kettingtoestand
samen met een ingangsblok omgezet naar de volgende tussentijdse kettingtoestand.
Het hashresultaat bestaat uit de waarde van de kettingtoestand nadat alle ingangs-
blokken aan de beurt zijn geweest. Dit beperkt de lengte van de kettingtoestand tot
de lengte van het hashresultaat.

Wij stellen voor om een cryptografische hashfunctie te realiseren met een cryp-
tografische eindige toestandsmachine. Nadat de buffer en het toestandsregister op 0
gezet zijn, worden de ingangsblokken in het register geladen. Voor elk ingangsblok

242 NEDERLANDSE SAMENVATTING

dat geladen wordt, gebeurt er een iteratie. Nadat alle ingangsblokken geladen zijn,
gebeuren er eventueel nog een aantal blanco (zonder ingang) iteraties. Daarna wordt
het hashresultaat afgeleid uit de toestand. Het iteratieproces kan men beschouwen
als een encryptie van de initiële toestand 0 naar de uiteindelijke toestand, met
de ingangsblokken als ronde-sleutels. Hierin bestaat de ronde-transformatie uit de
overgangstranformatie en het sleutelschema, dat de ronde-sleutels afleidt uit de ci-
jfersleutel, uit de buffer. Voor hashfuncties met sleutel worden de ingangsblokken
voorafgegaan en gevolgd door één of meer sleutelblokken. Een belangrijk voordeel
van onze aanpak is de afwezigheid van een bovengrens voor de lengte van de ket-
tingtoestand.

We geven een korte bespreking van de verschillende basiscomponenten die beschik-
baar zijn voor de beschrijving van cryptografische eindige toestandsmachines. Bit-
permutaties zijn over het algemeen goed geschikt voor hardware. In software moeten
we ons beperken tot speciale gevallen zoals cyclische bitrotaties en blokpermutaties.
Bitsgewijze Booleaanse operaties zijn uitstekend geschikt voor hardware en software.
Substitutietabellen zijn geschikt voor hardware als het aantal ingangen niet te groot
is, voor software als het aantal ingangen niet te klein is. Modulaire rekenkundige
bewerkingen lenen zich maar matig tot hardware-implementaties. In software is
het belangrijk dat de woordlengte aangepast is aan die van de processor. In onze
ontwerpen maken we vooral gebruik van bitpermutaties en bitsgewijze Booleaanse
operaties. We combineren deze operaties meestal in transformaties gekenmerkt door
symmetrie en parallellisme, zogenaamde translatie-invariante transformaties.

5 Propagatie en correlatie

De aspecten van Booleaanse afbeeldingen die de keuze en schikking van de compo-
nenten in onze ontwerpen bepalen, zijn verschilpropagatie en correlatie. De klasse
van aanvallen die gebruik maken van een voorspelbare verschilpropagatie wordt dif-
ferentië cryptanalyse (DC) [6] genoemd. De klasse van aanvallen die gebruik maken
van ongewenste correlaties noemt men lineaire cryptanalyse (LC) [71].

De originele formuleringen van LC en DC laten qua helderheid veel te wensen
over. Daarom stellen we zowel voor de beschrijving van correlaties als die van
verschilpropagatie een nieuw formalisme voor. De toepassing van deze nieuwe for-
malismen leidt tot een beter inzicht in de beschreven fenomenen en vergemakkelijkt
theoretische afleidingen en bewijzen.

De correlatie tussen twee Booleaanse functies wordt aangegeven met een cor-
relatiecoëfficiënt tussen −1 en +1. De lijst van de correlatiecoëfficiënten van een
Booleaanse functie met alle lineaire Booleaanse functies noemt men de Walsh-
Hadamard transformatie van die functie. Deze transformatie is een orthogonale
basistransformatie in reële vectorruimten waarby Booleaanse functies de coördinaten
vormen van vectoren met een speciale vorm. In deze context geeft de Walsh-
Hadamard transformatie een uitdrukking voor de Booleaanse functie in de vorm
van een lineaire combinatie van lineaire Booleaanse functies.

Door de correlatiecoëfficiënten tussen elke lineaire combinatie van uitgangsbits

5. PROPAGATIE EN CORRELATIE 243

en elke lineaire combinatie van ingangsbits van een Booleaanse afbeelding in een
matrix te schikken verkrijgen we zijn correlatiematrix. Uit de algebräısche inter-
pretatie van de Walsh-Hadamard transformatie volgt onmiddellijk een isomorfisme
tussen de samenstelling van Booleaanse afbeeldingen en de vermenigvuldiging van de
overeenkomstige correlatiematrices. Twee soorten componenten die veel voorkomen
in cryptografische ontwerpen zijn affiene afbeeldingen en afbeeldingen bestaande
uit de parallelle toepassing van een aantal substitutietabellen, zogenaamde blok-
parallelle afbeeldingen. De elementen van correlatiematrices van beide soorten af-
beeldingen zijn gemakkelijk te berekenen. Bovendien kunnen we op relatief een-
voudige wijze een aantal eigenschappen van correlatiematrices bewijzen.

Bij verschilpropagatie bestudeert men het bitsgewijze verschil tussen paren van
uitgangen van een Booleaanse afbeelding die overeenkomen met paren van ingangen
met een bepaald bitsgewijs verschil a. Het aantal paren met een bepaald verschil
aan de uitgang b gedeeld door het totaal aantal paren noemen we de prop ratio van
de verschilpropagatie van a naar b. Het negatieve binaire logaritme van de prop
ratio van een verschilpropagatie noemen we zijn restrictiegewicht. Prop ratio’s van
affiene en blok-parallelle afbeeldingen zijn gemakkelijk te berekenen.

Binnen ons formalisme is het gemakkelijk te bewijzen dat voor Booleaanse af-
beeldingen de tabel van de prop ratio’s en de tabel met de gekwadrateerde elementen
van de correlatiematrix verbonden zijn door een Walsh-Hadamard transformatie.

Onze formalismen zijn eenvoudig toe te passen op gëıtereerde transformaties.
Bij de beschrijving van correlatie spreken we van een lineair spoor met bijbehorende
correlatiebijdrage coëfficiënt tussen −1 en 1. De correlatie tussen een lineaire combi-
natie van ingangsbits en een lineaire combinatie van uitgangsbits bestaat dan uit de
som van de correlatiebijdrage coëfficiënten van de lineaire sporen die de twee lineaire
combinaties verbinden. Bij de beschrijving van verschilpropagatie geeft dit aanlei-
ding to het concept van differentieel spoor met bijbehorende prop ratio. De prop
ratio van de verschilpropagatie van de ingang naar de uitgang is gelijk aan de som
van alle prop ratio’s van de differentiële sporen die ingangsverschil en uitgangsver-
schil verbinden. De toepassing van onze formalismen op gëıtereerde transformaties
maakt de veelal stilzwijgende veronderstellingen en benaderingen in praktische LC
en DC aanvallen expliciet.

Vertrekkende van de correlatie- en verschilpropagatie-eigenschappen van lineaire
transformaties enerzijds en blok-parallelle transformaties anderzijds komen we tot
de formulering van de strategie van het brede spoor. Voor blok-parallelle transfor-
maties is het restrictiegewicht van een verschilpropagatie groter dan of gelijk aan
het produkt van het aantal betrokken substitutietabellen met het minimum restric-
tiegewicht van de tabellen. Het restrictiegewicht van een differentieel spoor is dus
groter dan of gelijk aan het produkt van het totaal aantal betrokken tabellen met het
minimum restrictiegewicht van de tabellen. De strategie van het brede spoor bestaat
er in om een ronde-transformatie of een overgangstransformatie samen te stellen
uit (onder andere) een blok-parallelle transformatie en een lineaire transformatie.
De (liefst kleine) substitutietabellen van de blok-parallelle transformatie worden zo
gekozen dat hun minimum restrictiegewicht zo groot mogelijk is. De lineaire trans-
formatie moet zo ontworpen worden dat er geen differentiële sporen zijn met een

244 NEDERLANDSE SAMENVATTING

klein aantal betrokken tabellen. Voor lineaire sporen geldt een analoge redenering.
De strategie van het brede spoor is niet gebonden aan blok-parallelle transformaties
maar kan even goed toegepast worden met bijvoorbeeld een translatie-invariante
transformatie als niet-lineaire component.

6 Translatie-invariante transformaties

Translatie-invariante transformaties zijn transformaties die commuteren met trans-
latie. Dit impliceert dat elke component van het beeld op dezelfde manier afhangt
van de componenten in zijn buurt. De beschrijving van deze lokale afbeelding is dus
voldoende voor de specificatie van de volledige transformatie. Door hun parallel-
lisme en symmetrie lenen translatie-invariante transformaties zich zeer goed voor
implementaties in hard- en software. Wij bestuderen alleen translatie-invariante
transformaties op binaire 1-dimensionale eindige vectoren. Translatie komt hier
overeen met een cyclische doorschuifoperatie.

Wat betreft omkeerbaarheid maken we een onderscheid tussen lokale en globale
omkeerbaarheid. De globale omkeerbaarheid van een translatie-invariante trans-
formatie kan worden gespecifieerd met een karakteristieke verzameling van gehele
getallen. Een globaal inverteerbare transformatie is dan omkeerbaar voor vectoren
met een dimensie die geen veelvoud is van enig element van deze karakteristieke
verzameling. Lokale omkeerbaarheid komt overeen met een lege karakteristieke
verzameling.

Lineaire translatie-invariante transformaties kunnen gemodelleerd worden door
vermenigvuldiging met een binaire veelterm modulo 1 + xn. Gebruik makende van
hun algebräısche eigenschappen kunnen we gemakkelijk de karakteristieke verza-
melingen van deze veeltermen bepalen. Voor niet-lineaire translatie-invariante trans-
formaties is een totaal andere aanpak vereist. Tot nu toe waren de enige in de lit-
eratuur vermelde omkeerbare niet-lineaire translatie-invariante transformaties van
het behouden-landschap-type. Onze nieuwe zaad-en-sprong-bewijsmethode brengt
een groot aantal nieuwe omkeerbare transformaties en hun overeenkomstige karak-
teristieke verzamelingen aan het licht.

Diffusie is de term die gebruikt wordt om de uitspreiding van informatie aan
te duiden. Wat betreft diffusie zijn de lineaire omkeerbare translatie-invariante
transformaties veruit superieur aan hun niet-lineaire tegenhangers. In deze context
definiëren we de Hamminggewicht-distributietabel en het vertakkingsgetal van een
lineaire transformatie. Beiden geven een goed beeld van de minimale diffusie die
een lineaire afbeelding realiseert met betrekking tot zowel verschilpropagatie als
correlatie.

Van alle omkeerbare niet-lineaire translatie-invariante transformaties is eigenlijk
alleen de meest eenvoudige, aangeduid met het symbool χ, nuttig voor ons. Door
zijn kleine implementatiecomplexiteit en zijn eenvoudige niet-lineaire eigenschappen
is het namelijk een ideale kandidaat voor de rol van niet-lineaire transformatie in
de strategie van het brede spoor. Het restrictiegewicht van een verschilpropagatie
hangt alleen af van het ingangsverschil. Met betrekking tot correlatie definiëren we

7. BLOKCIJFERS 245

analoog hiermee een correlatiegewicht dat alleen afhangt van de lineaire combinatie
van uitgangsbits.

7 Blokcijfers

Het is een voordeel voor een blokcijfer dat de transformatie en zijn inverse door
dezelfde hardwaremodule kunnen uitgevoerd worden. Dit wordt in de meeste blok-
cijfers gerealiseerd door toepassing van de zogenaamde Feistelstructuur. In een
Feistel-ronde-transformatie ondergaat echter maar de helft van het tussentijdse en-
cryptieresultaat een niet-lineaire transformatie. Van dit feit wordt dankbaar gebruik
gemaakt in LC en DC. Daarom stellen wij een nieuwe, meer uniforme structuur voor.
Hierin bestaat de ronde-transformatie uit de opeenvolging van een aantal eenvoudige
transformaties. Het opleggen van de zelf-inverse eigenschap leidt dan tot een aantal
algebräısche vergelijkingen waaraan de transformaties moeten voldoen. Het enige
verschil in encryptie en decryptie bestaat in de cijfersleutel en de zogenaamde ronde-
constanten.

De ronde-transformatie bestaat uit de opeenvolging van 4 verschillende transfor-
maties, elk met hun eigen specifieke bijdrage:

• een niet-lineaire transformatie,

• een lineaire transformatie voor de diffusie,

• de bitsgewijse optelling van de ronde-sleutel,

• bitpermutaties voor “verspreiding.”

Als niet-lineaire component stellen we een variant van χ voor, als lineaire component
een modulaire vermenigvuldiging met een veelterm en als bitpermutatie de cyclische
rotatie op deelblokken. In de resulterende structuur worden lineaire en differentiële
sporen bepaald door dezelfde vergelijkingen en kan men dus aan optimalisatie doen
met betrekking tot LC en DC in één enkele inspanning. Een ander aspect waar veel
aandacht aan besteed is, is het elimineren van zwakheden door symmetrie.

We stellen twee specifieke ontwerpen voor: 3-Way met een bloklengte van 96
bits en BaseKing met een bloklengte van 192 bits. Beiden zijn eenvoudig te im-
plementeren in hard- en software.

8 Stroom/hash modules

Synchrone stroomcijfers en cryptografische hashfuncties kunnen allebei gerealiseerd
worden door middel van een cryptografische eindige toestandsmachine. De voor-
waarden opgelegd door de twee toepassingen zijn verenigbaar en zelfs in hoge mate
gelijklopend. Dit heeft ons op het idee gebracht om cryptografische modules te on-
twerpen die kunnen gebruikt worden zowel voor hashen als voor synchrone stroomen-
cryptie. De belangrijkste component van de eindige toestandsmachine is de over-
gangstransformatie. Deze bestaat zoals in het geval van blokcijfers uit de opeenvol-
ging van een aantal eenvoudige transformaties: een niet-lineaire, een lineaire voor

246 NEDERLANDSE SAMENVATTING

diffusie, een bitpermutatie voor verspreiding, de bitsgewijze optelling van buffer bits
en de bitsgewijze optelling van een constante voor asymmetrie.

Met betrekking tot de hashfunctie is het ontwerp van de eindige toestandsma-
chine vooral gericht op de weerstand tegen botsingen. Een botsing komt overeen
met een differentieel spoor dat aanleiding geeft tot een verschil in het hashresultaat
gelijk aan 0. In het ontwerp streven we ernaar om controle van differentiële sporen
onmogelijk te maken. Dit doen we door ervoor te zorgen dat er geen differentiële
sporen kunnen voorkomen waarbij het restrictiegewicht kleiner is dan het aantal vri-
jheidsgraden in de ingangsblokken. Met betrekking tot het synchrone stroomcijfer
moeten we ervoor zorgen dat de uitgangsbits niet toelaten de inwendige toestand
te reconstrueren. Belangrijk in deze context zijn de lineaire sporen, die aangeven
met welke lineaire combinaties van toestandsbits de uitgangsbits gecorreleerd zijn.
De weerstand met betrekking tot aanvallen waarbij de cryptanalyst de publieke
parameter Q manipuleert, moet gerealiseerd worden in de blanco iteraties van de
initialisatie en kan bestudeerd worden met verschilpropagatie.

In dit kader hebben we Subterranean voorgesteld, een stroom/hash module
speciaal ontworpen voor hardware-implementaties. Subterranean heeft een in-
wendige toestand van 257 bits, een buffer bestaande uit een doorschuifregister van
8 trappen van elk 32 bits en een uitgang van 16 bits. De hashfunctie heet Subhash

en kan 32 bits hashen per klokcyclus. Het synchrone stroomcijfer heet Substream

en levert 16 encrypterende bits per klokcyclus. Onder leiding van Prof. Luc Clae-
sen van IMEC zijn we tot een chip-implementatie van Subterranean gekomen
in de MIETEC 2.4µm cmos standaardcellen technologie. Voor deze chips werden
hashsnelheden gemeten tot 572 Mbit/s en encryptiesnelheden tot 286 Mbit/s. Hun
toepasbaarheid wordt gëıllustreerd in een demonstratie-opstelling waarin een recht-
streekse videocommunicatieverbinding wordt beschermd met encryptie.

Het ontwerp van Subterranean is in grote mate bepaald door twee vroegere
voorstellen: synchrone stroomencryptie door middel van cellulaire automaten en de
hashfunctie Cellhash. Cellulaire automaten zijn automaten met een translatie-
invariante overgangstransformatie. In [104] stelde Stephen Wolfram voor om deze
automaten te gebruiken als synchrone stroomcijfers. Na experimenten met de door
hem voorgestelde cellulaire automaten kwamen we tot enkele bevindingen in ver-
band met omkeerbaarheid en diffusie. Dit heeft geleid tot de formulering van een
eigen concreet voorstel. Daarna hebben we onze verworven kennis van translatie-
invariante transformaties gebruikt in het ontwerp van Cellhash, een cryptografis-
che hashfunctie. Subhash is in feite een verbetering van Cellhash wat betreft
implementeerbaarheid en de correlatie- en propagatie-eigenschappen van de over-
drachtstransformatie. Als varianten van Subterranean vermelden we ons syn-
chroon stroomcijfer Jam en de hashfunctie Boognish. Jam kan beschouwd wor-
den als een miniatuurversie van Substream en werd ontworpen ter vervanging van
gekraakt stroomcijfer in een betaal-TV-systeem. Boognish was een poging om een
variant van Subhash te ontwerpen die ook geschikt is voor software-implementaties.
Achteraf zijn we tot de conclusie gekomen dat de inwendige toestand te kort is voor
de geambieerde cryptografische eigenschappen.

StepRightUp is een stroom/hash module die zeer goed geschikt is voor software-

9. ZELF-SYNCHRONISERENDE STROOMCIJFERS 247

implementaties. Alle operaties gebeuren op 32-bit woorden. De inwendige toestand
bestaat uit 17 woorden, de buffer uit een lineair teruggekoppeld doorschuifregister
met 33 trappen van elk 8 woorden. Het aantal bewerkingen per byte bedraagt zowel
voor de hashfunctie als voor het stroomcijfer 3,7 bitsgewijze Booleaanse operaties
en 0,5 cyclische doorschuifoperaties op 32-bit woorden. De belangrijkste nieuwe
elementen van StepRightUp ten opzichte van Subterranean zijn de terugkop-
peling in de buffer en de grootte van buffer en toestand.

9 Zelf-synchroniserende stroomcijfers

Bitsgewijze zelf-synchroniserende stroomcijfers hebben het voordeel dat ze aan een
bestaand communicatiesysteem kunnen toegevoegd worden zonder de noodzaak
voor bijkomende synchronisatie. Er is echter weinig literatuur over het ontwerp
en de analyse van deze componenten. In de meest verspreide manier om zelf-
synchroniserende stroomencryptie te realiseren wordt gewoon gebruik gemaakt van
een blokcijfer en een doorschuifregister. Dit schema vereist een volledige uitvoering
van het blokcijfer voor de encryptie van elke bit.

In dit domein hebben we ons toegelegd op het ontwerp van bitsgewijze zelf-
synchroniserende stroomcijfers geschikt voor implementatie in hardware. Hierbij
hebben wij ons grotendeels afgezet tegen de ontwerpstrategie voorgesteld door Ueli
Maurer in [74].

Eén van de centrale ideeën in [74] bestaat erin het zelf-synchroniserende stroom-
cijfer op te bouwen uit een eindige toestandsmachine (met eindig ingangsgeheugen)
die cryptografisch veilig is en een uitgangsfunctie die cryptografisch veilig is. Op de
keper beschouwd blijkt dit een onuitvoerbare constructie die overigens niet zinvol is.
Een andere reductionistische constructie voorgesteld in [74] is die van een stroomci-
jfer bestaande uit de parallelle constructie van meerdere stroomcijfers. Volgens elke
betekenisvolle definitie van veiligheid zou de resulterende constructie even veilig zijn
als de sterkste van de component-stroomcijfers. Dit is echter niet het geval voor
onze definities K-veilig en hermetisch.

In [74] wordt voorgesteld om een eindige toestandsmachine met eindig ingangs-
geheugen te bouwen door de toepassing van seriële en parallelle samenstelling van
zelf-synchroniserende stroomcijfers. De toepasbaarheid van deze constructiewijze
wordt gëıllustreerd met een concrete structuur. Na onderzoek blijkt deze structuur
aanleiding te geven tot ontoelaatbare zwakheden in het stroomcijfer. De belangri-
jkste redenen hiervoor zijn de slechte propagatie- en correlatie-eigenschappen van
serieel samengestelde zelf-synchroniserende stroomcijfers.

Hiertegenover plaatsen wij een eigen structuur. Zoals in [74] stellen we een zelf-
synchroniserend stroomcijfer samen uit twee bouwblokken. In ons geval is dat een
voorwaardelijk complementerend doorschuifregister (CCSR) en een pijplijnstructuur.
Er wordt echter van deze componenten niet verwacht dat ze op zichzelf cryptografis-
che veiligheid hebben. Voor een CCSR is de afbeelding van de laatste m ingangsbits
op de inwendige toestand een injectie. Ons concreet voorstel voor een CCSR heeft
nog de bijkomende eigenschappen van verbreding voor de grootste geheugens en

248 NEDERLANDSE SAMENVATTING

parallelle injectie. De pijplijnstructuur kan men vergelijken met een aantal blokcij-
ferronden met daartussen geheugencellen. De trappen van deze structuur zijn echter
niet gebonden aan dezelfde voorwaarden als de ronden in een blokcijfer. De ingang
van de CCSR bestaat uit de laatste cryptogrambit. De pijplijnstructuur heeft als
ingang de inwendige toestand van het CCSR en als uitgang de encrypterende bit.

Het gebruik van een CCSR en een pijplijnstructuur heeft gevolgen voor het
uitwendige gedrag van het zelf-synchroniserende stroomcijfer en de toepassing van
terugkoppeling. Beiden vormen echter geen probleem voor de veiligheid en de bruik-
baarheid.

10 Rekenkundige schema’s

Rekenkundige bewerkingen zijn veelgebruikte operaties in cryptografische schema’s.
Een onvoorzichtig gebruik kan echter aanleiding geven tot onaanvaardbare zwakhe-
den. Dit illustreren we met de botsingen die we gevonden hebben voor de cryp-
tografische hashfunctie FFT-Hash [96] en de klassen van zwakke sleutels voor het
blokcijfer IDEA [63].

FFT-Hash is een cryptografische hashfunctie met een kettingtransformatie die
de huidige 128-bit kettingtoestand samen met een 128-bit ingangsblok omzet naar
de volgende 128-bit kettingtoestand. Deze kettingtransformatie bestaat uit de iter-
atieve toepassing van een lineaire modulaire Fouriertransformatie en een niet-lineaire
recursieve transformatie. Door gericht gebruik te maken van de slechte propagatie
van modulaire vermenigvuldiging in het geval dat één van de argumenten 0 is, zijn
we er in geslaagd botsingen te genereren.

IDEA is een blokcijfer met een bloklengte van 64 bits en een sleutellengte van 128
bits. De basisblokken bestaan uit bitsgewijze optelling, optelling modulo 216 en ver-
menigvuldiging modulo 216+1 met 0000hex gëınterpreteerd als 216. Optelling modulo
216 heeft lineaire eigenschappen wat betreft de propagatie van de meest significante
bits en de correlatie van de minst significante bits. Vermenigvuldiging met een
subsleutel gelijk aan 1 komt overeen met de identitieke afbeelding, vermenigvuldig-
ing met −1 komt overeen met een complementatie van alle bits en vervolgens de
optelling van 2. In beide gevallen erft de vermenigvuldiging de lineaire eigenschap-
pen van de modulaire optelling. De voorwaarde dat een bepaalde multiplicatieve
sleutel gelijk is aan ±1 komt overeen met de voorwaarde dat 15 bepaalde bits van de
cijfersleutel gelijk zijn aan 0. Door deze voorwaarde op te leggen voor een bepaalde
deelverzameling van de multiplicatieve subsleutels kan men ervoor zorgen dat er een
bepaald lineair en gemakkelijk vaststelbaar verband bestaat tussen de ingang en de
uitgang in een IDEA-encryptie. De voorwaarden dat de multiplicatieve subsleutels
gelijk zijn aan ±1 herleiden zich tot de voorwaarde dat een bepaald gedeelte van
de sleutelbits gelijk is aan 0. In de praktische gevallen zijn er echter nog een aantal
sleutelbits vrij en is er dus een groot aantal sleutels waarvoor IDEA een vaststelbaar
lineair gedrag vertoont.

Vermenigvuldiging met een constante factor modulo 2n − 1, ofwel cyclische ver-
menigvuldiging, is een aantrekkelijke component voor cryptografische schema’s. Deze

11. BESLUITEN 249

operatie is translatie-invariant en combineert over het algemeen een hoge diffusie met
goede niet-lineaire eigenschappen. Bovendien kan ze compact beschreven worden en
heeft ze een relatief grote flexibiliteit in implementaties. Als de vermenigvuldigings-
factor copriem is met 2n−1 is de operatie omkeerbaar en bestaat de inverse operatie
uit vermenigvuldiging met de multiplicatieve inverse van de factor. De selectie van
een factor uit alle mogelijke kandidaten vereist de bepaling van een selectiecriterium.

Zowel in FFT-Hash als in IDEA hebben we gebruik gemaakt van het propa-
gatiegedrag van modulaire vermenigvuldiging in de meest ongunstige omstandighe-
den. Daarom hebben we als selectiecriterium gekozen voor de grootste nontriviale
prop ratio voor een factor. Dit komt overeen met het meest ongunstige verschil-
propagatiegedrag. Voor een woordlengte van 32 bits zijn er meer dan vier miljard
kandidaten. Voor grote woordlengten is er dus nood aan een efficiënte procedure
om de grootste prop ratio te bepalen voor een factor.

We hebben de verschilpropagatie voor cyclische vermenigvuldiging grondig on-
derzocht. Door gebruik te maken van de translatie-invariantie en de wisselwerking
tussen verschil modulo 2n−1 en bitsgewijs verschil zijn we gekomen tot de formuler-
ing van een aantal bruikbare eigenschappen. De grootste prop ratio blijkt overeen te
stemmen met het getal dat een bepaald zogenaamd ternair gewicht minimaliseert.
We realiseren ons dat de meest ongunstige correlatie-eigenschappen in feite even be-
langrijk, zoniet belangrijker zijn. De efficiënte bepaling van de grootste nontriviale
correlatie voor grote woordlengten is echter nog een open probleem.

Cyclische vermenigvuldiging op 32-bit woorden is de belangrijkste bewerking in
ons blokcijfer MMB. Dit blokcijfer heeft zowel een bloklengte als een sleutellengte van
128 bits en leent zich goed tot software-implementaties. Door onze ontwerpkeuzen te
baseren op worst-case gedrag vertoont MMB niet het type zwakheden dat aanwezig
is in FFT-Hash en IDEA.

11 Besluiten

De relevantie van dit werk situeert zich op twee vlakken. Enerzijds is er de kritiek op
bestaande ontwerppraktijken en zienswijzen en een alternatieve aanpak die zich hier
tegen afzet. Anderzijds zijn er de eigen bijdragen in de vorm van nieuwe aanvallen,
concrete ontwerpen en nieuwe formalismen.

Het ideaal van bewijsbare veiligheid wordt verworpen en vervangen door de
erkenning van de rol van de cryptografische claim. Deze claim heeft een dubbele
functie: een uitdaging voor cryptanalysten en een specificatie voor systeemontwer-
pers en gebruikers. De reductionistische aanpak wordt verworpen en vervangen door
een aanpak waarbij het ontwerp hoofdzakelijk gestuurd wordt door de studie van
de correlatie en verschilpropagatie. “Fundamenteel onderzoek” naar eigenschappen
van Booleaanse functies en substitutietabellen wordt verworpen ten koste van een
structurele aanpak waarbij de criteria voor deze componenten voortvloeien uit een
concrete ontwerpstrategie ingegeven door LC en DC. Deze strategie is gebaseerd
op helderheid en maakt veelvuldig gebruik van symmetrie. In dit kader stellen we
translatie-invariante transformaties voor als een nieuwe belangrijke klasse van ba-

250 NEDERLANDSE SAMENVATTING

siscomponenten voor cryptografische schema’s. In blokcijferontwerp is de klassieke
Feistelstructuur vervangen door een nieuwe structuur, en synchrone stroomcijfers en
hashfuncties zijn samengebracht in één module.

11. BESLUITEN 251

Onze belangrijkste concrete bijdragen zijn:

• een éénduidige classificatie van encryptieschema’s en cijfers,

• de nieuwe concepten K-veilig en hermetisch en hun implicaties,

• de cryptografische eindige toestandsmachine in het ontwerp van blokcijfers en
stroom/hash modules,

• een nieuw formalisme voor de beschrijving van verschilpropagatie en correlatie,
met het introduceren van correlatiematrices, prop ratio’s en het aantonen van
diverse onderlinge verbanden,

• de ontwerpstrategie van het brede spoor,

• de ontdekking van nieuwe klassen omkeerbare translatie-invariante transfor-
maties,

• de Hamminggewicht-distributietabel en het vertakkingsgetal van lineaire af-
beeldingen,

• de beschrijving van verschilpropagatie en correlatie in de transformatie χ,

• een nieuwe blokcijferstructuur waarin differentiële en lineaire sporen aan dezelfde
voorwaarden onderworpen zijn en de concrete ontwerpen 3-Way en BaseK-

ing,

• het ontwerp en de chip-implementatie van de stroom/hash module Subter-

ranean,

• het ontwerp van de efficiënte stroom/hash module StepRightUp,

• de weerlegging van een aantal misvattingen met betrekking tot het ontwerp
van zelf-synchroniserende stroomcijfers,

• onze ontwerpstrategie voor zelf-synchroniserende stroomcijfers, inclusief de
introductie van voorwaardelijk complementerende doorschuifregisters en een
concreet voorbeeldontwerp,

• het concept van hersynchronisatie-aanvallen op synchrone stroomcijfers, in-
clusief de beschrijving van vier concrete aanvallen,

• de constructie van botsingen voor FFT-Hash en de CA hashfunctie van Ivan
Damg̊ard,

• het aantonen van de beperkingen van de Even-Mansour blokcijfers,

• het aantonen van de klassen zwakke sleutels voor het blokcijfer IDEA,

• het onderzoek naar de verschilpropagatie van cyclische vermenigvuldiging,

252 NEDERLANDSE SAMENVATTING

• het ontwerp van het blokcijfer MMB.

We besluiten met enkele aanwijzingen voor verder onderzoek:

• cryptanalyse van de specifieke ontwerpen beschreven in deze thesis,

• ontwerp en analyse van efficiënte stroom/hash modules voor software zoals
StepRightUp,

• verbeteren van de efficiëntie van de algoritmen om de kritische differentiële en
lineaire sporen te vinden voor blokcijfers zoals 3-Way en BaseKing,

• onderzoek van de correlatie-eigenschappen van cyclische vermenigvuldiging,

• ontwerp van n-bit zelf-synchroniserende stroomcijfers met n groter dan 1,

• toepassen en uitbreiden van de theorie van correlatiematrices.

