
Google Confidential and Proprietary

Continuous Integration at 
Google Scale
By John Micco

Developer Infrastructure



Google Confidential and Proprietary

Speed and Scale

● >10,000 developers in 40+ offices

● 5000+ projects under active development

● 17k submissions per day (1 every 5 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 20+ sustained code changes per minute with 60+ peaks

● 50% of code changes monthly

● 100+ million test cases run per day 



Google Confidential and Proprietary

Overview

1. Continuous Integration Goals

2. Continuous Integration at Google

3. Practical Matters



Google Confidential and Proprietary

● Provide real-time information to build monitors
○ Identify failures fast
○ Identify culprit Changes 
○ Handle flaky tests

● Provide frequent green builds for cutting releases
○ Identify recent green builds
○ Show results of all testing together
○ Allow release tooling to choose a green build
○ Handle flaky tests

Continuous Integration



Google Confidential and Proprietary

● Develop Safely
○ Sync to last green changelist
○ Identify whether change will break the build before submit
○ Submit with confidence
○ Handle flaky tests

Continuous Integration (cont)



Google Confidential and Proprietary

Standard Continuous Build System
● Triggers builds in continuous cycle
● Cycle time = longest build + test cycle
● Tests many changes together
● Which change broke the build?



Google Confidential and Proprietary

● Triggers tests on every change
● Uses fine-grained dependencies 
● Change 2 broke test 1

Google Continuous Build System



Google Confidential and Proprietary

Continuous Integration Display



Google Confidential and Proprietary

● Identifies failures sooner

● Identifies culprit change precisely

○ Avoids divide-and-conquer and tribal knowledge

● Lowers compute costs using fine grained dependencies 

● Keeps the build green by reducing time to fix breaks

● Accepted enthusiastically by product teams

● Enables teams to ship with fast iteration times

○ Supports submit-to-production times of less than 36 

hours for some projects

Benefits



Google Confidential and Proprietary

● Requires enormous investment in compute resources (it 
helps to be at Google) grows in proportion to:
○ Submission rate
○ Average build + test time
○ Variants (debug, opt, valgrind, etc.)
○ Increasing dependencies on core libraries
○ Branches

● Requires updating dependencies on each change
○ Takes time to update - delays start of testing

Costs



Google Confidential and Proprietary

● Makes testing available before submit

● Uses fine-grained dependencies
○ Recalculate any dependency changes

● Uses same pool of compute resources at high priority

● Avoids breaking the build

● Captures contents of a change and tests in isolation
○ Tests against head

○ Identifies problems with missing files

● Integrates with 
○ submission tool - submit iff testing is green
○ Code Review Tool - results are posted to the review thread

Developing Safely - presubmit



Google Confidential and Proprietary

Example Presubmit Display



Google Confidential and Proprietary

External TAP 2.0 Architecture



Google Confidential and Proprietary

● System assumes tests pass or fail reliably given code
○ Tests that don't have this property are "flaky"

● Sources of test flakiness:
○ Infrastructure 

■ machine failure
■ environment / setup problems
■ leakage - one test impacting another
■ Overloading resources

○ Tests
■ race conditions
■ external dependencies
■ timeouts

○ Code-under-test
■ memory problems
■ order dependence (e.g. hash tables)

Practical Matters - Flaky Tests



Google Confidential and Proprietary

● Causes
○ Inability to find changes breaking the build - false positives
○ Inability to identify green builds for releases
○ Wasted work for build monitors
○ Wasted compute resources
○ Inappropriately failing presubmits - wasting developer time

● Solutions (Google does all of these):
○ Fix them!!!

■ Difficult - requires developer time
○ Hide them

■ Retry causing delays 
■ Identify infrastructure flakes
■ Use metrics to ignore

○ Track them
■ Provide metrics to prioritize fix / hide

Flaky Tests (cont)



Google Confidential and Proprietary

Practical Matters - Test Growth

● Sources of growth in test execution time
○ More developers = increased submission rate
○ More tests 
○ Longer running tests
○ Tests consuming more resources (threading)

● Examine the growth trends
○ Predict compute needs
○ Look for any build system features required



Build / Test Compute Resources

Ja
n 2011

Ja
n 2012

Ja
n 2013

 Ju
l 2

012

 Ju
l 2

011



Google Confidential and Proprietary

● Problems
○ Quadratic execution time growth
○ Ultimately cannot run every affected test @ every change
○ Low latency results still top requirement

● Solution: Just in time scheduling (JIT)

Test Growth



Continuous Integration: 
● Run every test affected at every changelist.

In Production:
● Build and run tests concurrently on Google’s distributed 

build and test backend.

JIT
as often as possible



JIT Scheduling

Schedule tests to run only when 
system has capacity.

Produce project-wide results at 
periodic changelists. 



Google Confidential and Proprietary

Same User Experience; Lower Cost

Culprit finding
● Failures / breaks between changes may be more 

difficult to localize to the offending change.

● Short-term: Command-line tool to find culprits 

● Longer Term: Integrated automatic culprit finding



Google Confidential and Proprietary

Same User Experience; Lower Cost

Flaky Tests
● Tests which only pass some of the time could cause 

fewer green statuses for projects.

● Short Term: Optionally retry failed tests

● Longer Term: Tightly integrated flake mitigation and 
automatic / manual re-running of suspected flakes



Google Confidential and Proprietary

Q & A

For more information:
● http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
● http://www.youtube.com/watch?v=b52aXZ2yi08
● http://www.infoq.com/presentations/Development-at-Google
● http://google-engtools.blogspot.com/
● http://misko.hevery.com/2008/11/11/clean-code-talks-dependency-injection/
● https://www.youtube.com/watch?v=KH2_sB1A6lA&feature=youtube_gdata_player

Q & A


