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Google Speed and Scale

e >10,000 developers in 40+ offices

e 5000+ projects under active development

e 17k submissions per day (1 every 5 seconds)

e Single monolithic code tree with mixed language code

e Development on one branch - submissions at head

e All builds from source

e 20+ sustained code changes per minute with 60+ peaks
e 50% of code changes monthly

e 100+ million test cases run per day
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Google  Overview

1. Continuous Integration Goals
2. Continuous Integration at Google

3. Practical Matters
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Google  Continuous Integration

e Provide real-time information to build monitors
O Identify failures fast
O Identify culprit Changes
O Handle flaky tests

e Provide frequent green builds for cutting releases
O ldentify recent green builds
O  Show results of all testing together
O Allow release tooling to choose a green build
O

Handle flaky tests



Google Continuous Integration (cont)

e Develop Safely

O Sync to last green changelist

O Identify whether change will break the build before submit
O Submit with confidence

O Handle flaky tests



Google Standard Continuous Build System

Triggers builds in continuous cycle
Cycle time = longest build + test cycle
Tests many changes together

Which change broke the build?

Change 1 Change 2 Change 3
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Test One Test One
Test Two Test Two




Google Google Continuous Build System

e Triggers tests on every change
e Uses fine-grained dependencies
e Change 2 broke test 1

Change 1 Change 2 Change 3

Test One

Test Two
Test One

Test Two
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Test One Test One
Test Two Test Two




Google Continuous Integration Display

Current Status J Grid L Testlog  Coverag Project Project Health (beta)
e’ \ History Failed / Broken v \ Search target << Head <Newer CLs 30805794 - 30804822 Older >
Showing 12 of 1166 targets: Failed / Broken Remove all filters
30805794 30805731 30805729 30805717 30805645 30805578 30805555 30805504 30805495 30805465 30805343 30805322 30805308 30805298 30805279 30805270 30805264 30805233 30805119 30805108 30805099 30805021 30804936 30804921 30804890 ﬁ::vnd
Changelist and submit imed , s s s 4 hrs 14 hrs 14 hrs 14 hrs 14 hrs s s s s s s s s 4 hrs 14 hrs 14 hrs 14 hrs s s s s
P s | | P P [ [ e e )
Affected targets: "< Faded:4 Faded:2 Faded:2 Faded:2 Faded:1 Passed: 1 Faded:1 Faded:2 Faded:2 Faded: 1 Faded: Faded: Faded:2  Faded: 1 Faded:1 Passed: 14 Faded:3 Passed: 266 Passed: 3 Faded:
Passed: 766 Passed: 528 Passed: 471 Passed: 183 Passed: 740 Passed: 226 Passed: 474 Passed: 113 Timed out: 1 Passed: 30 Passed: 175 Passed: 103 Passed: 254 Passed: 203 Passed: 254 Passed: 249 Passed: 273
Passed: 163
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Google Benefits

e Identifies failures sooner

e Identifies culprit change precisely

o Avoids divide-and-conquer and tribal knowledge

e Lowers compute costs using fine grained dependencies
e Keeps the build green by reducing time to fix breaks

e Accepted enthusiastically by product teams

e Enables teams to ship with fast iteration times

o Supports submit-to-production times of less than 36

hours for some projects



Google Costs

e Requires enormous investment in compute resources (it

helps to be at Google) grows in proportion to:
Submission rate

Average build + test time

Variants (debug, opt, valgrind, etc.)

Increasing dependencies on core libraries

o Branches

e Requires updating dependencies on each change
o Takes time to update - delays start of testing

O O O O



Google  Developing Safely - presubmit

e Makes testing available before submit
e Uses fine-grained dependencies
o Recalculate any dependency changes
e Uses same pool of compute resources at high priority
e Avoids breaking the build

e Captures contents of a change and tests in isolation
o Tests against head
o ldentifies problems with missing files

e Integrates with

o submission tool - submit iff testing is green

o Code Review Tool - results are posted to the review thread



Google  Example Presubmit Display

Pending CL 30795386 : Presubmit Still Running

V¥ still Running (1)

|§| - /ljavatests/com/google/payments/testing/malbec/scenarios/fromconsole/sellersignup:LargeTapTests [Details & Test History]

¥ Newly Failing (1)

E - /ljavatests/com/google/moneta/storedvalue/service:LargeTests [Details & Test History]

¥ Newly Passing (1)

‘— /ljavatests/com/google/checkout/external/virtualproxycard/servers:RpcFunctionalTests [Details & Test History]

P still Passing (1366)

> Skipped (223)
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Google  Practical Matters - Flaky Tests

e System assumes tests pass or fail reliably given code
O Tests that don't have this property are "flaky"

e Sources of test flakiness:

O Infrastructure
B machine failure
B environment / setup problems
B leakage - one test impacting another
m Overloading resources

O Tests
B race conditions
B external dependencies
B timeouts

O Code-under-test
B memory problems
B order dependence (e.g. hash tables)



Google  Flaky Tests (cont)

e (Causes

O

O O O

©)

Inability to find changes breaking the build - false positives
Inability to identify green builds for releases

Wasted work for build monitors

Wasted compute resources

Inappropriately failing presubmits - wasting developer time

e Solutions (Google does all of these):

O
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O

Fix them!!!

s Difficult - requires developer time
Hide them

s Retry causing delays

s |dentify infrastructure flakes

s Use metrics to ignore
Track them

s Provide metrics to prioritize fix / hide



Google  Practical Matters - Test Growth

e Sources of growth in test execution time
More developers = increased submission rate
More tests

Longer running tests

Tests consuming more resources (threading)

o O O O

e Examine the growth trends
o Predict compute needs
o Look for any build system features required



Build / Test Compute Resources

Build System Load (Years/Day)
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Google  Test Growth

e Problems

o Quadratic execution time growth
o Ultimately cannot run every affected test @ every change
o Low latency results still top requirement

e Solution: Just in time scheduling (JIT)
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Continuous Integration:

e Run every test affected at everyehangelist—

N |
as often as possible

In Production:
e Build and run tests concurrently on Google's distributed
build and test backend.



JT Scheduling

I” Schedule tests to run only when

g system has capacity.

ol

Produce project-wide results at
periodic changelists.




Google

Same User Experience; Lower Cost

Culprit finding

e Failures / breaks between changes may be more
difficult to localize to the offending change.

e Short-term: Command-line tool to find culprits

e Longer Term: Integrated automatic culprit finding



Google

Same User Experience; Lower Cost

Flaky Tests
e Tests which only pass some of the time could cause
fewer green statuses for projects.

e Short Term: Optionally retry failed tests

e Longer Term: Tightly integrated flake mitigation and
automatic / manual re-running of suspected flakes



Google Q& A

Q&A

For more information:
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.infoq.com/presentations/Development-at-Google
http://google-engtools.blogspot.com/
http://misko.hevery.com/2008/11/11/clean-code-talks-dependency-injection/

https://www.youtube.com/watch?v=KH2_ sB1A6IA&feature=youtube_gdata_player
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