Continuous Integration at
Google Google Scale

By John Micco

Developer Infrastructure

Google Speed and Scale

e >10,000 developers in 40+ offices

e 5000+ projects under active development

e 17k submissions per day (1 every 5 seconds)

e Single monolithic code tree with mixed language code

e Development on one branch - submissions at head

e All builds from source

e 20+ sustained code changes per minute with 60+ peaks
e 50% of code changes monthly

e 100+ million test cases run per day

Google Confidential and Proprietary

Google Overview

1. Continuous Integration Goals
2. Continuous Integration at Google

3. Practical Matters

Google Confidential and Proprietary

Google Continuous Integration

e Provide real-time information to build monitors
O Identify failures fast
O Identify culprit Changes
O Handle flaky tests

e Provide frequent green builds for cutting releases
O ldentify recent green builds
O Show results of all testing together
O Allow release tooling to choose a green build
O

Handle flaky tests

Google Continuous Integration (cont)

e Develop Safely

O Sync to last green changelist

O Identify whether change will break the build before submit
O Submit with confidence

O Handle flaky tests

Google Standard Continuous Build System

Triggers builds in continuous cycle
Cycle time = longest build + test cycle
Tests many changes together

Which change broke the build?

Change 1 Change 2 Change 3

1
L

Test One Test One
Test Two Test Two

Google Google Continuous Build System

e Triggers tests on every change
e Uses fine-grained dependencies
e Change 2 broke test 1

Change 1 Change 2 Change 3

Test One

Test Two
Test One

Test Two

|
Il
%

Test One Test One
Test Two Test Two

Google Continuous Integration Display

Current Status J Grid L Testlog Coverag Project Project Health (beta)
e’ \ History Failed / Broken v \ Search target << Head <Newer CLs 30805794 - 30804822 Older >
Showing 12 of 1166 targets: Failed / Broken Remove all filters
30805794 30805731 30805729 30805717 30805645 30805578 30805555 30805504 30805495 30805465 30805343 30805322 30805308 30805298 30805279 30805270 30805264 30805233 30805119 30805108 30805099 30805021 30804936 30804921 30804890 ﬁ::vnd
Changelist and submit imed , s s s 4 hrs 14 hrs 14 hrs 14 hrs 14 hrs s s s s s s s s 4 hrs 14 hrs 14 hrs 14 hrs s s s s
P s | | P P [[e e)
Affected targets: "< Faded:4 Faded:2 Faded:2 Faded:2 Faded:1 Passed: 1 Faded:1 Faded:2 Faded:2 Faded: 1 Faded: Faded: Faded:2 Faded: 1 Faded:1 Passed: 14 Faded:3 Passed: 266 Passed: 3 Faded:
Passed: 766 Passed: 528 Passed: 471 Passed: 183 Passed: 740 Passed: 226 Passed: 474 Passed: 113 Timed out: 1 Passed: 30 Passed: 175 Passed: 103 Passed: 254 Passed: 203 Passed: 254 Passed: 249 Passed: 273
Passed: 163

o

o

S @

&l & a

NNNNNNNONNERNR
3

S
<

Google Confidential and Proprietary

Google Benefits

e Identifies failures sooner

e Identifies culprit change precisely

o Avoids divide-and-conquer and tribal knowledge

e Lowers compute costs using fine grained dependencies
e Keeps the build green by reducing time to fix breaks

e Accepted enthusiastically by product teams

e Enables teams to ship with fast iteration times

o Supports submit-to-production times of less than 36

hours for some projects

Google Costs

e Requires enormous investment in compute resources (it

helps to be at Google) grows in proportion to:
Submission rate

Average build + test time

Variants (debug, opt, valgrind, etc.)

Increasing dependencies on core libraries

o Branches

e Requires updating dependencies on each change
o Takes time to update - delays start of testing

O O O O

Google Developing Safely - presubmit

e Makes testing available before submit
e Uses fine-grained dependencies
o Recalculate any dependency changes
e Uses same pool of compute resources at high priority
e Avoids breaking the build

e Captures contents of a change and tests in isolation
o Tests against head
o ldentifies problems with missing files

e Integrates with

o submission tool - submit iff testing is green

o Code Review Tool - results are posted to the review thread

Google Example Presubmit Display

Pending CL 30795386 : Presubmit Still Running

V¥ still Running (1)

|§| - /ljavatests/com/google/payments/testing/malbec/scenarios/fromconsole/sellersignup:LargeTapTests [Details & Test History]

¥ Newly Failing (1)

E - /ljavatests/com/google/moneta/storedvalue/service:LargeTests [Details & Test History]

¥ Newly Passing (1)

‘— /ljavatests/com/google/checkout/external/virtualproxycard/servers:RpcFunctionalTests [Details & Test History]

P still Passing (1366)

> Skipped (223)

Google Confidential and Proprietary

Naotifications
email/im

—— i ———

Results Storage /
Analysis

Results

Store API

(Project)
Status
\ Calculator ,

(Build/)
Test

\ Results /

Results
Storage

ST,

Presubmit
API

V 4
F
v 4
ﬁp_ >

Integration |
Testing

Release
Tool

Dependency
Service

| Project
Service

Scheduler

Flake
Detection

Build
Service

, | Culprit
~ build 5 o
progress J Finding

Build

Backend
Compute
Resoures

Command
Line

Google Practical Matters - Flaky Tests

e System assumes tests pass or fail reliably given code
O Tests that don't have this property are "flaky"

e Sources of test flakiness:

O Infrastructure
B machine failure
B environment / setup problems
B leakage - one test impacting another
m Overloading resources

O Tests
B race conditions
B external dependencies
B timeouts

O Code-under-test
B memory problems
B order dependence (e.g. hash tables)

Google Flaky Tests (cont)

e (Causes

O

O O O

©)

Inability to find changes breaking the build - false positives
Inability to identify green builds for releases

Wasted work for build monitors

Wasted compute resources

Inappropriately failing presubmits - wasting developer time

e Solutions (Google does all of these):

O

©)

O

Fix them!!!

s Difficult - requires developer time
Hide them

s Retry causing delays

s |dentify infrastructure flakes

s Use metrics to ignore
Track them

s Provide metrics to prioritize fix / hide

Google Practical Matters - Test Growth

e Sources of growth in test execution time
More developers = increased submission rate
More tests

Longer running tests

Tests consuming more resources (threading)

o O O O

e Examine the growth trends
o Predict compute needs
o Look for any build system features required

Build / Test Compute Resources

Build System Load (Years/Day)

70

60

50

Google Test Growth

e Problems

o Quadratic execution time growth
o Ultimately cannot run every affected test @ every change
o Low latency results still top requirement

e Solution: Just in time scheduling (JIT)

G%,/gle \ /(

Continuous Integration:

e Run every test affected at everyehangelist—

N |
as often as possible

In Production:
e Build and run tests concurrently on Google's distributed
build and test backend.

JT Scheduling

I” Schedule tests to run only when

g system has capacity.

ol

Produce project-wide results at
periodic changelists.

Google

Same User Experience; Lower Cost

Culprit finding

e Failures / breaks between changes may be more
difficult to localize to the offending change.

e Short-term: Command-line tool to find culprits

e Longer Term: Integrated automatic culprit finding

Google

Same User Experience; Lower Cost

Flaky Tests
e Tests which only pass some of the time could cause
fewer green statuses for projects.

e Short Term: Optionally retry failed tests

e Longer Term: Tightly integrated flake mitigation and
automatic / manual re-running of suspected flakes

Google Q& A

Q&A

For more information:
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.infoq.com/presentations/Development-at-Google
http://google-engtools.blogspot.com/
http://misko.hevery.com/2008/11/11/clean-code-talks-dependency-injection/

https://www.youtube.com/watch?v=KH2_ sB1A6IA&feature=youtube_gdata_player

Google Confidential and Proprietary

