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Abstract. Simplicial and ∆-structures of configuration spaces are investi-

gated. New connections between the homotopy groups of the 2-sphere and
the braid groups are given. The higher homotopy groups of the 2- sphere are

shown to be derived groups of the braid groups over the 2-sphere. Moreover

the higher homotopy groups of the 2-sphere are shown to be isomorphic to the
Brunnian braids over the 2-sphere modulo the Brunnian braids over the disk.
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1. Introduction

This paper introduces connections between the topology of configuration spaces
and certain objects of a simplicial nature described below. These connections ulti-
mately lead to geometric descriptions of elements of the homotopy groups of spheres
in terms of special kinds of braids.

Let

F (M,n) = {(x0, . . . , xn−1) ∈M × · · · ×M | xi 6= xj for i 6= j}
be the n th ordered configuration space of a space M . Let

di : π1(F (M,n + 1))→ π1(F (M,n))

be the group homomorphism π1(pi) induced by the coordinate projection

pi : F (M,n + 1)→ F (M,n), pi(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn),

for 0 ≤ i ≤ n, and suppose, for example, that M is a cell complex of dimension at
least 1, such that each F (M,k) is path-connected. Then the sequence of groups

F(M)π1 = {π1(F (M,n + 1))}n≥0

forms a ∆-group, that is, the homomorphism di satisfies the relation djdi = didj+1

for i ≤ j.
A detailed development of ∆-groups is given in Section 4. A ∆-set can be

regarded as a simplicial set without degeneracies; thus the only operations are
faces. A ∆-group G = {Gn}n≥0 is a ∆-set with the additional properties that each
Gn is a group and all faces are group homomorphisms. Let X be a ∆-set and let
Z(X ) be the free abelian group generated (dimension-wise) by X . Then Z(X ) is a
∆-group. Recall that the homology of X is obtained by taking the derived functor
on Z(X ). Namely, Z(X ) is naturally a chain complex, and the homology of X is by
definition the homology of the chain complex Z(X ).

For a general (possibly noncommutative) ∆-group G, there is a similar derived
functor described as follows. Define the Moore complex by

NnG =
⋂
i≥1

Ker(di : Gn → Gn−1).

The homomorphism d0 : Gn → Gn−1 induces a homomorphism d0 : NnG → Nn−1G
so as to make NG = {NnG, d0}n≥0 a ‘chain complex’ (of possibly noncommutative
groups); that is, the composite

d0 ◦ d0 : Nn+1G → NnG → Nn−1G
is the trivial map for any n. The set of left cosets πn(G), which is not necessarily
a group, is defined to be

πn(G) = Ker(d0 : NnG → Nn−1G)/ d0(Nn+1G).
Although the set of left cosets πn(G) need not be a group in general, it turns out
that πn(G) is a group in many natural cases. (See Subsection 4.1 for details.)

Recall that for a surface M the group π1(F (M,n)) is called the n-strand pure
braid group over M . The purpose of this paper is to investigate the ∆-structure on
F(M)π1 . As consequences, several connections between braid groups and the ho-
motopy groups of S2 are given. The first result concerns F(S2)π1 = {π1(F (S2, n +
1))}n≥0, the sequence of pure braid groups over S2 with faces described above.

Theorem 1.1. Let F(S2)π1 be the ∆-group defined above. Then for each n ≥ 1
πn(F(S2)π1) is a group, and there is an isomorphism of groups

πn(F(S2)π1) ∼= πn(S2)

for n ≥ 4.
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Low-dimensional specific computations of the groups πn(F(S2)π1) for n ≤ 3
are described in Subsection 7.1. One particular point is that π3(F(S2)π1) is a
noncommutative group with center isomorphic to π3(S2) ∼= Z. This information
shows that F(S2)π1 does not have a simplicial group structure. On the other
hand, it emerges that the ∆-group F(M)π1 is close to being a simplicial group
(see Subsection 4.2 for details.) The isomorphisms in Theorem 1.1 are obtained
by establishing a connection, described in subsection 6.1, between the ∆-group
F(S2)π1 and Milnor’s free group construction F [S1] with geometric realization
homotopy equivalent to ΩS2.

Theorem 1.1 describes each (higher) homotopy group of the 2-sphere as a de-
rived group of the pure braid groups over S2. In other words, πn(S2) is a certain
‘canonical’ subquotient of the pure braid group F(S2)π1

n = π1(F (S2, n + 1)) for
n ≥ 4. In the isomorphism of the theorem, on the right, the groups πn(S2) (n ≥ 4)
are all known to be finite in case n ≥ 4. Next, recall the classical isomorphism
πn(S2) ∼= πn(S3) for n ≥ 3 that follows at once from the Hopf fibration. In addi-
tion, the following classical result due to Serre can be found in Spanier’s book [66,
Corollary 9.7.12]: Let n ≥ 3 be odd and p prime. Then πi(Sn) and πi−n+3(S3)
have isomorphic p-primary components if i < 4p+n− 6. Some important elements
in higher stable homotopy groups of spheres are suspensions of elements in the
homotopy groups of the 3-sphere originating from π∗(S2), see for instance [67].

For the groups on the left in Theorem 1.1, recall that the center Z(F(S2)π1
n )

is Z/2 for n ≥ 2, and F(S2)π1
n

/
Z(F(S2)π1

n ) is the pure mapping class group on
the 2-sphere with n + 1 punctured points, see [6]. Theorem 1.1 also describes the
(higher) homotopy groups of the 2-sphere as derived groups of pure mapping class
groups.

Observe that the symmetric group Sn acts on F (M,n) by permuting the n
coordinates. Let B(M,n) denote the quotient space Sn\F (M,n). An element in
π1(B(M,n)) is called a braid of n strings over M and π1(B(M,n)) is known as the
n-strand braid group over M . Since Sn acts freely on F (M,n), the quotient map
F (M,n)→ B(M,n) is a covering. Thus any loop in B(M,n) admits a unique path-
lifting to F (M,n) with a specified basepoint, and so the elements in π1(B(M,n))
are in one-to-one correspondence with the geometric braids of n strings on M . (See
Subsection 3.2 for details.) A braid of n strings is called Brunnian if it becomes
a trivial braid after removing any one of its strings. For instance, the well-known
Borromean rings comprise the link obtained by closing up a Brunnian braid of three
strings over D2.

Let Brunn(M) be the set of Brunnian braids of n-strings on M . Then Brunn(M)
is a group under composition of braids. Observe that the canonical inclusion of the
disk into the sphere f : D2 ↪→ S2 induces a group homomorphism

f∗ : Brunn(D2)→ Brunn(S2).

As noted in Proposition 4.2.5, the groups Brunn(M) are free for n ≥ 4 when M is
a surface.

Theorem 1.2. There is an exact sequence of groups

1 - Brunn+1(S2) - Brunn(D2)
f∗- Brunn(S2) - πn−1(S2) - 1

for n ≥ 5.

The methods for proving this theorem are to describe the Brunnian braids
Brunn(M) as the cycles in the ∆-group F(M)π1 , and to analyze the short ex-
act sequence of ∆-groups associated to the epimorphism F(D2)π1 � F(S2)π1 . The
analysis for low-dimensional cases where n ≤ 4 is given in Subsection 7.3.
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Theorem 1.2 reveals that any nontrivial element in the (higher) homotopy groups
of the sphere can be represented by a Brunnian braid over S2 that is not Brunnian
over D2. Roughly speaking, the ‘difference’ between the Brunnian braids over
S2 and those over D2 are exactly measured by the homotopy groups. By means
of canonical relations between braids and the mapping classes, this opens up the
possibility of studying the homotopy groups of S2 by geometry on braids or mapping
class groups.

There is also a presentation of the homotopy groups of the 2-sphere solely in
terms of Brunnian braids over the disk. First consider an operation ∂̃ : Bn+1 →
Bn := π1(B(D2, n)) as follows. Let δ : F (C, n + 1) −→ F (C, n) be the map defined
by

δ(z0, z1, . . . , zn) =
(

1
z̄1 − z̄0

,
1

z̄2 − z̄0
, . . . ,

1
z̄n − z̄0

)
,

corresponding geometrically to the reflection map in C about the unit circle cen-
tered at z0. In Subsection 6.5 on fundamental groupoids, it is shown that δ induces
a function ∂̃ : Bn+1 → Bn that restricts to a group homomorphism from Pn+1

to Pn := π1(F (D2, n)) and from Brunn+1(D2) to Brunn(D2). (However, the func-
tion ∂̃ : Bn+1 → Bn is not itself a group homomorphism.) Notice that there is a
homomorphism χ : Bn −→ Bn that sends each standard generator to its inverse,
because such a homomorphism preserves the relations for the braid group. Like-
wise χ restricts to a group homomorphism from Pn to Pn and from Brunn(D2) to
Brunn(D2). Composing χ with ∂̃ gives a homomorphism ∂ on Brunn+1(D2) that
maps into Brunn(D2) and has the further property that ∂ ◦ ∂ is trivial. There is
the associated chain complex (Brun(D2), ∂) in the sense of the Moore complex as
described above for nonabelian groups:

· · · → Brunn+1(D2) ∂→ Brunn(D2) ∂→ Brunn−1(D2)→ · · · → Brun1(D2) = 1.

Theorem 1.3. For all n there is an isomorphism of groups

Hn(Brun(D2)) ∼= πn(S2).

The proof arises as a construction of a ∆-group Γ that can be regarded as a
model for S2, in that πn(Γ) ∼= πn(S2) for all n. Since S2 is not an H-space, it is
not homotopy equivalent to the geometric realization of a simplicial group. Hence
the model above for S2 can be seen as a counterpart of the usual construction of a
simplicial group model for an H-space.

Theorems 1.1 and 1.2 are obtained by considering the special, but informative,
cases given by M = D2 or S2. There are related simplicial groups associated to
many configuration spaces as follows, where a metric space with a steady flow is
used. Let (M,d) be a metric space with basepoint w and let R+ = [0,∞). A steady
flow over M is a (continuous) map

θ : R+ ×M →M

such that
(1) for any x ∈M, θ(0, x) = x and for t

0 < d(θ(t, x), x) ≤ t;

(2) θ|R+×{w} : R+ × {w} →M is one-to-one;
(3) there exists a function ε : R+ → (0,+∞), t 7→ εt, such that

θ([0, εt)× {θ(t, w)}) ⊆ θ([t,∞)× {w})

for any t ∈ R+.
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Features of steady flows are developed in Section 3 below. For instance, if M
is a differentiable manifold with a nonvanishing vector field, then M has a steady
flow – see Proposition 3.2.4.

Let [A,X] denote the set of pointed homotopy classes of maps. Recall that the
pointed homotopy classes of maps [A,X] is a group if A is a cogroup space. In
particular, [A, F (M,n)] is a group if A is a cogroup space. Moreover, the face and
degeneracy operations induced by the pointed maps for a metric space M with a
steady flow satisfy the simplicial identities up to pointed homotopies.

Let M and A be pointed spaces. Define Γ∗(A,M) with

Γn(A,M) = [A, F (M,n + 1)]

for n ≥ 0. A space M is said to have a good basepoint w if there is a continuous
injection θ̃ : R+ → M with θ̃(0) = w. Thus in particular a metric space with a
steady flow has a good basepoint.

Theorem 1.4. Let M be a space with a good basepoint and let A be a pointed space.
Then the following hold.

(i) The projection maps specified by Equation (9) in Section 5 give Γ∗(A,M)
the structure of a ∆-set.

(ii) If M is a metric space with a steady flow, then the degeneracy maps speci-
fied in Equation (10) of Section 5 give Γ∗(A,M) the structure of a simpli-
cial set. Furthermore, if A is a suspension (or more generally, a cogroup),
then Γ∗(A,M) is a simplicial group.

Remark. In case M = Ck for k > 1, and F (Ck, n + 1) is localized at the rational
numbers, then [ΣΩS2, F (Ck, n + 1)] is isomorphic to the Malcev completion of the
(n + 1) st pure braid group Pn+1 (see [61]).

Some historical remarks concerning simplicial groups and this paper are given
next. As a combinatorial tool for studying homotopy theory, simplicial groups
were first studied by J. C. Moore [56]. The classical Moore theorem states that
π∗(|G|) ∼= H∗(NG), where |G| is the geometric realization of G and NG is the Moore
chain complex of G described as above. Milnor [54] then proved that any loop
space is (weakly) homotopy equivalent to a geometric realization of a simplicial
group, and so, theoretically speaking, the homotopy groups of any space can be
determined as the homology of a Moore chain complex. It is possible that two
simplicial groups with the same homotopy type have sharply different group struc-
tures. Simplicial group models for loop spaces have been studied by many people,
see for instance [3, 13, 17, 40, 55, 56, 59, 65, 69]. Different simplicial group models
for the same loop space may give different homotopy information. For example,
the classical Adams spectral sequence arises as the associated graded by taking
the mod p descending central series of Kan’s G-construction on reduced simplicial
sets, [10, 11, 21]. On the other hand, one could have a perfect simplicial group
model (that is, the abelianization is the trivial group) for certain loop spaces by
using Carlsson’s construction [69]. For this model, the descending central series
will not give any information as the groups are perfect, but word filtration provides
different information.

Recently, by using Milnor’s free group construction on the circle [55], which is
a simplicial group model for ΩS2, it was proved that the general homotopy group
πn(S2) is isomorphic to the center of a combinatorially given group Gn with n
generators and certain systematic relations [70, Theorem 1.4]. Moreover the Artin
braid group Bn acts on the group Gn and the homotopy group πn(S2) is given by
the fixed set of the pure braid group Pn action on Gn [71, Theorem 1.2].

It was shown in [18] that Milnor’s free group construction for the circle F [S1]
admits a faithful representation into a simplicial group arising from Artin’s pure
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braid groups with a simplicial structure analogous to that above. That the repre-
sentation is faithful arises from properties of Yang-Baxter Lie algebras. Since one
of the definitions of braid groups is as the fundamental groups of unordered con-
figuration spaces, the relations between Artin braids and homotopy groups given
in [18, 71] are extended in this article by studying connections between the topology
of configuration spaces, and variations of simplicial groups.

The methods in this article for constructing simplicial and ∆-group models de-
part from traditional group-theoretical constructions. In particular, here group-
theoretic features of the simplicial and ∆-structures on configuration spaces are
considered intrinsically. This approach differs from classical approaches which ad-
dress functors from sets to groups for obtaining simplicial group models.

Theorems 1.1-1.4 suggest that further simplicial group models may be obtained
by systematically studying important mathematical objects in different areas. The
simplicial groups that arise may give connections between homotopy theory and
other areas; and the homotopy groups may describe certain global invariants in a
novel yet canonical way. For instance, Theorem 1.2 describes the difference between
the Brunnian braids over the sphere and those over the disk.

Configuration spaces were introduced mathematically by E. Fadell and L. Neuwirth
[26] in 1962, and have been studied in various areas of mathematics and physics.
In low-dimensional topology, configuration spaces form one of the basic tools for
studying links and knots; for instance, for finding defining relations in the braid
groups of surfaces [6] and for finding invariants of knots and links, see for in-
stance [8, 9, 14, 43, 44, 45]. In knot theory, a Brunnian link is defined to be a
nontrivial link such that every proper sublink is trivial [60, page. 67]. A Brunnian
braid was called a decomposable braid in [48] and a smooth braid in [39]. Clearly a
link obtained by closing up a Brunnian braid is a Brunnian link, but there are Brun-
nian links, for example the Whitehead link, that cannot be obtained by closing up
a Brunnian braid. In addition, a result of Mangum and Stanford is that Brunnian
links are determined by their complements [51]. Additional discussions concerning
the geometric properties of Brunnian links and Brunnian mapping classes are given
in [51, 68].

More discussion on Brunnian links can be found in [24, 58], while some applica-
tions of Brunnian links to bio-organic chemistry occur in [49]. In the terminology
here, a Brunnian cycle means a Moore cycle in a ∆ or simplicial group (or set).
Theorems 1.1 and 1.2 give new information on Brunnian braids and this informa-
tion is related to the homotopy groups. There are some problems arising from the
representations of the braid groups that are equivalent to finding a free basis for
Moore cycles (see Subsection 8 for details.)

In addition to low-dimensional topology, the braid groups and mapping class
groups of course have wide use in many other areas such as algebraic geometry,
number theory and quantum mechanics. The homotopy groups of spheres thus arise
as new derived groups of these useful groups, and might thereby admit applications
in many areas. On the other hand, Theorems 1.1 and 1.2 also suggest that it might
be possible to study the homotopy groups of spheres by using methods in different
areas of mathematics and physics. In algebraic geometry, observe that the sphere
S2 is homeomorphic to the projective space CP1. The space F (CP1, n) is one of
increasing importance in algebraic geometry.

There is a classical decomposition which has been used in several places:

F (CP1, n) ≈ F (CP1, 3)× F (C− {0, 1}, n− 3)

for n ≥ 3. This decomposition essentially derives from the classical ‘fundamental
theorem of projective geometry’. (See Section 2 for details.) Input from mathe-
matical physics has recently spurred much interest in the compactifications of these
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spaces. Observe that the Brunnian braids over S2 can be represented by certain
loops in F (CP1, n). It therefore seems possible that one could study the homotopy
groups π∗(S2) by using methods in algebraic geometry prompted by physical con-
nections. So far it is not clear whether the homotopy groups π∗(S2), as the derived
groups of the fundamental groups of the spaces F (CP1, n), provide new information
to algebraic geometry or physics, but there are natural connections.

The homotopy groups π∗(S2) are known for ∗ ≤ 64, see [22]. Up to this range,
by using Theorem 1.2, we are able to determine the cokernel of f∗ : Brunn(D2) →
Brunn(S2). For instance, Brun5(S2) mod Brun5(D2) is isomorphic to π4(S2) =
Z/2. The general homotopy groups π∗(S2) are unknown of course.

In this article, it will be assumed that the space M has a good basepoint w,
namely, there is a continuous injection θ̃ : R+ → M with θ̃(0) = w. The basepoint
for F (M,n+1) is (w0, . . . , wn), where w0 is a good basepoint for M and wi = θ̃(i).

The article is organized as follows. Section 2 gives the decomposition of F (CP1, n)
and its connections to projective geometry. Simplicial structures of braids are given
in Section 3. In Section 4, the relationship between configuration spaces and ∆-
groups is given. Theorem 1.4 is proved in Section 5. The proofs of Theorems 1.1, 1.2
and 1.3 are given in Section 6, followed by analysis of low-dimensional cases in Sec-
tion 7, and miscellaneous remarks in Section 8.

The authors would like to thank Professors John Moore, Joan Birman, Mark
Mahowald, Cameron Gordon, Joe Neisendorfer and John Harper for helpful discus-
sions. These conversations defined what was most important in this paper. The
authors also would like to thank many of their colleagues for their suggestions
and encouragement on this project, particularly their colleagues from the National
University of Singapore and the University of Rochester.

2. Projective Geometry and a Decomposition of F (S2, n)

Given a topological field K, recall that a hyperplane of the projective space

KPm = (Km+1 − {0})/GL1(K)

is the image under the projection Km+1 − {0} → KPm of a subspace of Km+1

of dimension m. Let GP(KPm, r) be the configuration space of r points in KPm

in general position; in other words it is the subspace of F (KPm, r) such that no
m + 1 points lie on a hyperplane. In the particular case when m = 1, this require-
ment is that the points in the projective line should be distinct. It follows that
GP(KP 1, n) = F (KP 1, n). The action of PGLm+1(K) on KPm extends diago-
nally, to give an action on F (KPm, r).

The classical ‘Fundamental Theorem of Projective Geometry’ can be expressed
in current language as follows.

Lemma 2.1. PGLm+1(K) acts freely and transitively on GP(KPm, m + 2).

Proof. Freeness is proved in, for example, [34, (7.1.1)], and transitivity in, say, [46,
(2.22)]. �

It follows that the image of a fixed configuration q of GP(KPm, m + 2) deter-
mines a bijection from PGLm+1(K) to GP(KPm, m + 2). In fact, this bijection is
easily seen to be a homeomorphism labelled Φ.

Next, given any configuration q ∈ GP(KPm, q) with underlying set Q ∈ KPm,
define the space GP(KPm −Q, r) by requiring that r ∈ GP(KPm −Q, r) if q ∪ r
(ordered union) represents a configuration in GP(KPm, q + r).

Theorem 2.2. Let q ∈ GP(KPm, m + 2) with underlying set Q ∈ KPm. Then
for n ≥ 0 there are homeomorphisms from GP(KPm − Q, n) × PGLm+1(K) to
GP(KPm −Q, n)×GP(KPm, m + 2) and to GP(KPm, n + m + 2).
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Proof. The first homeomorphism is id × Φ. The second sends a point (r, α) in
GP(KPm −Q, n)× PGLm+1(K) to αq ∪ αr. �

Since GP(KPm − Q, 0) is a one-point space, this result generalizes what was
stated before. Another case, m = n = 1, is also classical, because the punctured line
GP(KP 1 − {0, 1,∞}, 1) = KP 1 − {0, 1,∞} is just the cross-ratio. More generally,
that F (KP 1, n+3) forms a principal PGL2(K)-bundle over F (KP 1−{0, 1,∞}, n)
is well-known to algebraic geometers. The fact that the bundle is trivial is also
recorded in [7].

Other specializations are as follows which exploit the homeomorphisms

CP 1 ≈ S2 ≈ R2 ∪ {∞}, and RP1 ≈ S1 ≈ R1 ∪ {∞},

and the well-known homotopy equivalences PGL2(C) ' RP3 ' PGL3(R) and
PGL2(R) ' S1.

Corollary 2.3. The homeomorphisms of the theorem above give rise to the follow-
ing homeomorphisms and homotopy equivalences.

(i) F (S2, n + 3) ≈ F (R2 − {0, 1}, n)× F (S2, 3) ' F (R2 − {0, 1}, n)× RP3;
(ii) F (S1, n + 3) ≈ F (R1 − {0, 1}, n)× F (S1, 3) ' F (R1 − {0, 1}, n)× S1;
(iii) GP(RP2, n+4) ' GP(RP2−∆, n)×RP3. (Here, ∆ represents the standard

coordinate simplex of four points in RP2.) �

Remark. The decomposition in part (i) has been given in [7] and also [29, Theorem
2.1]. The decomposition in (ii) is a special case of a decomposition given by Fadell
and Neuwirth [26].

The authors are grateful to B. Hassett and J. Morava for helpful communica-
tions concerning the Grothendieck-Mumford-Knudsen compactification M̄0,n+3(C)
of F (R2 − {0, 1}, n), and its significance in algebraic geometry and mathematical
physics. This is the moduli space of marked stable algebraic curves of genus zero
(having at worst) double points, and at least three marked points on each irre-
ducible component). It is a smooth variety of complex dimension n whose (rational)
homology has been shown to be isomorphic to its Chow ring and comprise finite-
dimensional vector spaces concentrated in even dimensions [41]. The computation
results from an explicit factorization, as a product of blow-ups, of the extension to
M̄0,n+3(C) of the natural inclusion of F (R2 − {0, 1}, n) in (S2)n. More recently,
the compactification M̄0,n+3(R) of F (R1 − {0, 1}, n) has also been studied; it has
been shown to be aspherical [23], although its homology is less well understood
[25]. For further work on compactifications and homology of configuration spaces
of algebraic varieties, see [31].

3. Simplicial Structures on Configurations

3.1. Crossed Simplicial Groups. LetO be the category of finite ordered sets and
ordered functions, where a function f is ordered if f(x) ≤ f(y) when x ≤ y. The
category O has objects [n] = {0, . . . , n} for n ≥ 0 and morphisms are generated by
the face functions di : [n − 1] → [n] (which misses i) and the degeneracy functions
si : [n + 1] → [n] (which hits i twice) for 0 ≤ i ≤ n. Recall that a simplicial
object X over a category C is a contravariant functor from O to C. In other words,
X = {Xn}n≥0, where Xn = X ([n]). The face di : Xn → Xn−1 is given by di = X (di)
and the degeneracy si : Xn → Xn+1 is given by si = X (si) for 0 ≤ i ≤ n. The
simplicial identities follow from the well-known formulas for functions di and sj in
the category O. A simplicial object over sets (resp. monoids, groups, Lie algebras,
spaces, etc) is called a simplicial set (resp. monoid, group, Lie algebra, space, etc).
Standard references for the theory of simplicial objects are [21, 52].
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Example 3.1.1. Let Sn+1 denote the symmetric group of bijections of the symbols
0, 1, . . . , n. Sometimes right actions of Sn are used by requiring i · σ = σ−1(i). Let
S = {Sn+1}n≥0 be the sequence of symmetric groups of degree n + 1. Then S is a
simplicial set in the following way. The face di : Sn+1 → Sn is uniquely determined
by the commutative diagram

(1)

[n− 1]
di·σ

- [n]

[n− 1]

di(σ)

? di
- [n]

σ

?

for any σ ∈ Sn+1, that is, di(σ) = si◦σ◦dσ−1(i). The degeneracies si : Sn+1 → Sn+2

are determined uniquely by requiring

(2) si(σ)(σ−1(i)) = i, si(σ)(σ−1(i) + 1) = i + 1

and the diagram

(3)

[n + 1]
si·σ

- [n]

[n + 1]

si(σ)

? si
- [n]

σ

?

commutes, that is

si(σ)(k) =

 (si)−1σsσ−1(i)(k) k 6= σ−1(i), σ−1(i) + 1,
i k = σ−1(i),

i + 1 k = σ−1(i) + 1.

Note that Equation 2 follows from the commutative diagrams 1 and 3 together with
simplicial identities: s1s0 = s0s0 for the case n = 0 and the expression for dksi,
k 6= i, i + 1, for the case n ≥ 1.

Fiedorowicz and Loday defined crossed simplicial groups [30].
A crossed simplicial group is a simplicial set G = {Gn}n≥0 for which each Gn is

a group, together with a group homomorphism µ : Gn → Sn+1, g 7→ µg for each n,
such that

(i) µ is a simplicial map, and
(ii) for 0 ≤ i ≤ n, di(gg′) = di(g)di·µg

(g′) and si(gg′) = si(g)si·µg
(g′).

It is routine to see that this definition is equivalent to the characterization given
in [30, Proposition 1.7]. The key example is that the simplicial set S with µ as the
identity map is a crossed simplicial group. A simplicial group G becomes a crossed
simplicial group when the homomorphism µ : Gn → Sn+1 is taken to be the trivial
map. On the other hand, a crossed simplicial group need not be a simplicial group
because the morphisms di and si need not be group homomorphisms.

A morphism f : H → G of crossed simplicial groups is a collection of group
homomorphisms fn : Hn → Gn such that f = {fn} is a simplicial map and also
µH = µG ◦ f . In particular, if each fn is an inclusion map, then H is a crossed
simplicial subgroup of G. From our definition, each crossed simplicial group G comes
with a distinguished morphism µ : G → S. Then Ker(µ : G → S) is a simplicial
group and Im(µ : G → S) is a crossed simplicial subgroup of S. By determining
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the possible crossed simplicial subgroups of S one can thereby classify all crossed
simplicial groups (cf. [30, Theorem 3.6]).

3.2. Crossed Simplicial Groups Induced by Configurations. Recall that the
n th ordered configuration space F (M,n) of a space M is defined by

F (M,n) = {(x0, . . . , xn−1) ∈Mn |xi 6= xj for i 6= j},
and has the topology of a subspace of the product space Mn. Here Sn acts on
F (M,n) by permuting coordinates, that is,

σ · (x0, . . . , xn−1) = (x0·σ, . . . , x(n−1)·σ)
= (xσ−1(0), . . . , xσ−1(n−1)).

The orbit space B(M,n) = Sn\F (M,n) is called the n th unordered configuration
space. Let F(M) = {F (M,n + 1)}n≥0 and let B(M) = {B(M,n + 1)}n≥0. Define
the faces di : F(M)n = F (M,n + 1)→ F(M)n−1 = F (M,n) by

di(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn)

for 0 ≤ i ≤ n. Additional assumptions concerning M are required in order to
construct analogues of ‘degeneracies’ for F(M) as follows.

Definition 3.2.1. Let (M,d) be a metric space with basepoint w and let R+ denote
[0,∞). A steady flow over M is a (continuous) map

θ : R+ ×M →M

such that
(1) for any x ∈M, θ(0, x) = x and for t > 0

0 < d(θ(t, x), x) ≤ t;

(2) θ|R+×{w} : R+ × {w} →M is one-to-one;
(3) there exists a function ε : R+ → (0,+∞), t 7→ εt, such that

θ([0, εt)× {θ(t, w)}) ⊆ θ([t,∞)× {w})
for any t ∈ R+.

Lemma 3.2.2. Let ρ be a positive-valued real (not necessarily continuous) function
on a paracompact topological space M. Then the following are equivalent.

(i) No convergent sequence (yn) in M has ρ(yn)→ 0.
(ii) Each y ∈M has a δy > 0 and neighborhood Vy such that ρ(Vy) ⊆ (δy,∞).
(iii) There is a continuous real-valued function r on M such that, for all x in

M,
0 < r(x) ≤ ρ(x).

Proof. Statements (i) and (ii) are equivalent by definition of convergence. Given
(iii), any convergent sequence yn → y with ρ(yn)→ 0 also has r(yn)→ 0. However,
by continuity, r(yn)→ r(y) > 0.

Finally, to see that (ii) implies (iii), consider a partition of unity {φy} subordinate
to the open covering {Vy}y∈M of M. Then put

r(x) =
∑
y∈M

φy(x)δy.

The function r(x) is continuous since each φy is, while

r(x) ≤ max{δy | x ∈ suppφy} ≤ sup{δy | x ∈ Vy} ≤ ρ(x).

�

Lemma 3.2.3. The above definition is equivalent to that with (1) replaced by the
condition:
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(1′) For each x ∈ M, θ(t, x) = x if and only if t = 0, and there exists κ > 0
such that limt→0+ d(θ(t, x), x)t−κ = 0.

Proof. Clearly, if (1) holds, then choose κ = 1
2 , since

d(θ(t, x), x)t−1/2 ≤ t1/2.

In the other direction, assume (1′) and the other two conditions for

θ′ : R+ ×M →M.

For each x ∈M let

κx := sup{κ | lim
t→0+

d(θ′(t, x), x)t−κ = 0} > 0.

Observe that for all κ < κx, it follows that limt→0+ d(θ′(t, x), x)t−κ = 0. This
last statement contradicts the hypothesis that M contains a convergent sequence
yn → y with κyn

→ 0. To do this, fix κ ∈ (0, κy). By eliminating terms as necessary,
it may be assumed that, for all n, κyn < κ/2, so that there exists un ∈ (0, 1/n)
with

d(θ′(un, yn), yn)u−κ/2
n > 1.

On the other hand, d(θ′(1/n, y), y)(1/n)−κ/2 → 0 as n→∞. Since in R+×M both
the sequences (un, yn) and (1/n, y) converge to (0, y), the sequence

(tm, xm) =
{

(un, yn) m = 2n + 1,
(1/n, y) m = 2n,

is a Cauchy sequence with the contradictory property that its image under the
continuous function

(t, x) 7−→ d(θ′(t, x), x)t−κ/2

is not Cauchy. Since metric spaces are paracompact (Michael’s theorem), it follows
from the preceding lemma that κ is a continuous function of x.

Now the function f : R+ ×M → R+ defined by

(t, x) 7−→
{

d(θ′(t, x), x)t−κ t > 0,
0 t = 0,

is continuous. It follows that for all y in M the open set f−1([0, 1)) is a neighborhood
of (0, y) in R+ × M, and so contains some neighborhood of the form given by
[0, δ(y))×Bδ(y)(y). Now the function defined by

ρ(x) = sup{t | [0, t)× {x} ⊆ f−1([0, 1))}
evidently satisfies (ii) of the preceding lemma. Thus there is a continuous function
r : M → (0, π/2) such that for all x and all s ∈ [0, r(x)), f(s, x) < 1.

So define
θ : R+ ×M →M θ(t, x) = θ′(s(t, x), x),

where

s(t, x) :=
2r(x)

π

(
2
π

arctan t

)1/κ

< r(x).

Evidently condition (2) holds for θ just as for θ′, while condition (3) also holds since,
for each x in M, s is a bijective function of t. Finally, for condition (1), because,
for all x ∈M, f(s, x) < 1, it follows that

d(θ(t, x), x) ≤ sκ =
(

2r

π

)κ( 2
π

arctan t

)
≤ t.

�

Proposition 3.2.4. If a differentiable manifold M admits a (continuous) nonva-
nishing vector field, then there exists a steady flow over M .



12 A. J. BERRICK, F. R. COHEN, Y. L. WONG, AND J. WU

Proof. First perturb the given continuous vector field to a C1 nonvanishing vector
field (by, for example using standard results [12](II.11.9) to smooth the lifting of
the classifying map for the spherical tangent bundle, so as to obtain a smooth
section of a sphere bundle smoothly equivalent to the spherical tangent bundle).
Then there exists a completely integrable C1 vector field [35, p.155], so that its
flow is also C1, and has domain the whole of R ×M. By differentiability of the
flow, limt→0+ d(θ(t, x), x)t−κ = 0 whenever κ < 1. Conditions (2) and (3) may be
attained by a suitable rescaling of the t argument of θ in a neighborhood of w, as
in the proof of the lemma. �
Lemma 3.2.5. [35, (5.2)] If M is a compact, connected differentiable manifold
which either has nonempty boundary, or is oriented and has zero Euler character-
istic, then M admits a nonvanishing vector field. �

Proposition 3.2.6. Let M be a compact m-manifold without boundary. If M is
oriented over a field F and has non-zero Euler characteristic over F, then M does
not have a steady flow.

Proof. The assertion will be proved by contradiction. Suppose that M has a steady
flow. Consider the map s : M → M2, x 7→ (x, θ(1, x)). Since d(x, θ(1, x)) > 0,
it must be that x 6= θ(1, x) and so s is a well-defined map into F (M, 2), given
by s : M → F (M, 2). Let d0, d1 : F (M, 2) → M denote the first and the second
coordinate projections, respectively. Then d0s = idM and d1s ' idM by a homotopy
given by

M × I →M, (x, t) 7→ θ(t, x).

Thus the composite M
s- F (M, 2) ⊂

j- M2 is homotopic to the diagonal map
∆: M →M2.

Simply write H∗(X) and H∗(X) for H∗(X; F) and H∗(X; F), respectively Let
tM ∈ Hm(M2, F (M, 2)) be an orientation of M and let UM be the image of tM in
Hm(M2). Write z ∈ Hm(M) for the fundamental class of M . Let {uj}j∈J be a
(homogeneous) basis for H∗(M). Then H∗(M) has a dual basis {vk}k∈J of {uj}
with respect to the Poincaré duality, namely

〈vj ∪ uk, z〉 = δjk,

where 〈 , 〉 is the Kronecker product and δjk is the Kronecker δ notation. By [66,
Lemma 1, p. 347], there is a formula:

UM =
∑
i∈J

(−1)mdeg(ui)ui × vi.

(Note. Since {vj} is chosen to be the Poincaré dual basis, the matrix B in [66,
Lemma 1, p. 347] is the identity matrix.) Since the diagonal ∆: M → M2 maps
into F (M, 2) up to homotopy, from the previous paragraph,

∆∗(UM ) = 0

because UM is the image of tM ∈ Hm(M2, F (M, 2)) in Hm(M2). Thus

0 = 〈∆∗(UM ), z〉 =
∑
i∈J

(−1)mdeg(ui)〈ui ∪ vi, z〉

=
∑
i∈J

(−1)mdeg(ui)+deg(ui)deg(vi)〈vi ∪ ui, z〉

=
∑
i∈J

(−1)mdeg(ui)+deg(ui)(m−deg(ui)) =
∑
i∈J

(−1)deg(ui).

Since the right hand side is the Euler characteristic, it contradicts that M has
nonzero Euler characteristic. �
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The next statement for differentiable manifolds follows from the above.

Corollary 3.2.7. Let M be a compact, connected oriented differentiable manifold.
Then the following statements are equivalent.

(1) M has nonempty boundary, or has zero Euler characteristic.
(2) M admits a nonvanishing vector field.
(3) There exists a steady flow over M . �

For the rest of this section, assume that M is a metric space with a steady flow
θ. Let ζ : F (M,n + 1)→ R+ be the map defined by

ζ(x) = ζ(x0, . . . , xn) =
1
2
min{1, εi, d(xi, xj)|0 ≤ i < j ≤ n},

where εi = ε(i) for the function ε in Definition 3.2.1. Observe that ζ factors through
B(M,n). Define the function

si : F (M,n + 1)→Mn+2

by the formula

(4) si(x0, . . . , xn) = (x0, . . . , xi, θ(ζ(x), xi), xi+1, . . . , xn)

for 0 ≤ i ≤ n. Let x′i = θ(ζ(x), xi). Observe that, by (2), (3) of Definition 3.2.1,
0 < d(x′i, xi) < ζ(x). For any j 6= i, d(xi, xj) ≤ d(xi, x

′
i) + d(x′i, xj). Hence,

d(x′i, xj) ≥ d(xi, xj)− d(xi, x
′
i) ≥ d(xi, xj)− ζ(x) > 0.

Thus x′i is distinct from x0, . . . , xn, and so si is a well-defined map into F (M,n+2)
given by

si : F (M,n + 1)→ F (M,n + 2).
One consequence is that F(M)π1 = {π1(F (M,n + 1))}n≥0 is a simplicial group

under the faces and the degeneracies induced by the maps di and si above, and
moreover, that B(M)π1 = {π1(B(M,n + 1)}n≥0 is a crossed simplicial group. To
prove this, some terminology concerning the fundamental groupoid of F(M) is
given next.

Let p = (p0, . . . , pn) and q = (q0, . . . , qn) be two configurations in F (M,n + 1)
and let λ be a path in F (M,n+1) from p to q. Then λ = (λ0, . . . , λn) is a sequence
of paths in M such that

(1) λi(0) = pi for 0 ≤ i ≤ n;
(2) λi(1) = qi for 0 ≤ i ≤ n;
(3) λi(t) 6= λj(t) for 0 ≤ i < j ≤ n and 0 ≤ t ≤ 1.

Conversely, any sequence of paths λ = (λ0, . . . , λn) in M such that the conditions
above hold corresponds to a path from p to q in F (M,n+1). Now let Λ be a path
homotopy from p to q in F (M,n + 1), that is, Λ is a map

Λ: I × I → F (M,n + 1)

such that Λ(s, 0) = p, Λ(s, 1) = q for 0 ≤ s ≤ 1. This gives a sequence of path
homotopies Λ = (Λ0, . . . ,Λn) from (Λ0

0, . . . ,Λ
n
0 ) to (Λ0

1, . . . ,Λ
n
1 ) in M such that

Λi(s, t) 6= Λj(s, t) for 0 ≤ i < j ≤ n and 0 ≤ s, t ≤ n. Conversely, any sequence
of path homotopies which satisfies these conditions induces a path homotopy in
F (M,n + 1).

Write
[λ] = [λ0, . . . , λn]

for the path homotopy class in F (M,n + 1) represented by λ = (λ0, . . . , λn). The
symmetric group Sn+1 action on F (M,n + 1) induces an Sn+1-action on the fun-
damental groupoid $(F (M,n + 1)), where σ · [λ] = [σ · λ] with

σ · λ = (λ0·σ, . . . , λn·σ).



14 A. J. BERRICK, F. R. COHEN, Y. L. WONG, AND J. WU

The maps di and si induce morphisms di : $(F (M,n + 1)) → $(F (M,n)) and
si : $(F (n + 1))→ $(F (M,n + 2)) for 0 ≤ i ≤ n. The associated notation is that
(fλ)(t) = f(λ(t)) is a path from f(λ(0)) to f(λ(1)) for any map f and path λ. We
write Mor(p,q) for the set of path homotopy classes from p to q, whenever p, q
are configurations in F (M,m).

Lemma 3.2.8. Let p and q be two configurations in F (M,n + 1). Then there are
commutative diagrams

Mor(p,q)
σ· - Mor(p,q) Mor(p,q)

σ· - Mor(p,q)

Mor(di·σp, di·σq)

di·σ

? di(σ)·- Mor(dip, diq)

di

?
Mor(si·σp, si·σq)

si·σ

? si(σ)·- Mor(sip, siq)

si

?

for 0 ≤ i ≤ n.

Proof. Let λ be a path from p to q. Then

di(σ · λ) = (diσ) · (di·σλ).

Since ζ(σ · λ(t)) = ζ(λ(t)), we have

si(σ · λ)(t)

= (λ0·σ(t), . . . , λi·σ(t), θ(ζ(σ · λ(t)), λi·σ(t)), . . . , λn·σ(t))

= (λ0·σ(t), . . . , λi·σ(t), θ(ζ(λ(t)), λi·σ(t)), . . . , λn·σ(t)) = (siσ) · (si·σλ).

The result follows. �

The proof of the following is immediate.

Lemma 3.2.9. Let p and q be any two configurations in F (M,n + 1). Then there
is a commutative diagram

Mor(p,q)
dj - Mor(djp, djq)

Mor(di+1p, di+1q)

di+1

? dj - Mor(didjp, didjq)

di

?

for 0 ≤ j ≤ i ≤ n. �

Use the notation ∧j. . . in a sequence to indicate the omission of the term indexed
by j. Let Lj,i(p) be the path defined in F (M,n + 1) by

(5) Lj,i(p)(s) =


(p0,

∧j. . ., pi, f(p, s), pi+1, . . . , pn) j ≤ i
p j = i + 1

(p0, . . . , pi, g(p, s), pi+1,
∧j−1. . . , pn) j > i + 1,

where
f(p, s) = θ((1− s)ζ(p) + sζ(dj(p)), pi),

g(p, s) = θ((1− s)ζ(p) + sζ(dj−1(p)), pi).
Observe that Lj,i(p) is a path from Lj,i(p)(0) = djsi(p) to

(6) Lj,i(p)(1) =

 si−1dj(p) j ≤ i,
p j = i + 1,

sidj−1(p) j > i + 1.
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Let Lj,i(p)∗, Lj,i(q)∗ respectively denote pre- and post-multiplication by this
path.

Lemma 3.2.10. Let p and q be two configurations in F (M,n + 1). Then the
composite di+1si = id and the following diagrams are commutative.

(1)

Mor(p,q)
djsi - Mor(djsip, djsiq)

Mor(si−1djp, si−1djq)

si−1dj

? Lj,i(p)∗- Mor(djsip, si−1djq)

Lj,i(q)∗

?

for j ≤ i;
(2)

Mor(p,q)
djsi - Mor(djsip, djsiq)

Mor(p,q)

wwwwwwwwww
Lj,i(p)∗ - Mor(djsip,q)

Lj,i(q)∗

?

for j = i + 1;
(3)

Mor(p,q)
djsi - Mor(djsip, djsiq)

Mor(sidj−1p, sidj−1q)

sidj−1

? Lj,i(p)∗- Mor(djsip, sidj−1q)

Lj,i(q)∗

?

for j > i + 1.

Proof. Let λ = (λ0, . . . , λn) be a path in F (M,n + 1). Then

djsi(λ)(t) =

 (λ0(t), ∧j. . ., λi(t), θ(ζ(λ(t)), λi(t)), λi+1(t), . . . , λn(t)) for j ≤ i
λ(t) for j = i + 1

(λ0(t), . . . , λi(t), θ(ζ(λ(t)), λi(t)), λi+1(t), ∧j−1. . . , λn(t)) for j > i + 1.

On the other hand,

si−1dj(λ)(t) = (λ0(t), ∧j. . ., λi(t), θ(ζ(djλ(t)), λi(t)), λi+1(t), . . . , λn(t))

for j < i and

sidj−1(λ)(t) = (λ0(t), . . . , λi(t), θ(ζ(dj−1λ(t)), λi(t)), λi+1(t), ∧j−1. . . , λn(t))

for j > i + 1. This gives the assertion.
�

Let p be any configuration in F (M,n + 1). For 0 ≤ j ≤ i ≤ n, we define the
path L̃j,i(p) in F (M,n + 3) by

(7) L̃j,i(p)(s) = (p0, . . . , pj , f̃(p, s), . . . , pi, g̃(p, s), . . . , pn),

where f̃(p, s) = θ(sζ(p)+(1−s)ζ(sip), pj) and g̃(p, s) = θ(sζ(sjp)+(1−s)ζ(p), pi).
Observe that

(8) L̃j,i(0) = sjsip and L̃j,i(1) = si+1sjp.
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Lemma 3.2.11. Let p and q be two configurations in F (M,n + 1). Then there is
a commutative diagram:

Mor(p,q)
sjsi - Mor(sjsip, sjsiq)

Mor(si+1sjp, si+1sjq)

si+1sj

? Lj,i(p)∗- Mor(sjsip, si+1sjq)

Lj,i(q)∗

?

for 0 ≤ j ≤ i ≤ n.

Proof. Let λ be a path from p to q. Then

sjsi(λ)(t) = (λ0(t), . . . , λj(t), θ(ζ(siλ(t)), λj(t)), . . . , λi(t), θ(ζ(λ(t)), λi(t)), . . . , λn(t)),

si+1sj(λ)(t) = (λ0(t), . . . , λj(t), θ(ζ(λ(t)), λj(t)), . . . , λi(t), θ(ζ(sjλ(t)), λi(t)), . . . , λn(t)).

The result follows. �

There is a natural choice of basepoints in B(M,n + 1). For the basepoint w of
M in Definition 3.2.1, let

wi = θ(i, w)

for integers i ≥ 0. Thus by (2) of Definition 3.2.1, for all i 6= j ≥ 0 wi 6= wj , while
by (1) w0 = w. Let wn = (w0, . . . , wn) be the basepoint for F (M,n + 1); then the
basepoint of B(M,n + 1) is given by the image of wn.

Theorem 3.2.12. Let M be a metric space with a steady flow. Then the sequence
of groups B(M)π1 = {π1(B(M,n + 1))}n≥0 is a crossed simplicial group.

Proof. Let Gn be the set of path homotopy classes of paths in F (M,n+1) starting
at wn and ending with a permutation of wn. To each such path λ, associate
the permutation µ(λ) = σ ∈ Sn+1, where λ(1) = (wσ−1(0), . . . , wσ−1(n)). From our
definition of B(M,n+1), we have π1(B(M,n+1)) = Gn as sets. The multiplication
in Gn induced from π1(B(M,n + 1)) is given as follows. For i = 1, 2, let σi =
µ(λi) ∈ Sn+1, and let λi be a path in F (M,n + 1) with λi(0) = wn and λi(1) =
(wσ−1

i (0), . . . , wσ−1
i (n)). Then [λ1][λ2] in Gn is represented by the path-product

λ1 ∗ (σ1 · λ2) from (w0, . . . , wn) to (wσ−1
2 (σ−1

1 (0)), . . . , wσ−1
2 (σ−1

1 (n))). Therefore the
map µ : Gn → Sn+1 is a group homomorphism.

By assumption (2) in Definition 3.2.1, θ̃ = θ|R+×{w} : R+ →M is one-to-one and
so induces a map

θ̃n+1 = F (θ̃, n + 1): F (R+, n + 1)→ F (M,n + 1)

for each n. The subset Im(θ̃ : R+ → M) is ordered by θ(t, w) ≤ θ(t′, w) if t ≤ t′.
Thus it follows that wi < wj for i < j.

For each i = 0, 1, . . . , n − 1, define a canonical path ηi = (η0
i , . . . , ηn−1

i ) from
(0, . . . , n− 1) to (0, . . . , i− 1, i + 1, . . . , n) in F (R+, n) by

ηj
i (t) =

{
j j ≤ i− 1

j + t j ≥ i.

Put δi = θ̃n ◦ ηi, a path from wn−1 to diwn = (w0, . . . , wi−1, wi+1, . . . , wn) in
F (M,n). Define

di[λ] = [δi][diλ][(diσ) · δσ−1(i)]−1,
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which lies in Gn−1. This gives a function di : Gn → Gn−1 for 0 ≤ i ≤ n. Since di[λ]
ends at (w(diσ)−1(0), . . . , w(diσ)−1(n−1)), there is a commutative diagram

Gn
µ - Sn+1

Gn−1

di

? µ - Sn

di

?

and so the map µ : G → S preserves faces.
By assumption (3) in Definition 3.2.1, the point θ(ζ(wn), wi) lies in the image

of θ̃ and

wi < θ(ζ(wn), wi) < wi+1

for 0 ≤ i ≤ n. Thus there is a path κi from wn+1 to

si(w0, . . . , wn) = (w0, . . . , wi, θ(ζ(wn), wi), wi+1, . . . , wn)

induced by a path in F (R+, n + 2) for 0 ≤ i ≤ n. Let [λ] ∈ Gn with µ(λ) = σ, in
other words λ(1) = (wσ−1(0), . . . , wσ−1(n)) = σ ·wn. Then the path siλ runs from
siwn to

(wσ−1(0), . . . , wσ−1(i), θ(ζ(σ ·wn), wσ−1(i)), wσ−1(i+1), . . . , wσ−1(n)).

Since ζ(σ ·wn) = ζ(wn), the paths siλ and (siσ) ·κσ−1(i) have the same final point.
Define

si[λ] = [κi][siλ][(siσ) · κσ−1(i)]−1

in Gn+1. Thereby there is the function

si : Gn → Gn+1

for 0 ≤ i ≤ n. Since si[λ] ends at (w(siσ)−1(0), . . . , w(siσ)−1(n+1)), there is a com-
mutative diagram

Gn
µ - Sn+1

Gn+1

si

? µ - Sn+2

si

?

and so the map G → S preserves degeneracies.
By using Lemmas 3.2.8 - 3.2.11, it is routine to show that G is a crossed simplicial

group. For example, consider the special case that djsi = si−1dj for j < i. With
the convention that p

α
99K q denotes a path α running from p to q, consider the
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diagram

wn
stationary - wn

djwn+1

δj

?
si−1wn−1

κi−1

?

djSiwn

djκi

? Lj,i(wn) - si−1djwn

si−1δj

?

djsi(σ ·wn)

djsiλ

? Lj,i(σ ·wn) - si−1dj(σ ·wn)

si−1djλ

?

dj(siσ ·wn+1)

dj(siσ · κi·σ)−1

?
si−1(djσ ·wn−1)

si−1(djσ · δj·σ)−1

?

(djsiσ) ·wn

((djsiσ) · δj·siσ)−1

? stationary - (si−1djσ) ·wn,

((si−1djσ) · κ(i−1)·(djσ))−1

?

where the left and right columns are the paths that represent djsi[λ] and si−1dj [λ],
respectively. By Lemma 3.2.10, the middle square commutes up to path homotopy.
Since the paths in the top and bottom squares are induced by paths in F (R+, n+1),
the top and bottom squares are also commutative diagrams up to path homotopy,
as required.

�

Since F(M)π1 is the kernel of the canonical map µ : B(M)π1 → S, the following
consequence is immediate.

Corollary 3.2.13. Let M be a metric space with a steady flow. Then the sequence
of groups F(M)π1 = {π1(F (M,n + 1))}n≥0 is a simplicial group. �

However, in general the sequence of groups F(M)π1 need not admit a simplicial
group structure, as the next result shows.

Proposition 3.2.14. Let M = S2. Then F(S2)π1 does not admit a simplicial
group structure.

Proof. Write G for F(S2)π1 . Thus, Gn = π1(F (S2, n + 1)) for n ≥ 0, with the
groups G0 = G1 = 1. By Corollary 2.3, G2 = π1(F (S2, 3)) = Z/2 and

π1(F (S2, 4)) ∼= π1(S2 −Q3)× π1(F (S2, 3)) ∼= F2 × Z/2.

Thus there is a unique element of order 2 in π1(F (S2, 4)). Let σ be the generator
for π1(F (S2, 3)). Now suppose that G = F(S2)π1 were a simplicial group. Then
(siσ)2 = si(σ2) = 1 for 0 ≤ i ≤ 2 and so s0σ = s1σ = s2σ. On the other hand, by
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the simplicial identities,

σ = d0s0σ = d0s1σ = s0d0σ = s0(1) = 1,

a contradiction.
�

Note. It can happen that the sequence of groups F(M)π1 is a simplicial group
although M does not have a steady flow. For example, if M is a simply connected
manifold with dim M ≥ 3, then π1(F (M,n + 1)) = 1 for each n. In this case,
nontrivial information for higher-dimensional manifolds is given in Section 5, for
the sequence of sets {[A,F (M,n + 1)]}n≥0 for general spaces A.

4. ∆-groups on Configurations

4.1. ∆-groups. A sequence of sets X = {Xn}n≥0 is called a ∆-set if there are
functions di : Xn → Xn−1 for 0 ≤ i ≤ n such that djdi = didj+1 for i ≤ j.
f = {fn}n≥0 : X → X ′ is called a ∆-map if difn = fn−1di. The set of ∆-maps
from X to X ′ is denoted by Map(X ,X ′)0. A ∆-group G = {Gn}n≥0 consists of a
∆-set G for which each Gn is a group and each di is a group homomorphism. The
Moore complex NG = {NnG}n≥0 of a ∆-group G is defined by

NnG =
n⋂

i=1

Ker(di : Gn → Gn−1).

Lemma 4.1.1. Let G be a ∆-group. Then d0(NnG) ⊆ Nn−1G and NG with d0 is
a chain complex of groups.

Proof. The assertion follows from the relation

djd0 = d0dj+1

for j ≥ 0. �

Let G be a ∆-group. An element in BnG = d0(Nn+1G) is called a Moore boundary
and an element in ZnG = Ker(d0 : NnG → Nn−1G) is called a Moore cycle. The
nth homotopy πn(G) is defined to be the coset

πn(G) = Hn(NG) = ZnG/BnG.

The homotopy set πn(G) need not be a group in general because the boundaries
BnG need not form a normal subgroup of the cycles ZnG in general. For instance,
let B be a non-normal subgroup of A and let G be a ∆-group given by G0 = A,
G1 = B and Gn = {1} for n ≥ 2 with the inclusion d0 : G1 → G0 and the trivial
map d1 : G1 → G0. Then π0(G) is the coset B/A. Under a weak condition, πn(G)
has a group structure.

Lemma 4.1.2. Let G be a ∆-group. Then, for each n ≥ 0, BnG is a normal
subgroup of Im(d0 : Gn+1 → Gn). In particular, πn(G) is a group if Zn(G) is
contained in Im(d0 : Gn+1 → Gn).

Proof. Let x ∈ BnG and let w be such that there exists w̃ ∈ Gn+1 with d0w̃ = w.
By definition, there exists y ∈ Nn+1G such that d0y = x. Now

dj [y, w̃] = [1, djw̃] = 1

for j ≥ 1 and d0[y, w̃] = [x,w]. Thus the commutator [x, w] ∈ BnG as required. �
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In the above, we have defined πn(N) with reference to d0. In principle, using
a different di could result in different homotopy sets (as in the example above),
although always the cycles are given by

ZnG =
⋂

0≤j≤n

Ker(dj : Gn → Gn−1).

By the relations dkdi = di−1dk for k < i and dkdi = didk+1 for k ≥ i, we also have

di

⋂
j 6=i

Ker(dj : Gn+1 → Gn)

 ⊆ ZnG

for each 0 ≤ i ≤ n + 1. So in general the boundary set is well-defined; however,
it may differ from BnG. We now investigate circumstances in which these possible
sets of boundaries coincide.

Let X be a ∆-set. The elements x0, . . . , xi−1, xi+1, . . . , xn ∈ Xn−1 are called
matching faces with respect to i if

djxk = dkxj+1

for k ≤ j and k, j+1 6= i. Recall that a ∆-set X is fibrant if it satisfies the following
homotopy extension condition for each i:

Let x0, . . . , xi−1, xi+1, . . . , xn ∈ Xn−1 be any elements that are matching
faces with respect to i. Then there exists an element w ∈ Xn such that
djw = xj for j 6= i.

The nondegenerate n-simplex ∆[n] is defined as:

∆[n]k = {(i0, . . . , ik) ∈ Zk+1 | 0 ≤ i0 < i1 < · · · < ik ≤ n}

with the usual face maps given by deleting coordinates. (Note. The difference
between the nondegenerate n-simplex and the usual simplicial n-simplex is that a
simplicial n-simplex allows degeneracies, and so the strict inequality notation < in
the above definition is replaced by ≤ in the definition of simplicial n-simplex.) Let
X be a ∆-set and let x ∈ Xn. Then there is a unique map of ∆-sets

fx : ∆[n]→ Xn

such that fx(σn) = x, where σn = (0, . . . , n). The map fx is called the representing
map of the element x. Let Λi[n] be the ∆-subset of ∆[n] generated by djσn for
j 6= i. In geometry, Λi[n] is obtained from the simplex ∆[n] by deleting the i-face.
The elements x0, . . . , xi−1, xi+1, . . . , xn ∈ Xn−1 are matching faces with respect to
i if and only if there is a map of ∆-sets φ : Λi[n] → X such that φ(djσn) = fxj

for each j 6= i. It follows that any ∆-map sends matching faces to matching faces.
Thus X is fibrant if and only if

Map(∆[n],X )0 → Map(Λi[n],X )0

is onto whenever 0 ≤ i ≤ n.

Proposition 4.1.3. Let G be a fibrant ∆-group. Then
(1) BnG is a normal subgroup of ZnG for each n;
(2) di(

⋂
j 6=iKer(dj : Gn+1 → Gn)) =BnG for each 0 ≤ i ≤ n + 1;

(3) πn(G) is an abelian group for n ≥ 1.
Proof. (1). Let x0 ∈ ZnG and let x1 = x2 = · · · = xn = 1. Then the elements xi

are matching faces with respect to n + 1, and so there is an element y ∈ Gn+1 such
that d0y = x0 and djy = 1 for 0 < j < n+1. So the result follows from the lemma.
(2). Fix i > 0. Let x ∈ Gn+1 such that djx = 1 for j 6= i. Let x0 = x and xk = 1

for k 6= 0, i + 1. Then x0, . . . , xi, xi+2, . . . , xn+2 are matching faces with respect to
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i + 1, and so there is an element z ∈ Gn+2 such that d0z = x0 = x and dkz = 1 for
k 6= 0, i + 1. Let y = di+1z. Then

dix = did0z = d0di+1z = d0y,

where
djy = djdi+1z = di+1dj+1z = 1

for j ≥ i + 1, and
djy = djdi+1z = didjz = 1

for 0 < j ≤ i, so that y ∈ Nn+1G. Thus

di

⋂
j 6=i

Ker(dj : Gn+1 → Gn)

 ⊆ BnG.

Similarly, notice that

BnG = d0

⋂
j 6=0

Ker(dj : Gn+1 → Gn)

 ⊆ di

⋂
j 6=i

Ker(dj : Gn+1 → Gn)

 .

This yields Assertion (2).
(3). Let z0, z1 ∈ ZnG with n ≥ 1. Then there exists an element w0 ∈ Gn+1 such

that d0w0 = z0 and dkw0 = 1 for k > 1, because the elements

x0 = z0, x2 = 1, . . . , xn+1 = 1

are matching faces with respect to 1. Similarly, there is an element w1 ∈ Gn+1 such
that d0w1 = z1, d1w1 = 1 and djw1 = 1 for j > 2. It follows that dj [w0, w1] = 1
for j > 0 and d0[w0, w1] = [z0, z1]. Hence [ZnG,ZnG] ⊆ BnG. �

Proposition 4.1.4. The functor N is a left exact functor from ∆-groups to chain
complexes of groups. Moreover, N is an exact functor from fibrant ∆-groups to
chain complexes of groups, and so {πn} is a derived functor from fibrant ∆-groups
to sequences of abelian groups.

Proof. Clearly N is left exact. Let

1 - G′ - G ε- G′′ - 1

be a short exact sequence of ∆-groups. It suffices to show that when G′ is fibrant,
NG → NG′′ is onto. Let x ∈ NnG′′ and let y ∈ Gn such that ε(y) = x. Then
djy ∈ G′

n−1 for j ≥ 1. Since {djy}j≥1 are matching faces with respect to 0, there
exists an element z ∈ G′

n such that djz = djy for j ≥ 1. Thus yz−1 ∈ NnG with
ε(yz−1) = x and hence the result. �

For any ∆-group G, the Moore path PG of G is defined by

(PG)n = {x ∈ Gn+1 | d1 ◦ d2 ◦ · · · ◦ dn+1(x) = 1}
with dP

j : (PG)n → (PG)n−1, where dP
j (x) = dj+1(x) for 0 ≤ j ≤ n. The map

p : PG → G is defined by

p = d0 : (PG)n ↪→ Gn+1 → Gn.

Since djd0 = d0dj+1, the map p is a morphism of ∆-groups. The Moore loop ΩG
of G is defined to be the kernel of p. In other words,

(ΩG)n = {x ∈ Gn+1 | d0(x) = 1 and d1 ◦ d2 ◦ · · · ◦ dn+1(x) = 1}
and each face dΩ

j = dj+1.

Proposition 4.1.5. Let G be a ∆-group. Then
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(1) For each n ≥ 0, πn(ΩG) = πn+1(G) if and only if

d1

⋂
j 6=1

Ker(dj : Gn+1 → Gn)

 = BnG.

(2) If G is fibrant, then PG and ΩG are fibrant. In particular, for any fibrant
∆-group G it is always true that π∗(ΩG) = π∗+1(G) and π∗(PG) = 1.

Proof. Statement (1) is a routine calculation. To check statement (2), let

x0, . . . , xi−1, xi+1, . . . , xn ∈ (PG)n−1

be matching faces with respect to i. Since p is a ∆-map,

d0x0, . . . , d0xi−1, d0xi+1, . . . , d0xn ∈ Gn−1

are also matching faces with respect to i. By the fibrant condition for G, there exists
v ∈ Gn such that djv = d0xj for all j 6= i. Observe that

v, x0, . . . , xi−1, xi+1, . . . , xn ∈ Gn

are matching faces with respect to i+1. The result follows from another application
of the fibrant condition. The case of ΩG is straightforward. The last assertion
follows from the two previous propositions. �

Let RnG = {(RnG)q}q≥0 be the sequence of groups defined by (RnG)q = 1 for
q ≤ n and, for q > n, (RnG)q consists of all elements x ∈ Gq such that

di1 ◦ · · · ◦ diq−n
(x) = 1

for all sequences 0 ≤ i1 < · · · < iq−n ≤ q. Then RnG, with each face dR
i = di,

is a ∆-subgroup of G such that each (RnG)q is a normal subgroup of Gq. Let
PnG = G/RnG be the ∆-quotient group of G. The tower of ∆-groups

G -- · · · -- PnG -- Pn−1G -- · · · -- P0G
is called the Moore-Postnikov system of G. Let KnG be the kernel of PnG - Pn−1G.

Proposition 4.1.6. Let G be a ∆-group. Then
(1) The Moore complex of PnG is given by

NqPnG =

 1 q ≥ n + 2,
Nn+1G/Zn+1G q = n + 1,
NqG q ≤ n.

(2) πj(PnG) = 1 for j > n and πj(G) - πj(PnG) is an isomorphism for
j ≤ n.

(3) πj(KnG) = 1 and πn(KnG) ∼= πn(G).

Proof. Assertions (2) and (3) follow immediately from assertion (1), using Propo-
sition 4.1.4.
(1). Let θ : G → PnG be the quotient map. For any x ∈ NqPnG, there exists an
element y ∈ Gq such that θ(y) = x. If q ≤ n+1, then y ∈ NqG because Gs = (PnG)s

for s ≤ n. Thus
Nθ : NqG → NqPnG

is onto for q ≤ n + 1. Clearly, Nθ : NqG → NqPnG is an isomorphism for q ≤ n.
Since Nn+1RnG = (RnG)n+1 = Zn+1G, it follows that Nn+1PnG = Nn+1G/Zn+1G.
Now assume that q > n+1. From the identity dsd0 = d0ds+1 for all s, the iterated
faces

di1 ◦ · · · ◦ diq−n
(y) = 1

for any sequence 0 ≤ i1 < · · · < iq−n ≤ q, and so y ∈ (RnG)q or NqPnG = 1 for
q > n + 1. This finishes the proof. �
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4.2. ∆-groups Induced by Configurations. A space M is said to have a good
basepoint w0 if there is a continuous injection θ̃ : R+ → M with θ̃(0) = w0. (This
is clearly equivalent to the existence of an embedding of [0, 1] in M that sends 0 to
w0.) Thus in particular if a space M contains a subspace A such that

(1) A is a metric space, and
(2) A has a steady flow,

then M has a good basepoint. A cell complex of positive dimension also has a good
basepoint.

Recall that the face di : F (M,n + 1)→ F (M,n) is given by

di(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn)

for 0 ≤ i ≤ n. The formula djdi = didj+1 for i ≤ j is evident. The basepoint for
F (M,n + 1) is (w0, . . . , wn), where w0 is a good basepoint for M and wi = θ̃(i).

A crossed ∆-group is a ∆-set G = {Gn}n≥0 for which each Gn is a group,
together with a group homomorphism µ : Gn → Sn+1, g 7→ µg for each n, such
that

(i) µ is a ∆-map and
(ii) for 0 ≤ i ≤ n, di(gg′) = di(g)di·µg (g′).

Proposition 4.2.1. Let M be a space with a good basepoint. Then
(1) B(M)π1 is a crossed ∆-group,
(2) F(M)π1 is a ∆-group,
(3) πn(ΩF(M)π1) = πn+1(F(M)π1) for each n ≥ 0.

Proof. Parts (1) and (2) follow from the proof of Theorem 3.2.12, and Corol-
lary 3.2.13. Part (3) follows from part (1) of Proposition 4.1.5 by considering
the transposition τ sending (x0, x1, x2, . . . , xn+1) to (x1, x0, x2, . . . , xn+1). Write

K =
⋂
j 6=1

Ker(dj : π1(F (M,n + 2))→ π1(F (M,n + 1))).

It is easy to check that τ induces a bijection τ : K → Nn+1F(M)π1 and commuting
diagram

K
τ - Nn+1F(M)π1

BnF(M)π1

d1

?
======== BnF(M)π1

d0

?

This gives the result. �

Recall that an element in π1(B(M,n)) is called a braid of n strings over M .
Observe that any braid over M can be described as a path homotopy class in
F (M,n). A braid is called Brunnian if it becomes a trivial braid when any one of
its strings is removed. In the terminology of ∆-groups, a braid

β ∈ π1(B(M,n + 1)) = B(M)π1
n

is Brunnian if and only if diβ = 1 for 0 ≤ i ≤ n. In other words, the Brunnian
braids over M are the Moore cycles in the ∆-group B(M)π1 . The group of Brunnian
braids of n strings over M is denoted by Brunn(M). A pure braid of n strings over
M means an element in π1(F (M,n)). Clearly a braid β is pure if and only if β lies
in the kernel of the homomorphism µ : π1(B(M,n))→ Sn. (See section 3.1 for the
map µ.)
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Proposition 4.2.2. Let β be a Brunnian braid of n strings over a space M with
a good basepoint. If n ≥ 3, then β is a pure braid.

Proof. Let β be a Brunnian braid of n strings over M . Then β is a Moore cycle in
B(M)π1

n−1 and so µ(β) is a Moore cycle in S = {Sn+1}n≥0. By direct calculation,
it follows that Z1S = S2 and Zn−1S = {1} for n ≥ 3, giving the result. �

In the case where M is a manifold without boundary, the map

di : F (M,n + 1)→ F (M,n)

is a fibre bundle projection with fibre M −Qn, where Qn = {q0, . . . , qn−1}, see [26].
The following will be used in Section 6.

Definition 4.2.3. A sequence of spaces E = {En}n≥0 is called a ∆-bundle if
(1) there exist faces di : En → En−1 such that di is a fibre bundle projection,

with the same fibre for 0 ≤ i ≤ n;
(2) djdi = didj+1 : En → En−2 for 0 ≤ i ≤ j < n.

A ∆-bundle E is called crossed if each En admits a left Sn+1-action such that
the following diagram commutes:

En
σ - En

En−1

di·σ

? diσ- En−1

di

?

for σ ∈ Sn+1 and 0 ≤ i ≤ n.

Let E = {En}n≥0 be a ∆-bundle such that each En is path-connected. Define
Ω̃E to be the sequence of spaces having (Ω̃E)n as the fibre of d0 : En+1 → En, with
faces dΩ̃

j = dj+1|Ω̃E . Then Ω̃E is a ∆-space, meaning that each face is continuous.

Proposition 4.2.4. Let E be a ∆-bundle such that each En is path-connected.
Suppose that E0 is simply-connected. Then there is an exact sequence of ∆-groups

Eπ2 - (Ω̃E)π1 - Ω(Eπ1) - 1.

Proof. From the commutative diagram of fibrations

Ω̃En - En+1
d0 - En

Ω̃En−1

di

?
- En

di+1

? d0 - En−1,

di

?

there is a commutative diagram of exact sequences

π2(En) - π1(Ω̃En) - π1(En+1)
d0- π1(En)

π2(En−1)

di

?
- π1(Ω̃En−1)

di

?
- π1(En)

di+1

? d0- π1(En−1).

di

?

Since π1(E0) = 1, it follows that

Ω(Eπ1)n = Ker(d0 : π1(En+1)→ π1(En))

with dΩEπ1

i = dE
π1

i+1 , and hence the result. �
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Proposition 4.2.5. Let M be a surface. Then Brunn(M) is a free group for n ≥ 4
in general, and for n ≥ 3 when M is not S2. (However Brun3(S2) = Z/2.)

Proof. From the fibre sequence

M −Qn−1
- F (M,n)

d0- F (M,n− 1),

there is an exact sequence

π2(F (M,n− 1))
∂∗- π1(M −Qn−1) - π1(F (M,n))

d0∗- π1(F (M,n− 1)).

It is standard (see [26]) that F (M,n) is a K(π, 1) in case M is any surface not

equal to S2 or RP2. For M = RP2 and n ≥ 3, since RP2 − Qn−1 '
n−1∨
j=1

S1,

from the above exact sequence via the fact that ∂∗ maps into the center of Fn−1

and Fn−1 is centerless for n ≥ 3, Brunn(RP2) is a subgroup of the free group

π1

(
n−1∨
j=1

S1

)
= Fn−1, and thus it is free. In case M = S2 and n ≥ 4, Corollary 2.3

gives a homotopy equivalence

F (M,n) ' F (R2 −Q2, n− 3)× RP3.

By the previous case, π2(F (R2 −Q2, n− 3)) = 0, as is π2(RP3). So always

π2(F (M,n− 1)) = 0

for the asserted range of n. Therefore

Ker (d0∗ : π1(F (M,n))→ π1(F (M,n− 1)))

is isomorphic to the free group π1(M − Qn−1). Thus Brunn(M) is a subgroup of
the free group π1(M − Qn−1); hence the result. In the special case of S2 with
n = 3, notice that π1(F (S2, 3)) = Z/2 by Corollary 2.3, while π1(F (S2, 2)) = 1.
Thus Brun3(S2) = Z/2. �

Remark 4.2.6. There was a problem of Makanin in Kourovka Notebook (Problem
Book in group theory) in 1980 that Brunnian braids over the disk (called smooth
braids in this book) form a free subgroup, with to be described generators. Gurzo
gave a solution in the 1981 Leningrad Algebra conference. A published solution
was given by Johnson [39].

5. Proof of Theorem 1.4

Let M be a space with a good basepoint w0 as described in Subsection 4.2. Thus
the basepoint for F (M,n+1) is (w0, w1, . . . , wn), where wi = θ̃(i). Let E(n) denote
the path-connected component of F (R+, n+1) that contains the point (0, 1, . . . , n).
Let CE(n) = (E(n)× [0, 1])/(E(n)×{1}) be the (unreduced) cone of E(n) and let

F̃ (M,n + 1) = F (M,n + 1) ∪jn CE(n)

be the unreduced mapping cone of the map jn given by the composite

jn : E(n) ⊂ - F (R+, n + 1)
F (θ̃,n+1)- F (M,n + 1).

Note that (w0, . . . , wn) is identified with ((0, 1, . . . , n), 0) ∈ CE(n). The basepoint
of F̃ (M,n + 1) is the point given by the image of E(n)× {1}. Let

F̄ (M,n + 1) = F̃ (M,n + 1)/((0, 1, . . . , n)× [0, 1])

be the reduced mapping cone of jn. The quotient map

qn : F̃ (M,n + 1) - F̄ (M,n + 1)
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and the composite

fn : F (M,n + 1) ⊂ - F̃ (M,n + 1)
qn- F̄ (M,n + 1)

are pointed maps. Clearly qn : F̃ (M,n + 1) → F̄ (M,n + 1) is a (pointed) homo-
topy equivalence. Recall that each path-connected component of F (R+, n + 1) is
contractible [53]. The space E(n) is contractible, and so the map

fn : F (M,n + 1) - F̄ (M,n + 1)

is a pointed homotopy equivalence.
Observe that the face di : F (R+, n + 1) → F (R+, n) maps E(n) into E(n − 1).

This defines a map

d̃i = di ∪ Cdi : F (M,n + 1) ∪jn
CE(n) - F (M,n) ∪jn−1 CE(n− 1)

for 0 ≤ i ≤ n. The resulting faces d̃i : F̃ (M,n + 1) → F̃ (M,n) are pointed maps
satisfying d̃j d̃i = d̃id̃j+1 for i ≤ j.

Let A be any pointed map. For 0 ≤ i ≤ n, define

di : [A,F (M,n + 1)]→ [A,F (M,n)]

to be the unique function such that the diagram

(9)

[A,F (M,n + 1)]
fn∗
∼=

- [A, F̄ (M,n + 1)] �qn∗
∼=

[A, F̃ (M,n + 1)]

[A,F (M,n)]

di

? f(n−1)∗
∼=

- [A, F̄ (M,n)] �
q(n−1)∗
∼=

[A, F̃ (M,n)]

d̃i∗

?

commutes. This proves the following.

Proposition 5.1. Let M be a space with a good basepoint and let A be any pointed
space. Then the sequence of sets of (pointed) homotopy classes

Γ∗(A,M) = {[A,F (M,n + 1)]}n≥0

is a ∆-set under the faces defined above. �

Corollary 5.2. Let M be a space with a good basepoint. Then the sequence of
groups {[A,F (M,n + 1)]}n≥0 is a ∆-group for any cogroup space A. �

Now let M be a metric space with a steady flow θ. Consider the degeneracy

si : F (M,n + 1)→ F (M + 2)

defined in Equation (4). Observe that si : F (R+, n+1)→ F (R+, n+2) maps E(n)
into E(n + 1). This defines a map

s̃i = si ∪ Csi : F (M,n + 1)jn
CE(n) - F (M,n + 2)jn+1CE(n + 1)

for 0 ≤ i ≤ n. The resulting degeneracy s̃i : F̃ (M,n+1)→ F̃ (M,n+1) is a pointed
map. For 0 ≤ i ≤ n, define

si : [A,F (M,n + 1)]→ [A,F (M,n + 2)]
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to be the unique function such that the diagram

(10)

[A,F (M,n + 1)]
fn∗
∼=

- [A, F̄ (M,n + 1)] �qn∗
∼=

[A, F̃ (M,n + 1)]

[A,F (M,n + 2)]

si

? f(n+1)∗
∼=

- [A, F̄ (M,n + 2)] �
q(n+1)∗
∼=

[A, F̃ (M,n + 2)]

s̃i∗

?

commutes.

Proof of Theorem 1.4. Part (i) is given in Proposition 5.1 and Corollary 5.2.
(ii). The identity djdi = didj+1 for i ≤ j has been proved in Proposition 5.1. Let

Lj,i : F (M,n + 1)× I → F (M,n + 1)

be the map defined by Equation (5) and let

L̃j,i : F (M,n + 1)× I → F (M + 2)

be the map defined by Equation (7). The maps Lj,i and L̃j,i induce pointed homo-
topies

Fj,i = Lj,i ∪ CLj,i : (F (M,n + 1) ∪jn CE(n))× I - F (M,n + 1) ∪jn CE(n),

Gj,i = L̃j,i ∪CL̃j,i : (F (M,n + 1)∪jn CE(n))× I - F (M,n + 3)∪jn CE(n + 2),
respectively. By Equations (6) and (8), the simplicial identities hold, up to pointed
homotopy given by Fj,i and Gj,i, for the sequence of spaces {F̃ (M,n + 1)}n≥0. So
the theorem follows. �

Proposition 5.3. Let M be a compact, connected oriented differentiable manifold.
Then the following statements are equivalent each other.

(1) For any pointed space A, there exist degeneracies on the ∆-set Γ∗(A,M)
such that Γ∗(A,M) is a simplicial set.

(2) There exist degeneracies on the ∆-set Γ∗(M,M) such that Γ∗(M,M) is a
simplicial set.

(3) M has nonempty boundary, or has zero Euler characteristic.
(4) M admits a nonvanishing vector field.
(5) There exists a steady flow over M . �

Proof. The equivalence of Statements (3)-(5) was given in Corollary 3.2.7. The-
orem 1.4 shows that (5) ⇒ (1). It is immediate that (1) ⇒ (2). Suppose that
Statement (2) is true. Let α = s0([id]) ∈ Γ1(M,M) = [M,F (M, 2)] be represented
by a map s : M → F (M, 2). Since [id] = d0s0α = d1s0α, the composite

M
s- F (M, 2) ⊂ - M2

is homotopic to the diagonal map. According to the second paragraph in the proof
of Proposition 3.2.6, Statement (3) now holds. This finishes the proof. �

6. Proofs of Theorems 1.1, 1.2 and 1.3

6.1. A Simplicial Group Model for ΩS2. Let X be a pointed simplicial set.
Let ∗ ∈ X0 be the basepoint. The basepoint in Xn is sn

0∗. Let F [X ]n be the free
group generated by Xn subject to the single relation that sn

0∗ = 1. (Note. By
the simplicial identities, sn

0 = sinsin−1 · · · si1 for any sequence (i1, i2, . . . , in) with
0 ≤ ik ≤ k − 1.) Then we obtain the simplicial group F [X ] = {F [X ]n}n≥0 with
the faces and the degeneracies induced by those of X . The simplicial group F [X ]
is called Milnor’s free group construction on X . An important property of the
construction of F [X ] is as follows.
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Theorem 6.1.1 (Milnor [55]). If X is a reduced simplicial set, then the geometric
realization |F [X ]| of F [X ] is homotopy equivalent to ΩΣ|X |. �

Note. The geometric realization of F [X ] is the group completion of the James
construction on |X |. There are natural extensions of the above theorem in case X
is not assumed to be reduced. However, those extensions are not given in Milnor’s
original article.

Now let S1 be the simplicial 1-sphere. The elements in S1
n can be listed as

follows.
S1

0 = {∗}, S1
1 = {s0∗, σ}, S1

2 = {s2
0∗, s0σ, s1σ}, S1

3 = {s3
0∗, s2s1σ, s2s0σ, s1s0σ}, and

in general S1
n+1 = {sn+1

0 ∗, x0, . . . , xn}, where xj = sn · · · ŝj · · · s0σ. The face

di : S1
n+1 = {∗, x0, . . . , xn} - S1

n = {∗, x0, . . . , xn−1}

is given by dis
n+1
0 ∗ = sn

0∗ and

dixj = disn · · · ŝj · · · s0σ =

 sn
0∗ if j = i = 0 or i = j + 1 = n + 1
xj if j < i

xj−1 if j ≥ i.

Similarly,

sixj = sisn · · · ŝj · · · s0σ =
{

xj if j < i
xj+1 if j ≥ i.

Consider the special case of Milnor’s free group construction for S1, F [S1]. Ac-
cording to Theorem 6.1.1, F [S1] is a simplicial group model for ΩS2. As a sequence
of groups, the group F [S1]n is the free group of rank n generated by x0, x1, . . . , xn−1

with faces as above. Tietze transformations may be used to change the basis of the
free group F [S1]n+1, so as to reformulate the faces di in a canonical way.

Let y0 = x0x
−1
1 , . . . , yn−1 = xn−1x

−1
n and yn = xn in F [S1]n+1. Clearly

{y0, y1, . . . , yn} is a set of free generators for F [S1]n+1 with

diyj (0 ≤ i ≤ n + 1, −1 ≤ j ≤ n)

given by
(11)

diyj = di(xjx
−1
j+1) =

 yj if j < i− 1
1 if j = i− 1

yj−1 if j ≥ i,
siyj =

 yj if j < i− 1
yjyj+1 if j = i− 1
yj+1 if j ≥ i,

where y−1 = (y0y1 · · · yn−1)−1 and in this formula xn+1 = 1. Under the generating
system of yj ’s, the faces di with i > 0 are projection maps in the sense that di

sends yi−1 to 1 and other generators to the generators for F [S1]n so as to retain
the order. The first face d0 differs from the others as d0 sends y0 to the product
element (y0y1 · · · yn−1)−1 and each other generator yj to yj−1 for F [S1]n.

To describe all faces di systematically in terms of projections, consider the free
group of rank n in the following way. Let F̂n+1 be the quotient of the free group
F (z0, z1, . . . , zn) subject to the single relation

z0z1 · · · zn = 1.

Let ẑj be the image of zj in F̂n+1. The group F̂n+1 is written F̂ (ẑ0, ẑ1, . . . , ẑn) in
case the generators ẑj are used. Clearly

F̂n+1
∼= F (ẑ0, ẑ1, . . . , ẑn−1)
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is a free group of rank n. Define the faces di and degeneracies si on {F̂n+1}n≥0 as
follows:

(12) diẑj =

 ẑj if j < i
1 if j = i

ẑj−1 if j > i,
siẑj =

 ẑj if j < i
ẑiẑi+1 if j = i
ẑj+1 if j > i.

It is straightforward to check that the sequence of groups F̂ = {F̂n+1}n≥0 is a
simplicial group under di and si defined as above. Let

φn : F̂n+1 → F [S1]n

be the group homomorphism given by φn(ẑ0) = (y0y1 · · · yn−1)−1 and φn(ẑj) = yj−1

for 1 ≤ j ≤ n. It is routine to check part (1) of the following result. Then
Theorem 6.1.1 has part (2) as an application.

Proposition 6.1.2. Let F̂ be the simplicial group defined above. Then
(1) φ = {φn} : F̂ → F [S1] is an isomorphism of simplicial groups; and
(2) the geometric realization of F̂ is homotopy equivalent to ΩS2. �

6.2. Proof of Theorem 1.1. In this subsection, we prove Theorem 1.1, while the
computations of low-dimensional Brunnian braids over S2 will be given in Section 7.
Let E = {F (S2, n + 1)}n≥0. Then E is a ∆-bundle with En = F (S2, n + 1) path-
connected and E0 = S2 simply-connected. So from Definition 4.2.3, there is a
fibration

(Ω̃E)n −→ F (S2, n + 2) d0−→ F (S2, n + 1).
Part (a) of the next lemma follows at once by comparing with the canonical fibration
(with Qn+1 = {q0, . . . , qn})

S2 −Qn+1 −→ F (S2, n + 2) d0−→ F (S2, n + 1).

Lemma 6.2.1. (a) For all n there is a homotopy equivalence (Ω̃E)n ' S2−Qn+1.
(b) There are isomorphisms of ∆-groups

(Ω̃E)π1 ∼= F̂ ∼= F [S1].

Proof. The face map di : Ω̃En → Ω̃En−1 is the inclusion

S2 −Qn+1 ⊆ S2 − {q0, . . . , qi−1, qi+1, . . . , qn}.

Thus π1((Ω̃E)n) = F̂n+1 and it is easy to see that the respective faces agree. There-
fore, by Part (1) of Proposition 6.1.2, there is an isomorphism of ∆-groups

F (S1) ∼= (Ω̃E)π1 .

�

Part (2) of Proposition 6.1.2 has the following consequence.

Corollary 6.2.2. There are isomorphisms

πn((Ω̃E)π1) ∼= πn(F [S1]) ∼= πn+1(S2)

for any n. �

Proof of Theorem 1.1. Observe that, by definition,

Eπ1 = F(S2)π1 .

Recall from Corollary 2.3 that π1(F (S2, 3)) = Z/2 and also π2(F (S2, n)) = 0 for
n ≥ 3. From the exact sequence of Proposition 4.2.4:

π2(F (S2, n + 1)) - π1((Ω̃E)n) - Ω(Eπ1)n
- 1,
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we have

π1((Ω̃E)n) ∼= Ω(Eπ1)n

for n ≥ 2. Thus, via Part (3) of Proposition 4.2.1, for n ≥ 3,

πn+1(F(S2)π1) = πn+1(Eπ1) = πn(Ω(Eπ1)) ∼= πn((Ω̃E)π1) ∼= πn+1(S2).

This completes the proof. �

Theorem 6.2.3. The group of Brunnian braids Brunn(S2) is isomorphic to the
group of Moore cycles Zn−2F [S1] for n ≥ 5.

Proof. From the definitions,

Brunn(S2) = Zn−1F(S2)π1 = Zn−2Ω(F(S2)π1),

while the above proof also gives

Zn−2Ω(F(S2)π1) ∼= Zn−2(Ω̃F(S2))π1 ∼= Zn−2F [S1]

for n− 2 ≥ 3. �

6.3. Artin’s Braids. In this subsection, Artin’s braid groups are considered. The
main reference is Birman’s book [6]. Let Bn+1 = π1(B(D2, n+1)) denote the Artin
braid group and let Pn+1 = π1(F (D2, n + 1)) ⊆ Bn+1 denote the Artin pure braid
group.

Let D2 be the unit disc and let Qn+1 = {q0, q1, . . . , qn} be a set of distinct fixed
points of D2 − ∂D2. Then π1(D2 −Qn+1) is a free group Fn+1 of rank n + 1. Let
z0, z1, . . . , zn be a basis for π1(D2−Qn+1), where zi is represented by a simple loop
that encloses the point qi, but no point qj for j 6= i. According to [6, Theorem 1.10],
the braid group Bn+1 is isomorphic to the group of automorphisms of π1(D2−Qn+1)
induced by the self-homeomorphisms of D2 − Qn+1 that keep the boundary of
D2 fixed pointwise. (This result is due to Artin and can be regarded as another
definition of the group Bn+1.)

According to [6, pp. 33-34], this isomorphism can be described as follows. Let
h be a self-homeomorphism of D2 − Qn+1. Then h has a unique extension h̄ to
D2 which permutes the points of Qn+1. The map h̄ is isotopic to the identity map
of D2 relative to the boundary. Let Fh : D2 × I → D2 be such an isotopy, with
Fh

0 = idD2 and Fh
1 = h̄. The image β = βh of Qn+1 × I under Fh is a geometric

braid of n + 1 strings over D2.
Let Qn+1,i = Qn+1−{qi}, and define µβ ∈ Sn+1 by qµβ(j) = h̄(qj) for 0 ≤ j ≤ n.

Recall that the simplicial structure on {Bn+1} is given by deleting and doubling the
strings. More precisely, diβ is the braid of n strings obtained by taking the image
of Qn+1,i under Fh in D2 × I, and siβ is the braid of n + 2 strings obtained by
taking the image of Qn+1∪{q′i} under Fh in D2× I, where q′i is a point sufficiently
close to but different from qi. (See Subsection 3.2 for the choice of the point
q′i.) Observe that the geometric braids diβ and siβ are induced by the restricted
homeomorphisms h̄ : D2 −Qn+1,i → D2 −Qn+1,µβ(i) and

h̄ : D2 − (Qn+1 ∪ {q′i})→ D2 − (Qn+1 ∪ {h̄(q′i)}),

respectively. (Note. According to Subsection 3.2, the point q′i is chosen in a good
way such that the string from q′i to h̄(q′i) lies inside a small tubular neighborhood
Vi of the i th string from qi to h̄(qi) and the string from qj to h̄(qj) lies outside
of Vi for j 6= i.) Define the faces di and the degeneracies si on {Fn+1}n≥0 as in
equation (12) (with ẑ replaced by z). The next lemma follows from a routine check.
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Lemma 6.3.1. Let β ∈ Pn+1 be a pure braid. Then there is a commutative diagram

Fn+2
si - Fn+1

di - Fn

Fn+2

siβ

? si - Fn+1

β

? di - Fn

diβ

?

for 0 ≤ i ≤ n. �

Recall that the group Bn+1 admits a representation with generators σ0, σ1, . . . , σn−1

and defining relations
(1) σiσj = σjσi for |i− j| ≥ 2 and 0 ≤ i, j ≤ n− 1, and
(2) σiσi+1σi = σi+1σiσi+1 for 0 ≤ i ≤ n− 2.

(Note that our labelling system starts with 0.) As a geometric braid, σi is the
canonical i th elementary braid of n + 1 strings, pictured in [6, pp. 8], which twists
the positions i and i + 1 once and puts trivial strings on the remaining positions.
The action of σi on Fn+1 = π1(D2 −Qn+1) is given as follows:

σi(zi) = zi+1, σi(zi+1) = z
−1
i+1zizi+1 and σi(zj) = zj for j 6= i, i + 1.

The classical Artin theorem [2] describes Bn+1 as a subgroup of Aut(Fn+1).

Theorem 6.3.2. [6, Theorem 1.9] Let β be an endomorphism of Fn+1. Then β
lies in Bn+1 ⊆ Aut(Fn+1) if and only if β satisfies two conditions:

(1) β(zi) = A−1
i zσ(i)Ai, 0 ≤ i ≤ n, for some permutation σ ∈ Sn+1 and words

Ai ∈ Fn+1, and
(2) β(z0z1 · · · zn) = z0z1 · · · zn. �

In fact, in the above result σ can be taken as µβ . The center Z(Bn+1) of Bn+1

is as follows.

Lemma 6.3.3 (Chow [20]). If n ≥ 2, then Z(Bn+1) = Z(Pn+1) is the infinite
cyclic subgroup generated by (σ0σ1 · · ·σn−1)n+1. �

(Note. If n = 1, then Z(P2) = P2
∼= Z generated by σ2

0 . Thus Z(Pn+1) is in
fact the subgroup generated by (σ0σ1 · · ·σn−1)n+1 for each n.) Let F̂n+1 (as before)
denote the group generated by ẑ0, . . . , ẑn, with the single relation ẑ0ẑ1 · · · ẑn = 1.
It is a free group of rank n with a basis ẑ0, . . . , ẑn−1. By the second condition of
Theorem 6.3.2, the product element z0z1 · · · zn is a fixed point of the Bn+1-action,
and so the action of Bn+1 on Fn+1 factors through the quotient group F̂n+1. The
resulting representation Bn+1 → Aut(F̂n+1) is called the reduced Artin represen-
tation. Let φ : Pn+1 ⊆ Bn+1 → Aut(F̂n+1) be the reduced Artin representation of
the pure braid group Pn+1. This representation is not faithful.

Lemma 6.3.4. [6, Lemma 3.17.2] The kernel of φ : Pn+1 → Aut(F̂n+1) is the
center Z(Pn+1). �

Lemma 6.3.5. Let β ∈ Bn+1 be a braid. If the reduced Artin representation of β

is an inner automorphism of F̂n+1, then β is a pure braid.

Proof. The assertion follows immediately from the commutative diagram

Bn+1
- Aut(F̂n+1)

Sn+1

µ

?
⊂ - Aut((F̂n+1)ab),

?
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where the abelianization (F̂n+1)ab of F̂n+1 is the quotient of Zn+1 with the reduced
basis {ê0, . . . , ên} subject to the relation ê0 + ê1 + · · ·+ ên = 0, and Sn+1 acts on
(F̂n+1)ab by permuting the reduced basis. �

Let Rn+1 = φ−1(Inn(F̂n+1)) be the subgroup of Pn+1 consisting of those braids
β whose reduced Artin representation is an inner automorphism of F̂n+1. It is clear
that Rn+1 is a normal subgroup of Bn+1.

Proposition 6.3.6. Let R = {Rn+1}n≥0 and let C = {Z(Pn+1)}n≥0. Then the
following hold.

(1) Both C and R are ∆-subgroups of P = {Pn+1}n≥0.
(2) The Moore chains of C are given by N1C ∼= Z and NjC = 1 for j 6= 1.
(3) There are isomorphisms NnR ∼= NnF (S1) and ZnR ∼= ZnF (S1) for n ≥ 3.

Proof. Because the face maps are epimorphisms, they send centers to centers; and
so C is a ∆-subgroup of P. By Lemma 6.3.1, there is a commutative diagram

F̂n+1
di - F̂n

F̂n+1

β

?
di - F̂n

diβ

?

for β ∈ Pn+1 and 0 ≤ i ≤ n. Let β ∈ Rn+1. Then there is a word w ∈ F̂n+1 such
that β(z) = w−1zw for any z ∈ F̂n+1. Thus

(13) (diβ)(di(z)) = (di(w))−1di(z)di(w).

Since di : F̂n+1 → F̂n is onto, the reduced Artin representation of diβ is the inner
automorphism induced by diw. Thus diβ ∈ Rn for each 0 ≤ i ≤ n and assertion (1)
follows. Now determine the Moore chains of C and R. Since B(D2)π1 = {Bn+1}n≥0

is a crossed simplicial group, from (3.1)

di(xk) = di(x)di·µx
(x) · · · di·µk−1

x
(x)

for x ∈ B(D2)π1 and k ≥ 1. Let βn = σ0σ1 · · ·σn−1 ∈ (B(D2)π1)n. Then d0βn = 1
and djβn = βn−1 for j > 0. It follows that

di(βn+1
n ) = di(βn)di·ρ(βn) · · · di·ρn(βn) = βn

n−1

because ρ = µβn
is a cyclic permutation of order n + 1. Assertion (2) follows.

(3). By [6, Lemmas 3.17.1 and 3.17.2], there is a split short exact sequence

1 - Z(Pn+1) - Rn+1
φ- Inn(F̂n+1) - 1.

Thus
Inn(F̂ ) = {Inn(F̂n+1)}n≥0

is a ∆-quotient group of R. Let θ : F̂n+1 → Inn(F̂n+1)n≥0 be the map defined by
θ(w)(z) = w−1zw. By equation (13), the map

θ : F (S1) = F̂ → Inn(F̂ )

is a morphism of ∆-groups. Since θ : F̂n+1 → Inn(F̂n+1) is an isomorphism for
n ≥ 2, it follows that θ∗ : NnF (S1) → NnInn(F̂ ) and θ∗ : ZnF (S1) → ZnInn(F̂ )
are isomorphisms for n ≥ 3. It remains to show that φ∗ : NnR → NnInn(F̂ ) and
φ∗ : ZnR→ ZnInn(F̂ ) are isomorphisms for n ≥ 3. By the exact sequence

1 - NC - NR
φ∗- N Inn(F̂ ),
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the map φ∗ : NnR → NnInn(F̂ ) is a monomorphism for n ≥ 2 because NnC = 1
for n ≥ 2. Let β̄ ∈ NnInn(F̂ ) with n ≥ 3 and let β be an element in Rn+1 such
that φ(β) = β̄. Let αn = βn+1

n denote the generator of the infinite cyclic group
Z(Pn+1) = Cn for n ≥ 1. Since diβ̄ = 1 for i > 0, there exist integers ki such that

diβ = αki
n−1

for 1 ≤ i ≤ n. For each 1 ≤ j < i, observe that

(14) αki
n−2 = djα

ki
n−1 = djdiβ = di−1djβ = di−1α

kj

n−1 = α
kj

n−2.

It follows that k1 = k2 = · · · = kn. Let β̃ = α−k1
n β. Then diβ̃ = 1 for i > 0

or β̃ ∈ NnR with φ(β̃) = β̄. Thus NnR → NnInn(F̂ ) is an epimorphism for
n ≥ 3. Finally, since φ∗ : NnR → NnInn(F̂ ) is an isomorphism for n ≥ 3 and a
monomorphism for n = 2, φ∗ : ZnR→ ZnInn(F̂ ) is an isomorphism for n ≥ 3. The
proof is complete. �

The next corollary is an immediate consequence of Theorem 6.2.3 and Proposi-
tion 6.1.2.

Corollary 6.3.7. There are isomorphisms of groups

ZnR ∼= ZnF [S1] ∼= Brunn+2(S2) and πn(R) ∼= πn(F [S1]) = πn+1(S2)

for n ≥ 3. �

Let S2
+ denote the upper hemisphere. The canonical inclusion D2 ≈ S2

+ ⊆ S2

induces a map f : B(D2, n + 1) → B(S2, n + 1) and so a group homomorphism
f∗ : π1(B(D2, n + 1))→ π1(B(S2, n + 1)).

Lemma 6.3.8 (Fadell and Van Buskirk [27]). The group homomorphism

f∗ : Bn+1 = π1(B(D2, n + 1))→ π1(B(S2, n + 1))

is an epimorphism, and the kernel R̃n+1 of f∗ is the normal subgroup of Bn+1

generated by the single element νn = σ0σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ0. �

Notice that
νn(z0) = (z0z1z2 · · · zn)z0(z0z1z2 · · · zn)−1

and

νn(zi) = (z1z2 · · · zn)−1z−1
0 (z1z2 · · · zn)zi(z1z2 · · · zn)−1z0(z1z2 · · · zn)

for i > 0. Thus the reduced Artin representation of νn is the inner automorphism
of F̂n+1 induced by ẑ0 and therefore lies in Rn+1. Since Rn+1 is a normal subgroup
of Bn+1, so R̃n+1 is a subgroup of Rn+1. The following lemma is asserted as a
footnote in [6, p. 35]. A short proof is given next.

Lemma 6.3.9. The composite

φ̃ : R̃n+1
⊂ - Rn+1

φ- Inn(F̂n+1)

is an epimorphism.

Proof. Observe that the image

Im(φ̃ : R̃n+1 → Inn(F̂n+1))

is the subgroup of Inn(F̂n+1) generated by inner automorphisms induced by the
words β(ẑ0) for β ∈ Bn+1. The assertion follows from the fact that

σi−1 · · ·σ0(ẑ0) = ẑi

for 1 ≤ i ≤ n. �
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Lemma 6.3.10 (Gillette and Van Buskirk [32]). The center of π1(B(S2, n+1)) is
the subgroup of order 2 generated by the element

f∗((σ0σ1 · · ·σn−1)n+1)

for n ≥ 2. �

Let R̃ = {R̃n+1}n≥0 and let C̃ = C∩R̃. By Lemma 6.3.9, there is a commutative
diagram of short exact sequences of ∆-groups

C̃ ⊂ - C -- C/C̃

R̃

?

∩

⊂ - R
?

∩

-- C/C̃

wwwwwwwww

Inn(F̂ )

??

==== Inn(F̂ ).

??

From Lemma 6.3.10, notice that (C/C̃)n = 1 for n ≤ 1 and Z/2 for n ≥ 2. By
Proposition 6.3.6 and Corollary 6.3.7, we have the following.

Proposition 6.3.11. There are isomorphisms of groups

NnR̃ ∼= Nn(F (S1)), ZnR̃ ∼= Zn(F (S1)) and πn(R̃) ∼= πn(F (S1)) = πn+1(S2)

for n ≥ 3. �

6.4. Proof of Theorem 1.2. The terminology of Subsection 6.3 continues here.
Recall that F(M)π1 = {π1(F (M,n + 1))}n≥0 and that

f : B(D2, n + 1) - B(S2, n + 1)

is the canonical inclusion. Recall also from Proposition 7.2.2 that f∗(σi) is written
as δi.

Proof of Theorem 1.2. By Theorem 3.2.12, P = F(D2)π1 is a simplicial group,
while by Lemma 6.3.8 f∗ : P → F(S2)π1 is an epimorphism of ∆-groups. Thus
there is a left exact sequence of Moore chains

1 - NR̃ - NP Nf∗- NF(S2)π1 .

It will be checked next that

Nf∗ : NnP - NnF(S2)π1

is an epimorphism for each n.
First, a check for the cases n = 0, 1, 2 is given. Recall that N0 F(S2)π1 = 1,

N1F(S2)π1 = 1 and N2F(S2)π1 = π1(F (S2, 3)) = Z/2 generated by (δ0δ1)3 = δ2
1 .

Observe that d1σ
2
1 = d2σ

2
1 = 1. Thus σ2

1 ∈ N2P with f∗(σ2
1) = (δ0δ1)3. So the

statement holds for n ≤ 2.
Next, assume that n ≥ 3. Let β̄ ∈ NnF(S2)π1 and let β ∈ Pn be such that

f∗(β) = β̄. Then
diβ ∈ R̃n

for i > 0. Consider the map of ∆-groups φ̃ : R̃→ Inn(F̂ ). Then the elements

φ̃(djβ) ∈ Inn(F̂ )n−1, 0 < j ≤ n,
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are matching faces with respect to 0. Recall from the proof of Proposition 6.3.6
that the morphism of ∆-groups F (S1) ∼= F̂ → Inn(F̂ ) induces an isomorphism

F (S1)j
∼= Inn(F̂ )j

for j ≥ 2. Since F (S1) is a simplicial group, the ∆-group F (S1) is fibrant. Thus
there is an element α ∈ Inn(F̂ )n such that

djα = φ̃(djβ)

for 0 < j ≤ n. By Lemma 6.3.9, the morphism of ∆-groups φ̃ : R̃ → Inn(F̂ ) is an
epimorphism. Therefore there is an element α̃ ∈ (R̃)n = R̃n+1 such that φ̃(α̃) = α.
Let β̃ = β · α̃−1 ∈ (P)n. Then f∗(β̃) = β̄, φ̃(dj β̃) = 1 and f∗(dj β̃) = 1 for j > 0. It
follows that there exist integers kj such that dj β̃ = α

kj

n−1 for 0 < j ≤ n, where, as in
the proof of Proposition 6.3.6, αn−1 generates the center Z(Pn). By equation (14),

k1 = k2 = · · · = kn.

Let β̃′ = β̃ · α−k1
n . Then β̃′ ∈ NnP with f∗(β̃′) = β̄. This proves that

Nf∗ : NP → NF(S2)π1

is an epimorphism. Hence there is a short exact sequence of chains

1 - NR̃ - NP - NF(S2)π1 - 1.

For any Moore cycle β ∈ ZnP, let β̃ be the braid in Pn+1 obtained by adding
the trivial string to the left of β; in other words, dj β̃ = 1 for j > 0 and d0β̃ = β.
Thus β ∈ BnP. Hence BP = ZP, and so

BnF(S2)π1 = Im(BnP → F(S2)π1
n )

= Im(ZnP → F(S2)π1
n )

= Im(ZnP → ZnF(S2)π1)

= Im(Brunn+1(D2)→ Brunn+1(S2))

for n ≥ 2. By Theorem 1.1, there is an exact sequence

1 - Tn+1
- Brunn+1(D2)

f∗- Brunn+1(S2) - πn(S2) - 1

for n ≥ 4, where Tn+1 is the kernel of f∗. So Tn+1 = ZnP ∩ (R̃)n = ZnR̃. By
Proposition 6.3.11 and Theorem 6.2.3, there are isomorphisms

ZnR̃ ∼= Zn(F (S1)) ∼= Brunn+2(S2),

completing the proof. �

Note. From the proof, π∗(P) = 0, and so P is a contractible simplicial group.
Thus the simplicial group P can be regarded as a model for the total space of the
classifying spaces of simplicial subgroups of P. More generally, if G is a simpli-
cial subgroup of P, then the simplicial coset P/G is homotopy equivalent to the
classifying space of G.

6.5. Proof of Theorem 1.3. In higher dimensions, there is a version of The-
orem 1.3 that follows from Theorem 1.2 by means of the following result whose
proof is straightforward.

Lemma 6.5.1. Suppose that for n ≥ k there is an exact sequence of groups

1 - An+1
αn+1- Bn

βn- An
γn- Cn−1

- 1.

For n ≥ k +1, define ∂n = αnβn : Bn → Bn−1. Then for n ≥ k +1 we have ∂n∂n+1

trivial, Im(∂n+1) E ker(∂n), and

Hn(B∗, ∂) ∼= Cn.
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�

In order to obtain the theorem in all dimensions, consider the following geometric
construction of ∂. Let δ : F (C, n + 1) −→ F (C, n) be the map defined by

δ(z0, z1, . . . , zn) =
(

1
z̄1 − z̄0

,
1

z̄2 − z̄0
, . . . ,

1
z̄n − z̄0

)
,

corresponding geometrically to the reflection map in C about the unit circle centered
at z0. Consider the effect of δ on Bn+1 regarded as the subset (labelled Gn in the
proof of Theorem 3.2.12) of the fundamental groupoid consisting of path homotopy
classes of paths starting the basepoint. Choose the basepoint qn+1 = (q0, q1, . . . , qn)
as follows. In order that the basepoint (q0, . . . , qn) behave well with respect to δ,
choose q0 = 0 and let q1, . . . , qn be points, ordered clockwise, lying in the first quad-
rant of the unit circle. More precisely, as in Subsection 3.2, consider an embedding
of R+ in D2 ⊆ C with induced ordering 0 = q0 < q1 < · · · < qn, say

θ : t 7−→
{

it 0 ≤ t ≤ 1,
exp

(
iπ
2t

)
t ≥ 1.

Choose the canonical path γ in F (C, n) from

qn = (q0, q1, . . . , qn−1) = (θ(0), θ(1), . . . , θ(n− 1))

to
(q1,q2, . . . , qn) = (θ(1), θ(2), . . . , θ(n))

given by
u 7→ (θ(u), θ(1 + u), . . . , θ(n− 1 + u)), 0 ≤ u ≤ 1.

This gives rise to an isomorphism of fundamental groups

h[γ] : π1(F (C, n), (q1,q2, . . . , qn)) −→ π1(F (C, n), qn).

There is a homomorphism

∂̃ = h[γ] ◦ δ∗ : Pn+1 = π1(F (C, n + 1), qn+1) −→ Pn = π1(F (C, n), qn)

with
di ◦ ∂̃ = ∂̃ ◦ di+1

for 0 ≤ i ≤ n− 1.
From the braid relations, there is an automorphism χ : Bn −→ Bn such that

χ(σi) = σ−1
i for all i. Since

χ(σ0σ1 · · ·σn−3σ
2
n−2σn−3 · · ·σ1σ0) = (σ0σ1 · · ·σn−3σ

2
n−2σn−3 · · ·σ1σ0)−1,

by Lemma 6.3.8 the map χ : Bn −→ Bn induces an automorphism of Bn(S2).
Because each σi is an involution in the symmetric group, χ acts as the identity
map on Sn, and so χ restricts to an automorphism on Pn(S2).

Let {Ai,j | 0 ≤ i < j ≤ n} be the set of generators for Pn+1 defined in [6, Fig.
4, p.21], that is,

Ai,j = σj−1σj−2 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ
−1
j−2σ

−1
j−1.

To help with computation of ∂̃(Ai,j), it is convenient to introduce a new notation

A−1,j = (Aj,j+1Aj,j+2 · · ·Aj,n)−1(A0,jA1,j · · ·Aj−1,j)−1

= (σjσj+1 · · ·σn−2σ
2
n−1σn−2 · · ·σj)−1 · (σj−1 · · ·σ1σ

2
0σ1 · · ·σj−1)−1

in Pn+1 for 0 ≤ j ≤ n. This corresponds to the braid:
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0 j−1 j j +1 n

· · ·

· · ·

A−1,j

Let ∂ = χ ◦ ∂̃ : Pn+1 −→ Pn.

Lemma 6.5.2. With the above notation, for each n the group homomorphism
∂ : Pn+1 −→ Pn satisfies:

(1) ∂(Ai,j) = Ai−1,j−1 whenever 0 ≤ i < j, and ∂(A−1,j) = 1.
(2) di ◦ ∂ = ∂ ◦ di+1 whenever 0 ≤ i ≤ n− 1.
(3) ∂ ◦ ∂ = ∂ ◦ d0.

Proof. As in the picture below, we have, for 0 < i < j,

∂(Ai,j) = χ ◦ χ(Ai−1, j−1) = Ai−1, j−1.
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These pictures represent the view from above. Under δ, the j th string of Ai,j is
the only one to move, in the direction indicated by the arrow. Then relabelling
removes the original 0 th string and reduces other labels by 1. For i = 0 < j, the
situation looks as follows:
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0 j−1 n−1

· · ·

· · ·

χ(A−1,j−1)

≡

Thus

∂(A0,j) = χ(σj−1 · · ·σn−3σ
2
n−2σn−3 · · ·σj−1) · χ(σj−2 · · ·σ1σ

2
0σ1 · · ·σj−2)

= (σj−1 · · ·σn−3σ
2
n−2σn−3 · · ·σj−1)−1 · (σj−2 · · ·σ1σ

2
0σ1 · · ·σj−2)−1

= A−1, j−1.

These formulae imply that

∂(A−1,j) = (Aj−1,jAj−1,j+1 · · ·Aj−1,n−1)−1 · (A0,j−1A1,j−1 · · ·Aj−2,j−1)−1 ·A−1
−1,j−1

= 1.

Hence assertion (1). Note that

dk(Ai,j) =


Ai−1,j−1 k < i < j

1 k = i, j
Ai,j−1 i < k < j
Ai,j k > j.

Then assertions (2) and (3) follow from (1) by easy computation. �

From formulae (2) and (3), the following is immediate.

Corollary 6.5.3. Let Γ = {Γn}n≥0 be the sequence of groups defined by Γ0 = 1
and, for n ≥ 1,

Γn = Pn−1 = Pn

with faces d0(Γ) = ∂ and dk(Γ) = dk−1(P) for k > 0. Then Γ is a ∆-group. �

Proof of Theorem 1.3. From the fibre sequence

R2 −Qn
- F (R2, n + 1)

dn- F (R2, n),

the kernel Gn := Ker(dn : Pn+1 −→ Pn) is the free group of rank n generated by

A0,n, A1,n, . . . , An−1,n.

Observe that di maps Gn into Gn−1 for 0 ≤ i ≤ n − 1. By the above lemma, we
have

∂(Ai,n) =
{

Ai−1, n−1 0 < i < n
(A0,n−1A1,n−1 · · ·An−2,n−1)−1 i = 0 < n.

Thus ∂ maps Gn into Gn−1. Let F [S1] be the Milnor construction of S1 with
F [S1]n = F (y0, y1, . . . , yn−1) and the faces described in Equation (11). Let

ϕ : F [S1]n - Gn

be the group isomorphism defined by

ϕ(yi) = Ai,n
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for 0 ≤ i ≤ n− 1. Then

di ◦ ϕ(w) = ϕ ◦ di+1(w), ∂ ◦ ϕ(w) = ϕ(d0(w))

for w ∈ F [S1]n. Thus the map ϕ induces an isomorphism

NnF [S1]
∼=−→ Gn ∩

n−1⋂
i=0

Ker(di : Pn+1 → Pn) = Brunn+1(D2)

with ∂ ◦ ϕ(w) = ϕ(d0(w)) for w ∈ NnF [S1]. Hence

∂ ◦ ∂ : Brunn+1(D2) −→ Brunn−1(D2)

is trivial and

Hn+1(Brun(D2), ∂) ∼= Hn(NF [S1], d0) ∼= πn(ΩS2) ∼= πn+1(S2)

for all n. This finishes the proof. �

Observe that we have the Moore chains NΓn = Brunn(D2) with d0(Γ) = ∂. So
the proof gives the following.

Corollary 6.5.4. Let Γ be the ∆-group defined in Corollary 6.5.3. Then

πn(Γ) ∼= πn(S2)

for all n. �

6.6. Comparison of Differentials. In this subsection, we investigate the relation
between the differentials in Lemmas 6.5.1 and 6.5.2. The group homomorphism

χ : Bn −→ Bn

is in fact induced by complex conjugation. The map

J : F (C, n) −→ F (C, n) (z0, . . . , zn−1) 7→ (z̄0, . . . , z̄n−1)

induces a map J̄ : B(C, n) = F (C, n)/Sn −→ B(C, n) and so a group homo-
morphism J̄∗ : Bn = π1(B(C, n)) −→ Bn. By choosing the basepoint with real
coordinates, one can easily show the following proposition, where the generators σi

of Bn are given in Birman’s sense [6].

Proposition 6.6.1. With the above notations, J̄∗ = χ : Bn −→ Bn. �

Recall that the group F̂n is generated by ẑ0, . . . , ẑn−1 with the single relation
ẑ0ẑ1 · · · ẑn−1 = 1. Let φ : Bn −→ Aut(F̂n) denote the reduced Artin representation.
Recall from Lemma 6.3.8 that

νn = σ0σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1σ0 = A−1

−1,0

is the normal generator for the kernel of f∗ : Pn+1 −→ Pn+1(S2).

Lemma 6.6.2. Let Ai,j be the generators for Pn+1 given in [6]. Then, for j ≥ 1,

as automorphisms of F̂n,

(φ ◦ ∂(A0,j)) (x) = ẑj−1xẑ−1
j−1,

and

φ ◦ ∂(A0,1A0,2 · · ·A0,n) = id ∈ Aut(F̂n).
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Proof. Writing φ(β)(z) = β · z, we calculate that

νn−1 · ẑk = σ0σ1 · · ·σn−3σ
2
n−2σn−3 · · ·σ1σ0 · ẑk

= σ0σ1 · · ·σn−3σ
2
n−2σn−3 · · ·σkσk−1 · ẑk

= σ0σ1 · · ·σn−3σ
2
n−2σn−3 · · ·σk · ẑ−1

k ẑk−1ẑk

= σ0σ1 · · ·σn−3σn−2 · ẑ−1
n−1ẑk−1ẑn−1

= σ0σ1 · · ·σk−1 ·
(
ẑ−1
n−1ẑ

−1
n−2 · · · ẑ

−1
k+1ẑ

−1
k ẑk+1 · · · ẑn−1

)
ẑk−1(

ẑ−1
n−1ẑ

−1
n−2 · · · ẑ

−1
k+1ẑkẑk+1 · · · ẑn−1

)
= σ0σ1 · · ·σk−2 ·

(
ẑ−1
n−1ẑ

−1
n−2 · · · ẑ

−1
k ẑ−1

k−1ẑk · · · ẑn−1

)
ẑk(

ẑ−1
n−1ẑ

−1
n−2 · · · ẑ

−1
k ẑk−1ẑk · · · ẑn−1

)
=
(
ẑ−1
n−1ẑ

−1
n−2 · · · ẑ

−1
1 ẑ−1

0 ẑ1 · · · ẑn−2ẑn−1

)
ẑk

(
ẑ−1
n−1ẑ

−1
n−2 · · · ẑ

−1
1 ẑ0ẑ1 · · · ẑn−1

)
= ẑ−1

0 ẑkẑ0.

Thus, for all words x ∈ F̂n, the element νn−1 · x = ẑ−1
0 xẑ0, and so

ν−1
n−1 · x = ẑ0xẑ−1

0 .

Therefore for any braid α, the action

αν−1
n−1α

−1 · x = α(ẑ0)xα(ẑ0)−1.

Observe from the definition that

(15) A−1,j−1 = (σj−2σj−3 · · ·σ0) ν−1
n−1 (σj−2σj−3 · · ·σ0)

−1
.

Since
σj−2σj−3 · · ·σ0(ẑ0) = ẑj−1,

the result follows. �

Lemma 6.6.3. There is a group homomorphism α : Pn+1(S2) −→ Pn such that
the following diagram commutes

Pn+1
f∗ -- Pn+1(S2)

d0 - Pn(S2)

Pn

∂

?
===================== Pn

α

? f∗ -- Pn(S2).

wwwwwwwww
Proof. From Equation 15, each ∂(A0,j) goes to 1 in Pn(S2); also ∂(Ai,j) = Ai−1,j−1

for i > 0. Thus
f∗ ◦ ∂ = d0 ◦ f∗ = f∗ ◦ d0.

Since ∂(νn) = ∂(A−1
−1,0) = 1 and νn normally generates Ker(f∗), the homomorphism

∂ factors through f∗ : Pn+1 −→ Pn+1(S2). Let α : Pn+1(S2) −→ Pn be the
resulting homomorphism. Then f∗ ◦ α = d0 because f∗ : Pn+1 −→ Pn+1(S2) is an
epimorphism. �

From the fibre sequence

S2 r Qn
j- F (S2, n + 1)

d0- F (S2, n),

we have the exact sequence

π2(F (S2, n)) - F̂n = π1(S2rQn)
j∗- Pn+1(S2) = π1(F (S2, n+1))

d0- Pn(S2).
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By Lemma 6.6.3, there is a commutative diagram whose rows are exact sequences:

F̂n
j∗ - Pn+1(S2)

d0 -- Pn(S2)

Ker(f∗)

α

?
⊂ - Pn

α

? f∗ -- Pn(S2)

wwwwwwwww

Inn(F̂n)

φ

?
⊂ - Aut(F̂n)

φ

?
-- Out(F̂n),

?

where the lower two rows are from the Artin representation of Pn and Lemma 6.3.9.

Lemma 6.6.4. For n ≥ 3, the composite

F̂n
α- Ker(f∗)

φ- Inn(F̂n)

is an isomorphism.

Proof. Recall that F̂n = π1(S2 r Qn) is generated by A0,1, A0,2, . . . , A0,n with the
single relation A0,1A0,2 · · ·A0,n = 1. By Lemma 6.6.2, φ◦α(A0,j) is the conjugation
induced by the word ẑj−1 in F̂n. The assertion follows from the fact that

Inn(F̂n) ∼= F̂n

for n ≥ 3. �

Theorem 6.6.5. For n ≥ 4, the sequence

1 - Brunn+1(S2)
α- Brunn(D2)

f∗- Brunn(S2) - πn−1(S2) - 1

is exact, and the algebraic differential αf∗ coincides with the geometric differential
∂.

Proof. Observe that f∗ : P −→ F(S2)π1 is an epimorphism of ∆-groups. By
Lemmas 6.5.2 and 6.6.3, for α : Pn+1(S2) −→ Pn, the formula

di ◦ α = α ◦ di+1

holds for 0 ≤ i ≤ n−1. Thus α maps Brunn+1(S2) into Brunn(D2)∩Ker(f∗). Note
that the homomorphism j∗ : F̂n = π1(S2 r Qn) −→ Pn+1(S2) satisfies

di ◦ j∗ = j∗ ◦ di+1

for 0 ≤ i ≤ n − 1. Thus the composite F̂n
α−→ Ker(f∗)

φ−→ Inn(F̂n) induces a
morphism of ∆-groups

φ ◦ α : F̂ = {F̂n+1}n≥0 −→ Inn(F̂ ) = {Inn(F̂n+1)}n≥0

with φ ◦ α : F̂n −→ Inn(F̂n) an isomorphism by Lemma 6.6.4. It follows that

φ ◦ α : ZnF̂ → ZnInn(F̂ )

is an isomorphism for n ≥ 3. By the proof of Proposition 6.3.6, the Artin represen-
tation φ induces an isomorphism

φ : Ker(f∗) ∩ Brunn+1(D2) −→ ZnInn(F̂ )

for n ≥ 3. Thus

α : Brunn+1(S2) −→ Brunn(D2) ∩Ker(f∗)

is an isomorphism for n ≥ 4, as required. �
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7. Low-Dimensional Brunnian Braids

Explicit computations in low-dimensional cases are given in this subsection.

7.1. The Moore Homotopy Groups πn

(
F(S2)π1

)
for n ≤ 3. The terminology

in Subsection 6.2 is used here. Let E = {F (S2, n + 1)}n≥0. Recall that Eπ1 =
F(S2)π1 . Clearly

π0(Eπ1) = π1(F (S2, 1)) = π1(S2) = 1

and
π1(Eπ1) ⊆ π1(F (S2, 2)) = π1(S2) = 1.

1. π2(F(S2)π1). Observe from Lemma 6.2.1 that

Ω(Eπ1)2 ∼= F [S1]2 = F̂ (ẑ0, ẑ1, ẑ2).

From Proposition 4.2.4, there is a short exact sequence

0 - Z - π1((Ω̃E)1) - Z/2 = π1(F (S2, 3)) - 1.

Thus there is a commutative diagram

(Ω̃E)π1
2 = F̂ (ẑ0, ẑ1, ẑ2)

∼= - Ω(Eπ1)2

(Ω̃E)π1
1 = F̂ (ẑ0, ẑ1) = Z

di

?
-- Ω(Eπ1)1 = Z/2

di

?

for 0 ≤ i ≤ 2. Let α be nontrivial in Z/2. From Equation 12,

di : Ω(Eπ1)2 = F̂ (ẑ0, ẑ1, ẑ2) ∼= F (ẑ0, ẑ1)→ Z/2

is given by

d0(ẑ0) = 1, d0(ẑ1) = α, d1(ẑ0) = α, d1(ẑ1) = 1, d2(ẑ0) = α and d2(ẑ1) = α.

Let w = ẑl1
0 ẑk1

1 · · · ẑ
lt
0 ẑkt

1 be a word in F (ẑ0, ẑ1). Then

(1) w ∈ Ker(d1) if and only if l1 + l2 + · · ·+ lt ≡ 0 mod 2, and
(2) w ∈ Ker(d1) ∩Ker(d2) = NΩ(Eπ1)2 if and only if

l1 + l2 + · · ·+ lt ≡ k1 + k2 + · · ·+ kt ≡ 0 mod 2.

It follows that

(16) Z2Ω(Eπ1) = N2Ω(Eπ1).

Thus B1Ω(Eπ1) = d0N2Ω(Eπ1) = 1 and so π1(Ω(Eπ1)) = Ω(Eπ1)1. Hence

π2(Eπ1) = π1(Ω(Eπ1)) = Ω(Eπ1)1 = Z/2.

2. π3(F(S2)π1). By Lemma 6.2.1 and Proposition 4.2.4, for n ≥ 2 there are
isomorphisms

F (S1)n
∼= Ω(Eπ1)n and N3F (S1) ∼= N3Ω(Eπ1).

Thus
B2F (S1) ∼= B2Ω(Eπ1).

According to [70, Example 2.23 and Corollary 4.7],

B2F (S1) = Γ3F (ẑ0, ẑ1),
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where Γ3G = [G, [G, G]]. Thus π3(Eπ1) = π2(Ω(Eπ1)) is the kernel of the canonical
map F (ẑ0, ẑ1)/Γ3 → Z/2× Z/2, with the commutative diagram

Z ============== π2(F [S1]) ∼= π3(S2) = Z

π3(Eπ1) = π2(Ω(Eπ1))
?

∩

⊂ - F (ẑ0, ẑ1)/Γ3

?

∩

(d1, d2) -- Z/2× Z/2

Z× Z
??

⊂
2× 2 - Z× Z

(d1, d2)
??

-- Z/2× Z/2.

wwwwwwwww
Thus there is a central extension

0 - Z - π3(Eπ1) - Z× Z - 0.

Let w0 = ẑ2
0 , w1 = ẑ2

1 and δ = [ẑ0, ẑ1] be elements in the integral Heisenberg
group F (ẑ0, ẑ1)/Γ3. Then π3(Eπ1) is generated by w0, w1 and δ subject to the
relations [w0, δ] = [w1, δ] = 1 and [w0, w1] = δ4. In other words, it has a faithful
representation as the matrix group generated by 1 2 0

0 1 0
0 0 1

 ,

 1 0 0
0 1 2
0 0 1

 ,

 1 0 1
0 1 0
0 0 1

 .

In summary, the following is proved:

Proposition 7.1.1. The group π3(F(S2)π1) is generated by w0, w1 and δ subject
to the relations [w0, δ] = [w1, δ] = 1 and [w0, w1] = δ4, with a linear representation
given above, and with center isomorphic to π3(S2) as above. �

7.2. The Brunnian groups Brunn(S2) for n ≤ 4. Clearly

Brun1(S2) = 1 and Brun2(S2) = π1(B(S2, 2)) = Z/2.

By Proposition 4.2.2, Brunn(S2) ⊆ π1(F (S2, n)) for n ≥ 3. Thus

Brun3(S2) = π1(F (S2, 3)) = Z/2.

To determine Brun4(S2), first observe that

Brun4(S2) = Z3Eπ1 = Z2Ω(Eπ1) = N2Ω(Eπ1),

with the last equality from Equation (16). Now from Lemma 6.2.1 and Equa-
tion (16), there is a short exact sequence

(17) 1 - Brun4(S2) = N2Ω(Eπ1)) - F (ẑ0, ẑ1)
(d1,d2)- Z/2× Z/2 - 1.

Let H be the subgroup of F (ẑ0, ẑ1) generated by the elements

T = {ẑ2
0 , ẑ2

1 , [ẑ0, ẑ1], ẑ−1
1 ẑ2

0 ẑ1, ẑ−1
0 ẑ2

1 ẑ0}.
Then H is a subgroup of Brun4(S2), and from the short exact sequence it is clear
that H normally generates Brun4(S2). Write ab for b−1ab. From the equations [50,
Theorem 5.1]

[ẑ2
0 , ẑ1] = [ẑ0, ẑ1][[ẑ0, ẑ1], ẑ0][ẑ0, ẑ1] and

((ẑ2
0)ẑ1)ẑ0 = (ẑ2

0)ẑ1ẑ0 = [ẑ0, ẑ1]ẑ−1
1 ẑ2

0 ẑ1[ẑ0, ẑ1]−1,

it follows that H ẑ0 ⊆ H. Similarly, H ẑ1 ⊆ H. Thus H is a normal subgroup of
F (ẑ0, ẑ1) and so H = Brun4(S2). In other words, Brun4(S2) is the subgroup of
F (ẑ0, ẑ1) generated by T .

This proves the following:
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Proposition 7.2.1. The Brunnian group Brun4(S2) is isomorphic to the subgroup
of the free group F (ẑ0, ẑ1) generated by the elements

T = {ẑ2
0 , ẑ2

1 , [ẑ0, ẑ1], ẑ−1
1 ẑ2

0 ẑ1, ẑ−1
0 ẑ2

1 ẑ0},

in other words, the second term of the mod 2 descending central series for the group
F (ẑ0, ẑ1). �

In geometry, recall from Theorem 2.2 that there is a homeomorphism

(CP1 r {0, 1,∞})× PGL2(C) ≈ GP(CP1, 4) = F (CP1, 4).

By taking the universal covering U(X)→ X, there is a decomposition

U(CP1 r {0, 1,∞})× UPGL2(C) ≈ UF (CP1, 4).

(Note that UPGL2(C) ' S3 and CP1 r {0, 1,∞} ' S1 ∨ S1.) Observe that the
map CP1 r {0, 1,∞} −→ F (CP1, 4) induces the group homomorphism

F (ẑ0, ẑ1) ∼= F̂ (ẑ0, ẑ1, ẑ2) = π1(CP1 r {0, 1,∞}) - π1(F (CP1, 4))

on fundamental groups. Since Brun4(S2) ⊆ F (ẑ0, ẑ1), the group Brun4(S2) acts on
U(CP1 r {0, 1,∞}) and the resulting covering

E4 =
(
Brun4(S2)\U(CP1 r {0, 1,∞})

)
× UPGL2(C) - F (CP1, 4)

is a principal Z/2× Z/2× Z/2-bundle over F (CP1, 4). The space E4 is a manifold
whose fundamental group is Brun4(S2).

The generators for Brun4(S2) in terms of braids are described below. Consider
the short exact sequence of groups

1 - π1(S2 −Q3) - π1(F (S2, 4))
d0- π1(F (S2, 3)),

where Q3 = {q1, q2, q3}. Let q0 be a base point of D2−Q2. We can identify a word

w ∈ F (ẑ0, ẑ1) = π1(D2 −Q2) ∼= π1(S2 −Q3)

with a pure braid in the following way.
Let λ be a loop in D2−Q2 such that the homotopy class [λ] = w. Then λ defines

a string λ0 : I → (D2 − {q1, q2}) × I given by λ0(t) = (λ(t), t). Let λ1 and λ2 be
the strings obtained by the inclusions of q1× I and q2× I into D2× I, respectively.
Then we obtain a braid of 3 strings over D2. By adding the trivial string over q3,
we obtain a braid β(w) of 4 strings over S2. Observe that the map d0 in the exact
sequence above is obtained by deleting the first string. From the exact sequence
above, the function w 7→ β(w) identifies the words in the free group F (ẑ0, ẑ1) with
the braids β of 4 strings over S2 that satisfy the condition that d0β = 1. Since
the generators for Brun4(S2) are explicitly given as words in F (ẑ0, ẑ1), it suffices
to describe ẑ0 and ẑ1. Let σi be the standard geometric braid over D2 that has one
crossing on positions qi and qi+1 and trivial strings on other positions. Recall that
π1(B(D2, n + 1)) is generated by σi for 0 ≤ i ≤ n− 1, and

π1(B(D2, n + 1)) - π1(B(S2, n + 1))

is surjective by a classical result of Fadell and van Buskirk [6, Theorem 1.11].
Write δi for the image of σi in π1(B(S2, n + 1)). Then β(ẑ0) = δ2

0 , that is,
it is obtained from the canonical generator for the pure braid on the first two
positions by adding trivial strings elsewhere. Now the braid β(ẑ1) is obtained from
a loop in D2 −Q2 around q2 avoiding q1. Thus β(ẑ1) = δ0δ

2
1δ−1

0 . (More generally,
β(ẑk) = δ0δ1 · · · δk−1δ

2
kδ−1

k−1 · · · δ
−1
1 δ−1

0 .) The next proposition follows.

Proposition 7.2.2. The Brunnian group Brun4(S2) is the free group of rank 5
generated by the braids δ4

0, δ0δ
4
1δ−1

0 , δ−1
0 δ−2

1 δ2
0δ2

1δ−1
0 , δ0δ

−2
1 δ4

0δ2
1δ−1

0 and δ−1
0 δ4

1δ0. �
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The pictures of these braids are as follows.

........

........

........

........

........

........

........

........

........

........

...........
......

...........
......

...........
...........

...........
...........

.......... ........
........
........
........
........

........

........

........

........

........

...........
......

...........
......

...........
...........

...........
...........

.......... ........
........
........
........
........

........

........

........

........

........

...........
......

...........
......

...........
...........

...........
...........

.......... ........
........
........
........
........

........

........

........

........

........

...........
......

...........
......

...........
...........

...........
...........

..........

δ4
0

........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
......

δ0δ
4
1δ−1

0

........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
.

δ−1
0 δ−2

1 δ2
0δ2

1δ−1
0

........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
......

δ0δ−2
1 δ4

0δ2
1δ−1

0

........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
. ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
.
...........
.

...........
...........

...........
...... ........

........

........

....

........

........

........

....

...........
...........
...........
......

...........
.

...........
.

δ−1
0 δ4

1δ0

Remark 7.2.3. By deleting the last trivial string of the 4-string braid δ−1
0 δ−2

1 δ2
0δ2

1δ−1
0

over S2 we obtain the 3-string braid σ−1
0 σ−2

1 σ2
0σ2

1σ−1
0 over D2. In turn, closing up

this 3-string braid gives a link that is readily seen to be the Borromean rings. This
link corresponds to the element [ẑ0, ẑ1] in F̂3 which can be checked, using Propo-
sition 6.1.2, to be a Moore cycle in F [S1]2 that represents the generator η2 for
π2(ΩS2) = π3(S2) [40]. In other words, the Hopf map η2 : S3 → S2 corresponds to
the Borromean rings in this way.

7.3. The Brunnian Groups Brunn(D2) for n ≤ 4 and Relations between
Brunn(D2) and Brunn(S2) in Low-Dimensional Cases. For n = 2, 3, 4 the
sequence of Theorem 1.2 fails to be exact. In fact, not all maps need be defined, as
the following computations show.

Brun3(S2) → Brun2(D2) → Brun2(S2) → Coker ← π1(S2)
q q q q q

Z/2 Z Z/2 1 1

Brun4(S2) → Brun3(D2) → Brun3(S2) → Coker ← π2(S2)
q q q q q

F5 [F2, F2] = Fω Z/2 Z/2 Z
Brun5(S2) ↪→ Brun4(D2) → Brun4(S2) → Coker ← π3(S2)

q q q q q
Fω Fω F5 π3(Eπ1) Z

where π3(Eπ1) is shown in Proposition 7.1.1 to be nilpotent of class 2. It follows
from the proof of Theorem 1.2 that the sequence

Brun5(S2) � Brun4(D2) −→ Brun4(S2)

is exact. A determination of a free basis for Brun4(D2) is given below, where the
terminology is as in Subsection 6.3.

Recall that

Brun4(D2) =
3⋂

j=0

Ker(di : P4 → P3).

Write Ker(di) for Ker(di : P4 → P3) and recall that F (R2, n) ' F (D2, n). From
the fibration

R2 r Q3
- F (R2, 4)

d0- F (R2, 3),
Ker(d0) is the free subgroup of P4 generated by A0,1, A0,2, A0,3. Let xi denote A0,i

for i = 1, 2, 3. Observe that there is a commutative diagram
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F (x1, x2, x3) = Ker(d0) ⊂ - P4

F2

pi

?
⊂ - P3

di

?

for i = 1, 2, 3, where pi : F (x1, x2, x3) → F2 is the projection map sending xi to 1
and preserving the other generators.

1. The subgroup Ker(d0) ∩Ker(d1) = Ker(p1 : F3 → F2).

Since p1 : F (x1, x2, x3)→ F (x2, x3) is the projection map, Ker(p1) is freely gen-
erated by the set of iterated commutators

A = {x1, [[x1, x
ε1
i1

], xε2
i2

], . . . , xεt
it

] | w = xε1
i1

xε2
i2
· · ·xεt

it
a reduced word in F (x2, x3)}

by [70, Proposition 3.3]. (Our notation is always that εi, ε
′
i ∈ {±1}.)

2. The subgroup Ker(d0) ∩Ker(d1) ∩Ker(d2) = Ker(p1) ∩Ker(p2).

Let
A1 = {α ∈ A | x2 occurs in α}

A2 = {α ∈ A | x2 does not occur in α}.
Then A = A1

∐
A2. Since p2 : F (x1, x2, x3) → F (x1, x3) is the projection map,

p2(α) = α ∈ F (x1, x3) if α ∈ A2 and p2(α) = 1 if α ∈ A1. This gives the
commutative diagram

F (A) = F (A1

∐
A2) = Ker(p1) ⊂ - F (x1, x2, x3)

F (A2)

proj

?
⊂ - F (x1, x3)

p2

?

By [70, Proposition 3.3], the subgroup Ker(p1)∩Ker(p2) is freely generated by the
set

B = {α1, [[α1, α
ε1
i1

], . . . , αεt
it

] | α1 ∈ A1, w = αε1
i1

αε2
i2
· · ·αεt

it
a reduced word in F (A2)}.

3. The subgroup
3⋂

j=0

Ker(dj) =
3⋂

j=1

Ker(pj).

Observe that p3 : F (x1, x2, x3)→ F (x1, x3). Similarly to the above, let

B1 = {β ∈ B | x3 occurs in β}

B2 = {β ∈ B | x3 does not occur in β}.

Then a free basis for Brun4(D2) =
3⋂

j=0

Ker(dj) =
3⋂

j=1

Ker(pj) is given by

C = {β1, [[β1, β
ε1
i1

], . . . , βεt
it

] | β1 ∈ B1, w = βε1
i1

βε2
i2
· · ·βεt

it
a reduced word in F (B2)}.
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(Note. A free basis for general Brunn(D2) can be given recursively as described
above. Detailed discussions for intersection subgroup of projection maps were given
in [70, Theorem 3.5].) Let

adn(b)(a) =



[[a,

n︷ ︸︸ ︷
b], . . . , b] n > 0

a n = 0

[[a,

−n︷ ︸︸ ︷
b−1], . . . , b−1] n < 0.

Then A2 = {adn(x3)(x1) | n ∈ Z} and so the set B consists of the elements:

(1) α = [[x1, x
ε1
l1

], . . . , xεt

lt
] such that w = xε1

l1
· · ·xεt

lt
is a reduced word in

F (x2, x3) with lr = 2 where 1 ≤ r ≤ t, and
(2) [[α, (adn1(x3)(x1))ε1 ], . . . , (adnk(x3)(x1))εk ] for α as above and reduced

words (adn1(x3)(x1))ε1 · · · (adnk(x3)(x1))εk ∈ F (adn(x3)(x1) | n ∈ Z) ex-
cluding the identity 1.

The set B2 is given by

B2 = {adt(x1) (ads(x2)(x1)) | s, t ∈ Z, s 6= 0 if t 6= 0},

while B1 takes the remaining elements of B. Thus the set C consists of the following
types of elements:

(C1) The commutators

α = [[x1, x
ε1
l1

], . . . , xεt

lt
]

for reduced words w = xε1
l1
· · ·xεt

lt
∈ F (x2, x3) such that both x2 and x3

occur in w,
(C2) The commutators

β = [[α,
(
adt1(x1)(ads1(x2)(x1)

)ε1 ], . . . , (adtk(x1)(adsk(x2)(x1))
)εk ]

for α as in (C1) above and reduced words(
adt1(x1)(ads1(x2)(x1))

)ε1 · · · (adtk(x1)(adsk(x2)(x1))
)εk

in F
(
adt(x1)(ads(x2)(x1)) | s, t ∈ Z s 6= 0 if t 6= 0

)
excluding the identity 1;

(C3) The commutators

γ = [[[[x1, x
ε1
l1

], . . . , xεt

lt
], (adn1(x3)(x1))ε′1 ], . . . , (adnk(x3)(x1))ε′k ]

for reduced words xε1
l1
· · ·xεt

lt
∈ F (x2, x3) with x2 occurring, and reduced

words (adn1(x3)(x1))ε′1 · · · (adnk(x3)(x1))ε′k ∈ F (adn(x3)(x1) | n ∈ Z) with
x3 occurring;

(C4) The commutators

δ = [[γ,
(
adt1(x1)(ads1(x2)(x1)

)ε1 ], . . . , (adtk(x1)(adsk(x2)(x1))
)εk ]

for γ as in (C3) above and reduced words(
adt1(x1)(ads1(x2)(x1))

)ε1 · · · (adtk(x1)(adsk(x2)(x1))
)εk

in F
(
adt(x1)(ads(x2)(x1)) | s, t ∈ Z s 6= 0 if t 6= 0

)
excluding the identity 1.
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7.4. The 5- and 6-Strand Brunnian Braids. Examples for constructing 5 and
6-strand Brunnian braids are given in this subsection. The method here is to use
simplicial operations described below.

Let ∆[n] be the standard simplicial n-simplex with the (only) n-dimensional non-
degenerate element σn ∈ (∆[n])n. Let X be a simplicial set and let x ∈ Xn be any
n-dimensional element. As in [21], there is a (unique) simplicial map fx : ∆[n]→ X
such that fx(σn) = x. Recall that the simplicial n-sphere Sn is the quotient sim-
plicial set of ∆[n] obtained by identifying all faces of σn to the basepoint. Let
q : ∆[n]→ Sn be the quotient map and let σ̄n = q(σn).

Now, given a simplicial group G with a Moore cycle w ∈ ZnG, consider the
representing map fw : ∆[n] → G with fw(σn) = w. Since diw = 1 for all i, the
map fw factors through the quotient simplicial set Sn. Let f̄w : Sn → G be the
simplicial map such that fw = f̄w◦q. By applying the universal property of Milnor’s
construction, the map f̄w : Sn → G extends to a (unique) simplicial homomorphism

F (f̄w) : F [Sn]→ G.
For α ∈ Zn+kF [Sn], write w � α for the Moore cycle F (f̄w)(α) ∈ Zn+kG. The
homotopy class in πn+k(G) represented by w�α is the usual composition operation
in homotopy theory.

Consider the case where k = 1. Recall that π2(F [S1]) = π3(S2) = Z and
πn+1(F [Sn]) = πn+2(Sn+1) = Z/2 for n > 1. After [67], the generator for
πn+2(Sn+1), n ≥ 1, is denoted by ηn+1. According to [70, Example 2.23], the
homotopy class ηn+1 is represented by the cycle

[s0σ̄, s1σ̄] ∈ Zn+1F [Sn]

with the relations

(18)


[siσ̄n, si+1σ̄n] ≡ [s0σ̄n, s1σ̄n] if 0 ≤ i ≤ n− 1

[siσ̄n, sj σ̄n] ≡ 1 if i + 1 < j,

where a ≡ b means that a and b represent the same element in the homotopy group.
By Proposition 6.1.2, the cycle [ẑ0, ẑ1] ≡ [s0σ̄1, s1σ̄1] also represents the generator
η2 ∈ π2(F̂ ) = π2(F [S1]) = Z.

Recall that π3(F [S1]) = π4(S2) = Z/2 and π4(F [S1]) = π5(S2) = Z/2 are
generated by η2

2 and η3
2 respectively, see [67]. By using the composition method

described above, η2
2 corresponds to the element

α5 = [ẑ0, ẑ1]� [s0σ̄2, s1σ̄2] = [s0[ẑ0, ẑ1], s1[ẑ0, ẑ1]]

= [[s0ẑ0, s0ẑ1], [s1ẑ0, s1ẑ1]] = [[ẑ0ẑ1, ẑ2], [ẑ0, ẑ1ẑ2]]

in F̂4, mapping under the map β defined before Proposition 7.2.2 to the 5-string
Brunnian braid over S2[

[δ3
0δ1, δ0δ1δ

2
2δ−1

1 δ−1
0 ], [δ2

0 , δ0δ
3
1δ2

2δ−1
1 δ−1

0 ]
]
.

Likewise, η3
2 corresponds to the element

α6 = α5 � [s0σ̄3, s1σ̄3] = [s0α5, s1α5] =

[[[ẑ0ẑ1ẑ2, ẑ3], [ẑ0ẑ1, ẑ2ẑ3]] , [[ẑ0ẑ1ẑ2, ẑ3], [ẑ0, ẑ1ẑ2ẑ3]]] .
By Theorem 1.2, the 5- and 6-strand braids above represent the only nontrivial
Brunnian braids over S2 modulo Brunnian braids over D2 in those dimensions.

By Equation (18), the element

α′5 = [ẑ0, ẑ1]� [s1σ̄2, s2σ̄2] = [s1[ẑ0, ẑ1], s2[ẑ0, ẑ1]]

= [[s1ẑ0, s1ẑ1], [s2ẑ0, s2ẑ1]] = [[ẑ0, ẑ1ẑ2], [ẑ0, ẑ1]]
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also represents the nontrivial 5-strand Brunnian braid over S2 modulo Brunnian
braids over D2 as [

[δ2
0 , δ0δ

3
1δ2

2δ−1
1 δ−1

0 ], [δ2
0 , δ0δ

2
1δ−1

0 ]
]
.

Likewise, η3
2 also corresponds to the element

α′6 = α′5 � [s2σ̄3, s3σ̄3] = [s2α
′
5, s3α

′
5] =

[[[ẑ0, ẑ1ẑ2ẑ3], [ẑ0, ẑ1]] , [[ẑ0, ẑ1ẑ2], [ẑ0, ẑ1]]] .

By [67], the element η4
2 is a nontrivial element divisible by 6 in the homotopy

group π6(S2) = Z/12, and η5
2 = 0 ∈ π7(S2) = Z/2. Thus

α′7 = α′6 � [s3σ̄4, s4σ̄4] = [s3α
′
6, s4α6] =

[[[[ẑ0, ẑ1ẑ2ẑ3ẑ4], [ẑ0, ẑ1]] , [[ẑ0, ẑ1ẑ2], [ẑ0, ẑ1]]] , [[[ẑ0, ẑ1ẑ2ẑ3], [ẑ0, ẑ1]] , [[ẑ0, ẑ1ẑ2], [ẑ0, ẑ1]]]] .

represents a nontrivial Brunnian 7-stand over S2 modulo Brunnian braids over D2,
and ᾱ is divisible by 6 modulo Brunnian braids over D2. In each case above, twice
the element obtained represents a Brunnian braid over D2. This algorithm stops
at the next dimension, where

α′8 = α′7 � [s4σ̄5, s5σ̄5] = [s4α
′
7, s5α

′
7]

represents the trivial 8-strand braid over S2 modulo Brunnian braids over D2.
According to [67], π7(S2) = Z/2 is generated by ν′ ◦ η7, and so the nontrivial
Brunnian 8-strand braid over S2 modulo Brunnian braids over D2 is represented
by

β8 = β7 � [s4σ̄5, s5σ̄5] = [s4β7, s5β7],

where β7 is a cycle in F̂6 representing the generator ν′ for the 2-primary part of
π6(S2) = Z/12. So far, explicit simplicial constructions for β7 and the generator of
π6(S2) are elusive.

As noted in the Introduction, closing up a Brunnian braid gives a Brunnian
link. For example, η2 gives the Borromean rings, see Subsection 7.2. It would
be interesting to see Brunnian links corresponding to the other elements exhibited
above.

8. Remarks

8.1. Notation. The diagram

Bn+1
- Aut(F̂n+1)

Sn+1

µ

?
⊂ - Aut((F̂n+1)ab),

?

of Lemma 6.3.5 highlights some notational choices that must be made. The original
convention of Artin [2] may be portrayed as

bottom-to-top
homom - left-action

left-action

homom

? homom - left-action.

homom

?
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On the other hand, Birman’s convention [6] is precisely the opposite:

top-to-bottom
homom - right-action

right-action

homom

? homom - right-action.

homom

?

The following hybrid notation has been adopted in this article, representing the
natural composition of braids from top to bottom (so that α above β is written αβ).
This choice of notation also uses the conventional left action of matrices, giving rise
to anti-homomorphisms as follows.

top-to-bottom
anti-homom - left-action

right-action

homom

? anti-homom - left-action.

homom

?

8.2. Birman’s Problem. The group of pure braids of n strings whose reduced
Artin representations are inner automorphisms of F̂n, called Rn in this article, is
written as R in Birman’s book [6, pp. 133-136]. Then Birman defines an explicit
subgroup RBir

n−1 of Pn such that Rn = Z(Pn)×RBir
n−1. The notation here is slightly

different from Birman’s. In [6, Problem 23, p.219], Birman then posted a research
problem:

Find a free basis for the group
n⋂

k=1

(Kerπk
∗ ∩RBir

n−1).

According to [6, pp.138], πk
∗ is induced by the map πk : F (D2, n)→ F (D2, n−1)

defined by
πk(z1, . . . , zn) = (z1, . . . , zk−1, zk+1, . . . , zn).

According to the terminology here, πk
∗ = dk−1 are exactly the faces on P. By

Corollary 6.3.7, there are isomorphisms
n⋂

k=1

(Kerπk
∗ ∩RBir

n−1) ∼= Zn−1(F (S1)) ∼= Brunn+1(S2)

for n ≥ 4. Thus Birman’s problem is equivalent to finding a free basis for Z(F (S1)).
The solution of this problem will yield a combinatorial presentation of the higher
homotopy groups of S2 because a set of generators for B(F (S1)) has been deter-
mined in [70].

8.3. Linear Representation of the Braid Groups. As reported in [6, pp. 138-
143], Birman’s problem above arose from the Gassner representation of Pn, which
is a linear representation of pure braids. The interpretation of [6, Theorem 3.18] in
the terminology here is that the sequence of the Gassner matrix groups is a ∆-group
and the Gassner representation is a morphism of ∆-groups. By using the Gassner
representation, the Moore cycles Z(F (S1)) admit linear representations. Under
current technology, it is unclear whether the homotopy group πn(F (S1)) can be
described as a subquotient of the Gassner matrix group; however, this deserves
study. Recently Krammer and Bigelow [5, 47] proved that the braid group admits
a faithful representation into a general linear group over the reals, which can provide
helpful information for studying homotopy groups using linear representations.
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8.4. Artin’s Representation. Let P = {Pn+1}n≥0 be the sequence of the Artin
pure braid group with the simplicial group structure given in Theorem 3.2.12.
Let F̂ = {F̂n+1}n≥0 be the simplicial group described in Subsection 6.3. By
Lemma 6.3.1, the classical Artin representation admits a simplicial interpretation,
namely, the Artin representation induces a simplicial action

µ : P × F̂ - F̂ .

The action µ does not directly give homotopy information in geometry because
the space P is contractible. However, modulo Moore boundaries in F̂ , the Artin
representation induces an action

µ̄ : P × F̂ /BF̂ - F̂ /BF̂ .

The action µ̄ does give homotopy information in the sense that:

Theorem 8.4.1. [71, Theorem 1.2] For n ≥ 3, the fixed set of the Pn+1-action on
F̂n+1/BnF̂ is isomorphic to the homotopy group πn+1(S3). �

Another remark concerning the simplicial action µ : P × F̂ → F̂ is that, for each
α ∈ P, the function ρ : F̂ → F̂ , x 7→ µ(α, x)x−1 maps ΓtF̂ into Γt+1F̂ , where
{ΓtF̂}t≥1 is the (mod p or integral) descending central series of F̂ , and therefore ρ

induces operations on the Adams spectral sequence for F̂ that converges to π∗(ΩS2).
It seems that there are connections between the operations induced by ρ and higher
differentials in the Adams spectral sequence.

8.5. Homotopy Groups of Spheres. We present here some historical context
for this work. The fundamental group owes its existence to Poincaré [57]. Čech [15]
suggested how to define higher homotopy groups in 1932 without pursuing the
notion, and it was Hurewicz [37] who first studied them in 1935-36. It was originally
conjectured that the homotopy groups of spheres are isomorphic to their homology
groups. Then Hopf invented the Hopf map [36]. The determination of higher
homotopy groups of spheres became the fundamental problem in homotopy theory
from then on. Although the determination of the general homotopy groups is
beyond current technology, much progress has been made over time. By using
connections with braids established in this article, some classical results on π∗(S2)
provide certain information on braids.

Serre [64] proved that
(1) πm(S2n+1) is a finite abelian group for m > 2n + 1;
(2) πm(S2n) is a finite group for m > 2n > 0 and m 6= 4n− 1;
(3) π4n−1(S2n) = Z⊕ finite group for n > 0.

In particular, πr(S2) is finite abelian group for r > 3. Together with Theo-
rem 1.2, this proves the following:

Theorem 8.5.1. For each n ≥ 5, the cokernel of the group homomorphism

Brunn(D2) - Brunn(S2)

is a finite abelian group. �

Let G be an abelian group and let Torp(G) = {x ∈ G | ptx = 0 for some t}. The
p-exponent expp(G) of G is defined to be

expp(G) = min{pr | pr · Torp(G) = 0},

where expp(G) = +∞ if pr · Torp(G) 6= 0 for every integer r. A result of J. C.
Moore (unpublished) and James [38] is that

exp2(π∗(S
2)) = 4.
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For odd prime cases, Selick [62] proved that

expp(π∗(S
2)) = p

for any odd prime p. By using Theorem 1.2, these results apply to braids as follows.

Theorem 8.5.2. Let n ≥ 5 and let β be an n-strand Brunnian braid over S2.
Then there exists an integer r such that

βr ∈ Im(Brunn(D2)→ Brunn(S2)).

Moreover, suppose that r is the smallest positive integer such that

βr ∈ Im(Brunn(D2)→ Brunn(S2)).

Then r admits a decomposition

r = 2εp1p2 · · · pt

for some 0 ≤ ε ≤ 2, and for some t ≥ 0 with positive prime integers

2 < p1 < p2 < · · · < pt.

�

(It follows from Subsection 7.3 that this result also holds for n = 2, 3, but fails
for n = 4.) One particular consequence is that the odd-primary torsion component
of πn(S2) is a vector space over Z/p. Thus the odd-primary torsion component of
πn(S2) could be determined if one could determine the order of the group πn(S2).
This suggests a problem whether there is a group-theoretical or geometric method
for determining the order of the finite group Coker(Brunn(D2) → Brunn(S2)) for
n ≥ 5.

There are known families of periodic elements in π∗(S2). Mark Mahowald asked
how to represent these elements in terms of braids. Another question, proposed by
Cameron Gordon, is to find an intrinsic way to describe maps from Sn to S2 from
a Brunnian braid. The techniques of the geometric realization give one method.

8.6. Brunnian Braids over D2. Recall from the proof of Theorem 1.3 that Gn :=
Ker(dn : Pn+1 −→ Pn) is the free group of rank n generated by

A0,n, A1,n, . . . , An−1,n.

Let F [S1] be the Milnor construction of S1 with F [S1]n = F (y0, y1, . . . , yn−1) and
the faces described in Equation (11). The group homomorphism

ϕ : F [S1]n - Gn,

given by
ϕ(yi) = Ai,n

for 0 ≤ i ≤ n− 1, induces an isomorphism

φ : NnF [S1]
∼= - Gn ∩

n−1⋂
i=0

Ker(di : Pn+1 → Pn) = Brunn+1(D2).

The Moore chains have been determined in [70]. By replacing yi by Ai,n under the
isomorphism φ, the Brunnian braids Brunn(D2) will be described below.

Let G be a group and let [x, y] = x−1y−1xy in G. A bracket arrangement of
weight n in a group G is a map βn : Gn → G which is defined inductively as
follows:

β1 = idG, β2(a1, a2) = [a1, a2]



CONFIGURATIONS, BRAIDS AND HOMOTOPY GROUPS 53

for any a1, a2 ∈ G. Suppose that the bracket arrangements of weight k are defined
for 1 ≤ k < n with n ≥ 3. A map βn : Gn → G is called a bracket arrangement of
weight n if βn is the composite

Gn = Gk ×Gn−k βk × βn−k
- G×G

β2
- G

for some bracket arrangements βk and βn−k of weight k and n − k, respectively,
with 1 ≤ k < n. For instance, if n = 3, there are two bracket arrangements given
by [[a1, a2], a3] and [a1, [a2, a3]].

Theorem 8.6.1. [70, Theorem 4.4] For each n, the Brunnian group Brunn+1(D2)
is the subgroup of

Gn = F (A0,n, A1,n, . . . , An−1,n)
generated by all of the commutators of the form

[Aε1
i1,n, . . . , Aεt

it,n
],

where
(1) ε = ±1;
(2) 0 ≤ is ≤ n− 1;
(3) Each integer in {0, 1, . . . , n− 1} appears as at least one of the integers is;
(4) for each t ≥ n+1, [ · · · ] runs over all of the commutator bracket arrange-

ments of weight t.

A recursive algorithm for finding a free basis for NnF [S1] ∼= Brunn+1(D2) was
described in [70, Theorem 3.5]. This algorithm has been used in Subsection 7.3 for
determining a free basis for Brun4(D2). Although this algorithm can eventually give
a free basis by finitely many steps, as seen in Subsection 7.3, the explicit computa-
tion for determining a free basis still appears complicated. According to [18], the
abelianization NF [S1]ab of the Moore chains contains certain homotopy-theoretic
information. Also observe that the Artin representation on F [S1] induces a repre-
sentation on the Moore chains NF [S1] and so a linear representation on NF [S1]ab.

A canonical quotient group An+1(D2) of Brunn+1(D2) can be obtained by di-
viding out the generators

[Aε1
i1,n, . . . , Aεt

it,n
],

in Theorem 8.6.1 that satisfy the following additional condition:
(5) one of the integers is occurs at least twice.

Recall that the group Lie(n) consists of the elements of weight n in the Lie
algebra Lie(x1, x2, · · · , xn), which is the quotient Lie algebra of the free Lie algebra
L(x1, x2, . . . , xn) over Z by the two-sided Lie ideal generated by the Lie elements

[[xi1 , xi2 ], . . . , ], xit
]

with il = ik for some 1 ≤ l < k ≤ t.
The group Lie(n) occurs as the top cohomology of the configuration space

F (Rm, n) for m > 1, see [16]. In particular,

Lie(n) ∼= Hn−1(F (D2, n)).

Other applications of Lie(n) can be found in [63] and elsewhere. Then the group
An+1(D2) is determined by the following statement, which suggests that there
might be further connections between Lie(n) and links.
Theorem 8.6.2. [70, Theorems 6.7 and 6.14] For each n, there is an isomorphism
of groups

An+1(D2) ∼= Lie(n).
�
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[16] F. R. Cohen, Homology of Ωn+1Sn+1X and Cn+1(X) n > 0 , Bull. Amer. Math. Soc. 79

(1973), 1236-1241.

[17] F. R. Cohen, On combinatorial group theory in homotopy, Contemp. Math. 188 (1995),
57-63.

[18] F. R. Cohen and J. Wu, A representation of the homotopy groups into braids, preprint.

[19] F. R. Cohen, and J. Wu On braid groups, free groups, and the loop space of the 2-sphere,
Proc. of the Skye Topology Conference, to appear.

[20] W. L. Chow, On algebraic braid group, Ann. of Math. 48 (1948), 127-136.

[21] E. B. Curtis, Simplicial homotopy theory, Advances in Math. (1971), 107-209.
[22] E. B. Curtis and M. Mahowald, The unstable Adams spectral sequence for S3, Contemp.

Math., 96 (1989), 125-162.
[23] M. Davis, T. Januszkiewicz and R. Scott, Nonpositive curvature of blow-ups, Selecta Math.

4 (1998), 491-547.
[24] H. Debrunner, Links of Brunnian type, Duke Math. J. 28 (1961), 17-23.
[25] S. Devadoss, Tessellations of moduli spaces and the mosaic operad, in Homotopy invariant

algebraic structures, Contemp. Math. 239 (1998), 91-114.

[26] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 1962, 111-118.
[27] E. Fadell and J. Van Buskirk, The braid groups of E2 and S2, Duke Math. J. 29 (1962),

243-258.

[28] M. Falk, and R. Randall The lower central series of a fibre-type arrangement, Invent.
Math.,82 (1985), 77–88.

[29] E. M. Feichtner, The integral cohomology algebra of ordered configuration spaces of spheres,
Documenta Math. 5 (2000), 115-139.

[30] Z. Feidorowicz and J-L. Loday, Crossed simplicial groups and their associated homology,

Trans. Amer. Math. Soc. 326 (1991), 57-87.
[31] W. Fulton and R. MacPherson, Compactification of configuration spaces, Ann. of Math. 139

(1994), 183-225.

[32] R. Gillette and Van Buskirk, The word problem and its consequences for the braid groups
and mapping clan groups of the 2-sphere, Trans. Amer. Math. Soc. 131 (1968), 277-296.

[33] P. Hall, A contribution to the theory of groups of prime power order, Proc. London. Math.

Soc., 2 (1936), 29–95.
[34] R. Hartshorne, Algebraic Geometry, Graduate Texts Math. 52, Springer (New York, 1977).

[35] M.W. Hirsch, Differential Topology, Graduate Texts Math. 33 (1976), Springer (New York).
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