
Treball final de grau

GRAU DE MATEMÀTIQUES

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

Simple Space:
2D game design and development

Autor: Oleksandr Danylenko

Director: Dra. Beatriz Remeseiro

Realitzat a: Departament de Matemàtiques

i Informàtica

Barcelona, 21 de juny de 2017

Acknowledgments

First of all, I would like to thank Beatriz for helping me with this project.
Then I would like to thank my Mom and Grandmom for not letting me starve

to death during the development.
And thank you Feliu for providing me a valuable feedback during the game

development.

i

Abstract

Nowadays, video-game industry is one of the biggest and fastest growing
around, providing jobs to many people and having a very big market. From
the 1950s until now, many different video-game genres were created suiting dif-
ferent people tastes. Among them, Shoot ’em up games mainly consist of a player
trying to complete the game while evading different obstacles which can include
enemies, environmental objects, or different types of projectiles.

During my whole life, I have spent countless hours playing a great variety of
video-games. I was always interested in developing one by myself, which led me
to consider making this project: a 2D video-game in shoot ’em up genre, which I
have named Simple Space.

By making Simple Space, I have learned how the video-games can be designed
and developed by a single person. This process includes the usage of different
tools for graphic and audio design such as Inkscape, Audacity and Bfxr, as well as
the Unity engine for combining them into a seamlessly working game.

Using Inkscape, I have designed a variety of graphic objects for this game
which include different space-ships made of simple geometrical figures, a big and
complicated Boss ship and many miscellaneous objects used in level design and
user interface. Regarding Audacity and Bfxr, they were used to create sound
effects that give the player an audio feedback when its ship gets damaged or an
enemy ships explode. With respect to Unity, I have used it to design and develop
a single working level with a careful crafted game logic, different particle effects
and a complete menu system. For this purpose, I have utilized many different
game creation tools that Unity offers in combination with the graphical and sound
effects created before.

Additionally, I have used a special software called Color Oracle to take into an
account how people with colorblindness disability will be able to enjoy the game.
I have also considered the ability to play the game on older computer systems
by benchmarking and testing the game with tools such as MSI Afterburner. As a
result, I have obtained a fully working game, gained a lot of experience and feel
more motivated than ever before in continuing making games.

iii

iv

Keywords

Game development, Game design, Unity 2D, Graphic design, Audio design,
Inkscape, Audacity, Bfxr, Shoot ’Em Up genre.

Contents

1 Introduction 1
1.1 Video-games: industry and market . 1
1.2 Shoot ’Em Up . 2
1.3 Motivation and objectives . 5
1.4 Hardware and software . 8
1.5 Memory structure . 8

2 Graphic and sound design 9
2.1 Graphic design . 9

2.1.1 Workspace . 11
2.1.2 Player . 11
2.1.3 Enemy1 . 12
2.1.4 Enemy3 . 13
2.1.5 Enemy4 . 14
2.1.6 Enemy5 . 15
2.1.7 Boss . 16
2.1.8 Miscellaneous objects . 17

2.2 Sound design . 17
2.2.1 Bfxr . 19
2.2.2 Audacity . 20
2.2.3 Sound effects development . 21
2.2.4 Music . 21

3 Game design and development 23
3.1 Unity . 23
3.2 Project creation . 26
3.3 Camera . 27
3.4 Particle systems . 29
3.5 Shaders and materials . 30
3.6 Game controller . 32

v

vi CONTENTS

3.7 Moving Background . 33
3.8 Base classes . 34
3.9 Projectiles . 34
3.10 Lasers . 35
3.11 Player . 37
3.12 Enemies . 37
3.13 Miscellaneous objects . 40
3.14 Boss . 41
3.15 User interface . 42
3.16 Level design . 45

4 Accessibility and colorblindness 49
4.1 Types of colorblindness . 49
4.2 Accessibility: implicit vs explicit . 50
4.3 Color palette . 51

5 Methodology 53
5.1 Development life cycle . 53
5.2 Task management . 54

6 Results 57
6.1 Graphic design . 57
6.2 Colorblindness testing . 57
6.3 Game performance . 58
6.4 Game controls . 59

7 Conclusions 63
7.1 Future work . 64

A Diagrams 65
A.1 Class diagrams . 65
A.2 Flowchart diagrams . 70

B Task calendar 77
B.1 Sprint 1: 21/02/2017 – 07/03/2017 . 77
B.2 Sprint 2: 07/03/2017 – 21/03/2017 . 77
B.3 Sprint 3: 21/03/2017 – 04/04/2017 . 78
B.4 Sprint 4: 04/04/2017 – 18/04/2017 . 78
B.5 Sprint 5: 18/04/2017 – 02/05/2017 . 79
B.6 Sprint 6: 02/05/2017 – 16/05/2017 . 80
B.7 Sprint 7: 16/05/2017 – 30/05/2017 . 81

CONTENTS vii

B.8 Sprint 8: 30/05/2017 - 20/06/2017 . 81

Bibliography 83

List of Figures

1.1 Global Games Market from 2012 to 2017 2
1.2 Age and gender of game players . 2
1.3 Spacewar! on a PDP-1 . 3
1.4 Examples of shoot ’em up games . 4
1.5 Ingame screenshots from some CAVE games 6
1.6 Screen shoots from some games of 2000s 7

2.1 Interface of the Inkscape editor . 10
2.2 Design of the workspace inside Inkscape 11
2.3 Design of the Player . 12
2.4 Design of the Enemy1 . 13
2.5 Design of the Enemy3 . 14
2.6 Design of the Enemy4 . 15
2.7 Design of the Enemy5 . 16
2.8 Final design of the Boss . 17
2.9 Miscellaneous graphic objects used in this project 18
2.10 Interface of the Bfxr software . 19
2.11 Interface of the Audacity software . 20
2.12 Graphic representation of different sound effects 22

3.1 Difference between orthographic and perspective projections 24
3.2 Different 2D colliders inside Unity editor 25
3.3 Common computer graphic pipeline 26
3.4 Unity default project creation dialog 27
3.5 Unity editor with an empty scene . 28
3.6 Camera setup . 28
3.7 Code of the event for object destruction 29
3.8 StarField movement . 29
3.9 Zoomed in Explosion Particle at the span of one second 30
3.10 Boss spawn particle animation at the span of one second 31

ix

x LIST OF FIGURES

3.11 Boss laser charge animation time line 31
3.12 Zoomed out view of all the objects in the Moving Background . . . 33
3.13 Movement code for Moving Background 33
3.14 BaseShip properties . 34
3.15 Shortened version of the code used for blinking objects 35
3.16 Different types of projectiles in Unity 35
3.17 Game screen shot showing different projectiles 36
3.18 Different types of lasers in the game 36
3.19 Player object controlled by the user when playing the game 38
3.20 Player properties and values inside Unity editor 38
3.21 Enemies inside the game . 40
3.22 Player going around different Laser Barriers 41
3.23 Game screen shot showing the Boss 42
3.24 Navigation path of actions in the Main menu 44
3.25 Different game menus . 45
3.26 Interface with the current user information 45
3.27 Level1 sliced, parts from 1 to 4 . 47
3.28 Level1 sliced, parts from 5 to 9 . 48

4.1 Color palette used in this project . 51

5.1 Development cycle of a game object 54
5.2 Screen capture showing part of my Kanban on GitHub website . . . 55

6.1 Example of screen shots as seen in case of colorblindess 58
6.2 Default Xbox 360 game pad controls 60
6.3 Default keyboard controls . 60

A.1 Class diagram of the BaseShip class and its children classes 66
A.2 Class diagram of the BaseProjectile class and its children classes . . 67
A.3 Class diagrama of GameController and BossController 68
A.4 Class diagram with the miscellaneous classes 69
A.5 Flowchart diagram of the Main menu 71
A.6 Flowchart diagram of the Player Projectile 72
A.7 Flowchart diagram of the Enemy Projectile 73
A.8 Flowchart diagram of the Player . 74
A.9 Flowchart diagram of the Enemy . 74
A.10 Flowchart diagram of the Game Controller 75

List of Tables

3.1 Folder structure inside the Assets folder created by Unity 27
3.2 Balancing values of both Player and Enemies 43

6.1 Game performance on different hardware configurations 59

xi

Chapter 1

Introduction

Video-game industry is one of the fastest growing industries, allowing people
from all around the world to play video-games of many different genres. There is
a video-game for every person: from first person shooters to racing games, from
fighting games to sports games, from strategy games to puzzle games, etc. Among
them, this project is focused on shoot ’em up genre, which is one of my favorite
ones and whose origins are explained in this chapter.

1.1 Video-games: industry and market

Nowadays, the video-game industry is one of the biggest industries around
and it still grows very fast. It provides many jobs to people with different talents
and produces a big amount of video-games each year, thus resulting in big rev-
enues for the companies that make them. These games are played worldwide
by millions of people on a variety of different platforms, including Microsoft
Xbox One, Sony Playstation 4, Nintendo Switch, different mobile platforms and,
of course, the biggest and best PCs.

From 2012, the global game market revenue went up over the 30% with differ-
ent mobile platforms, taking up to the 34% of its market share in 2017 as can be
seen in Figure 1.1. Due to its continued growth, software developing companies
started making more applications for game development and, at the present time,
there are many different tools that allow a single person or a very small team of
people to successfully develop and sale video-games, which accelerates the market
growth of this industry even more.

Games are played by people of all ages and genders alike, as depicted in the
charts included in Figure 1.2. This fact provides an easy way to connect parents
and children, or different people around the globe. Taking into account this infor-
mation, it is easy to see why game development is a good industry to get into.

1

2 Introduction

Figure 1.1: Global Games Market from 2012 to 2017 [18]

Figure 1.2: Age and gender of game players [7]

1.2 Shoot ’Em Up

Shoot ’Em Up, also known as shmup, is a video-game genre in which the
player controlled character engages in a battle against hordes of enemies while at
the same time having to dodge all incoming attacks which can consist of different

1.2 Shoot ’Em Up 3

types of projectiles, map objects and enemies themselves [4, 16].
Origins of shoot ’em up genre can be traced back to one of the earliest com-

puter games ever created, Spacewar! (see Figure 1.3). Developed in a computer
lab at the Campus of the Massachusetts Institute of Technology (MIT) in 1961, the
game was running on a DEC’s PDP-1 computer. It consisted of two players con-
trolling spaceships, and trying to destroy another one by shooting projectiles and
to avoid being sucked by the gravitational field of the sun.

Figure 1.3: Spacewar! on a PDP-1

Almost 20 years later, in 1978, the Japanese company Taito launched Space
Invaders (see Figure 1.4a), which became a worldwide blockbuster and is consid-
ered the true father of the shoot ’em up genre. The game created a high score
functionality that saved the players’ scores inciting them to play more and trying
to up it in the following sessions. In addition, it introduced the concept of giv-
ing multiple lives to players and it was also the first game that made the enemies
shoot at the player. It had a top down perspective and consisted of a player trying
to shoot horde of aliens advancing from top to bottom.

After seeing its success, more and more companies started to release shoot ’em
up games. One of them was Galaxian 1979, released by Namco. It introduced
mechanics such as enemies that try to kill the player in a kamikaze style. Its
sequel Galaga 1981 (see Figure 1.4b) became one of the most popular shoot ’em
up games at the time by having more detailed alien design, bonus rounds and
a very elaborated audio. This game sprung many sequels which continue to be
released at the present day in a variety of different platforms.

At the same year of Galaxian release, there was released Asteroids by Atari,
Inc, another iconic shoot ’em up which became as famous as Space Invaders. Its
game-play had a triangular ship controlled by the player, able to rotate both left
and right and to shat at the direction its facing. The objective was to destroy as
many asteroids as possible while evading them. This simple game sold more than
70.000 copies, and it is still considered as one of the best games of all times.

1980 was a start of golden age of games in shoot ’em up genre. Many new

4 Introduction

(a) Space Invaders (b) Galaga

Figure 1.4: Examples of shoot ’em up games

games were released every year, that had different mechanics and so they began
to spawn many new sub-genres [3, 13]. Some of most significant games of the
1980s included:

• Defender 1981: it was one of the most difficult games of its time.

• Scramble 1981: it was the first to offer multiple distinct levels.

• Tempest 1981[3]: it was the first to incorporate a 3D perspective into the
genre, and it is considered to be the game that inspired a sub-genre of rail
shooters.

• Zaxxon 1982: it was the first isometric scrolling shooter.

• Xenovious 1982: it became the most influential vertically scrolling shooter.

• Time Pilot 1982: it became the first multi-directional shooter.

• Robotron 2084 1982: it was a very frenetic multi-direction shooter, inspiring
bullet hell genre.

• Thunder Force 1983: it allowed the player to scroll in any direction.

• Hover Attack 1984: it later inspired the famous Bangai-O 1999.

1.3 Motivation and objectives 5

• Gradius 1985: it allowed the player to have different weapons, and it intro-
duced the need for the player to memorize the levels in order to achieve a
greater chance of success, which became very important part of this genre.

• Commando 1985: it became one of the first games to use human characters
in this genre.

• R-Type 1987: it created a system which had flying power-ups that changed
in colors to represent different weapons. This mechanism also became a very
important part of this genre.

• Contra 1987: it introduced a cooperative game-play between two players and
a multi-dimensional aiming.

Games like Commando and Contra inspired arcade hits that include Ikari
Warriors, Gun Smoke and Metal Slug.

At the start of 1990, the major mechanics of the genre were already established
and shoot ’em up genre became the most popular action genre for arcade games.
At this time, there were released very popular shooters such as Raiden 1990, in-
cluding many sequels of Gradius and R-Type [20]. The 1990s were also the era
in which bullet hell shooters became popular, with titles like Toaplan’s and Bat-
sugun 1993. In this sub-genre, the player had to evade so much bullets that they
filled almost the entire screen. After Toaplan’s ankruptcy in 1994, its employees
created CAVE (Computer Art Visual Entertainment) and, until today, they are the
biggest and most influential game developers of bullet hell shoot ’em up games.

Some of the CAVE’s most popular titles include: DonPachi 1985, Espgaluda
2003, Mushihimesama Futari 2006 (see Figure 1.5a), Deathsmiles 2007 (see Figure
1.5b), DoDonPachi Resurrection 2008 (see Figure 1.5c), and Akai Katana 2010 (see
Figure 1.5d).

From the 2000s to the present, there are continuous releases of shoot ’em up
games, including: Ikaruga 2001 (see Figure 1.6a), Jets ’n’ Guns 2004 [9], Trigger-
heart Exelica 2006, Syder Arcade 2012 (see Figure 1.6c), Sine Mora 2012 (see Figure
1.6d), Geometry Wars series 2005 (see Figure 1.6b).

1.3 Motivation and objectives

During my whole life, I have spent countless hours playing video-games. As I
grew older, I often found myself analyzing the games and started asking different
questions like: how did they do that?, could I do it by myself?, could I do it
better? Little by little, I started developing mini games and found out that game
development is an infinitely big world that provides many exciting things to learn.

6 Introduction

(a) Mushihimesama Futari (b) Deathsmiles

(c) DoDonPachi Resurrection (d) Akai Katana

Figure 1.5: Ingame screenshots from some CAVE games

Doing it as my TFG provided me a great opportunity to face it in a more serious
way. Otherwise, I would probably delay it for a long time which would surely be
spent working at completely different projects.

Therefore, the main objective of this project was to entirely design and develop
a 2D video game in shoot ’em up genre, entitled Simple Space, while at the same
time learning different disciplines and tools needed for game development. In
order to be able to achieve this main objective, I have split the project into a set
of different targets from which the specific tasks were later created. These general
targets include:

• Creating a player controlled character and giving it the ability to shoot dif-
ferent things inside the game level.

• Making one playable level with different enemies, map objects and a final

1.3 Motivation and objectives 7

(a) Ikaruga (b) Geometry Wars: Retro Evolved 2

(c) Syder Arcade (d) Sine Mora

Figure 1.6: Screen shoots from some games of 2000s

boss character, and give some of them the ability to shoot back at the player
or do some other kind of damage.

• Making different sound effects to be heard when the user is shooting or
doing some other things.

• Creating visual effects such as explosions.

• Making the level have parallax scroll like effect for movement.

• Making the game be able to be played by colorblind people.

• Making the game style have neon light like characters.

• Including some type of high score functionality.

• Creating some type of menu system.

8 Introduction

• Learning as many things as possible while developing the game, which per-
sonally it is the most important part of this project.

1.4 Hardware and software

The hardware and software elements used in the realization of this work are
detailed as follows:

• CPU: Intel Core i7-5930K 3.50 GHz, RAM: 16GB 2800MHz DDR4, GPU:
NVIDIA GTX 980 TI

• Windows 10 Pro: operating system.

• Unity 5.51f1: game development engine.

• Microsoft Visual Studio Community 2015: integrated development environ-
ment.

• Inkscape 0.92.1: vector graphics editor.

• Bfxr: basic sound effect generator.

• Audacity 2.1.3: cross-platform audio software for multi-track recording and
editing.

• TexStudio 2.11.0: integrated environment for LaTeX documents.

1.5 Memory structure

This document is organized in seven chapters. The first one is the current in-
troduction. The second chapter explains in great detail how the graphic and sound
objects were designed, as well as the tools used for this purpose. The third chapter
explains how the game logic and the game objects were designed and developed.
The fourth chapter entails the importance of taking into account colorblindness
issues in video-game design and how to use it in this project. The fifth chapter
explains the development methodology used for this project and some details of
task management. The sixth chapter includes the results that I have obtained after
completing the project. Finally, the last chapter presents the conclusions and the
future work.

Chapter 2

Graphic and sound design

This chapter presents detailed explanations about how the graphic and audio
elements of this game were designed. It also includes a brief description of differ-
ent programs and tools used for this purpose, in addition to step by step actions
taken when designing graphic and audio elements as well as their uses inside the
game.

2.1 Graphic design

One of the main targets in the design part of this project was to avoid low qual-
ity images when scaling them to different sizes. For this reason, vector graphic
images were considered and, particularly, the format SVG (Scalable Vector Graph-
ics). Since Unity, the game development engine used, does not support SVG, the
images were designed using SVG format and then exported to PNG (Portable
Network Graphics).

Inkscape [11] is a free open source professional vector graphics editor for Win-
dows, Mac OS X and Linux; and it is the software chosen to design the SVG im-
ages. Figure 2.1 illustrates the interface of the Inskcape editor that, like any other
editing software, has the menu items at the top, the general workspace in which
the images are shown at the center, different editing tools following explained at
the left, and specific options for each tool at the right.

The Inkscape tools used in this project are detailed as follows:

Select and transform: It allows to select and transform objects (change size, rota-
tion, skew).

Edit path by nodes: It allows to create, modify and delete the points (nodes) of
an object (path).

9

10 Graphic and sound design

Figure 2.1: Interface of the Inkscape editor

Create rectangles and squares: It allows to create rectangles and squares of dif-
ferent sizes.

Create circles, ellipses and arcs: It allows to create circles, ellipses and arcs of
different sizes.

Create stars and ploygons: It allows to create stars and polygons of different sizes
with different number of corners.

Align and distribute: It allows to order and align objects by different axes and
sides.

Fill and stroke: It allows to fill objects with different colors, including opacity and
blurring.

Export: It allows to export an image in different image formats, including PNG.

In the following sections it is explained how the different elements of the game
were designed using Inkscape. These elements include the workspace, the player,
a total of four enemies, the boss, and other miscellaneous objects.

2.1 Graphic design 11

2.1.1 Workspace

The first element created was the workspace, in which all of our graphic el-
ements are included. Figure 2.2 depicts the workspace, which has the following
characteristics:

• Dimensions: 512 × 512 pixels.

• Rectangular grid: 64 × 64 pixels.

• Major grid line every four lines.

• Background of black color.

Figure 2.2: Design of the workspace inside Inkscape

2.1.2 Player

The first object designed was the Player, which will be controlled by the user
inside the game. Figure 2.3 shows the Player, designed according to the next steps:

1. Draw a basic design on piece of paper to use it as model.

2. Create a basic triangle shape and rotate it to face right.

3. Align the basic shape to the center.

4. Edit the basic shape path by adding more nodes and adjust their positions.

5. Duplicate the basic shape and scale it down to create the inner part.

6. Join the two shapes.

12 Graphic and sound design

7. Fill the resulting shape with white color, and make the middle transparent.

8. Duplicate the object and apply a 10% of blur on it to achieve a glow effect.

9. Combine the glow and the shape into one object.

10. Export the final object to PNG format and test different sizes in Unity to find
the one that fits best.

(a) Inside Inkscape (b) Final design

Figure 2.3: Design of the Player

2.1.3 Enemy1

The second object designed was the Enemy1, which shoots projectiles at the
Player. Figure 2.4 shows the Enemy1, designed according to the next steps:

1. Draw a basic design on piece of paper to use it as model.

2. Create a basic triangle shape and rotate it to face left.

3. Align the basic shape to the center.

4. Edit the basic shape path by adding more nodes and adjust their positions.

5. Make the stroke (outline) width 5px.

6. Fill the shape stroke with white color, and make the middle transparent.

7. Duplicate the object and apply a 10% of blur on it to achieve a glow effect.

2.1 Graphic design 13

8. Combine the glow and the shape into one object.

9. Export the final object to PNG format and test it with different sizes in Unity
to find the one that fits best.

(a) Inside Inkscape (b) Final design

Figure 2.4: Design of the Enemy1

2.1.4 Enemy3

The third object designed was the Enemy3, which shoots a projectile from each
side and rotates around its center while moving. Figure 2.5 shows the Enemy3,
designed according to the next steps:

1. Draw a basic design on piece of paper to use it as model.

2. Create a basic circle shape.

3. Align the circle shape to the center.

4. Create a basic triangle shape.

5. Resize the triangle shape.

6. Duplicate the triangle shape three times.

7. Rotate each triangle shape to face four different directions (top, down, left,
right).

8. Align each triangle on their respective axis.

14 Graphic and sound design

9. Group all the objects into a main object.

10. Fill the main object stroke with white color, give it 1px width, and make its
middle transparent.

11. Duplicate the object and apply a 5% of blur on it to achieve a glow effect.

12. Combine the glow and the shape into one object.

13. Export the final object to PNG format and test it with different sizes in Unity
to find the one that fits best.

(a) Inside Inkscape (b) Final design

Figure 2.5: Design of the Enemy3

2.1.5 Enemy4

The fourth object designed was the Enemy4, which is difficult to destroy due to
its small size and its fast movement speed. Figure 2.6 shows the Enemy4, designed
according to the next steps:

1. Draw a basic design on piece of paper to use it as model.

2. Create a basic triangle shape.

3. Align the triangle shape to the center.

4. Resize the triangle shape.

5. Fill the triangle stroke with white color, give it 5px width, and make its
middle transparent.

2.1 Graphic design 15

6. Duplicate the object and apply a 10% of blur on it to achieve a glow effect.

7. Combine the glow and the shape into one object.

8. Export the final object to PNG format and test it with different sizes in Unity
to find the one that fits best.

(a) Inside Inkscape (b) Final design

Figure 2.6: Design of the Enemy4

2.1.6 Enemy5

The fifth object designed was the Enemy5, which will pursue the Player to
death. Figure 2.7 shows the Enemy5, designed according to the next steps:

1. Draw a basic design on piece of paper to use it as model.

2. Create a basic star shape.

3. Align the star shape to the center.

4. Resize the star shape.

5. Make the star have six rounded corners.

6. Fill the star stroke with white color, give it 5px width, and make its middle
transparent.

7. Duplicate the object and apply a 10% of blur on it to achieve a glow effect.

8. Combine the glow and the shape into one object.

16 Graphic and sound design

9. Export the final object to PNG format and test it with different sizes in Unity
to find the one that fits best.

(a) Inside Inkscape (b) Final design

Figure 2.7: Design of the Enemy5

2.1.7 Boss

The next object designed was the Boss, which appears at the end of the level
and needs to be destroyed in order to complete it. Figure 2.8 shows the Boss,
designed according to a large list of steps. For the sake of simplicity, only the
main steps are following detailed:

1. Draw a basic design on piece of paper to use it as model.

2. Create the sixteen different parts of the ship, including the body, the front,
the four wings, the four laser canons, and two projectile canons.

3. Add a glow effect to each part.

4. Disable the transparency in some parts of two of the four laser canons and
the two projectile canons, in order to make them appear to be mounted on
the top of the wings.

5. Generate two images: one in assembled state (see Figure 2.8a), and the other
one disassembled (see Figure 2.8b). The first one will serve as a model to
assemble the second one part by part in Unity.

2.2 Sound design 17

(a) Assembled (b) Disassembled

Figure 2.8: Final design of the Boss

2.1.8 Miscellaneous objects

Besides the Player and the Enemies, I have also designed a few more simple
objects that are used in different parts of the project. These objects are illustrated
in Figure 2.9, and subsequently presented:

• Two round particles: used in projectiles and explosion particles.

• Bar: used in different menu elements.

• Cube: used in different menu elements.

• Two lines: used in lasers and user interface elements.

2.2 Sound design

As the game needs some sound effects, I have used two pieces of software to
make them by myself: Bfxr and Audacity. In particular, I have created a variety of
sound effects with them, as explained in the following sections.

18 Graphic and sound design

(a) Round particle 1 (b) Round particle 2

(c) Bar (d) Cube

(e) Line 1 (f) Line 2

Figure 2.9: Miscellaneous graphic objects used in this project

2.2 Sound design 19

2.2.1 Bfxr

Bfxr [10] is a free-ware, open-source sound effects generator for game devel-
opers. It provides a set of templates to generate sounds for video games, and it
also allows to modify them by playing around with different options. In addition,
the sound effects can be exported to WAVE (Waveform Audio File Format). Figure
2.10 shows the interface of Bfxr, which is split in three parts. The left one has some
buttons to generate random sounds with predefined effects, following presented.
The center part has all the editing options for each sound. And the right part
shows a graphical representation of the sound and includes the common options
such as copy, paste, save and export.

Figure 2.10: Interface of the Bfxr software

20 Graphic and sound design

2.2.2 Audacity

Audacity [2] is a free, open source, cross-platform audio software for multi-
track recording and editing. It is available for Windows, Mac OS X and Linux.
Figure 2.11 shows the interface of Audacity, which at the top shows the typical
options menu, below it there are buttons to control the sound reproduction and
recording, and a list of input and output sound devices. At the center, there is a
workspace that allows simultaneous editing and mixing of various sound effects.

Figure 2.11: Interface of the Audacity software

Audacity has a generate tool to create different types of sounds, including the
following ones:

• Chirp: a short, sharp, high-pitched sound.

• DTMF tones: like those produced by a keypad on a telephone.

• White, pink and brownish noises: three types of noise that allow to mask
different sounds.

2.2 Sound design 21

• Silence: a straight line wave.

These sounds can also have different wave types, such as sine, square or saw-
tooth. Audacity also provides a variety of different effects and filters that can be
applied to a sound. The ones most used in this project are:

• Amplify a selected audio, i.e. increase or decrease its volume.

• Change the pitch, the speed and the tempo of a selected audio.

• Echo a selected audio, i.e. repeat it many times by gradually softening it.

• Fade in and Fade out a sound, i.e. gradually change its amplitude from the
start to the end making it louder or softer.

• Repeat a sound a number of times specified.

• High and Low pass frequency filters, that allow to increase or decrease the
amplitude of a sound below or above a cutoff frequency specified.

2.2.3 Sound effects development

All the sound effects used in this game were made by combining Bfxr and
Audacity. The process has been carried out according to one of the following
manners, depending on the particular sound: (1) generate the sound, and then
adjust it using only Bfxr; (2) create an empty sound, and then design it using a
variety of different filters and tools provided by Audacity; (3) generate the sound
using Bfxr, and then modify it using Audacity; and (4) record a real life sound,
and then create a game sound from it using Audacity.

A total of six sounds were made with these tools (see Figure 2.12): Damaged_1,
Damaged_2, Explosion_1, LaserBeamCharge_1, Powerup, ProjectileShoot_1. These
sounds are used in some of the following places: Player shooting projectile or get-
ting damaged by an enemy, or vice versa, Enemy exploding and Boss charging
lasers.

2.2.4 Music

I have a Space Music pack that I bought in 2015 from GameDev Market1, a
marketplace for high quality, affordable game assets handcrafted by talented cre-
ators around the world. Although I have included all the songs in the project, only
two of them are used: one for the Main theme, which is played in the background
during the normal level progression; and other for the Boss theme, which starts to
be played when the Boss appears on the screen.

1www.gamedevmarket.net

22 Graphic and sound design

(a) Damaged_1

(b) Explosion_1

(c) ProjectileShoot_1

Figure 2.12: Graphic representation of different sound effects

Chapter 3

Game design and development

This chapter explains how the game and its logic were designed and developed
inside Unity, how each object was created and how they all interact with each
other. It also includes a detailed explanation of how every tool provided by Unity
was used. Appendix A includes some useful class and flowchart diagrams used
for game development.

3.1 Unity

Unity [21] is a game engine (framework) used for cross-platform game devel-
opment, created by Unity Technologies. It provides a set of advanced tools and
API’s to make game development easier for developers. The primary languages
used in it are C# and JavaScript.

The Unity components used in this project are detailed as follows:

GameObject: It is a base class for all Unity entities in scene.

Prefab: It allows users to store GameObject with all attached components and
properties, and it works like a template from which new object instances can
be placed into a scene.

Scene: It contains objects of game, in such a way that each level inside a game is
a scene.

Camera: It is used to show the contents of the scene, and it has two types of
projections (see Figure 3.1): orthographic and perspective. In the first one,
objects do not need to have depth and they seem flat. This projection is
the most used in 2D games. Regarding the perspective projection, it shows
the world in the same manner that humans see it. In this case, objects have

23

24 Game design and development

depth which gives us the ability to easily differentiate them and correctly
judge their distances from the observer. This type of projection is the most
commonly used in 3D games. As an example, given two objects of the same
size but at different distances from the observer, in the perspective projection
the closest object seems bigger than the other one, whilst in the orthographic
projection they seem to have the same size no matter the distance.

Figure 3.1: Difference between orthographic and perspective projections

Transform: It determines the position, the rotation, and the scale of each object in
the scene. Note that every GameObject has a Transform component.

RigidBody and RigidBody2D: It is attached to a GameObject, and puts it to un-
der the control of the Unity physics engine, making the object to be able to
be affected by gravity and controlled using different forces like for exam-
ple gravity. It is also used by Collider and Collider2D classes for detecting
collisions between different objects.

Collider and Collider2D: They are used to detect collisions between different
GameObjects, that have a RigidBody or Rigidbody2D component attached
to them. Note that a GameObject can have multiple colliders attached to it
for advanced functionalities. Figure 3.2 shows some examples.

Script: It is a component used to control the game logic by code. Scripts in Unity
can be written using C# or JavaScript programming languages.

Texture: It is a bitmap image, that can be in different formats, such as PNG, BMP
or JPG.

Sprite: It is 2D graphic object equivalent to a 3D model in 3D environment, but
simpler since a Sprite is just a texture. A single Sprite can also contain

3.1 Unity 25

Figure 3.2: Different 2D colliders inside Unity editor

different parts of the same object that can be assembled in Unity scene, and
used for animating it.

SpriteRenderer: Every Sprite needs a SpriteRenderer object to be able to render
it into a scene. SpriteRenderer also provides a special API for Sprite control,
allowing to change its color and split it in multiple parts.

Canvas: It is an object that represents the area in which all user-interface elements
should be placed, such as game menus or relevant information for the player.

LineRenderer: It is used to create and draw a line between two or more points in
2D or 3D space.

Particle: It is a small object displayed and controlled by a ParticleSystem. It can
be either a 2D Sprite or a 3D object.

ParticleSystem: It allows to simulate different graphic effects such as fire, liquids
or explosions. By means of different APIs available, it is possible to create
different effects by combining multitude of Particle objects and controlling
them in different ways.

Material: It defines how the lighting interacts with the surface of an object. It can
be used to simulate different types of surfaces, such as wood or plastic.

Shader: It is a script executed by a GPU that contains algorithms to calculate the
color of each pixel of an object based on both lighting and material data. The
most commonly used are Vertex and Fragment. They are usually stored in
different files, although Unity combines them into a single one for simplicity
reasons. The Vertex Shader receives vertex data as input, processes it, and

26 Game design and development

sends it to the graphic pipeline illustrated in Figure 3.3. After some steps,
it sends the data to the Fragment Shader that processes it pixel by pixel,
in order to compute the final color. The data can contain textures, normal
maps, colors and other useful variables.

Figure 3.3: Common computer graphic pipeline

AudioSource and AudioClip: An AudioClip needs an AudioSource component
to be played inside a scene. The AudioClip can be imported from many
audio formats, such as MP3, OGG or WAW.

AudioListener: It is a virtual microphone inside a Scene that records sounds and
plays them trough users’ speakers. When a Camera is created, it has an
AudioListener component attached to it. In order to play AudioClips, a
Scene needs to have at least one AudioListener.

Tag and Name: In order to identify GameObjects in scripts, each object has a Tag
or a Name.

PlayerPrefs: It is a static class that both stores and accesses players’ preferences
and data between game sessions. Their values can be saved into one of
three types: integer, float and string. In code, they are retrieved by using
dictionaries.

3.2 Project creation

Unity offers a very simple way of creating a new project (see Figure 3.4), and
also allows to import standard assets included with it. As I have created all assets,
except the music themes, I did not find the need to use them.

By default, Unity creates a directory known as Assets in which it stores all
project development files. In order to be able to sort them, I have created a folder
structure inside this folder, which can be seen in Table 3.1.

Additionally, Unity creates an empty scene with camera in it as illustrated in
Figure 3.5. From this moment, the developing of a game can be started.

3.3 Camera 27

Figure 3.4: Unity default project creation dialog

Table 3.1: Folder structure inside the Assets folder created by Unity

Folder name Elements stored

Images Image files that are not Sprites
Materials Material data
Music Music tracks
Prefabs Prefab objects
Scenes Scenes such as the Main menu and the Level1
Scripts Scripts used for game programming
Shaders Shaders objects
Sounds Sound effects
Sprites Sprites creaded in Inkscape in PNG format

3.3 Camera

As this is a full 2D game, I have setup the Camera to have an orthographic
projection. After trying out different configurations, the Camera has a dimension
of 28.6 × 16 Unity units and its background is solid black (see Figure 3.6) By de-
fault, the Camera includes the GUI Layer component to display the user interface,
in addition to the AudioListener component to play sounds.

A Box Collider2D and a script DestroyByBoundary.cs were added to allow the

28 Game design and development

Figure 3.5: Unity editor with an empty scene

Figure 3.6: Camera setup

following functionality: Box Collider2D has a trigger option enabled which means
that if something is in a contact with this collider, it produces different events.
In this project, the event is OnTriggerExit2D (see Figure 3.7), used when an object
exits the collider (i.e. camera space). Note also that the object gets destroyed when

3.4 Particle systems 29

quitting the camera space.

void OnTriggerExit2D(Collider2D collision)
{

Destroy(collision.gameObject);
}

Figure 3.7: Code of the event for object destruction

3.4 Particle systems

In order to simulate various graphical effects, I have created several particle
systems, each one with different functionalities and needs.

As a theme of the game is set up in the space, the first ParticleSystem created
was StarField, that simulates many stars moving trough our level (see Figure 3.8).
It has been done using the default Particle included in Unity. It has a white color
and its duration is set to 10 seconds after which it simply loops itself from the
start. The speed of the stars is set at 0.05 Unity units per second and there can be
at most thousand of particles at the same time.

Figure 3.8: StarField movement

Both the Enemies and the Player produce an explosion when they are de-
stroyed, and for that the Explosion ParticleSystem has been created. It creates a

30 Game design and development

random number of particles, each one having one of four different colors (see Fig-
ure 3.9): red, yellow, green and blue. All the particles shoot out outwards from a
single center point, and can be bounced by camera borders. When the system is
initialized, it plays an explosion sound effect with a duration of one second, which
is auto-destroyed at the end.

Figure 3.9: Zoomed in Explosion Particle at the span of one second

For the Boss element, I have created two different ParticleSystems. The first
one is the spawn ParticleSystem (see Figure 3.10), and it is used when the Boss
spawns. It has a duration of one second, and produces different cutting like effects
of red color inside a circle. The other one is the Laser Particle System (see Figure
3.11), and it is used when the Boss shots its lasers. It has a four-second duration,
and it simulates charging the laser canon with light particles, which go from white
to red color.

3.5 Shaders and materials

From the beginning of this project, I wanted the objects in the game to have a
neon glow effect. After exploring various possibilities, the process finally carried
out to achieve this effect the following: when designing objects in Inkscape, I have
blurred them to get a glow effect, and then I have developed a Shader in Unity that
converts that glow effect into Neon lighting. For this task, I have downloaded the
source code of the Unity standard Shader and made the following modifications
to its Fragment shader:

1. Get the main Sprite.

2. Apply color to the main Sprite and get the colored one.

3. Average the RGB values of the colored Sprite to get the grayscale one.

3.5 Shaders and materials 31

Figure 3.10: Boss spawn particle animation at the span of one second

Figure 3.11: Boss laser charge animation time line

4. Compute the final Sprite as:

f inalSprite = (colorSprite ∗ 3 + graySprite ∗ α) ∗ α

where α is the alpha transparency value of the main Sprite.

I have made two versions of the Shader, which are Neon2D and Neon2DTexture.
In order to apply a Shader to the object, a Material has to be created and then ap-
plied to the respective object. Notice that, in this project, the relationship between

32 Game design and development

Sprite Materials and Shaders is the following: a Sprite has one Material assigned
to it, and this Material has one Shader assigned to it.

3.6 Game controller

GameController is an object that controls the general purpose of the game
logic. In this project, I have created an object of this type using the GameController
script. It has different functionalities, such as controlling game-states or updating
user interface elements. All these functionalities are subsequently presented:

• Functions for controlling game-states:

Playing: All necessary data is initialized. If this function is used after a
pause, it continues from the point in which the game was paused.

Paused: The execution of the game logic is paused and the Pause Menu is
shown.

Lost: The player is dead, and so the execution of the game logic is paused
and the Lose Menu is shown.

Won: The player has completed the level, and so the score is computed and
the Win Menu is shown.

• Functions for controlling and updating user interface elements:

Score: It shows the Player’s score.

Player life: It shows how much health the player has.

Game timer: It shows the current game time.

• General game data and auxiliary functions:

Player: A reference to the Player object, and its controlling script.

Music: Both Main and Boss music themes, and the logic to control them.

Fixed enemy damage: The damage done to Player by the Enemies. After a
careful testing and some feedback received from different users, all the
enemies and their projectiles (excluding lasers) have a fixed amount of
damage, which is set at 35 hit points. The Player’s health points are
set to 100, so it takes three hits to be destroyed, which makes the game
well-balanced in terms of difficulty.

Background speed: Speed at which the Moving Background container ob-
ject moves.

3.7 Moving Background 33

Boss: A reference to the Boss object in order to be able to spawn it at the
end of the level.

Highscore: High-score logic using PlayerPrefs data.

Audio volume: Control of the general audio volume using PlayerPrefs data.

Most of the scripts need the GameController for different functionalities. For
that reason, all of them have a function called InitGameController, in order to
search the GameController inside the scene every time that an object is instanced.
An error is produced if the GameController is not found.

3.7 Moving Background

Moving Background is an object that serves as a container for other objects
inside the scene, as illustrated in Figure 3.12. Those objects include enemies, bar-
riers, and different triggers. It is setup in a way that it is always moving from right
to left at a specified speed, just like all the objects inside it.

Figure 3.12: Zoomed out view of all the objects (highlighted in green) inside the
Moving Background

The game is made in such a way that the camera is always still, and the things
that are really moving are the background and the stars inside the StarField Par-
ticle System, thus creating an illusion of camera movement. When objects inside
the Moving Background enter the camera space, they disconnect from it and begin
to move by themselves using their unique logic. Figure 3.13 shows the code that
controls Moving Background movement.

void Update () {
Vector2 position = transform.position;
speed = gameController.backgroundSpeed;
position = new Vector2(position.x - speed

* Time.deltaTime , position.y);
transform.position = position;

}

Figure 3.13: Movement code for Moving Background

34 Game design and development

3.8 Base classes

Although Player and Enemies are different space ships, they share many prop-
erties. For this reason, I have created a parent class to use the inheritance provided
by object oriented programming. Therefore, the BaseShip class was created, whose
properties are shown in the code included in Figure 3.14.

public GameController gameController;
public GameEntityType type; //type of object
public float healthPoints; // current healthpoints
public float totalHealthPoints;
public float moveSpeed;
public float shootingRate;
public List <GameObject > canonList; //list of

canons which shoot projectiles
public ParticleSystem explosion; // particle that

plays when object is destroyed
public bool blink = false;
public bool alive = true;

Figure 3.14: BaseShip properties

One of the particularities in this class is the Blink function (see Figure 3.15),
which makes an object blink when its damaged in order to alert the user. This
function is somewhat special because it uses a yield statement, which may make
the code execute concurrently. Therefore, it is necessary to check if the object is
alive before and inside of the function.

Similarly, another base class called BaseProjectile has been created. It is used
as a parent class for different projectiles inside the game including both Player’s
and Enemies’ projectiles.

3.9 Projectiles

In this game, there are different types of projectiles, each one with its own
unique logic and functionality, used by the Player or the Enemies. The Player and
all its projectiles are blue (see Figure 3.16a), which is more user-friendly; whilst
the Enemies and their projectiles are red (see Figure 3.16b), which seems more
menacing and indicates danger. In the final version of the game, both Player’s and
Enemies’ projectiles go straight. Regarding the Enemies’ projectiles, they are used

3.10 Lasers 35

if (alive && !blink){
blink = true;
Color oldColor =

GetComponentInChildren <SpriteRenderer >().color;
GetComponentInChildren <SpriteRenderer >().color =

Color.black;
yield return new WaitForSeconds(blinkTime);
if (alive){

GetComponentInChildren <SpriteRenderer >().color
= oldColor;

}
blink = false;

}

Figure 3.15: Shortened version of the code used for blinking objects

in different manners depending of the particular Enemy: some enemies shoot
projectiles directly to the Player, whilst others are rotating and shoot a barrage of
projectiles to many different directions. Figure 3.16 shows the different projectiles
inside the game.

(a) Player projectile (b) Enemy projectile

Figure 3.16: Different types of projectiles in Unity

3.10 Lasers

Lasers are another way of destroying things inside the game. They are used by
the Player as a secondary weapon, and by the Boss as one of the primary weapons

36 Game design and development

Figure 3.17: Game screen shot showing different projectiles

it has. They are made using the LineRenderer component combined with a script
to control them. They have been created by means of a technique called Ray
Casting, which casts a straight line (ray) at a desired direction and checks if it
intersects with some objects. It has been programmed in such a way that, in case
of intersection, it returns many useful values such as the object intersected or the
position of intersection.

By default the ray is cast at an infinite distance and intersects with all objects
in its path. In order to avoid unnecessary computations, I have programed it to
only cast the ray within the camera limits. Once the ray is cast, a straight line is
created with Line Renderer using both ray position and direction to draw it. As
with other objects, the Player’s laser is blue and the Boss’ laser is red, as can be
seen in Figure 3.18.

(a) Boss laser

(b) Player laser

Figure 3.18: Different types of lasers in the game

3.11 Player 37

3.11 Player

The Player object (see Figure 3.19), which is the one controlled by the user
when playing the game, can do very simple actions like shooting projectiles and
lasers, as well as moving inside the camera space. Although it looks simple, it is
composed of many different components which are listed bellow:

• A RigidBody2D of Kinematic type, which means that instead of using the
Unity physics engine, it uses physics done by me. It only produces collisions
if the Collider is set to have a Trigger enabled.

• A Circle Collider2D, with the same size that the Player Sprite.

• An AudioSource that contains the sound used when the Player is damaged.

• A SpriteRenderer component needed to display the object, with the follow-
ing objects and properties:

Sprite designed in Inkscape (see Section 2.1.2).

Blue color specified in hexadecimal.

Material with a Shader assigned to it.

• A central canon GameObject used for giving the starting position when
spawning projectiles.

• A Laser canon used for shooting the laser described in Section 3.10.

• A Particle System used when the Player is destroyed to spawn an Explosion
Particle System, described in Section 3.4.

• A PlayerController script that controls all the above logic (see Figure 3.20).

3.12 Enemies

All of the Enemies inside the game have the same components and share the
same base logic, described as follows:

1. After starting the game, the Enemy object is placed inside the Moving Back-
ground object.

2. When the Enemy enters the camera space and collides with the Camera
Collider, it disconnects from the Moving Background and starts using its
own unique logic.

38 Game design and development

(a) Inside the game (b) Inside Unity

Figure 3.19: Player object controlled by the user when playing the game

Figure 3.20: Player properties and values inside Unity editor

3.12 Enemies 39

3. If the Enemy collides with the Player, it gets destroyed, damages the Player
(35 hit points) and produces an explosion.

4. If the Enemy collides with the Player’s projectile, it receives a damage which
is defined inside the projectile.

5. If the Enemy’s hit points reach zero, the Enemy adds its reward points to the
GameController score value and destroys itself producing an explosion.

6. If the Enemy leaves the camera space, it gets destroyed without producing
explosion since it will not be used anymore.

In addition to the base logic above described, each enemy has its own unique
logic:

• Enemy1:

It moves from right to left at a speed s1.

It shoots a projectile at the Player every x seconds, which is done by
finding the Player position and calculating the direction of the shoot.

• Enemy3:

It moves from right to left at a speed s1 while rotating around its center.

It shoots four projectiles at different directions while rotating. In same
parts of the level, I have grouped up to four of these enemies together to
create a stressful environment for the Player, because of all the things it has
to keep track off on screen.

• Enemy4:

It moves from right to left at a speed s2, faster than the other enemies.
Additionally, it is smaller and harder to shoot at.

• Enemy5:

It chases the Player at a speed s1, simulating a cat and mouse game.

Many enemies of this type have been grouped together to make more
difficult for the Player to destroy them.

Enemies share the Player’s object structure and components, but they are red
and have a different Sprite for each one. Additionally, some of them have one or
more canons. The four enemies are depicted in Figure 3.21.

40 Game design and development

(a) Enemy1 (b) Enemy3

(c) Enemy4 (d) Enemy5

Figure 3.21: Enemies inside the game

3.13 Miscellaneous objects

Besides Player and Enemies, the scene also contains many visible and invisible
objects, used for different purposes and listed below:

• The Laser Barriers (see Figure 3.22) are able to destroy the Player with only
one touch, so it needs to evade them in order to survive. All of the Laser
Barriers are inside the Moving Background object and move with it, and they
get auto-destroyed when leaving the camera space.

• The Speed Triggers are invisible objects placed at various points of the level,
that allows to change the speed of the Moving Background speed. In this
manner, some parts of the level are faster than others.

3.14 Boss 41

• The Boss Trigger at the final of the level, that first creates a beautiful Particle
System to simulate a cutting space, next changes the music theme to use the
special Boss one, and finally spawns the Boss inside the level.

Figure 3.22: Player going around different Laser Barriers

3.14 Boss

Every game needs a boss character, and the one here presented has one. The
Boss is the most complex ship inside the game, composed of sixteen different
parts designed in Inkscape and reassembled in Unity. Its body is made of two
main parts, its two main wings have six parts each one, and it also have two little
wings at the back. The two Projectile canons located at the main wings are able
to rotate, they are always directed at the Player and shoot to it in two-second
intervals. Regarding the four Laser canons, they are controlled by a precise timing
logic shooting at different intervals. In order to be able to destroy the Boss and
complete the level, the Player needs to shoot down all six canons while evading
their powerful shots. With the aim of seeing progress when the Boss spawns, a
life bar appears for each part that needs to be destroyed.

The Lasers canons follow this logic:

• The inside lasers fire for four seconds, in 12-second intervals. Four seconds
before firing, they show the Laser charging effect with a 4-second duration.

42 Game design and development

• The outside lasers fire for four seconds, in 16-second intervals. Four seconds
before firing, they show the Laser charging effect with a 4-second duration.

The logic of combining lasers and projectiles produces a challenge in destroy-
ing the Boss. Although the lasers and the projectiles are parts of the Boss, they
also act like standalone Enemy ships and give the Player a big amount of reward
points for destroying them. Figure 3.23 illustrates the Boss in the middle of the
game.

Figure 3.23: Game screen shot showing the Boss when charging its inner laser
canons, with one of the outer ones damaged, and its projectile canons shooting at
the Player

Regarding the balancing points of the Player’s, Enemies’ and Boss’ weapons,
they are summarized in Table 3.2. In addition to this information, it should be
noticed that all the Enemies make the same amount of damage to the Player,
which is set to 35 hit points as previously explained; and the Boss Laser canons
instantly destroy it.

3.15 User interface

In order to play the game, a menu system with different options and user
interface elements has been created.

3.15 User interface 43

Table 3.2: Balancing values of both Player and Enemies (u/s = units per second,
p/s = projectiles per second)

Health Points Reward points Move speed Canons Shooting rate

Player 100 - 7.5 u/s 2 10 p/s
Enemy1 50 50 3 u/s 1 1 p/s
Enemy3 100 50 2 u/s 2 1 p/s
Enemy4 20 50 4 u/s - -
Enemy5 40 50 4 u/s - -
Boss Inner Laser 500 2000 - 2 1/12 p/s
Boss Outer Laser 500 2000 - 2 1/16 p/s
Boss Canon 500 2000 - 2 1/2 p/s

The first menu shown just after starting the game is the Main menu, from
which the user can select one of the following options (see Figure 3.25a):

New Game: It starts a new game and, by default, it is set to load the Level1 scene.

Options Menu: Different configuration options were planned to be put here, but
Unity already presents the user a menu with different options when starting
the game. For this reason, it only includes two options (see Figure 3.25b):

Volume: The Volume slider lets the user to change the game sound volume,
using the PlayerPrefs.

Back: It goes back to the Main menu, and saves the modified PlayerPrefs.

Controls Menu: It leads to the Controls menu, showing the user the Keyboard
and Game Pad controls for the game (see Figure 3.25c).

Exit: It closes the game.

For each menu button, different options can be configured indicating what to
do when the buttons are pressed. For example, the actions when the user presses
the up or down buttons have been configured in simple manner, allowing the user
to be able to go only up or down as illustrated in Figure 3.24. The same actions
are also used for the other menus.

For the Level1 scene, I have created the following menus:

Pause Menu: It is shown when the user presses the pause button ("Esc" on the
Keyboard or "Start" on the Gamepad). It contains the following options (see
Figure 3.25d):

Resume: It resumes the game.

44 Game design and development

Figure 3.24: Navigation path of actions in the Main menu

Restart: It restarts the game.

Main Menu: It returns to the Main menu scene.

Lose Menu: It is shown when the Player is destroyed, with a big red "YOU DIED"
text on the top. It contains the following options (see Figure 3.25e):

Restart: It restarts the game.

Main Menu: It returns to the Main menu scene.

Win Menu: It is shown when the Boss is defeated and the game is won. It shows
the user’s score and the high-score (see Figure 3.25f). If the score is bigger
than the high-score, it also updates the high-score using the PlayerPrefs class.

Main Menu: It returns to the Main menu scene.

Besides the different menus, there is a simple interface (see Figure 3.26) that
shows the current score, the current playtime and the Player’s life. All this infor-
mation is controlled and updated using the Game Controller.

3.16 Level design 45

(a) Main Menu (b) Options Menu

(c) Controls Menu (d) Pause Menu

(e) Lose Menu (f) Win Menu

Figure 3.25: Different game menus

Figure 3.26: Interface with the current user information

3.16 Level design

After creating every element as described in the previous sections, and in order
to create a good and playable level, I started the level design by placing a couple of
different enemies on the scene, and then I played it while trying to find out how it
could be improved. The same process was repeated by placing barriers and other
types of enemies, in such a way that each iteration was larger and more balanced

46 Game design and development

than the previous one. Additionally, I also sent the level to other people in order
to obtain some useful feedback, which included comments like:

• Make the Player move slower because it was very difficult to control it when
moving too fast.

• Redistribute the placement of both enemies and barriers.

• Make some feedback appear on the screen when someone gets damaged (the
Blink function was made for this issue).

• Include a sound when the Player gets damaged.

• Make all the enemies do the same amount of damage since it was very con-
fusing that each one was different.

By the end of this project, I have played to the same level more than 250 times,
with many variations of it. Now, I think that the final result is quite balanced and
playable for many people. Since the entire Level1 is too big to be place in one
single image, Figures 3.27 and 3.28 show it sliced into nine different pieces. Note
that the first part corresponds to the start of the game, whilst the last one is the
end.

3.16 Level design 47

(a) Part 1 (Start)

(b) Part 2

(c) Part 3

(d) Part 4

Figure 3.27: Level1 sliced, parts from 1 to 4

48 Game design and development

(a) Part 5

(b) Part 6

(c) Part 7

(d) Part 8

(e) Part 9 (End)

Figure 3.28: Level1 sliced, parts from 5 to 9

Chapter 4

Accessibility and colorblindness

Nowadays, when video-games are played by millions of people, there is a
strong need for these games to be able to be played by people with different
disabilities. For that reason, I have decided to include some accessibility options
in this project and, in particular, I have focused on colorblindness.

Colorblindness, or color vision deficiency, is a disability that makes a person to
be unable to perceive different colors or variations of the same color. It can cause
trouble in person daily life such as inability to see the difference between traffic
lights or to distinguish different types of fruits. Generally, people are able to adapt
to it, but sometimes it is very hard for them to do it [5].

4.1 Types of colorblindness

Although there are many types of colorblindness, I have decided to center
my work on the three most common types, which are subsequently described
[5, 17, 12]:

Protanopia: reduced sensitivity to the red light, which causes that red is seen as
yellow-greenish color. People with protanopia are most likely to confuse (or
most likely see to A as B):

• Dark brown with dark green.

• Dark orange with dark red.

• Different shades of red with black.

• Different shades of blue with different shades of red.

• Different shades of purple with dark pink.

• Medium green with orange.

49

50 Accessibility and colorblindness

Deuteranopia: reduced sensitivity to the green light, which causes that green is
seen as yellow-greenish color. People with deuteranopia are most likely to
confuse:

• Blue-green with gray and medium pink.

• Bright green with yellow.

• Medium red with medium green.

• Medium red with medium brown.

• Pale pink with light gray.

Tritanopia: reduced sensitivity to the blue light, which causes that green is seen
as blue, and red as pink. People with tritanopia are most likely to confuse:

• Dark purple with black.

• Light blue with gray.

• Medium green with blue.

• Orange with red.

4.2 Accessibility: implicit vs explicit

When designing and developing a video-game, the developer can choose to
incorporate accessibility options explicitly or implicitly, depending on both game
style and mechanics:

Explicit: It means that the selected accessibility option cannot be incorporated in
the base game design and has to be done as a separate option. Thus, many
times it is included as an afterthought and it does not work very well. For
example, I could include the colorblind option and let the player choose its
type of colorblindness, which will work but not always in a good way. In
addition, it will also require the player to go through various options and
test them.

Implicit: It means that the selected accessibility option is a core part of the base
game design and seamlessly work in the game. This project is an example,
in which I have decided to give both Player and Enemies different shapes
to distinguish them, and created a single color-palette manually tested with
the most common colorblindness types.

4.3 Color palette 51

4.3 Color palette

In order to create a single working color palette that can be differentiated by
people with different types of colorblindness, I have decided to use a free-ware
software known as Color Oracle.

Color Oracle [6] is a colorblindness simulator for Windows, Mac and Linux op-
erating systems, that applies a special color filter on the full screen in order to show
the user how a colorblind person sees the screen. There are a total of three filters,
one for each type of colorblindness previously mentioned: protanopia, deutera-
nopia, and tritanopia.

Using this software, I have executed my game and tested it to see if the objects
with different colors could be distinguished (mainly the Player and its projectiles
from the Enemies, the Enemies’ projectiles and the obstacles). In case of having
problems to distinguish them, I have tested it with other colors. The colors that
can be perfectly distinguish for the three types of colorblindness are the ones used
in the final version of this project. Figure 4.1 illustrates the final color palette and
its equivalence to how people with different types of colorblindness see it.

Figure 4.1: Color palette used in this project as seen by people with normal vision
and the three different types of colorblindness considered

52 Accessibility and colorblindness

Chapter 5

Methodology

As in any project, some planning and methodologies have been considered to
develop this video-game and, among all of them, I have used a combination of
Kanban and Scrum. Using only the necessary parts from both of them, I have
adapted them for one person environment. Both Kanban and Scrum are agile
methodologies that focus at releasing working versions of software early and often
[22], which was perfect for the project at hand since I needed to obtain feedback
after each version. In this context, projects can be split into sprints, which can be
defined as time boxes of one month or less during which a list of specified tasks
can be considered as "DONE".

In the development of this project, I have used GitHub for version control and
project hosting [8]. Github is a web based hosting for different projects that consist
of code, and it provides a Git version control system as well as other tools such as
a simple task management system based of Kanban [1, 14]. Additionally, it allows
to create a wiki page for hosting documentation and it provides other tools for
easier project management.

5.1 Development life cycle

The development life cycle here refers to the development of each unique object
inside this project. In general terms, the process consists in designing graphical
and sound objects, and using them to create Unity objects. After that, each object
is tested in a standalone environment which is usually an empty Unity project.
Then, the object logic is developed and both integrated and tested inside the full
project. When those steps are finished, the project is sent to different people for
testing and gaining feedback. The feedback obtained is used in the next cycle,
which again starts from revising graphical and sound objects if needed. Figure 5.1
includes the procedures done when developing objects for this game.

53

54 Methodology

Figure 5.1: Development cycle of a game object

5.2 Task management

After the definition of the objectives, I have translated them into a list of simple
tasks and added them to my Kanban task backlog which consisted of the following
columns to efficiently manage the project:

• TODO: tasks that needed to be done.

• WIP: tasks that I was doing at that moment.

• FIX: things that needed to be fixed, re-factored or optimized.

• IDEAS: ideas that I had when developing the project.

• DONE: column with the start and the end date for each Sprint.

Then, I have created a schedule consisting of two-week Sprints as described
in the Scrum methodology [19]. At each sprint, I did a limited amount of tasks
from backlog, and did not have more than two tasks in progress, which allowed
me to manage my time efficiently. If there were new tasks that needed to be
done, I added them to the backlog and then took them to do at the start of each
sprint. These tasks usually included bug-fixing, code refactoring, and redesigning
some systems. After finishing each task, I replaced its basic description in Kanban
backlog with detailed description of all the work that it required. Additionally,
after finishing each sprint, I sent my game to some of my friends in order to
obtain feedback from them and used it to improve my game.

During the first two months of the project, I spent the 60% of the time reading
the documentation and watching video tutorials to learn every needed tool and to
understand how everything works, the 20% making tests and prototypes of said
functionality, and the remaining 20% integrating it into the project and making
additional tests. After this initial two-month period, I have learned how to use

5.2 Task management 55

the software for developing each and every object. Because of that, my working
speed accelerated and I had more time to really design, program and develop the
functionalities needed. As an example, I found out that at the beginning it took
me around three to four hours to make graphic design of a player or enemy, while
towards the end I could do the same thing in around fifteen minutes. Regarding
the last month, it was mainly spent writing the documentation.

As all the tasks that are inside the Kanban backlog could not be represented in
one image or diagram, Figure 5.2 illustrates a live example. A summarized list of
the tasks is included in Appendix B.

Figure 5.2: Screen capture showing part of my Kanban on GitHub website

56 Methodology

Chapter 6

Results

This chapter presents the final results of different tasks made during the whole
project. The results include tests made during the graphic design, testing colors
for colorblindness disability, game performance and different control schemes.

6.1 Graphic design

When designing the graphic aspects of the project, one of the most important
parts was to correctly export SVG images to PNG format, and next import them
in Unity without losing any quality.

In Unity, if you import an image with very small size, for example 64× 64 pix-
els, and then display it at an appropriate size, it will look pixelated. On the other
hand, if you use an image with very big size, for example 4096× 4096 pixels, Unity
will produce artifacts such as aliasing when downsizing it for display, because the
filters used in this process are made to be fast but not accurate. For that reason, I
have made many tests with different images at several sizes, and I found out that
the best looking images have an approximate size of 512 × 512 pixels.

6.2 Colorblindness testing

After making several tests using different colors and taking into account the
three colorblindness filter types, I have chosen the best colors that allow the user
distinguish between the Player and its projectiles, and the different objects that it
has to destroy or evade in order to win. These objects include the Enemies and
their projectiles, the Laser barriers, the Boss and its weapons, projectiles and lasers.

The final color configuration, obtained as a result of this testing stage, can
be seen at Figure 6.1, which shows the differences between the Player and the

57

58 Results

Enemies inside the game. It should be highlighted that the most important aspect
here is that the user has to be able to differentiate between allied units and hostile
units: allied units have blue color, whilst hostile units have other colors. Note that
the color palette finally used in the video-game has been previously presented in
Section 4.3.

(a) Normal vision (b) Protanopia

(c) Deuteranopia (d) Tritanopia

Figure 6.1: Examples showing how the different elements of the video-game are
seen for the three types of colorblindness considered

6.3 Game performance

As this is a simple 2D game, a very important aspect is that it can be ran in a
wide variety of hardware without major performance loss. Broadly speaking, the
performance in games is measured in frames per second (fps), which is the fre-
quency rate at which the game images are displayed on the screen. This measure
is called frame-rate, and its ideal value in games is 60 fps. At that frame-rate, the
game-play feels responsive and smooth.

Other important concept in terms of game performance is Vsync. It synchro-
nizes the frames sent by the GPU with the refresh rate of the screen, and limits it at
its maximum value which in most screens is 60Hz. The real performance in game
is obtained with this option disabled, and the bigger the fps the better. However,
users usually prefer to have it enabled, because otherwise some artifacts such as

6.4 Game controls 59

screen-tearing may appear on the screen.
All the testing has been carried out by using MSI Afterburner [15], a software

that provides detailed information and statistics of the game performance. The
testing has been done on different operating systems, including different versions
of Windows (7, 8, and 10), and Linux (Ubuntu and Debian). In this sense, it should
be noticed that the performance across all of the operating systems considered was
almost the same. Regarding the computers tested, all of them had Intel proces-
sors inside and gave an average of 60 fps with the Vsync option enabled, which is
the best result possible for screens with refresh rate of 60 Hz. Table 6.1 presents
additional data about the game performance testing and the resource usage on
different hardware configurations. Judging by the frame rate with the Vsync op-
tion disabled, the performance obtained is more than enough to perfectly enjoy
the game.

Table 6.1: Game performance on different hardware configurations

Memory used
CPU RAM GPU RAM VRAM Resolution Vsync off

Core i7-5930K 16GB NVIDIA GTX 980 TI 6GB 90MB 444MB 2560x1440 1300 fps
Core i7-2670QM 8GB NVIDIA GT 540M 2GB 100MB 167MB 1366d768 500 fps
Core i5-M460 4GB ATI Mob. Radeon HD5470 1GB 108MB 256MB 1600x900 425 fps
Q6600 4GB ATI Radeon HD7000 1GB 105MB 188MB 1400x900 750 fps
Core i5-4570 3.5GB Intel HD Graphics 4600 512 MB 255MB 240MB 2048x1152 150 fps

6.4 Game controls

The final controls for Xbox 360, Xbox One or any compatible XInput1 game
controller were setup in the following way: the left stick is used for Player move-
ment and menu navigation; buttons A and B are set as Primary and Secondary
shoot actions; menu options can be executed using button A; Start button is used
for pausing and resuming the game. All the game pad controls are illustrated in
Figure 6.2.

With respect to the keyboard controls, they are following detailed: Arrow keys
are set for Player movement and menu navigation; Ctrl and Alt keys are set for
Primary or Secondary shoot actions; and Esc key is used for pausing and re-
suming the game. All the keyboard default controls can be seen at Figure 6.3.
Alternatively, the user can use (W, A, S, D) keys for Player movement and menu

1XInput is an API that allows applications to receive input from the Xbox 360 Controller for
Windows.

60 Results

navigation, and mouse left and right click for primary and secondary shooting
actions.

Figure 6.2: Default Xbox 360 game pad controls

Figure 6.3: Default keyboard controls

6.4 Game controls 61

If users do not like the default controls, they can always change them before
starting the game in the options that Unity provides by default when starting the
game. This is possible thanks to Unity having a special set of actions predefined,
such as for example: Horizontal and Vertical axis give access to the navigation
keys; while actions "Fire1" and "Fire2" let you access to other functions, which in
this project are used for Primary and Secondary shooting.

62 Results

Chapter 7

Conclusions

The main objective of this project was to design and develop a 2D shoot ’em
up video-game and learn the maximum amount of things possible while doing it.

For this purpose, the different graphic elements of the video-game were de-
signed, allowing me to learn how to efficiently use the Inkscape software in order
to achieve the desired results. In this manner, each design has been done faster
and better than the previous one. Similarly, I have learned how to design simple
albeit necessary sound effects for the game by combining audio software, more
specifically Audacity and Bfxr.

Regarding the video-game itself, all of the game logic and the objects were
designed and subsequently implemented using Unity and its 2D toolset. As a
result, the video-game is composed of one single perfectly playable level which
includes many different objects and obstacles to overcome. This is the part that I
have most enjoyed, because I really like programming and designing game logic.
Additionally, coming up with different Enemies and Boss logic provided me a fun
challenge, and gave me the opportunity to learn many different issues about game
design and development.

Furthermore, I discovered many interesting things about developing a game
for people with colorblindness disability, and found out a way for them to thought-
fully enjoy the game.

On the other hand, the obtained video-game can be played at different op-
erating systems and it has a very good performance even on dated computers.
Moreover, it can be easily ported to any of the current generation game consoles.

Finally, I would like to highlight that most of the things done throughout this
project were learned while developing it, as I had very little experience in the
whole process of video-game development. I had made very simple video games
without using full fledged game engines, and never before had I designed any
sound effect or graphic material for them.

63

64 Conclusions

7.1 Future work

In this project, I have done all the necessary to achieve the main targets by
designing and developing my own video-game. However, I already have a few
ideas to extend this work and improve the video-game:

• Create a complete projectile system with many types of projectiles and ways
to shoot them, using different approaches.

• Create more levels with different game-play options, each of them with new
enemies and bosses.

• Create a power-up system that allows players to get new powers, such as
super-speed.

• Make a different kind of reward logic, like including a multiplier to calculate
the final score.

• Make different types of ships that can be used as the Player.

• Create a module for Unity to accept graphics in SVG format.

• Create a similar video-game but using other game engines, such as Unreal
Engine and 3D Graphics.

Appendix A

Diagrams

This appendix presents different diagrams used during the development of
this project. Some of them show how different classes are related, what they are
and their properties; while others show the use case flowcharts of interactions
between different objects.

A.1 Class diagrams

This section includes four class diagrams with all the classes used in this
project, as well as their properties and methods. In some cases, the relationship
between classes is represented as a hierarchy:

• Figure A.1 shows how inheritance is used between the Player, the Enemies,
and the parent class BaseShip. Each class includes all its properties and
functions.

• Figure A.2 shows how inheritance is used between the PlayerProjectile, the
EnemyProjectile, and the parent class BaseProjectile. Each class includes all
its properties and functions.

• Figures A.3 and A.4 show miscellaneous classes and structures used in this
project. Each class includes all its properties and functions.

65

66 Diagrams

Figure A.1: Class diagram of the BaseShip as the parent class, and the Player and
Enemies as the children classes.

A.1 Class diagrams 67

Figure A.2: Class diagram of the BaseProjectile class and its children classes
Class diagram of the BaseProjectile parent class and its children classes

68 Diagrams

Figure A.3: Class diagram with the GameController, the BossController and other
additional scripts

A.1 Class diagrams 69

Figure A.4: Class diagram with the miscellaneous classes

70 Diagrams

A.2 Flowchart diagrams

This section includes six flowchart diagrams with the interactions between the
objects designed and developed in the project:

• Figure A.5 shows how the Main menu has been made with all its options:
New Game loads the Level1 of the game, Options allows the user to change
the volume and go back to the Main menu, Controls displays the default
controls for the game and allows the user to go back to the Main menu, and
Exit closes the game.

• Figures A.6 and A.7 show, respectively, how the Player and the Enemy pro-
jectiles work during their lifetime and how they interact with other objects.

• Figures A.8 and A.9 show, respectively, how the Player and the Enemy ob-
jects work, what actions they do and how they interact with other objects.

• Figures A.10 shows how the Game Controller object controls the game logic,
the user interface elements, the player preferences, and the different game-
states.

A.2 Flowchart diagrams 71

Figure A.5: Flowchart diagram of the Main menu

72 Diagrams

Figure A.6: Flowchart diagram of the Player Projectile

A.2 Flowchart diagrams 73

Figure A.7: Flowchart diagram of the Enemy Projectile

74 Diagrams

Figure A.8: Flowchart diagram of the Player

Figure A.9: Flowchart diagram of the Enemy

A.2 Flowchart diagrams 75

Figure A.10: Flowchart diagram of the Game Controller

76 Diagrams

Appendix B

Task calendar

This appendix includes a detailed list with the main tasks carried out during
the project. They are separated in sprints, and their respective dates are specified.

B.1 Sprint 1: 21/02/2017 – 07/03/2017

1. Create the project and configure the camera.

2. Create the Player.

• Design the texture in Inkscape.

• Create the object in Unity.

• Program the moving logic.

3. Create the Enemy1.

• Design the texture in Inkscape.

• Create the object in Unity.

• Program the moving logic.

4. Start the level design, and test it with the Player and the Enemy1.

B.2 Sprint 2: 07/03/2017 – 21/03/2017

1. Make the Base class for Enemies and Player.

2. Make the Enemy1 shoot to the Player.

3. Make different projectiles.

77

78 Task calendar

• Inkscape design and movement logic.

4. Create the Explosion particle.

5. Make the collision logic between Enemy and Player, and their projectiles.

6. Test the level design.

7. Create the StarField particles.

B.3 Sprint 3: 21/03/2017 – 04/04/2017

1. Create the Neon2D Shader.

2. Create the Materials from the Shader and apply them to the Player and the
Enemy1.

3. Create the Materials for projectiles and particles.

4. Test the different texture sizes (in PNG and SVG formats).

5. Create the Enemy3.

• Design the texture in Inkscape.

• Create the object in Unity.

• Program the moving logic.

• Program the shooting logic.

6. Test the level design with additional enemies.

B.4 Sprint 4: 04/04/2017 – 18/04/2017

1. Create the Enemy4.

• Design the texture in Inkscape.

• Create the object in Unity.

• Program the moving logic.

• Program the shooting logic.

2. Create the GameController with base logic.

3. Create the Barriers.

B.5 Sprint 5: 18/04/2017 – 02/05/2017 79

• Design the texture in Inkscape.

• Create the object in Unity.

• Program the moving logic.

• Program the collision.

• Place them on the map.

4. Make the Player and Enemies Blink when damaged.

5. Create the shooting sound effects.

• Design in Audacity and Bfxr.

• Add them to Unity.

6. Create the Main menu with options.

7. Create the User interface items and their logic.

• Healthbar: logic, material, objects, and texture in Inkscape.

• Timer and logic.

• Score and logic.

8. Add reward for killing Enemies, and balance their health points and speed.

9. Add map limiters for easier game design.

10. Extended the map created and added.

B.5 Sprint 5: 18/04/2017 – 02/05/2017

1. Created the Enemy5.

• Design the texture in Inkscape.

• Create the object in Unity.

• Program the moving logic.

• Program the shooting logic.

2. Map done, awaiting feedback.

3. Main menu loads level1.

4. Main theme added to the game.

5. Create the fully working Pause and Lose menus.

80 Task calendar

6. Feedback obtained.

• Change the map.

• Modify the Player speed.

• Improve the Blink function.

• Use the same amount of damage for all enemies.

• Add sound when the Player is damaged.

7. Create the Laser as secondary player attack.

• Inkscape design, logic and colliders.

8. Neon2D shader rework and Neon2D texture shader created.

9. Configure the Xbox360 gamepad controls.

10. Make the game always have a 16:9 aspect ratio.

11. Start to write the Documentation.

B.6 Sprint 6: 02/05/2017 – 16/05/2017

1. Boss

• Boss Texture created in Inkscape.

• Boss assembled in Unity.

• Lasers and their logic created.

• Canons and their logic created.

• Shooting logic created.

• Balance and timings created.

• User interface done.

• Spawn trigger created and working.

• Particle effects for Boss spawn and Boss Lasers charge created.

2. Missing sounds created.

3. Music themes added: Main and Boss, and music control logic.

4. GameController PlayerPrefs done.

5. High-score done.

6. Continue with the Documentation.

B.7 Sprint 7: 16/05/2017 – 30/05/2017 81

B.7 Sprint 7: 16/05/2017 – 30/05/2017

1. Game done.

2. Code cleanup, refactoring, bug fixes.

3. Continue with the Documentation,

B.8 Sprint 8: 30/05/2017 - 20/06/2017

1. Finish the Documentation.

82 Task calendar

Bibliography

[1] David J Anderson, Kanban: successful evolutionary change for your technology
business, Blue Hole Press, 2010.

[2] Audacity, Audacity - Free, open source, cross-platform audio software for multi-track
recording and editing, [Online] Available: http://www.audacityteam.org/, last
accessed: june 2017.

[3] Chirs Roper, The Games of Atari Classics Evolved: Part 2, [Online] Avail-
able: uk.ign.com/articles/2007/10/22/the-games-of-atari-classics-evolved-
part-2, last accessed: may 2017.

[4] Chris Jordan Barrish, A Detailed History of Shoot ’Em Up Arcade Games, [On-
line] Available: www.libertygames.co.uk/blog/a-detailed-history-of-shoot-
em-up-arcade-games/, last accessed: may 2017.

[5] Colour Blind Awareness CIC, Types of colour blindness, [Online] Avail-
able: www.colourblindawareness.org/colour-blindness/types-of-colour-
blindness/, last accessed: april 2017.

[6] Color Oracle, Design for the Color Impaired, [Online] Available: colororacle.org,
last accessed: may 2017.

[7] Entertainment Software Association (ESA), ESA Annual Report for 2016,
[Online] Available: www.theesa.com/wp-content/uploads/2017/05/ESA-
AnnualReport-Digital-5917.pdf, last accessed: june 2017.

[8] GitHub Inc., Github, [Online] Available: www.github.com, last accessed: june
2017.

[9] Ian Beck, Jets’n’Guns, [Online] Available:
www.insidemacgames.com/reviews/view.php?ID=695, last accessed:
may 2017.

[10] Increpare Games, Bfxr - Make sound effects for your games, [Online] Available:
http://www.bfxr.net/, last accessed: june 2017.

83

84 BIBLIOGRAPHY

[11] Inkscape, Draw freely | inkscape, [Online] Available:
https://inkscape.org/es/, last accessed: june 2017.

[12] Bernhard Jenny and Nathaniel Vaughn Kelso, Color design for the color vision
impaired, Cartographic Perspectives (2007), no. 58, 61–67, [Online] Available:
colororacle.org/resources/2007_JennyKelso_ColorDesign_hires.pdf , last ac-
cessed: june 2017.

[13] Jim Whitehead, Game Genres: Shmups, [Online] Available:
classes.soe.ucsc.edu/cmps080k/Winter07/lectures/shmups.pdf, last ac-
cessed: may 2017.

[14] Craig Larman, Applying UML and Patterns: An Introduction to Object Oriented
Analysis and Design and Interative Development, Pearson Education India, 2012.

[15] Micro-Star Internationall Co., Ltd. (MSI), Afterburner, [Online] Available:
www.msi.com/page/afterburner, last accessed: june 2017.

[16] Moby Games, Genre: Scrolling shoot ’em up, [Online] Available:
www.mobygames.com/game-group/genre-scrolling-shoot-em-up/, last ac-
cessed: may 2017.

[17] National Institutes of Health, U.S. Department of Health and
Human Services, Facts About Color Blindness, [Online] Available:
www.nei.nih.gov/health/color_blindness/facts_about, last accessed: april
2017.

[18] Newzoo, Global Games Market Will Reach $102.9 Billion in 2017, [Online] Avail-
able: newzoo.com/insights/articles/global-games-market-will-reach-102-9-
billion-2017-2/, last accessed: june 2017.

[19] Ken Schwaber and Mike Beedle, Agile software development with Scrum, vol. 1,
Prentice Hall Upper Saddle River, 2002.

[20] Shoot Em Up, Wikia, Shmup genre history, [Online] Available:
shmup.wikia.com/wiki/Golden_Age, last accessed: may 2017.

[21] Unity Technologies, Unity - Game Engine, [Online] Available:
https://unity3d.com/es, last accessed: june 2017.

[22] VersionOne, Inc, What Is Kanban? An Introduction to Kanban Methodology, [On-
line] Available: www.versionone.com/what-is-kanban/, last accessed: june
2017.

