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Paul L. Williams

Information Dynamics: Its Theory and Application to Embodied Cognitive Systems

In this thesis, I develop a novel framework for quantifying the information dynam-

ics of brain-body-environment systems, and demonstrate its application to several model

agents. I begin by extending one of the core concepts of information theory—the mu-

tual information—into a new method for decomposing informational relationships be-

tween multiple variables, called partial information decomposition. Then, using partial

information decomposition as the theoretical backbone, I derive techniques for quantify-

ing the flow of information both within and between the components of a brain-body-

environment system. Finally, I apply these techniques to analyze specific examples of

embodied cognitive behavior, analyzing model agents that perform a simple relational

comparison task between two visually presented objects. I explore questions such as how

these agents extract and store information about individual objects, and how they integrate

information about different objects. Among other key findings, this analysis shows how

agents utilize their bodies to actively elicit and structure information from their environ-

ments, and use their bodies as extra degrees of freedom to store and process information,

illustrating some of the unique ways that embodiment can influence intelligent behavior.
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1

Introduction

The aim of this thesis is to develop an information-theoretic framework for the anal-

ysis of embodied cognitive systems. By embodied cognitive system, we mean a neural

network coupled to a body, which in turn is coupled to an environment, such that together

this brain-body-environment system produces adaptive behavior. The dynamics of such a

system refers to the time-dependent activity of its individual components—neural, bodily,

and environmental state variables—and the network of interactions between its compo-

nents that collectively give rise to its behavior. Our goal is to understand this dynamics

in terms of how information about particular stimulus features flows through the brain-

body-environment system. To achieve this goal, three key challenges must be met:

1. Mutual information, one of the core concepts of information theory, must be gen-

eralized to deal properly with multivariate interactions. This is necessary because

the quantities of interest for information dynamics are fundamentally multivariate

in nature. For example, in the simplest case of information flow for a single compo-

nent, one must consider at least three variables: one representing the stimulus and

two representing the states of the component at different times. Meanwhile, there

are several known issues with existing multivariate forms of mutual information.

1



1. Introduction 2

2. With multivariate information as the theoretical foundation, techniques must be de-

veloped to quantify various aspects of information dynamics, including how infor-

mation flows within components, how information is gained and lost by compo-

nents, and how information is transferred between components.

3. To evaluate these techniques, they must be applied to specific examples of embod-

ied cognitive systems. These examples must be complex enough to raise interesting

analytical questions while remaining simple enough to be analytically tractable.

The next section of this chapter provides an overview of the thesis, explaining how it

will address each of the three key challenges identified above. The following section then

provides a detailed description of how the thesis is organized.

1.1 Overview

Following introductory matters, the first part of this thesis (Chapter 4) develops a novel

solution to the problem of quantifying multivariate information. Our approach begins

with an axiomatic definition of redundancy as the overlapping information that several

information sources share about a given variable. Then, we show how this definition of

redundancy induces a lattice over sets of information sources that clarifies the general

structure of multivariate information. Applying a form of inclusion-exclusion over this

lattice, we then derive a definition of partial information (PI) atoms that exhaustively de-

compose the information in a multivariate system. We show that each of these PI-atoms

supports a clear interpretation as an informational quantity, representing the redundancy

between synergies for a collection of sources. Finally, comparing PI-decomposition with

interaction information—the current de facto measure of multivariate information—we

show that several confusing properties of interaction information can be explained by its

confounding of redundancy and synergy.
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In the second part of this thesis (Chapter 5), we apply PI-decomposition to develop

a toolkit for information dynamics. This application requires a shift from thinking about

random variables to stochastic processes, or time-indexed sequences of random variables.

Specifically, we adopt the view of a brain-body-environment system as a set of coupled

stochastic processes, one for each component of the system, with the aim of understanding

how information flows through these processes.

We begin by using PI-decomposition to extend transfer entropy—the standard mea-

sure of information transfer between stochastic processes—in two complementary ways.

First, we decompose transfer entropy into distinct measures of state-dependent and state-

independent transfer, based on whether the influence of a source process depends on the

state of the target process. As we show, the distinction between these two measures is

formally analogous to the fundamental distinction in control theory between closed-loop

(state-dependent) and open-loop (state-independent) control. Second, we apply a similar

decomposition to the case of multiple interacting processes to derive a novel multivariate

generalization of transfer entropy. The resulting measures quantify separately the unique,

redundant, and synergistic influences of multiple sources onto a target.

Next, we introduce techniques for quantifying the flow of information about some stim-

ulus, which forms a subset of the complete information flow. The flow of stimulus-specific

information for an individual component is defined as the mutual information between

that component and the stimulus as a function of time. To characterize this flow, we define

measures of information gain, loss, and transfer. The first two of these measures cap-

ture how the information carried by a component changes from one moment to the next.

Specifically, the information carried by a component at time t equals the information that

it carried at time t−1, minus the information loss and plus the information gain. The third

measure, information transfer, is similar in spirit to transfer entropy but quantifies only the

information that is transferred about some stimulus. This definition of information transfer



1. Introduction 4

builds on the definition of information gain, and can be thought of as answering the ques-

tion: Of the new information gained by a target process, how much is shared (provided

redundantly) by a source at the previous time step?

Finally, in the third part of this thesis (Chapters 6 and 7), we apply our information

dynamics toolkit to analyze specific examples of embodied cognitive systems. The systems

that we consider are simulation models of minimally cognitive behavior, chosen to balance

the opposing requirements of behavioral richness and analytical tractability. Specifically,

we analyze model agents that were evolved using genetic algorithms to perform a simple

form of relational categorization. The task faced by these agents is to categorize objects

based on the relational property smaller than. In each trial of the task, an agent is presented

with two differently sized objects that fall towards it one after the other, with the objective

of catching the second object if it is smaller than the first and avoiding it otherwise.

Using the tools of information dynamics, we first examine how these agents extract and

store information about the size of the first object, so that it can later be compared with that

of the second object. In particular, we begin by quantifying the information stored by all

neural and bodily state variables at the instant when the first object is removed. Then,

using the techniques described above, we work backwards to determine the origins of

this information in the sensory stream. Second, we analyze how agents integrate infor-

mation about the sizes of the two objects in order to make their relational discrimination.

This analysis focuses on the time period during which the second object is presented, and

proceeds by first quantifying the flow of information for each object individually, then re-

lating these to the flow of information about the relative size of the two objects. We then

conclude by exploring some of the specific ways that embodiment influences the dynam-

ics of information flow in certain of the relational agents. We show evidence that agents

both offload information to their environments and use their bodies to actively structure

the information that they receive, and furthermore that these informational consequences
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of embodiment can be characterized in a rigorous and quantitative manner using the tools

of information dynamics.

1.2 Thesis Organization

The rest of this dissertation is organized as follows. Chapters 2 and 3 lay the foundation

for our research contributions by presenting the requisite introductory and background

material. Chapter 2 reviews basic concepts from information theory, beginning with the

fundamental measures introduced by Shannon—the entropy and mutual information—

and proceeding to several other information-theoretic measures developed more recently,

including dynamic measures such as the transfer entropy. Then, in Chapter 3, we provide

an overview of information-theoretic applications in neuroscience, complex systems, and

embodied cognitive science that relate to our framework. As described later, our frame-

work is distinguished by its use of multivariate, dynamic, and specific informational mea-

sures that apply to embodied systems. Consequently, the overview in Chapter 3 focuses on

work that incorporates one or more of these key features of our framework.

Chapter 4 marks the beginning of the research contributions of this thesis. Here we de-

velop the theoretical foundation for our approach to information dynamics, a new method

for decomposing the information in a multivariate system called PI-decomposition. The

chapter begins with a discussion of previous attempts to extend mutual information to

multivariate interactions. Then, we develop the method of PI-decomposition, beginning

from a first principles analysis of the structure of multivariate information. Finally, we dis-

cuss how PI-decomposition relates to interaction information, and show that our method

resolves several longstanding confusions with this influential measure of multivariate in-

formation. This chapter is based on work in collaboration with Randall Beer [250].



1. Introduction 6

In Chapter 5, we apply PI-decomposition to develop two sets of techniques for quan-

tifying information dynamics. First, we develop techniques for quantifying the flow of

intrinsic information, or the flow of information within a stochastic process X where the

informational quantity of interest is a property of X itself. The canonical measure of this

kind is the transfer entropy, which quantifies the transfer of information into a process X

that is about the future state of X . Indeed, the techniques developed in the first part of

this chapter are best thought of as extensions to transfer entropy, allowing one to tease

apart intrinsic information flow in ways that transfer entropy does not afford. Second, we

develop techniques for quantifying the flow of extrinsic information, or the flow of infor-

mation within and between stochastic processes that is about something external to those

processes. These techniques are later put into action in Chapter 7, when we use them to

explore how information about external stimulus features flows through the components

of brain-body-environment systems. This chapter is based on work in collaboration with

Randall Beer [251].

Chapter 6 introduces the model agents that we will use to illustrate the application

of information dynamics to embodied cognitive systems. These agents perform a simple

kind of relational categorization, which is a phenomenon that has garnered considerable

interest in cognitive science and poses a number of challenging problems for analysis. The

chapter begins with a brief overview of relational categorization and its importance for

cognitive science. Then we describe previous efforts to model relational categorization

and elaborate on some of the important features that distinguish our modeling approach.

Afterwards, we detail the methods used to evolve our model agents and present the results

from a set of evolutionary experiments. Finally, we present an analysis of the best evolved

agent using the mathematical tools of dynamical systems theory, with this analysis provid-

ing some preliminary insights into the mechanisms underlying relational categorization in

our model agents. This chapter is based on work in collaboration with Randall Beer and
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Michael Gasser [252].

In Chapter 7, we apply our information dynamics framework to analyze several fea-

tures of the relational agents. The chapter begins with a detailed explanation of our analyt-

ical approach, describing how the tools introduced in Chapter 5 are applied to our model

agents. Then, we analyze several features of the agent that was the focus of Chapter 6,

including how the agent extracts information about the sizes of objects and how the agent

integrates information about the sizes of different objects. Afterwards, we analyze a sec-

ond agent that uses a more active behavioral strategy to perform the categorization task.

The analysis of this agent illustrates several of the unique ways that embodiment can in-

fluence information dynamics, including the ability of embodied agents to actively elicit

and structure sensory information, and the ability to offload information to their bodies

and environments. This chapter is based on work in collaboration with Randall Beer [249].

Finally, in Chapter 8 we conclude the thesis by summarizing its main contributions and

identifying several promising avenues for future research.



2

Information-Theoretic Foundations

In a landmark paper of 1948, Claude Shannon launched the field of information the-

ory while simultaneously formulating and answering its two most fundamental questions

( [206], see also [36, 146]). The two questions posed by Shannon were:

(i) What is the shortest possible encoding for a data source such that it can be recovered

without error?

(ii) What is the maximum rate at which data can be transmitted error-free over a noisy

channel?

The answer to (i), proven in Shannon’s source coding theorem, is a fundamental quantity

called the entropy. The answer to (ii), proven in Shannon’s channel coding theorem, is a

measure called the channel capacity, which is defined in terms of a second fundamental

quantity called the mutual information. With these two results, Shannon thus established

the absolute limits for lossless compression and lossless transmission, respectively.

Shortly after the publication of these results, the significance of Shannon’s ideas was

recognized and enthusiastically embraced by researchers in a diverse array of fields. In-

deed, the enthusiasm was so great that Shannon himself felt compelled to caution against

the indiscriminate application of information theory to areas beyond its original purview

[205]. This enthusiasm was rooted in the fact that the fundamental quantities identified

8



2. Information-Theoretic Foundations 9

by Shannon—the entropy and mutual information—provide extremely general measures

of the uncertainty associated with individual variables and of the interdependence be-

tween variables, respectively. In contrast with related concepts from classical statistics,

these measures have the advantages that they are sensitive to arbitrary relationships be-

tween variables—linear or nonlinear, stochastic or deterministic—and have units of mea-

surement (bits) that are easily interpreted and compared across systems. Consequently,

following the initial wave of enthusiasm, information theory has continued to grow in

significance as a general tool for the analysis of complex systems, with applications in cog-

nitive science, neuroscience, genetics, physics, machine learning, and many other areas.

In this chapter, we begin by discussing the fundamental measures introduced by Shan-

non, and then proceed to describe several other information-theoretic measures developed

more recently. Thus, this chapter will lay the mathematical groundwork both for our dis-

cussion of existing applications of information theory (Chapter 3) and for the novel contri-

butions of this thesis (which begin in Chapter 4).

2.1 Entropy

The entropy for a discrete1 random variable X with probability mass function p(x) is

defined by

H(X) =
X

x2X

p(x) log
1

p(x)
, (2.1)

where the logarithm is conventionally taken to the base 2, yielding units of bits. As

mentioned above, the concept of entropy originated with Shannon’s source coding the-

orem [206], which established the absolute lower bound on lossless data compression.

1Entropy can also be extended to continuous variables, and likewise for the other measures introduced in
this chapter. Essentially, one just replaces sums with integrals. However, we will only need the discrete forms
throughout this thesis, since whenever continuous variables arise they will be quantized.
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This theorem considers the problem of assigning codewords to sequences of n indepen-

dent samples of X—thought of as messages originating from a source X—such that each

sequence is assigned a unique codeword and the average code length is minimized. This

minimization is achieved by assigning codewords such that the length of each is inversely

related to the probability of its message, so that on average shorter codewords occur more

frequently than longer ones. Shannon’s source coding theorem states that, in the n ! 1

limit, the shortest possible encoding requires an average of H(X) bits per outcome of X .

Consequently, H(X) has the operational meaning that it is the average length of the short-

est possible description of X , and for this reason H(X) is often interpreted as a measure of

the information content of X2.

Complementary to its interpretation as information content, entropy is also commonly

viewed as the amount of uncertainty associated with a random variable. More precisely,

entropy corresponds to a measure of statistical dispersion for nominal distributions. Thus,

the entropy H(X) is maximal when all outcomes of X are equally probable—representing

complete uncertainty—and takes its minimum value of zero when a single outcome oc-

curs with certainty. For example, the entropy for a binary variable representing a coin flip

attains its maximum value of one bit if the coin is fair, and decreases to zero as the coin

becomes increasingly biased towards heads or tails. In fact, Shannon [206] proved that en-

tropy is the only measure of uncertainty that satisfies certain simple and plausible axioms.

Thus, in this sense, entropy can be considered the definitive measure of uncertainty, be-

ing uniquely specified out of the space of all possible measures. The axioms that Shannon

postulated were:

(i) Continuity: A small change in the probability of any outcome should result in a small

2This notion of information content as the shortest possible description for an object was later extended in
algorithmic information theory [6, 127], where the algorithmic entropy of an object, also called its Kolmogorov
complexity, is the length of its shortest description in some universal description language (e.g., Turing ma-
chine programs). For random variables, there is a deep connection between the Shannon and algorithmic
entropies [36].
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change in uncertainty.

(ii) Monotonicity: If all outcomes are equiprobable, uncertainty should increase mono-

tonically with the number of outcomes. With equiprobable outcomes, there is more

uncertainty with more possible outcomes.

(iii) Additivity: The amount of uncertainty should be independent of any way of group-

ing outcomes into a succession of choices.

Subsequently, a number of alternative axiomatizations of entropy have also been proposed

[42, 43, 117, 150, 157].

A third interpretation of entropy, closely related to the idea of uncertainty, stems from

the term log 1
p(x) in Equation (2.1). This term is referred to as the surprisal for an outcome

x, and intuitively measures how “surprising” it is to discover that the outcome x has oc-

curred. The surprisal is a monotonically decreasing function of p(x), reflecting the idea

that outcomes which occur less frequently are more surprising when they do occur. Also,

the surprisal is additive for independent outcomes, so that learning of two independent

events together is as surprising as learning of each separately. Consequently, as the ex-

pected value of surprisal (Equation (2.1)), entropy is commonly viewed as the average

amount of surprise associated with learning the outcome of a variable.

Entropy also extends naturally to two or more variables with the concepts of conditional

and joint entropy. The conditional entropy for discrete variables X and Y is defined by

H(X|Y ) =
X

x

X

y

p(x, y) log
1

p(x|y)
(2.2)

and measures the residual uncertainty about X when Y is known. Conditional entropy is

always less than or equal to the marginal entropy,

H(X|Y )  H(X), (2.3)
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so that learning one variable can only ever reduce uncertainty about another. Conditional

entropy is zero if, and only if, X is a function of Y (i.e., if for each x there is a y such that

p(x|y) = 1), in which case there is no uncertainty about X when Y is known. Conversely,

H(X|Y ) is maximal and equal to H(X) if, and only if, X and Y are independent.

The joint entropy for X and Y is defined by

H(X,Y ) =
X

x

X

y

p(x, y) log
1

p(x, y)
(2.4)

and is related to the conditional and marginal entropies by the chain rule for entropy,

H(X,Y ) = H(X) +H(Y |X). (2.5)

Thus, the uncertainty regarding both X and Y can be decomposed into the uncertainty

regarding X plus the residual uncertainty about Y when X is known. From this relation-

ship, it follows immediately that joint entropy is bounded from below by the maximum

entropy of any one variable,

max{H(X), H(Y )}  H(X,Y ), (2.6)

with equality exactly in the case that X is a function of Y , or vice versa. Also, combining

the chain rule with Equation (2.3), it follows that joint entropy is subadditive,

H(X,Y )  H(X) +H(Y ), (2.7)

with equality if, and only if, X and Y are independent. In fact, joint entropy has the even

stronger property that it is submodular [147, 152, 220, 221], which means that for any two
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sets of variables A and B,

H(A [B)  H(A) +H(B)−H(A \B). (2.8)

2.2 Relative Entropy

The relative entropy (also called the Kullback-Leibler divergence) for two probability mass

functions p and q defined over the same random variable X is given by

D(p k q) =
X

x

p(x) log
p(x)

q(x)
. (2.9)

In terms of source coding, relative entropy measures the coding inefficiency—that is, the

increase in expected code length—that results from assuming that X is distributed accord-

ing to q when its true distribution is p. This can be seen by rewriting the relative entropy

as

D(p k q) =

"
X

x

p(x) log
1

q(x)

#

−

"
X

x

p(x) log
1

p(x)

#

, (2.10)

where the left term is the expected length assuming the distribution is q and the right term

is the expected length using the actual distribution p.

Relative entropy has the important property that it is always nonnegative,

D(p k q) ≥ 0, (2.11)

with equality if, and only if, the two distributions are identical,

p(x) = q(x) 8x 2 X. (2.12)

This property, called the information inequality, is one of the most fundamental results in
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all of information theory. For example, it underlies the proof that conditioning always

reduces entropy (Equation (2.3)). Because of the information inequality, relative entropy is

often thought of as a measure of the distance between two distributions p and q. However,

it is important to note that relative entropy is not a true distance measure because it is not

symmetric and does not satisfy the triangle inequality [36].

2.3 Mutual Information

The mutual information between two variables X and Y is defined by

I(X;Y ) =
X

x

X

y

p(x, y) log
p(x, y)

p(x)p(y)
, (2.13)

and is a measure of the amount of information that X provides about Y , and vice versa

(note the symmetry with respect to its arguments). This notion of shared information can

be grounded in at least two ways: as the statistical dependence between X and Y , and as the

reduction in uncertainty that either variable provides about the other. For the former, notice

that I(X;Y ) can be rewritten as the relative entropy D(p(x, y) k p(x)p(y)), where p(x, y) is

the true joint distribution and p(x)p(y) is the factorized distribution representing statistical

independence between the variables. Thus, I(X;Y ) can be thought of as the “distance”

from independence between X and Y , or equivalently, as the inefficiency of encoding both

X and Y while ignoring their dependence. From the information inequality, it follows that

I(X;Y ) is nonnegative and equals zero if, and only if, X and Y are independent.

Alternatively, I(X;Y ) can be written in terms of entropies as

I(X;Y ) = H(X)−H(X|Y ) (2.14)

= H(X) +H(Y )−H(X,Y ). (2.15)
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In the first equation, I(X;Y ) is expressed as the reduction in uncertainty about X when Y

is known, while in the second, I(X;Y ) measures deviation from the independence bound

on joint entropy (Equation (2.7)). It follows that I(X;Y ) is bounded from above by the

entropy of each individual variable,

I(X;Y )  min{H(X), H(Y )}, (2.16)

with equality exactly in the case that one variable is a function of the other.

The conditional mutual information between X and Y given Z is defined as

I(X;Y |Z) =
X

x

X

y

X

z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
, (2.17)

and measures the information that X provides about Y , and vice versa, when Z is known.

Rewriting I(X;Y |Z) as the relative entropy

D(p(x, y, z) k p(x|z)p(y|z)p(z)),

we see that I(X;Y |Z) measures the distance from conditional independence between X

and Y conditioned on Z. An alternative expression in terms of entropies,

I(X;Y |Z) = H(X|Z)−H(X|Y, Z), (2.18)

shows that I(X;Y |Z) measures the additional reduction in uncertainty about X that comes

from knowing both Y and Z beyond that which comes from knowing Z alone. It is impor-

tant to note that I(X;Y |Z) can be either greater or less than (or equal to) I(X;Y ). Thus,

unlike uncertainty, conditioning does not necessarily reduce information. If I(X;Y |Z) is

greater than I(X;Y ), it is said that Z “enhances” the correlation between X and Y . For

example, if battery death and fuel blockage are the two possible causes for a car that won’t
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start, then fixing the common effect induces a dependency between the causes: knowing

that the car won’t start, a healthy battery indicates that the fuel must be blocked [172]. On

the other hand, if I(X;Y |Z) is less than I(X;Y ), then Z “accounts for” or “explains away”

some of the correlation between X and Y . For example, since clouds both produce rain

and make it dark outside, the correlation between rain and darkness is partly accounted

for by the presence of clouds.

Similar to entropy, mutual information obeys a chain rule for information,

I(X;Y, Z) = I(X;Z) + I(X;Y |Z). (2.19)

Thus, the total information that Y and Z provide about X can be decomposed into the

information that Z provides plus the additional information that Y provides when Z is

known. The chain rule for information can also be used to prove an important result called

the data processing inequality, which states that no amount of processing can ever increase

the information that one variable provides about another. In this context, one considers a

situation where X and Z are conditionally independent given Y , that is, I(X;Z|Y ) = 0.

This situation is also denoted X ! Y ! Z, and it is said that X , Y , and Z form a Markov

chain in that order, or that Y screens off Z from X . Then the data processing inequality

says that Z can provide no more information about X than Y does. In particular, if Z =

g(Y ), which implies X ! Y ! Z, then the inequality says that any function of Y , or any

processed version of Y , can be no more informative than Y itself.

Theorem 2.1 (data processing inequality). If X ! Y ! Z, then I(X;Y ) ≥ I(X;Z).

Proof. Using the chain rule for information,

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y )

= I(X;Z) + I(X;Y |Z).
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HHXL HHYL

HHX»YL HHY»XLIHX;YL

(a)

HHXL

HHYL HHZL

IHX;Y;ZL

HHX»Y,ZL

HHY»X,ZL HHZ»X,YL
IHY;Z»XL

IHX;Z»YLIHX;Y»ZL

(b)

Figure 2.1: Information diagrams for (a) 2 and (b) 3 variables.

Thus, since I(X;Z|Y ) = 0, I(X;Y ) ≥ I(X;Z).

The relationships between all of the quantities introduced so far can be represented

schematically using information diagrams (Figure 2.1). In these diagrams, the entropy of

each individual variable is represented by a region, and the information shared by any

two variables is represented by the overlap of their respective regions. In [258], Yeung

showed that these diagrams, which he called I-diagrams, can be formally derived as rep-

resentations of Shannon information as a measure, in the rigorous sense of measure theory,

over sets representing the entropies of individual variables. In terms of these sets, joint en-

tropy, conditional entropy, and mutual information are formally analogous to set union,

set difference, and set intersection, respectively. However, unlike standard Venn diagrams,

I-diagrams represent signed measures, meaning that regions of the diagrams may corre-

spond to either positive or negative values. In particular, the region labeled I(X;Y ;Z)

in Figure 2.1—representing the three-way intersection of H(X), H(Y ), and H(Z)—can be
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either positive or negative. This quantity, called the interaction information, and the strange

property that it is sometimes negative will be explored at length in Chapter 4.

2.4 Specific Information

Mutual information measures the average information that one variable provides about

another, where the average is taken over all outcomes of the two variables. Thus, by ex-

panding or unrolling that average in various ways, one can explore the specific depen-

dencies between outcomes of the variables that collectively constitute their overall rela-

tionship. By unrolling the average with respect to both variables, one can quantify the

relationship between individual outcomes x and y using the pointwise mutual information,

pmi(x, y) = log
p(x, y)

p(x)p(y)
. (2.20)

For example, this measure is widely used in computational linguistics to determine the

co-occurrence relationships between individual words in a corpus [32, 238].

Alternatively, the average mutual information can be unrolled with respect to only one

of the two variables in order to quantify the information associated with particular out-

comes of that variable. This idea is discussed in [49], where a measure of specific information

relating an outcome x and a variable Y is defined implicitly by

I(X;Y ) =
X

x

p(x)Ispec(X = x;Y ). (2.21)

That is, the specific information Ispec(X = x;Y ) defines a class of measures with the

only constraint that its expected value with respect to X recovers the mutual informa-

tion I(X;Y ). As pointed out in [49], there are actually infinitely many measures satisfying

this constraint, but several candidates stand out as especially attractive choices.
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One such candidate is the response-specific information [49],

Irsi(R = r;S) = H(S)−H(S|R = r), (2.22)

proposed in the context of neural coding to quantify the information that a particular neu-

ral response r provides about a stimulus ensemble S. The response-specific information

quantifies the reduction in uncertainty about the entire stimulus ensemble that results from

observing a particular neural response. This measure has the unique property that it is the

only definition of specific information that is additive, meaning that

Irsi(R1 = r1, R2 = r2;S) = Irsi(R1 = r1;S) + Irsi(R2 = r2;S|R1 = r1). (2.23)

Thus, response-specific information can be decomposed in a manner analogous to the (av-

erage) mutual information. However, unlike mutual information, the response-specific

information can be either positive or negative, with the latter indicating situations where

a particular neural response actually leaves us with more uncertainty about the stimulus.

To distinguish the different role played by stimuli as opposed to responses, Butts [28]

proposed an alternative measure called the stimulus-specific information:

Issi(S = s;R) =
X

r

p(r|s)Ir(R = r;S). (2.24)

In words, the stimulus-specific information quantifies the informational contribution of

a particular stimulus as the weighted average of the response-specific information for all

responses associated with that stimulus. Thus, a given stimulus will have a high amount

of stimulus-specific information if it tends to evoke responses that are highly informative

about the entire stimulus ensemble. Like the response-specific information, this measure

can also be either positive or negative.
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Finally, both [49] and [28] also discuss the measure of specific information defined by

I(S = s;R) =
X

r

p(r|s) log
p(r|s)

p(s)
. (2.25)

This is by far the most widely used measure of specific information [12, 24, 57, 120, 227],

and is the only one that will be used in this thesis. Applying Bayes’ rule, I(S = s;R) can

be rewritten as

I(S = s;R) =
X

r

p(r|s)



log
1

p(s)
− log

1

p(s|r)

]

. (2.26)

Recalling that log 1
p(s) is the surprisal associated with a particular outcome s, we see that

I(S = s;R) measures the expected reduction in surprise about s given knowledge of R.

Thus, in contrast with Issi(S = s;R), which weights each response r according to the

information that it contributes about the entire ensemble S, I(S = s;R) quantifies only the

information that R provides about the particular outcome S = s. The specific information

I(S = s;R) has two important properties, which we set apart as lemmas since they will

come up again in the technical developments of Chapter 4.

Lemma 2.1. I(S = s;R) ≥ 0 with equality if, and only if,

p(s, r) = p(s)p(r) 8r 2 R.

Proof. It follows from the information inequality, since I(S = s;R) = D(p(r|s) k p(r)).

Thus, I(S = s;R) is nonnegative and equals zero exactly in the case that R provides no

information about the outcome S = s. In fact, it is proven in [49] that I(S = s;R) is the

only measure of specific information that is strictly nonnegative.

Lemma 2.2. If A and B are sets of random variables with A ✓ B, then I(S = s;A)  I(S =

s;B).
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Proof. Let C = B \A. Then we have

I(S = s;B)− I(S = s;A)

=
X

b

p(b|s) log
p(s,b)

p(s)p(b)
−
X

a

p(a|s) log
p(s,a)

p(s)p(a)

=
X

a

X

c

p(a, c|s) log
p(s,a, c)

p(s)p(a, c)
−
X

a

X

c

p(a, c|s) log
p(s,a)

p(s)p(a)

=
X

a

X

c

p(a, c|s) log
p(c|a, s)

p(c|a)

=
X

a

p(a|s)
X

c

p(c|a, s) log
p(c|a, s)

p(c|a)

=
X

a

p(a|s)D(p(c|a, s) k p(c|a)) ≥ 0.

Thus, if one set of variables is a superset of another, then the former provides at least as

much specific information as the latter. The same is also true of mutual information, which

follows from the chain rule for information and the nonnegativity of conditional mutual

information.

To illustrate the meaning of I(S = s;R), consider a simplified situation where S is

uniformly distributed and R is a function of S. For example, in the context of neural

coding, this could be thought of as a uniformly sampled stimulus and an idealized neural

response with no so-called neuronal noise [24], H(R|S) = 0. Then, having observed the

response, the only possible source of uncertainty about the stimulus is if the same response

is produced by several different stimuli, i.e., if there is degeneracy in the mapping from

stimuli to responses. To formalize this idea, we define the degree of degeneracy for a

particular ŝ 2 S as

deg(ŝ) = |{s 2 S : p(r|s) = p(r|ŝ)}|, (2.27)
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or the number of stimuli that produce the same response as ŝ does. Thus, intuitively,

I(S = s;R) should be maximal when deg(s) = 1, indicating that s produces a unique

response which distinguishes it from all other stimuli, and I(S = s;R) should be minimal

when deg(s) = |S|, indicating that all stimuli produce the exact same response. Indeed,

this is exactly the behavior of I(S = s;R); using the fact that

p(s|r) =

8

>><

>>:

1
deg(s) if p(r|s) = 1

0 otherwise,

we can rewrite Equation (2.26) as

I(S = s;R) = log |S| − log deg(s), (2.28)

so that I(S = s;R) is a monotonically decreasing function of deg(s). Thus, I(S = s;R)

attains its maximum value of log |S| when deg(s) = 1, in which case R uniquely identifies

s out of |S| equally likely possibilities, and I(S = s;R) decreases by one bit every time

deg(s) doubles in size.

2.5 Entropy Rate

The remaining measures discussed in this chapter apply to stochastic processes, or

time-indexed sequences of random variables. Thus, in contrast with the measures intro-

duced above, all of these measures characterize properties that are essentially dynamic in

nature. We will denote a stochastic process by a bi-infinite sequence of random variables

 !
X = . . . X−1X0X1X2 . . . (2.29)
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where Xi represents the state of the process at time i. Furthermore, we will assume that

all processes are stationary, meaning that the joint distribution for any subsequence of vari-

ables is time-shift invariant:

p(x0, x1, · · · , xL) = p(xi, xi+1, · · · , xi+L) 8i, L. (2.30)

The entropy rate for a stochastic process X is defined by

hµ = lim
L!1

H(X1, . . . , XL)

L
, (2.31)

where this limit is guaranteed to exist for (at least) all stationary processes [36]. From

this definition, it is clear that hµ corresponds to a kind of density of information content

(entropy) per unit time, and for this reason hµ is also commonly referred to as the entropy

density. For stationary processes, the entropy rate can alternatively be expressed in terms

of conditional entropy as

hµ = lim
L!1

H(XL|XL−1, XL−2, . . . , X1). (2.32)

Thus, the entropy rate quantifies the remaining uncertainty regarding the next state of X

when all previous states are known. Consequently, hµ is commonly interpreted as the irre-

ducible randomness or unpredictability of X , the uncertainty inherent in the next state of

X when correlations with all previous states are removed. For example, the entropy rate is

zero for periodic processes (which are completely predictable once a full period has been

observed) and even for processes with infinite memory, so long as they are deterministic

and thus are perfectly correlated over some timescale [40]. In contrast, the entropy rate

is positive for processes with some amount of intrinsic stochasticity, such as Markov pro-

cesses or independent and identically distributed (IID) processes. For instance, the entropy

rate for a sequence of fair coin flips is one bit, since knowing the outcomes of previous flips
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does nothing to reduce uncertainty regarding the next flip.

2.6 Excess Entropy

Closely related to the entropy rate is a measure called the excess entropy [22, 40, 55],

which quantifies the amount of structure or memory in a stochastic process. The excess

entropy for a process X is defined by

E =

1X

L=1

h

hµ(L)− hµ

i

, (2.33)

where

hµ(L) =
H(X1, . . . , XL)

L
(2.34)

is the length-L approximation of the entropy rate. Each of these length-L approxima-

tions overestimate the actual entropy rate, due to the fact that temporal correlations over

timescales longer than L are missed by hµ(L) but picked up by hµ. Thus, each overestimate

[hµ(L)− hµ] quantifies the apparent uncertainty at scale L that is accounted for by longer-

range correlations, and, by summing these overestimates over all L, the excess entropy

measures the total amount of correlation or structure over all timescales in a process. This

interpretation becomes more apparent when the excess entropy is expressed as a mutual

information,

E = I(
 −
X ;
−!
X ), (2.35)

where
 −
X = . . . X−3X−2X−1 and

−!
X = X0X1X2 . . . represent the semi-infinite past and

future of X , respectively. Thus, the excess entropy can alternatively be thought of as the

total amount of information that the past of X provides about its future, or equivalently,

how well future states of X can be predicted from its past. For this reason, excess entropy

is also commonly referred to as the predictive information [180]. In applications of excess
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entropy, as well as of entropy rate, one is often interested not only in their limiting values

but also in the rate of convergence towards those values, an idea that will be discussed

further in the next chapter.

2.7 Transfer Entropy

The final concept introduced in this chapter is the transfer entropy [113, 198], which

provides a general measure of the influence that one stochastic process has on another.

The transfer entropy from one process Y to another process X is defined by

TY!X = I(Xt;Y
(j)
t−1|X

(k)
t−1), (2.36)

where Y
(j)
t−1 = {Yt−1, . . . , Yt−j} represents the j previous states of Y , and likewise for X

(k)
t−1

and X3. Thus, transfer entropy quantifies the information that previous states of Y provide

about the next state of X when conditioned on X’s own history. The idea behind this

definition is that conditioning on the previous states of X removes the information shared

by X and Y due to common histories or inputs, thereby isolating the information that is

transferred from Y to X . In particular, transfer entropy was originally proposed as an

alternative to the time-delayed mutual information (TDMI) I(Xt;Yt−1)—which was the

standard measure of information transfer prior to TY!X [114, 239]—for the reason that

TDMI confounds information transfer with shared information [198].

Two other interpretations of TY!X are also worth noting, as they serve to connect it

with concepts introduced above. First, by expressing TY!X in terms of relative entropies,

TY!X =
X

xt−1

p(xt−1)D(p(xt|xt−1, yt−1) k p(xt|xt−1)), (2.37)

3Except where otherwise noted, we will henceforth assume the standard setting of j = k = 1 and omit the
superscripts (j) and (k).
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we see that TY!X is zero if, and only if, the generalized Markov property holds:

p(xt|xt−1, yt−1) = p(xt|xt−1) 8xt, xt−1, yt−1. (2.38)

Thus, TY!X is zero exactly in the case that Y has no influence on the transition probabili-

ties of X , with non-zero values indicating the magnitude of this influence. In other words,

TY!X can be interpreted as measuring deviation from the generalized Markov property.

Second, taking the limits j !1 and k !1 and rewriting TY!X in terms of entropies,

TY!X = H(Xt|X
(1)
t−1 )−H(Xt|X

(1)
t−1 , Y

(1)
t−1 )

= hµ −H(Xt|X
(1)
t−1 , Y

(1)
t−1 ), (2.39)

transfer entropy can be seen as a generalization of the entropy rate to more than one pro-

cess, effectively yielding a mutual information rate. In this context, TY!X measures the

additional reduction in uncertainty that the infinite histories of both Y and X provide

about the next state of X , beyond that provided by the infinite history of X alone.

2.8 Correlation, not Causation

As a concluding note, we wish to emphasize that all of the measures introduced here

are fundamentally measures of correlation, and thus cannot be used directly to infer causal

interactions. In particular, all of the measures are defined for observational probability

distributions—i.e., distributions that reflect a system’s uninterrupted behavior—whereas

causal inference requires the use of interventional or perturbational methods, in which cer-

tain variables are disrupted and the influence on other variables is observed [10,171]. Thus,

although informational measures can yield insights into causal interactions, the standard

proviso that correlation does not equal causation should be kept in mind throughout.
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Overview of Related Work

The framework developed in this thesis has four central and distinguishing characteris-

tics. First, at its core is a novel method for decomposing multivariate information, allowing

us to consider more complex informational relationships than are possible with standard

univariate and bivariate techniques. Second, our framework is designed to capture dy-

namic properties of information flow, in contrast with the traditional focus of information-

theoretic techniques on static information structure. Third, our framework is based on

measures of specific information, which permit a more fine-grained level of analysis than

the measures of average information that are more commonly used. Fourth, our frame-

work is designed for the analysis of embodied systems, enabling us to explore the specific

ways that an agent’s body and environment can influence the dynamics of information

flow. Each of these key features—summarized by the terms multivariate, dynamic, specific,

and embodied—appears in existing strands of research, though our framework is unique in

incorporating all of them.

In this chapter, we discuss examples of recent work applying information theory in

neuroscience, complex systems, and embodied cognitive science that incorporate one or

more of the key features of our framework. These applications also by and large represent

the cutting-edge of work in theoretical and applied information theory, so they provide

a natural context for framing and evaluating the novel contributions of this thesis. In

27
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the four sections of this chapter, we review examples of (1) multivariate, (2) dynamic, (3)

specific, and (4) embodied information-theoretic analyses. Later, in Chapter 8, we revisit

these four key features in the context of how our framework relates to, unifies and extends

this existing work.

3.1 Multivariate Information

Perhaps the most prolific experimental application of information theory has been in

the area of neural coding [45, 187]. Research in this area is primarily concerned with three

interrelated questions about how neural responses carry information about stimuli. First,

what stimulus features are encoded, and with what precision? Second, what aspects of

the neural response are doing the encoding? Third, how efficient is the encoding? Histor-

ically, researchers have used information theory to explore these questions by quantifying

the entropy of individual neurons and the mutual information between neural responses

and stimulus ensembles [110, 185, 243]. For instance, the precision with which a stimulus

ensemble S is encoded by a neural response R can be determined by comparing the mutual

information I(S;R) with the entropy H(S), where equality between these two quantities

implies that the stimulus is encoded with perfect precision [48]. Likewise, questions of

encoding efficiency can be addressed by comparing I(S;R) with H(R), where the latter

represents the maximum information capacity for the neural response [59, 223].

More recently, and spurred by advances in multielectrode recording techniques [27],

improved methods for estimating information-theoretic quantities [160, 168, 193, 243], and

greater computational resources, the focus of research in neural coding has shifted to-

wards the use of multivariate informational measures. In particular, numerous studies

have explored whether the information encoded by different neurons, or by the same neu-

ron across time, is synergistic, redundant, or independent [25,69,131,158,169,196,225]. As



3. Overview of Related Work 29

conventionally understood, synergy, redundancy, and independence represent mutually

exclusive alternatives for how information may be encoded, with the difference between

them boiling down to whether or not information is additive1. In particular, synergy cor-

responds to situations where the information that neural responses R1 and R2 provide is

superadditive,

I(S;R1, R2) > I(S;R1) + I(S;R2),

whereas redundancy corresponds to subadditivity (reversing the inequality) and indepen-

dence corresponds to additivity (replacing the inequality with an equality). Thus, for in-

stance, if R1 and R2 represent the responses of different neurons, then synergy indicates

that their joint response provides information that is not available from either neuron in-

dividually, indicating some form of population coding [7, 131, 169, 185, 196]. In contrast,

redundancy suggests that some of the same information is simultaneously carried by both

neurons, a property that may be advantageous in providing robustness to the damage of

individual neurons [158, 182, 186, 225]. Alternatively, if R1 and R2 represent two different

features of a single neuron’s response, e.g., the occurrence of spikes at two different times,

then synergy indicates that compound events in the spike train carry information beyond

that carried by the individual parts, which sheds light on the question of what aspects of

the neural response are doing the encoding [25].

Multivariate informational measures have also figured prominently in the field of com-

plex systems, a fact that is unsurprising given the field’s interest in systems with many in-

teracting components. In particular, multivariate measures have been used to define and

quantify the concept of complexity itself, which has been a topic of intense interest and

debate since the field’s inception [9, 61, 141, 180]. One particularly influential example is

the measure of neural complexity introduced by Tononi, Sporns and Edelman [230,232,233].

1In contrast, a key property of PI-decomposition, which will be introduced in Chapter 4, is that synergistic,
redundant, and independent (or, as we will call them, unique) informational contributions are not mutually
exclusive, but rather can occur simultaneously. Indeed, as we will see, this is a crucial feature distinguishing
our approach from previous methods of quantifying multivariate information.
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The neural complexity for a set X of N random variables {X1, X2, . . . , XN}, which might

correspond to a collection of neural units, is defined as

CN (X) =

NX

k=1

[
k

N
I(X)− hI(Xk

j )i] (3.1)

where

I(X) =
NX

i=1

H(Xi)−H(X) (3.2)

denotes the integration2 [231] for the elements in X and hI(Xk
j )i denotes the average inte-

gration for all subsets of size k in X. This measure is designed to capture the intuition that

complex systems combine the properties of high local segregation and global integration.

For example, the brains of higher vertebrates, which may be thought of as prototypical

examples of complex systems, combine high functional segregation in individual brain

regions with high global cooperation in the production and coordination of behavior.

Neural complexity (Equation (3.1)) captures these dual properties by considering the

integration across all spatial scales in a system (i.e., across all subsets of units). If there is no

local segregation at different spatial scales (i.e., different subset sizes), then the average in-

tegration will grow linearly as a function of subset size, and for subsets of size k will equal

k
N
I(X). Note that this corresponds to the first term inside the summation in Equation (3.1).

If, on the other hand, there is a high amount of local segregation at different spatial scales,

then the average integration for subsets of size k will be less than k
N
I(X), contributing to

an increase in neural complexity. Thus, in general, neural complexity will be high if there

is a high level of global integration and a high amount of local segregation at different

spatial scales. Recent work has shown that neural complexity can also be tied to specific

topological features of networks [13, 14, 47, 217, 257], and that it is systematically related

to a number of other information-theoretic complexity measures [9]. In addition, neural

2Integration is also called total correlation [247], among other names, and will be discussed further in
Section 4.1.
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complexity has been applied in several studies of embodied cognitive systems, which we

will discuss in Section 3.4.

3.2 Dynamic Information

In neuroscience, dynamic informational measures have increasingly been used for the

identification and analysis of functional brain networks. A functional brain network refers

to a network of brain regions that are related by statistical dependencies and patterns of

information flow, as opposed to structural or anatomical networks, which are determined

by anatomical connections between brain regions [64, 213]. While functional networks

are undoubtedly related to and constrained by their structural counterparts, they differ in

that they are highly dynamic and variable, sometimes rapidly reconfiguring in response to

external inputs or changing task demands. Thus, the identification of functional brain net-

works provides insight into how brain regions interact during specific tasks or behaviors,

as well as how quickly and in what ways these interactions change over time.

The dynamic informational measures that have been used most widely to this end are

the transfer entropy (Section 2.7, see also [241]) and Granger causality [53,83]—essentially

a linear version of transfer entropy [3,13]—though other informational measures have also

been proposed [4, 97, 173, 183, 209]. For example, one recent study used transfer entropy

to identify functional networks over a range of timescales in a large-scale simulation of

the macaque neocortex, and then explored the relationship between these functional net-

works and the underlying structural connectivity [98]. The authors found that over long

timescales the functional networks largely aligned with the underlying structural topol-

ogy, but at intermediate and fast timescales the networks exhibited a range of interesting

dynamical behaviors, including rapid synchronization and desynchronization of brain re-

gions and a large number of metastable states. More recently, transfer entropy has been
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used to explore interactions between brain regions during a visuomotor tracking task, and

to examine how these interactions varied with changing task difficulty [136]. Task diffi-

culty was found to modulate the amount of involvement of specific brain regions, with re-

gions involved in movement planning and fine motor control playing more active roles as

task difficulty increased. In other studies, dynamic informational measures have also been

used to explore functional interactions in the human visual cortex [96], cat auditory cor-

tex [80], simulated neocortical columns [161], and between brain areas of macaques [133].

In complex systems, another dynamic informational measure that has received consid-

erable attention is the excess entropy (Section 2.6), which has been advocated by several

authors as an alternative measure of complexity [22, 40, 61, 84, 132, 135, 180]. That is, in

contrast with the measure of neural complexity discussed in the previous section, which

essentially defines complexity as a static property of differentiated structure over a range

of spatial scales, excess entropy measures complexity in terms of a system’s behavior over

time3. The basic idea is that excess entropy reflects the amount of “memory” that a system

contains, or the timescale over which correlations persist in the system’s behavior. Thus,

systems with larger amounts of memory, or whose future behavior depends on events that

occurred in the more distant past, have greater complexity. Equivalently, excess entropy

can be thought of as the amount of information that one would need to know about a

system’s past in order to make the best possible prediction about its future [180].

Most impressively, it has been shown that the rate at which excess entropy grows over

time can be used to assign systems to one of several complexity classes [22, 23, 40, 180].

In general, excess entropy is always nonnegative and grows with time less rapidly than

3Although we will focus on this dynamic interpretation here, excess entropy can also be interpreted as a
measure of spatial complexity. The only difference is that the semi-infinite ‘past’ and ‘future’ of a random pro-
cess, as appear in Equation (2.35), are instead taken to be the semi-infinite ‘left’ and ‘right’ halves, respectively,
of a spatially-extended system. For example, with this interpretation excess entropy has been used to quantify
the complexity of one-dimensional spin systems [39].
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a linear function (i.e., it is subextensive). Thus, in the simplest case that the excess en-

tropy remains finite, then regardless of how long a system is observed there is only a finite

amount of information to be gained about its future. For example, it is possible to com-

pletely predict the behavior of a periodic regular process once one full period has been

observed. This corresponds to the simplest possible complexity class. Alternatively, if the

excess entropy diverges, indicating that the future of a system is influenced by events in

the arbitrarily distant past, then the growth rate may be either slow (logarithmic) or fast

(sublinear power). The former case indicates that a system can be modeled with a finite

number of parameters, where the number of parameters is given by the coefficient of this

divergence. The latter case corresponds to systems that require an infinite number of pa-

rameters to model, representing the highest level of complexity.

3.3 Specific Information

Compared with the other key features of our framework, that of specific information

is certainly the least explored. Indeed, the only relevant applications that we are aware of

are those in neural coding that were mentioned in Section 2.4. As alluded to in Section 2.4,

there are two ways in which measures of specific information have been applied to study

neural codes. First, they have been used to quantify the informativeness of particular neu-

ral responses with respect to a stimulus ensemble [49]. Second, they have been used to

determine how well particular stimuli are encoded by neural responses [28]. The latter is

by far the more widely explored area, and is akin to how specific information will be used

in our framework. As described in [24], using specific information in this way allows one

to replace the traditional stimulus-response curves used in studies of neural coding with

stimulus-information curves—i.e., plots of the specific information I(S = s;R) as a func-

tion of stimulus condition s—where the latter curves convey how well an ideal observer

could discriminate between the stimulus conditions by observing the neural response. For
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example, this kind of analysis was used early on to analyze microelectrode recordings from

the afferent visual system of the cat [56, 57], and more recently has been used to character-

ize the encoding of information in the cercal system of crickets [227] and the encoding of

spatial pattern information in the primary visual cortex of monkeys [120].

3.4 Information in Embodied Systems

Information-theoretic techniques have been used in several recent studies to analyze

the flow of information in embodied agents. The central idea to emerge from this research

is the principle of information self-structuring, which is a specific idea about the importance

of embodiment for cognition [144, 159, 174–176, 179, 195, 216]. Information self-structuring

is the idea that, beyond imposing physical and energetic constraints on an agent’s be-

havior, the importance of having a body is that it allows an agent to actively select and

structure the information that it receives from its environment. In other words, rather than

passively receiving information in the form of sensory stimulation, an embodied agent can

actively shape the information that it receives through a continual process of sensorimotor

coordination.

The principle of information self-structuring has been demonstrated in several stud-

ies, each having the same general form [143–145]. These studies employ a robotic active

vision system consisting of a color camera mounted on the end of a robotic “arm”. This

vision system is studied in two different behavioral modes, corresponding to different ex-

perimental conditions. In the first behavioral mode, the vision system is programmed to

actively locate and track regions of red inputs in its environment. Thus, in this case the

system’s behavior is governed by a continual process of sensorimotor coordination. In the

second behavioral mode, the visual input and motor signals are decoupled, so that the
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system exhibits no sensorimotor coordination. The basic idea, then, is to use information-

theoretic techniques to compare the coordinated and uncoordinated sensorimotor activity,

with the hypothesis being that coordinated behavior will result in greater informational

structure.

In analyzing the robotic vision system, entropy and mutual information were first used

to characterize the red channel of the visual inputs received by the camera, since the sys-

tem was configured to track red objects in the tracking condition. The main results were

a significantly lower entropy for central pixels in the tracking condition, as compared to

peripheral pixels in the tracking condition and all pixels in the uncoordinated condition,

and a significantly higher mutual information between pairs of central pixels in the track-

ing condition, as compared to all other pairs of pixels. Intuitively, these results make sense

since the camera in the tracking condition tends to position red objects in the center of its

visual field, meaning that the red values for these pixels will tend to be consistently high

(reducing entropy) and similar to one another (increasing mutual information). In terms of

information self-structuring, these results also reflect a systematic difference in the infor-

mational structure produced by coordinated sensorimotor activity: coordination results in

lower entropy and higher mutual information for a certain region of visual inputs.

In further studies of the robotic vision system [145, 214], transfer entropy was used to

quantify the amount of information exchanged between various sensor, neural, and motor

components. Here the authors found significantly more directed information transfer in

the coordinated tracking condition as compared with the uncoordinated condition. This,

of course, is not surprising, since one would expect coordination to require structured

causal interactions, such that changing sensor inputs will drive compensatory changes in

motor control. Another experiment, performed on the robot in the tracking condition,

varied how quickly red objects were displaced from the center of the visual field once

the robot had achieved fixation. When the red object was displace slowly or remained
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still, only small amounts of information transfer were detected. On the other hand, when

the object made significant “jumps” away from the center of the visual field, there was a

significant increase in the strength of directed interactions. When the object moves away

abruptly, the vision system must make rapid compensatory movements in order to track

it, and transfer entropy was found to reflect these changing motor patterns. Other studies

have also explored how patterns of information transfer vary as a result of morphological

changes and learning [145].

Finally, the measures of integration and complexity discussed in Section 3.1 were also

applied to the robotic vision system and were found to be higher in the tracking condition

relative to the uncoordinated condition. Several other studies have also reported a general

increase in both integration and complexity in cases of coordinated versus uncoordinated

behavior [203,255,256]. A related complexity measure, called causal density [204], has also

been shown to exhibit a general increase with the difficulty of behavioral coordination in

several simulated and robotic agents [128,201,202]. In an interesting twist, it has also been

shown that evolving agents with a fitness function based on integration or complexity can

produce agents with a high level of behavioral coordination4 [215]. Thus, together these

studies demonstrate a sort of bidirectional relationship between the measures of integra-

tion and complexity and the presence of coordinated behavior.

4In fact, this study only scratches the surface of the growing research area in guided self-organization, which
explores the use of informational measures as fitness functions for evolving adaptive behavior. A variety of
informational measures—including transfer entropy [137] and predictive information [8]—have been explored
to this end, with the upshot being that intelligent solutions often result when agents are selected simply to
maximize informational structure [111, 122–125, 181, 261].



4

Decomposing Multivariate Information

This chapter develops the theoretical foundation for our approach to information dy-

namics. The central contribution described here is a novel method for decomposing the

Shannon information in a multivariate system, called partial information decomposition. Such

a method is essential for our purposes because the quantities of interest for information

dynamics are fundamentally multivariate in nature. For example, in the simplest case of

information flow for a single component, one must consider at least three variables: one

representing the stimulus and two representing the states of the component at different

times. Meanwhile, there are several known limitations and inconsistencies with existing

definitions of multivariate information.

The chapter begins with a discussion of previous attempts to extend mutual informa-

tion to multivariate interactions. Then the method of partial information decomposition is

developed, beginning from a first principles analysis of the structure of multivariate infor-

mation. This is followed by a discussion of how partial information decomposition relates

to interaction information, the current de facto measure of multivariate information. Fi-

nally, the chapter concludes with a brief sketch of directions for future work.

37
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4.1 Multivariate Extensions of Mutual Information

Perhaps the most widely used concept from information theory is Shannon’s mutual

information, which, as described in Section 2.3, provides a general measure of the interde-

pendence between two variables, or two sets of variables. Given this general applicability,

there has also been great interest in extending mutual information to multivariate interac-

tions, but despite numerous attempts [2,41,79,92,153,197,224,247] this remains largely an

open problem. Meanwhile, many of the most interesting and challenging scientific ques-

tions, such as many-body problems in physics, n-person games in game theory, and popu-

lation coding in neuroscience, involve understanding the structure of interactions between

three or more variables.

The two main attempts to generalize mutual information to multivariate interactions

are the total correlation introduced by Watanabe [247] (also known as the multivariate con-

straint [66], multiinformation [224], and integration [232]) and the interaction information

of McGill [153] (also known as multiple mutual information [92], co-information [21], and

synergy [69]). The total correlation, as its name suggests, measures the total amount of

dependency between a set of variables as a single monolithic quantity. Consequently,

the total correlation does not provide any insight into how dependencies are distributed

amongst the variables, i.e., it says nothing about the structure of multivariate information.

In contrast, interaction information was proposed as a measure of the amount of infor-

mation bound up in a set of variables beyond that which is present in any subset of those

variables. Thus, entropy and mutual information correspond to first- and second-order in-

teraction information, respectively, and together with its third-, fourth-, and higher-order

variants, interaction information provides a natural way of characterizing the structure

of multivariate information. As mentioned in Section 2.3, interaction information is also

the natural generalization of mutual information when Shannon entropy is viewed as a
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signed measure on information diagrams [21, 36, 259]. However, the wider use of inter-

action information has largely been hampered by the “odd” [21] and “unfortunate” [36]

property that, for three or more variables, the interaction information can be negative (see

also [92, 226, 236, 259, 262]). For information as it is commonly understood, it is entirely

unclear what it means for one variable to provide “negative information” about another.

Moreover, as we will show, this confusing property of negativity is symptomatic of deeper

problems regarding the interpretation of interaction information for higher-dimensional

systems.

In this chapter, we consider the general problem of quantifying multivariate informa-

tion in a way that illuminates its compositional structure. Thus, the work presented here is

in much the same spirit as McGill’s seminal analysis of multivariate interactions. However,

unlike McGill’s interaction information, the approach we take leads to a decomposition of

multivariate information into a family of nonnegative partial information measures, each

of which supports a clear interpretation as an informational quantity. Moreover, we show

that these partial information measures, each of which is atomic in nature, together form a

lattice which clarifies the structure of multivariate information, in much the way that set-

and lattice-theoretic formulations of the Shannon entropies have helped to clarify standard

informational quantities [21, 43, 87, 91, 258, 259]. Finally, our analysis will also show how

the confusing negativity of interaction information can be explained by its confounding of

redundant and synergistic interactions.

4.2 The Structure of Multivariate Information

Suppose we are given a random variable S and a random vector R = {R1, R2, . . . , Rn}.

Then our goal is to decompose the total information that R provides about S in terms of the

partial information contributed either individually or jointly by various subsets of R. For
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(a) (b) (c)

Figure 4.1: Examples of (a) unique information, (b) redundancy, and (c) synergy. Each
set of tiled squares represents a probability distribution for S,R1, R2 2 {0, 1}. Black tiles
represent equiprobable outcomes and white tiles represent zero-probability outcomes.

example, in a neuroscience context, S may correspond to a stimulus that takes on different

values and R to the evoked responses of different neurons. In this case, we would like

to quantify the information that the joint neural response provides about the stimulus,

and to distinguish between information due to responses of individual neurons versus

combinations of them [69, 187].

As a preliminary step towards characterizing multivariate information in its full gen-

erality, we begin by examining some of its basic properties in the simplest case of a system

with three variables, S and R = {R1, R2}. Intuitively, how should the total information

I(S;R1, R2) decompose into partial information contributions? In other words, what are

the various ways in which subsets of R might contribute information about S? To illus-

trate the range of possibilities, consider the three examples in Figure 4.1. In each example,

there is initially one bit of uncertainty about S and zero bits of uncertainty when both R1

and R2 are known: H(S) = I(S;R1, R2) = 1. In the first example, Figure 4.1(a), the value

of S can be uniquely determined from R1 while R2 provides no information, reflected in

the fact that I(S;R1) = 1 and I(S;R2) = 0. We refer to this kind of contribution, where

R1 provides information that R2 does not, or vice versa, as unique information from R1 or

R2, respectively. In this case, the total information from R reduces to the unique infor-

mation from R1 and the system actually simplifies to two variables, though in general it

is possible for R1 and R2 to provide different unique information. Alternatively, R1 and



4. Decomposing Multivariate Information 41

Figure 4.2: Structure of information for 3 variables. Inner regions correspond to unique
information (Unq), redundancy (Rdn), and synergy (Syn).

R2 may provide the same or overlapping information, which we call redundancy. For ex-

ample, in Figure 4.1(b), the value of S can be resolved from knowledge of either R1 or

R2, I(S;R1, R2) = I(S;R1) = I(S;R2), so that R1 and R2 redundantly provide complete

information. Finally, a third possibility is that the combination of R1 and R2 may provide

information that is not available from either alone, which we call synergy. A well-known

example for binary variables is the exclusive-OR function S = R1 ⊕ R2 (Figure 4.1(c)), in

which case R1 and R2 individually provide no information, I(S;R1) = I(S;R2) = 0, but

together provide complete information, I(S;R1, R2) = 1.

Some reflection should convince the reader that these three possibilities exhaust the

alternatives for three variables. That is, the total information provided by R must come ei-

ther uniquely from R1 or R2, redundantly from R1 and R2, or synergistically from the com-

bination of R1 and R2. The relationships between these possibilities are depicted schemat-

ically in Figure 4.2. The total information provided by R includes, but is not limited to,

the information provided by R1 and R2; thus, I(S;R1, R2) is depicted as a superset of

I(S;R1) and I(S;R2) but not coextensive with I(S;R1)[ I(S;R2). The difference between

I(S;R1, R2) and I(S;R1)[ I(S;R2) corresponds to synergy. Furthermore, the information
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provided by R1 and R2 can either overlap, corresponding to redundancy, or not, corre-

sponding to unique information.

In summary, for three variables we can identify unique information, redundancy, and

synergy as the basic atoms of multivariate information. In fact, as later developments will

clarify, unique information is best thought of as a degenerate form of redundancy or syn-

ergy, so that redundancy and synergy alone constitute the building blocks of multivariate

information. In particular, we will find that combinations of redundancy and synergy,

which may at first sound paradoxical, in fact play a fundamental role in structuring mul-

tivariate information in higher dimensions. Next we proceed to formalize these ideas,

beginning with the notion of redundancy.

4.3 Redundancy as Overlapping Information

Let A1,A2, . . . ,Ak be potentially overlapping subsets of R, called sources. How can we

quantify the redundant information that all sources provide about S? The intuition that

we want to capture is that redundancy corresponds to overlapping or shared information.

In particular, redundancy should behave similarly to the intersection operator from set

theory, measuring the common information “contained” by two or more sources.

To capture this idea of intersecting information, we define redundancy as a (k + 1)-

argument function

I\ : S ⇥ 2R ⇥ · · · ⇥ 2R
| {z }

k

7! R, (S,A1, . . . ,Ak) 7! I\(S;A1, . . . ,Ak) (4.1)

that satisfies the following axioms:

Axiom 4.1 (symmetry). I\ is symmetric in the Ai’s.

Axiom 4.2 (self-redundancy). I\(S;A) = I(S;A).
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Axiom 4.3 (monotonicity). I\(S;A1, . . . ,Ak−1,Ak)  I\(S;A1, . . . ,Ak−1) with equality if

Ak−1 ✓ Ak.

Axiom 4.1 states that the redundancy for a collection of sources should not depend on

the order in which they are considered. Axiom 4.2 states that the redundancy for a sin-

gle source considered by itself, referred to as the ‘self-redundancy’, is simply equal to the

information provided by that source. Finally, Axiom 4.3 states that redundancy can only

decrease or remain the same as more sources are added, with redundancy remaining the

same if the new source is a superset of an existing one. Note that these axioms are anal-

ogous to basic properties of set intersection; namely, that it is commutative (symmetric):

X \Y = Y \X ; idempotent (‘self-intersection’ is preserving): X \X = X ; and monotonic:

(X1\· · ·\Xk−1\Xk) ✓ (X1\· · ·\Xk−1) with equality if Xk−1 ✓ Xk. Thus, we claim that

any measure of redundancy as intersecting information must satisfy these basic axioms.

Two useful properties of redundancy follow immediately from these axioms.

Corollary 4.1. I\ is nonnegative.

Proof. Since ; ✓ Ai for any Ai,

I\(S;A1, . . . ,Ak, ;) = I\(S; ;) = I(S; ;) = 0

by Axioms 4.2 and 4.3. Also from Axiom 4.3, we have that

I\(S;A1, . . . ,Ak) ≥ I\(S;A1, . . . ,Ak, ;),

so we conclude that I\(S;A1, . . . ,Ak) ≥ 0.

Corollary 4.2. I(S;Ai) = I\(S;Ai) ≥ I\(S;Ai, . . .).
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Thus, redundancy is nonnegative, bounded from above by the information from any one

source, and maximized by the self-redundancy, analogous to the property that mutual

information is maximized by the self-information I(S;S) = H(S).

An appealing candidate measure of redundancy that satisfies the axiomatic definition

I\ is

Imin(S;A1, . . . ,Ak) =
X

s

p(s)min
Ai

I(S = s;Ai) (4.2)

where I(S = s;A) is the specific information that A provides about each outcome s 2

S (Equation (2.26); see Section 2.4 for a discussion of specific information). Thus, Imin

quantifies redundancy as the minimum information that any source provides about each

outcome of S, averaged over all possible outcomes. This definition captures the idea that

redundancy is the information shared by all sources (the minimum that any one provides),

while taking into account that sources may provide information about different outcomes

of S.

Theorem 4.1. Imin satisfies the axiomatic definition I\.

Proof. That Imin satisfies Axioms 4.1 and 4.2 follows from basic properties of min, while

Axiom 4.3 follows from Lemma 2.2.

Henceforth, we are careful to use I\ when discussing properties that follow from the ax-

iomatic definition, and Imin when discussing properties specific to that measure. Imin has

the following additional desirable properties.

Theorem 4.2. Imin(S;A1, . . . ,Ak) = 0 if, and only if, for every joint outcome (s,a1, . . . ,ak),

p(s,ai) = p(s)p(ai)

for at least one ai.
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Proof. It follows trivially from Lemma 2.1 and basic properties of min.

Theorem 4.2 is a natural generalization of the property that I(S;A) = 0 if, and only if, for

every joint outcome (s,a),

p(s,a) = p(s)p(a).

Thus, according to this theorem, redundancy (defined as Imin) is zero if, and only if, for

each joint outcome one or more of the sources provide no information about S.

Theorem 4.3. If S ! Ak ! Ak−1, then

Imin(S;A1, . . . ,Ak−1,Ak) = Imin(S;A1, . . . ,Ak−1).

Proof. It suffices to show that if S ! Ak ! Ak−1, then I(S = s;Ak−1)  I(S = s;Ak) for

all s 2 S. If S ! Ak ! Ak−1, then I(S;Ak−1|Ak) = 0 and thus I(S;Ak−1,Ak) = I(S;Ak).

From Lemma 2.2, this means that I(S = s;Ak−1,Ak) = I(S = s;Ak) for all s 2 S. Also

from Lemma 2.2, we have that

I(S = s;Ak−1,Ak) ≥ I(S = s;Ak−1),

so we conclude that I(S = s;Ak−1)  I(S = s;Ak) for all s 2 S.

In words, Theorem 4.3 states that if S, Ak, and Ak−1 form a Markov chain in that order (i.e.,

if Ak screens off Ak−1 from S), then any information provided by Ak−1 is also provided

redundantly by Ak. As the following corollary shows, this theorem is a generalization of

the data processing inequality discussed in Section 2.3.

Corollary 4.3 (data processing inequality). If S ! Ai ! Aj , then I(S;Ai) ≥ I(S;Aj).
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Proof. If S ! Ai ! Aj , then

I(S;Aj) = Imin(S;Aj) = Imin(S;Ai,Aj).

We also know that

I(S;Ai) = Imin(S;Ai) ≥ Imin(S;Ai,Aj),

so we conclude that I(S;Ai) ≥ I(S;Aj).

The following corollary states that complete dependence (between sources) implies

complete redundancy.

Corollary 4.4. If Aj = f(Ai), then

Imin(S;Ai,Aj) = I(S;Aj).

Proof. If Aj = f(Ai), then S ! Ai ! Aj .

However, it is worth noting that, aside from the connection in Corollary 4.4, dependence

between sources and redundancy are in fact completely dissociable. That is, neither does

dependence imply redundancy, nor the converse, as the following simple examples illus-

trate. Let R1 and R2 be binary and uniformly distributed. If R1 = R2 and S is a degenerate

random variable, then I(R1;R2) > 0 and Imin(S;R1, R2) = 0, so that dependence does not

imply redundancy. On the other hand, if R1 and R2 are independent and S = R1 ^ R2,

then Imin(S;R1, R2) > 0 and I(R1;R2) = 0, so that redundancy does not imply depen-

dence. Considering instead conditional dependence, if R1 and R2 are independent and

S = R1 ⊕ R2, then I(R1;R2|S) > 0 and Imin(S;R1, R2) = 0, so that conditional depen-

dence does not imply redundancy. Conversely, if S = R1 = R2, then Imin(S;R1, R2) > 0

and I(R1;R2|S) = 0, so that redundancy does not imply conditional dependence.
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4.4 Redundancy Lattice

What are the distinct ways in which collections of sources might contribute redundant

information? Formally, answering this question means identifying the domain of I\. Thus

far, we have implicitly assumed that the natural domain is the collection of all possible

sets of sources, but in fact this domain can be greatly simplified. Given sources Ai and Aj

with Ai ✓ Aj , Axiom 4.3 states that the redundancy for Ai and Aj is equivalent to the

redundancy when Aj is removed:

I\(S;Ai,Aj , . . .) = I\(S;Ai, . . .).

Applying this property recursively, it follows that for any collection of sources where some

are supersets of others, the redundancy for that collection is equivalent to the redundancy

when all supersets are removed. Thus, the domain for I\ can be reduced to the collection

of all sets of sources such that no source is a superset of any other:

A(R) = {α 2 P1(P1(R)) : 8Ai,Aj 2 α,Ai 6⇢ Aj}, (4.3)

where P1(R) = P(R) \ {;} is the set of all nonempty subsets of R. Formally, A(R)

corresponds to the set of all antichains on the inclusion lattice hP(R),✓i, excluding the

empty set1. The cardinality of this set is given by the n-th Dedekind number, which for

n = 1, 2, 3, . . . is 1, 4, 18, 166, 7579, . . . ( [34], p. 273). Henceforth, we will denote elements of

A(R), corresponding to collections of sources, with bracketed expressions containing only

the indices for each source. For instance, {{R1, R2}}will be {12}, {{R1}, {R2, R3}}will be

{1}{23}, and so forth.

The possibilities for redundancy are also naturally structured, which can be shown by

1Basic concepts from lattice theory are reviewed in Appendix A.
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extending the same line of reasoning to define a partial ordering on the elements of A(R).

Consider two collections of sources, α, β 2 A(R), where for each source B 2 β there exists

a source A 2 α such that A ✓ B. This means that for each B 2 β there is an A 2 α such

that A provides no more information than B. The redundant information shared by all

B 2 β must therefore at least include any redundant information shared by all A 2 α.

Thus, we can define a partial order 4 over the elements of A(R) such that one element

(collection of sources) precedes another if, and only if, the latter provides any redundant

information that the former provides:

8α, β 2 A(R), (α 4 β , 8B 2 β, 9A 2 α,A ✓ B). (4.4)

Applying this ordering to the elements of A(R) produces a redundancy lattice, in which

a higher element provides at least as much redundant information as a lower one (Figure

4.3). The fact that hA(R),4i forms a lattice is proven in [37], where the corresponding

lattice is denoted hA(X),40i (see also [38]). As shown in [37], the meet (^) and join (_) for

this lattice are given by

α ^ β = α [ β (4.5)

and

α _ β = " α\ " β. (4.6)

From the redundancy lattice, it is possible to read off some of the properties of I\ noted

earlier. For instance, the property that redundancy is maximized by self-redundancy cor-

responds to the fact that any node representing a single source is higher in the lattice than

any other node involving that source. For example, in Figure 4.3(b), the node labeled {12},

corresponding to self-redundancy for the source {R1, R2}, is higher than the nodes labeled

{12}{13}, {12}{13}{23}, and {3}{12}. Another useful property of I\ relates to the top and
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{1}{2}

{1} {2}

{12}

(a)

{123}

{23}{13}{12}

{13}{23}{12}{23}{12}{13}

{3}{2}{1}

{3}{12}{2}{13}{1}{23}

{2}{3}{1}{3}{1}{2}

{12}{13}{23}

{1}{2}{3}

(b)

Figure 4.3: Redundancy lattice for (a) 3 and (b) 4 variables.

bottom nodes of the lattice. The top node corresponds to the self-redundancy for R, reflect-

ing the fact that I\ is bounded from above by the total information from R. At the other

end of the spectrum, the bottom element corresponds to the redundant information that

each individual variable in R provides, with all other possibilities for redundancy falling

between these two extremes.

4.5 Partial Information Decomposition

The redundant information associated with each node of the redundancy lattice in-

cludes, but is not limited to, the redundant information provided by all nodes lower in

the lattice. Thus, moving from node to node up the lattice, I\ can be thought of as a
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kind of “cumulative information function,” effectively integrating the information pro-

vided by increasingly inclusive collections of sources. Next, we define an inverse of I\

called the partial information (PI) function. The relationship between I\ and the PI-function

is analogous to that between the integral and the derivative from elementary calculus:

moving up the redundancy lattice, I\ integrates the information associated with individ-

ual nodes, while the PI-function measures the information contributed by each individual

node. Thus, whereas I\ quantifies cumulative information, the PI-function measures the

partial information contributed uniquely by each particular collection of sources. This par-

tial information will form the atoms into which we decompose the total information that

R provides about S.

For a collection of sources α 2 A(R), the PI-function, denoted I∂ , is defined implicitly

by

I\(S;α) =
X

β4α

I∂(S;β). (4.7)

This equation is an instance of the Möbius inversion formula [192, 219], a basic concept

from algebraic combinatorics that is analogous to the fundamental theorem of calculus.

From this relationship, it is clear that I∂ can be calculated recursively as

I∂(S;α) = I\(S;α)−
X

β≺α

I∂(S;β). (4.8)

Thus, in words, I∂(S;α) quantifies the information provided redundantly by the sources

of α that is not provided by any simpler collection of sources (i.e., any β lower than α on

the redundancy lattice). The following theorem provides a closed-form expression for I∂ .

Theorem 4.4.

I∂(S;α) = I\(S;α)−

|α−|
X

k=1

(−1)k−1
X

B✓α−

|B|=k

I\(S;
^

B).
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Proof. For B ✓ A(R), define the set-additive function f as

f(B) =
X

β2B

I∂(S;β).

From Equation (4.7), it follows that I\(S;α) = f(# α) and

I∂(S;α) = f(# α)− f(#̇α)

= f(# α)− f(
[

β2α−

# β).

Applying the inclusion-exclusion principle ( [219], p. 64), we have

= f(# α)−

|α−|
X

k=1

(−1)k−1
X

B✓α−

|B|=k

f(
\

γ2B

# γ)

and it is a basic result of lattice theory that for any lattice L and A ✓ L,
T

a2A # a =# (
V

A)

( [44], p. 57), so we have

= f(# α)−

|α−|
X

k=1

(−1)k−1
X

B✓α−

|B|=k

f(# (
^

B))

= I\(S;α)−

|α−|
X

k=1

(−1)k−1
X

B✓α−

|B|=k

I\(S;
^

B).

The expression for I∂ established in Theorem 4.4 is best understood in terms of the

inclusion-exclusion principle [219], which serves as the basis for its derivation. To illustrate

this idea, the calculation of I∂(S; {12}) for R = {R1, R2} is depicted in Figure 4.4. First,

I\(S; {12}) is included, which equals the sum of I∂(S;α) for all α 2# {12} (indicated by
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{1}{2}

{1} {2}

{12}

Figure 4.4: Inclusion-exclusion formula for I∂ . The calculation of I∂(S; {12}) for R =
{R1, R2} is depicted. Blue and red regions correspond to I\ terms that are added and
subtracted, respectively.

the large blue region). Next, I\(S;β) is subtracted off for each β 2 {12}− (represented by

the two red regions). However, this step subtracts twice the I∂ term that is included in the

down-sets of both elements in {12}− (the term {1}{2}), so the next step of the summation

adds this terms back in (the small blue region). In general, this pattern then continues

by alternately adding and subtracting I\ terms in order to capture the I∂ terms that are

common to the down-sets of increasingly large subsets of α−. Hopefully it is clear how this

calculation relates to the standard use of inclusion-exclusion to calculate the cardinality

of the union of several sets by adding up their individual cardinalities, subtracting their

pairwise intersections, adding in their three-way intersections, and so forth.

The PI-function is nonnegative if, and only if, I\ is totally monotone2 [81, 121], meaning

that

I\(S;
_

1jk

αj) ≥
X

;6=J✓{1,...,k}

(−1)|J |−1I\(S;
^

j2J

αj) (4.9)

for k ≥ 2 and every k-element subset of A(R). Total monotonicity is a stronger form of

supermodularity3, which, along with the dual concept of submodularity, has recently been

2The result that the Möbius inverse of a lattice function is nonnegative if, and only if, that function is
totally monotone is proven in [74] and discussed further in [191]. Totally monotone functions are also called
totally positive [74, 191] or strongly increasing [142] functions.

3Supermodularity means that Equation (4.9) holds for k = 2.
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discussed as a central or even defining property of information [147, 152, 220, 221]. For ex-

ample, in [221] submodularity is incorporated into an axiomatic definition of entropy, and

it is shown that (conditional) mutual information is nonnegative if, and only if, entropy is

submodular (recall Equation (2.8) and the discussion thereof). Thus, there is an attractive

parallel between the relationships (nonnegative mutual information $ submodular en-

tropy) and (nonnegative partial information$ totally monotone redundancy). Later, we

will show that Imin has the desired property of total monotonicity, so that its corresponding

PI-function decomposes I(S;R) into a sum of nonnegative PI-terms.

The decomposition of I(S;A) into a sum of PI-terms follows from

I(S;A) = I\(S;A) =
X

β4{A}

I∂(S;β). (4.10)

Thus, in terms of the redundancy lattice, the total information from A decomposes into the

sum of all PI-terms for elements in # {A}. The chain rule for information (Equation (2.19))

yields a similar decomposition for the conditional mutual information:

I(S;A|B) =
X

β4{A[B}
β 64{B}

I∂(S;β). (4.11)

Thus, the conditional mutual information decomposes into the sum of all PI-terms for

elements in # {A [ B} that are not in # {B}. Note that, since we are dealing with partial

orders, it is necessary to use two inequalities, β 4 {A [ B} and β 64 {B}, instead of a

combined inequality, {B} ≺ β 4 {A [B}.

For the 3-variable case, R = {R1, R2}, Equation (4.10) yields

I(S;R1) = I∂(S; {1}) + I∂(S; {1}{2}) (4.12)
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{1}{2}{1} {2}

{12}

I(S;R1) I(S;R2)

I(S;R1,R2)

(a)

{1}{2}{3}

{1}{2}{1}{3}

{2}{3}

{1}{23}

{2}{13}{3}{12}

{12}{13}{23}

{1}

{2}{3}

{12}{13}

{12}{23}{13}{23}

{12} {13}

{23}

{123}

I(S;R1,R2,R3)

I(S;R1,R3)

I(S;R2,R3)

I(S;R1,R2)

I(S;R1)

I(S;R2)I(S;R3)

(b)

Figure 4.5: Partial information diagrams for (a) 3 and (b) 4 variables.

and

I(S;R1, R2) = I∂(S; {1}) + I∂(S; {2}) + I∂(S; {1}{2}) + I∂(S; {12}). (4.13)

The relationship between these equations can be represented as a PI-diagram (Figure 4.5(a)),

which illustrates the set-theoretic breakdown of total information into PI-terms. Also,

comparing this diagram with Figure 4.2 makes immediately clear the meaning of each

PI-term. First, from Theorem 4.4, we have that I∂(S; {1}{2}) = I\(S; {1}{2}), corre-

sponding to the redundancy for R1 and R2. The unique information for R1 is given by

I∂(S; {1}) = I(S;R1) − I\(S; {1}{2}), which is the total information from R1 minus the

redundancy with R2, and likewise for R2. Finally, the additional information provided by

the combination of R1 and R2 is given by I∂(S; {12}), corresponding to their synergy.

The general structure of PI-diagrams becomes clear when we consider the decompo-

sition for four variables (Figure 4.5(b)). First, note that all of the possibilities for three



4. Decomposing Multivariate Information 55

variables are again present for four. In particular, each element of R can provide unique

information (regions labeled {1}, {2}, and {3}), information redundantly with one other

variable ({1}{2}, {1}{3}, and {2}{3}), or information synergistically with one other vari-

able ({12}, {13}, and {23}). Additionally, information can be provided redundantly by all

three variables ({1}{2}{3}) or provided by their three-way synergy ({123}). More interest-

ing are the new kinds of terms representing combinations of redundancy and synergy. For

instance, the regions marked {1}{23}, {2}{13}, and {3}{12} represent information that is

available redundantly from either one variable considered individually or the other two

considered together. Or, for instance, the region labeled {12}{13}{23} represents the in-

formation provided redundantly by the three possible two-way synergies. In general, the

PI-atom for a collection of sources corresponds to the information provided redundantly

by the synergies of all sources in the collection. This point also clarifies our earlier claim

that unique information is best thought of as a degenerate case: unique information corre-

sponds to the combination of first-order redundancy and first-order synergy.

In general, the PI-diagram for S and R = {R1, R2, . . . , Rn} consists of the following

(Figure 4.6). First, for each element Ri 2 R there is a region corresponding to I(S;Ri).

Then, for every subset A of R with two or more elements, I(S;A) is depicted as a region

containing I(S;A) for all A 2 A but not coextensive with
S

A2A I(S;A). The difference

between I(S;A) and
S

A2A I(S;A) represents the synergy for A, the information gained

from the combined knowledge of all elements in A that is not available from any sub-

set. In addition, regions of the diagram intersect generically, representing all possibilities

for redundancy. In total, a PI-diagram is composed of the n-th Dedekind number [34] of

PI-atoms, same as the cardinality of A(R). As described above, each PI-atom represents

the redundancy of synergies for a particular collection of sources, corresponding to one

distinct way for the components of R to contribute information about S.
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Figure 4.6: Constructing a PI-diagram. (A) For each element Ri 2 R there is a region
corresponding to I(S;Ri). (B-E) For each subset A of R with two or more elements,
I(S;A) is depicted as a region containing I(S;A) for all A 2 A but not coextensive with
S

A2A I(S;A).
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PI-diagrams represent geometrically the underlying set-theoretic structure of multi-

variate information. In this context, I\ is formally analogous to set intersection, with

I\(S;A1, . . . ,Ak) corresponding to the region
T

i I(S;Ai). This relationship also connects

the redundancy lattice and PI-diagram for n variables: for α, β 2 A(R), α is lower than β

in the redundancy lattice if, and only if,
T

A2α I(S;A) is a subset of
T

B2β I(S;B) in the

PI-diagram. If I\ has a nonnegative PI-function (as is the case, for instance, with Imin),

then PI-diagrams represent a measure, in the formal sense of measure theory, over sets

representing the information from each source.

It is important to contrast the measure represented by PI-diagrams with that repre-

sented by I-diagrams, which were described in Section 2.3 (see, in particular, Figure 2.1).

The crucial difference between PI-diagrams and I-diagrams is that I-diagrams represent

signed measures, meaning that the area of regions in an I-diagram can represent negative

values. This is equivalent to the property that interaction information is sometimes nega-

tive, an idea that we revisit in the next section.

Now we turn from the general PI-function that is the inverse of I\ to the specific PI-

function that is the inverse of Imin. We denote the PI-function corresponding to Imin by Π,

so that

Imin(S;α) =
X

β4α

Π(S;β). (4.14)

Theorem 4.5. Π is nonnegative.

Proof. If α = ?, Π(S;α) = Imin(S;α) and Π(S;α) ≥ 0 follows from the nonnegativity

of Imin. To prove it for α 6= ?, we proceed by contradiction. Assume there exists α 2

A(R) \ {?} such that Π(S;α) < 0. Beginning with the simpler expression for Π(S;α)

proven in Theorem 4.6 and combining summations yields

Π(S;α) =
X

s

p(s){min
A2α

I(S = s;A)− max
β2α−

min
B2β

I(S = s;B)}.
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(a) (b)

Figure 4.7: Examples of mixed synergy and redundancy. Each set of tiled squares repre-
sents a probability distribution for S 2 {0, 1, 2} and R1, R2 2 {0, 1}. Black tiles represent
equiprobable outcomes and white tiles represent zero-probability outcomes.

From this equation, it is clear that there must exist β 2 α− such that for all B 2 β, I(S =

s;A) < I(S = s;B) for some outcome s 2 S and some A 2 α. Thus, from Lemma 2.2,

there does not exist B 2 β such that B ✓ A. However, since β ≺ α by definition, there

exists B 2 β such that B ✓ A.

As a first example of PI-decomposition using the PI-function Π, consider the distribu-

tion in Figure 4.7(a). From the symmetry of the distribution, it is clear that R1 and R2

must provide the same amount of information about S. Indeed, this is easily verified,

with I(S;R1) = I(S;R2) = −1
3 log

1
3 −

2
3 log

2
3 . However, it is also clear that R1 and R2

provide information about different outcomes of S. In particular, given knowledge of R1,

one can determine conclusively whether or not outcome S = 2 occurs (which is not the

case for R2), and likewise for R2 and outcome S = 1. This is captured by the fact that

Π(S; {1}) = Π(S; {2}) = 1
3 , meaning that R1 and R2 each provide 1

3 bits of unique infor-

mation about S. The redundant information, Π(S; {1}{2}) = log 3 − log 2, reflects the fact

that both R1 or R2 reduce uncertainty about S from three equally likely outcomes to two.

Finally, R1 and R2 also provide 1
3 bits of synergistic information, Π(S; {12}) = 1

3 . This

value corresponds to the fact that R1 and R2 together uniquely determine whether or not

outcome S = 0 occurs, which is not true for R1 or R2 alone.

Note that, unlike mutual information or interaction information, partial information is

not symmetric. For instance, the synergistic information that R1 and R2 provide about S
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is not in general equal to the synergistic information that S and R2 provide about R1. This

property is also illustrated by the example in Figure 4.7(a). Given knowledge of S, one can

uniquely determine the outcome of R1 (and R2), so that S provides complete information

about both variables. Thus, it is not possible for the combination of S and R2 to provide

any additional synergistic information about R1, since there is no remaining uncertainty

about R1 when S is known. In contrast, as was just noted, R1 and R2 provide 1
3 bits of

synergistic information about S. This asymmetry accounts for our decision to focus on

information about a particular variable S throughout, since in general the analysis will

differ depending on the variable of interest. Note that total information is also asymmetric

in this sense4, i.e., in general I(S;R1, R2) 6= I(R1;S,R2).

Finally, we note two additional properties that are useful for the practical computation

of PI-terms. Both properties make use of the following relationship between max and min.

Lemma 4.1 (Maximum-minimums identity). For any set of numbers A,

maxA =

|A|
X

k=1

(−1)k−1
X

B✓A
|B|=k

minB,

or conversely,

minA =

|A|
X

k=1

(−1)k−1
X

B✓A
|B|=k

maxB.

Proof. It is proven in a number of introductory texts, e.g. [190].

First, the following theorem provides a simpler expression for Π.

Theorem 4.6.

Π(S;α) = Imin(S;α)−
X

s

p(s) max
β2α−

min
B2β

I(S = s;B).

4Though, of course, it is symmetric in the sense that I(S;R1, R2) = I(R1, R2;S).
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Proof.

Rewriting Theorem 4.4, Π(S;α) can be written as

Imin(S;α)−

|α−|
X

k=1

(−1)k−1
X

B✓α−

|B|=k

X

s

p(s) min
B2

V
B
I(S = s;B)

= Imin(S;α)−
X

s

p(s)

|α−|
X

k=1

(−1)k−1
X

B✓α−

|B|=k

min
B2

V
B
I(S = s;B)

and by Lemma 2.2 and Equation (4.5),

= Imin(S;α)−
X

s

p(s)

|α−|
X

k=1

(−1)k−1
X

B✓α−

|B|=k

min
β2B

min
B2β

I(S = s;B).

Then, applying Lemma 4.1 we have

= Imin(S;α)−
X

s

p(s) max
β2α−

min
B2β

I(S = s;B).

Unlike Theorem 4.4, this expression for Π(S;α) only requires knowledge of the nodes im-

mediately below α in the redundancy lattice (the set α−). Second, in the same way that

Imin acts like set intersection for PI-diagrams, Imax acts like set union, where Imax is de-

fined exactly the same as Imin except substituting max for min. This is captured by the

following theorem, which links Imax and Imin by an inclusion-exclusion relationship that

is analogous to that between [ and \.



4. Decomposing Multivariate Information 61

Theorem 4.7.

Imax(S;α) =

|α|
X

k=1

(−1)k−1
X

β✓α
|β|=k

Imin(S;β).

Proof. Using Lemma 4.1, Imax can be written as

Imax(S;α) =
X

s

p(s)

|α|
X

k=1

(−1)k−1
X

β✓α
|β|=k

min
B2β

I(S = s;B),

and rearranging the order of summations,

=

|α|
X

k=1

(−1)k−1
X

β✓α
|β|=k

X

s

p(s)min
B2β

I(S = s;B)

=

|α|
X

k=1

(−1)k−1
X

β✓α
|β|=k

Imin(S;β).

Thus, Imax(S;A1, . . . ,Ak) corresponds to the PI-diagram region
S

i I(S;Ai), which has

the appealing interpretation that the informational union of several sources equals the

maximum information that is available from any one source. This correspondence between

Imin/Imax and \/[ means that expressions for PI-regions can be derived using the rich

operations of set theory. For example, the synergy for all n variables in R is conveniently

given by

I(S;R)− Imax(S; {A ⇢ R : |A| = n− 1}). (4.15)

Likewise, the unique information from a single Ri is given simply by

I(S;Ri)− Imin(S;Ri,R \Ri). (4.16)
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4.6 Why Interaction Information is Sometimes Negative

We next show how PI-decomposition can be used to understand the conditions under

which interaction information, the standard generalization of mutual information to mul-

tivariate interactions, is negative. The interaction information [153] for three variables is

given by

I(S;R1;R2) = I(S;R1|R2)− I(S;R1) (4.17)

and for n > 3 variables is defined recursively as

I(S;R1;R2; . . . ;Rn−1) =I(S;R1;R2; . . . ;Rn−2|Rn−1)

− I(S;R1;R2; . . . ;Rn−2) (4.18)

where the conditional interaction information is defined by simply including the condi-

tioning in all terms of the original definition. Interaction information is symmetric for all

permutations of its arguments, and is traditionally interpreted as the information shared

by all n variables beyond that which is shared by any subset of those variables [21, 92, 226,

236, 259, 262].

For 3-variable interaction information, a positive value is naturally interpreted as indi-

cating a situation in which any one variable of the system enhances the correlation between

the other two. For example, a positive value for Equation (4.17) means that knowledge of

R2 enhances the correlation between S and R1 (and likewise for all other variable per-

mutations). Thus, in the terminology used here, a positive value for I(S;R1;R2) signals

the presence of synergy. On the other hand, a negative value for I(S;R1;R2) indicates

a situation in which any one variable accounts for or “explains away” [172] the correla-

tion between the other two. In other words, a negative value for I(S;R1;R2) indicates

redundancy. Indeed, I(S;R1;R2) is a widely used measure of synergy and redundancy in
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Figure 4.8: PI-decomposition of I(S;R1;R2). (A-B) Term-by-term calculation of
I(S;R1;R2) = I(S;R1, R2)− I(S;R1)− I(S;R2). Blue and red regions represent PI-terms
that are added and subtracted, respectively.

neuroscience, where it is interpreted in exactly this way [25, 131, 169, 196].

The PI-decomposition for 3-variable interaction information (Figure 4.8) confirms this

interpretation. From Equations (4.12), (4.13) and (4.17), we have that I(S;R1;R2) is equal

to the difference between the synergistic and the redundant information, i.e.,

I(S;R1;R2) = Π(S; {12})−Π(S; {1}{2}). (4.19)

Thus, it is indeed the case that positive values indicate synergy and negative values indi-

cate redundancy.

However, the PI-decomposition also makes clear that I(S;R1;R2) confounds redun-

dancy and synergy, with the meaning of interaction information ambiguous for any system

that exhibits a mixture of the two (cf. [108], who suggest the possibility of mixed redun-

dancy and synergy, but without attempting to disentangle them). For instance, consider

again the example in Figure 4.7(a). As described earlier, R1 and R2 provide log 3 − log 2

bits of redundant information and 1
3 bits of synergistic information. Thus, I(S;R1;R2) is

negative because there is more redundancy than synergy, despite the fact that the system

clearly exhibits synergistic interactions. As a second example, consider the distribution in
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Figure 4.9: PI-decomposition of I(S;R1;R2;R3). (A-F) Term-by-term calculation of
I(S;R1;R2;R3) = I(S;R1, R2, R3)− I(S;R1, R2)− I(S;R1, R3)− I(S;R2, R3)+ I(S;R1)+
I(S;R2)+I(S;R3). Blue and red regions represent PI-terms that are added and subtracted,
respectively. Green regions represent PI-terms that are subtracted twice.
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Figure 4.7(b). In this case, R1 and R2 provide 1
2 bits of redundant information, since R1

or R2 both reduce uncertainty about the outcomes S = 0 and S = 2. R1 and R2 also pro-

vide 1
2 bits of synergistic information, reflecting the fact that R1 and R2 together provide

complete information about outcomes S = 0 and S = 2, which is not true for either alone.

Thus, in this case interaction information is zero despite the presence of both redundant

and synergistic interactions, because redundancy and synergy are balanced.

The situation is worse for four-variable interaction information, which is known to vi-

olate the interpretation that positive values indicate (pure) synergy and negative values

indicate (pure) redundancy [5, 21]. To demonstrate, consider the case of 3-parity, which is

the higher-order form of the exclusive-OR, or 2-parity, function mentioned earlier. In this

case, we have a system of four binary random variables, S and R = {R1, R2, R3}, where

the eight outcomes for R are equiprobable and S = R1 ⊕ R2 ⊕ R3. Intuitively, this cor-

responds to a case of pure synergy, since the value of S can be determined only when all

of the Ri are known. Indeed, using Equation (4.18) we find that I(S;R1;R2;R3) is equal

to +1 bit, as expected from the interpretation that positive values indicate synergy. How-

ever, now consider a second system of binary variables, this time where the two outcomes

of S are equiprobable and R1, R2, and R3 are all copies of S. Clearly this corresponds

to pure redundancy, since the value of S can be determined uniquely from any Ri, but

I(S;R1;R2;R3) for this system is again equal to +1 bit, same as the case of pure synergy.

Thus, a completely redundant system is assigned a positive value for the interaction infor-

mation, clearly violating the idea that redundancy is indicated by negative values. Worse

still, the 4-variable interaction information fails to distinguish between the polar opposites

of purely synergistic and purely redundant information.

The PI-decomposition for 4-variable interaction information (Figure 4.9) clarifies why
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this is the case. From Equations (4.10) and (4.18), it follows that I(S;R1;R2;R3) is equal to

Π(S; {123}) + Π(S; {1}{2}{3})

−Π(S; {1}{23})−Π(S; {2}{13})−Π(S; {3}{12})

−Π(S; {12}{13})−Π(S; {12}{23})−Π(S; {13}{23})

−2⇥Π(S; {12}{13}{23}). (4.20)

Thus, I(S;R1;R2;R3) equals the sum of third-order synergy ({123}) and third-order re-

dundancy ({1}{2}{3}), minus the information provided redundantly by any first- and

second-order synergy ({1}{23}, {2}{13}, and {3}{12}), minus the information provided

redundantly by any two second-order synergies ({12}{13}, {12}{23}, and {13}{23}), and

minus twice the information provided redundantly by all three second-order synergies

({12}{13}{23}). As a result, systems with pure synergy and pure redundancy have the

same value for I(S;R1;R2;R3) because 4-variable interaction information adds in the

highest-order synergy and redundancy terms. More generally, the PI-decomposition shows

why I(S;R1;R2;R3) is difficult to interpret as a meaningful quantity, and as one might

expect the story only becomes more complicated in higher dimensions. Thus, although

one can readily decompose interaction information into a collection of partial information

contributions, and understand the conditions under which it will be positive or negative

depending on the relative magnitudes of these contributions, the utility of interaction in-

formation for higher-dimensional systems is unclear.
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4.7 Discussion

In summary, the main objective of this chapter has been to quantify multivariate in-

formation in a way that illuminates the structure of variable interactions. This was ac-

complished by first defining an axiomatic measure of redundancy, I\, that captures the

intuition of redundancy as overlapping information. Next, it was shown that I\ induces

a lattice over the set of possible information sources, referred to as the redundancy lattice,

which characterizes the distinct ways that information can be distributed amongst a set

of sources. From this lattice, a measure of partial information was derived that captures

the unique information contributed by each possible combination of sources. It was then

shown that mutual information decomposes into a sum of these partial information terms,

so that the total information provided by a source is broken down into a collection of par-

tial information contributions. Moreover, it was demonstrated that each of these terms

supports a clear interpretation as a particular combination of redundant and synergistic

interactions between specific subsets of variables. Finally, we discussed the relationship

between PI-decomposition and interaction information, the current de facto measure of

multivariate information, and used partial information to clarify the confusing property

that interaction information is sometimes negative.

One obvious challenge with applying these ideas is that the number of PI-terms grows

rapidly for larger systems. For instance, with 9 variables there are more than 5⇥1022 possi-

bilities [248], and beyond that the Dedekind numbers are not even currently known. Thus,

clearly an important direction for future work is to determine efficient ways of calculat-

ing partial information for larger systems. To this end, the lattice structure of the terms is

likely to play an essential role. As with any ordered data structure, the fact that the space

of possibilities is highly organized can be readily exploited for efficient use. For instance,

as a simple example, if Imin is calculated in a descending fashion over the nodes of the

redundancy lattice and at a certain juncture has a value of zero, all of the terms below that
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node can immediately be eliminated simply from the monotonicity of I\. Moreover, if the

Markov property or any other constraints hold between the variables, many of the possi-

ble PI-terms can also be excluded. Finally, these considerations notwithstanding, it should

also be emphasized that 3-variable interaction is the current state of the art, and thus even

the simplest form of PI-decomposition can be used to address a number of outstanding

questions.

In physics, for example, 3-variable interactions have been explored in relation to the

non-separability of quantum systems [29] and in the study of many-body correlation ef-

fects [151]. In neuroscience, the concepts of synergy and redundancy for three variables

have been examined in the context of neural coding in a number of theoretical and empir-

ical investigations [25, 68, 131, 158, 169, 196]. In genetics, multivariate dependencies arise

in the analysis of gene-gene and gene-environment interactions in studies of human dis-

ease susceptibility [5, 30, 156]. Similar issues have also been explored in machine learn-

ing [108, 146, 172], ecology [164], quantum information theory [240], information geome-

try [2], rough set analysis [70], and cooperative game theory [82]. In all of these cases, the

3-variable form of PI-decomposition can be applied immediately to illuminate the struc-

ture of multivariate dependencies, while the general form provides a clear way forward in

the study of more complex systems of interactions.
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A Toolkit for Information Dynamics

In this chapter, we develop techniques for quantifying information dynamics using

the method of PI-decomposition described in the previous chapter. First, in Section 5.1,

we develop techniques for quantifying the flow of intrinsic information, or the flow of in-

formation within a stochastic process X where the informational quantity of interest is a

property of X itself. The canonical measure of this kind is the transfer entropy (Section

2.7), which quantifies the transfer of information into a process X that is about the fu-

ture state of X . Indeed, the techniques developed in Section 5.1 are best thought of as

extensions of transfer entropy, allowing one to tease apart intrinsic information flow in

ways that are not possible using transfer entropy alone. Second, in Section 5.2, we develop

techniques for quantifying the flow of extrinsic information, or the flow of information

within and between stochastic processes that is about something external to those pro-

cesses. These techniques will be put into action in Chapter 7, where we will use them to

explore how information about external stimulus features flows through the components

of brain-body-environment systems. Finally, in Section 5.3, we conclude by discussing the

relationship between measures of intrinsic and extrinsic information flow and identifying

some promising directions for future work.

69
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5.1 Quantifying the Flow of Intrinsic Information

As discussed in Section 2.7, transfer entropy [113,198] provides a directional measure of

the influence that one random process, the source, has on another, the target. This influence

is measured by the information that the source provides about the next state of the target

when conditioned on the target’s history. Transfer entropy has become widely adopted as

a standard measure of information transfer, with applications in neuroscience [80,98,218],

cellular biology [166], chaotic synchronization [105, 165, 167], and econophysics [130, 149]

to name just a few. The idea behind transfer entropy is that conditioning on the target’s his-

tory removes the information shared by the source and target due to common histories or

inputs, thereby isolating the information that is actually transferred. However, condition-

ing does not simply remove shared information; it also adds in higher-order synergistic

information, an idea that can be formalized using PI-decomposition.

In this section, we apply this basic property of conditional information to generalize

transfer entropy in two complementary ways. First, we decompose transfer entropy into

two kinds of information transfer that differ regarding the influence of the target’s state.

We show that the resulting measures are formally related to the control-theoretic concepts

of open-loop and closed-loop control, and quantify separately the state-independent and

state-dependent influences of the source onto the target. Second, we apply a similar de-

composition to the case of multiple sources and derive a novel multivariate generalization

of transfer entropy. The resulting measures quantify separately the unique, redundant,

and synergistic influences of multiple sources onto a target. Together these results provide

a general framework for characterizing not only the magnitudes and directions—but also

the kinds—of information exchange that occur between random processes.

We begin by considering the PI-decomposition for the conditional mutual information
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I(X;Y |Z) between three random variables X , Y , and Z. Using the chain rule for informa-

tion (Equation (2.19)), I(X;Y |Z) can be written as

I(X;Y |Z) = I(X;Y, Z)− I(X;Z),

and expanding into PI-terms (Equations (4.12) and (4.13)),

I(X;Y |Z) = Π(X; {Y }) + Π(X; {Y, Z}). (5.1)

In other words, I(X;Y |Z) decomposes into the unique information from Y plus the syn-

ergy from Y and Z. Thus, conditioning I(X;Y ) on Z not only removes the redundancy

from Y and Z, but also adds in their synergy. This observation makes intuitive sense if we

think of I(X;Y |Z) as answering the question: How much information do we gain from

learning Y when we already know Z? Clearly, this will include both the information that

comes uniquely from Y plus the synergistic information that comes from Y and Z together.

Transfer entropy can be analyzed in a similar way, since it is simply an application of

conditional mutual information to stochastic processes. As discussed in Section 2.7, for

stochastic processes X and Y the transfer entropy from Y to X is defined as

TY!X = I(Xt+1;Y
(l)
t |X

(k)
t ), (5.2)

where X
(k)
t is the k-dimensional delay vector for X , and likewise for Y

(l)
t and Y (henceforth

the superscripts are omitted for clarity). In other words, TY!X quantifies the information

that previous values of Y provide about the next state of X when conditioned on X’s own

history. In terms of transition probabilities, TY!X can also be thought of as quantifying

deviation from the generalized Markov property

p(xt+1|xt, yt) = p(xt+1|xt),
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{Xt}{Yt}{Xt} {Yt}

{Xt,Yt}

I(Xt+1;Xt) I(Xt+1;Yt)

I(Xt+1;Xt,Yt)

Figure 5.1: PI-decomposition of transfer entropy. I(Xt+1;Xt, Yt) decomposes into unique
information from Xt ({Xt}) and Yt ({Yt}), redundancy ({Xt}{Yt}), and synergy ({Xt, Yt}).
The transfer entropy TY!X corresponds to the gray region, which decomposes into SITE
({Yt}) and SDTE ({Xt, Yt}).

with TY!X = 0 if, and only if, Y has no influence on the state transitions of X .

Our first main result of this section is that, by decomposing TY!X , we can distinguish

two kinds of information transfer, or two distinct ways that Y can influence the transitions

of X (Figure 5.1). Letting R = {Xt, Yt} and combining Equations (5.1) and (5.2), we have

that

TY!X = Π(Xt+1; {Yt}) + Π(Xi+1; {Xt, Yt}) (5.3)

where the first PI-term is the unique information that Yt provides about Xt+1 and the sec-

ond PI-term is the synergistic information from Xt and Yt. As we will show, Π(Xt+1; {Yt})

corresponds to state-independent transfer entropy (SITE): it measures the portion of Yt’s in-

fluence on Xt+1 that does not depend on Xt. The complementary term Π(Xt+1; {Xt, Yt})

is the state-dependent transfer entropy (SDTE): it measures the influence that Yt has on Xt+1

only when combined with an appropriate state of Xt. To ground this interpretation, we

next establish a formal connection between SITE and SDTE and the control-theoretic no-

tions of open-loop and closed-loop control.

In control theory, one considers a process Xt—characterized by its initial state X and
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final state X 0—and a controller C, with the two related by a distribution p(x0|x, c) that

specifies the probability of transitioning from an initial state x to a final state x0 under

control action c [234, 235]. When designing a controller, the aim is to specify a control

policy, given by the distribution p(c|x), that moves the system to certain desired final states.

In open-loop control, the controller C is forced to act independently of the initial state X

(i.e., I(X;C) = 0), while closed-loop control is characterized by state-dependent actuation.

A fundamental property of a control system is its controllability, or the extent to which

the controlled process can be moved through its entire state space. In particular, a system is

said to have perfect controllability if, and only if, there exists a control policy that can move

the system deterministically from any initial state x 2 X to any final state x0 2 X 0. In [235],

it is shown that a natural information-theoretic measure of controllability is I(X 0;C|X)—

the information transfer from the controller to the controlled process—which takes on its

maximum value exactly in the case of perfect controllability. Thus, there is a close parallel

between information transfer and controllability, where essentially the only difference is

semantic: information transfer applies to arbitrary interactions between processes, while

controllability is concerned specifically with using one process to control another.

With this in mind, the following result connects SITE and SDTE with open-loop and

closed-loop control1.

Theorem 5.1. A system is perfectly controllable with open-loop control iff it is perfectly controllable

with only state-independent transfer from C to X 0.

Thus, decomposing I(X 0;C|X) as in Equation (5.3), SITE from C to X 0 measures a sys-

tem’s open-loop controllability (maximal for perfect open-loop control), while SDTE mea-

sures the additional contribution from closed-loop control. More generally, this connection

grounds the interpretation of SITE as the state-independent (open-loop) influence of one

process on another, and likewise for SDTE and state-dependent (closed-loop) influence.

1The proof of this result is given in Appendix B.
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Figure 5.2: Example of SITE and SDTE. The SITE (black) and SDTE (gray) for binary
Markov processes X and Y are plotted as a function of the coupling parameter d.

As a simple example to illustrate the two kinds of transfer, consider two binary state

Markov processes X and Y , where Y is purely random and X is stochastically coupled to

Y . Specifically, if xt = 0, then xt+1 = yt, while if xt = 1, the probability that xt+1 = yt is

1 − d and that xt+1 = 1 − yt is d. A simple eigenvector calculation yields the stationary

distribution p(x, y) = 1
4 for all x and y, and from this all informational quantities can be

computed. When d = 0, Xt+1 is simply set to Yt regardless of its own previous state2,

thus corresponding to pure SITE (Figure 5.2). In contrast, when d = 1, yt = 0 causes X to

remain in the same state and yt = 1 causes X to switch states. Consequently, Y ’s influence

on Xt+1 depends entirely on Xt, corresponding to pure SDTE. In fact, if one imagines

using Y to control X , then d = 1 corresponds to a ‘controlled-NOT’ gate, a classic example

of a system that requires closed-loop control [234, 235]. Figure 5.2 shows how varying d

produces a smooth transition between these two extremes.

The distinction between SITE and SDTE also clarifies the relationship between trans-

fer entropy and the time-delayed mutual information (TDMI) I(Xt+1;Yt), which was the

standard measure of information transfer prior to transfer entropy [198]. Transfer entropy

was initially proposed as an alternative to TDMI because the latter fails to remove shared

2With this parameter setting, the system is equivalent to the discrete example considered in [113].
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information due to common histories or inputs. From Figure 5.1, it is clear that this shared

information corresponds to Π(Xt+1; {Xt}{Yt}), the redundancy between Xt and Yt. How-

ever, Figure 5.1 also reveals a second crucial difference between TDMI and transfer en-

tropy, which is that TDMI fails to include SDTE. Thus, not only does TDMI incorrectly

add in shared information, but it also leaves out a significant component of information

transfer.

Our second main result of this section is a novel multivariate generalization of transfer

entropy, based on applying PI-decomposition to the information from multiple sources.

Schreiber [198] originally proposed a generalization of transfer entropy based on ‘con-

ditioning out’ other sources, an idea that has since been adopted and extended by oth-

ers [63, 139]. However, it should be clear from the preceding discussion that such a gen-

eralization is problematic, since conditioning on other sources does not simply remove

their shared information. Our generalization addresses this deficiency by quantifying sep-

arately the unique, redundant, and synergistic transfer from multiple sources.

For simplicity, we consider only two sources Y and Z acting on a target X (the gen-

eral case is discussed momentarily), in which case the total transfer entropy is given by

TY,Z!X = I(Xt+1;Yt, Zt|Xt). Applying PI-decomposition as before, we arrive at measures

for the redundant transfer from Y and Z: T{Y }{Z}!X = Imin(Xt+1;Yt, Zt|Xt); the unique

transfer from Y (resp. Z): TY!X\Z = TY!X−T{Y }{Z}!X ; and the synergistic transfer from Y

and Z: T{Y,Z}!X = TY,Z!X − Imax(Xt+1;Yt, Zt|Xt). Generally speaking, redundant trans-

fer corresponds to situations where the apparent influence from multiple sources may in

fact be due to any one (or several) of them, indicating that interventional methods are re-

quired to determine the true causal structure [10]. In contrast, unique transfer represents

the portion of a source’s influence that can only come from that source and not the oth-

ers, or, if all possible sources are considered, the portion that must come from that source.
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Figure 5.3: Example of multivariate transfer entropy. TY!X\Z (blue), T{Y }{Z}!X (green),
and T{Y,Z}!X (red) for binary Markov processes X , Y , and Z are plotted as a function of
the coupling parameters c and d.

Finally, synergistic transfer indicates that several sources act together cooperatively to in-

fluence the target.

To illustrate, consider three binary state Markov processes X , Y , and Z. Y is purely

random, and Z is stochastically coupled to Y such that zt = yt with probability (1 + c)/2

and zt = 1 − yt with probability (1 − c)/2. This coupling can be thought of as an external

signal driving Y and Z to synchronize: as c goes from 0 to 1, Y and Z transition from

independence to complete synchronization. X in turn is coupled to both Y and Z such

that, if zt = 0, xt+1 = yt, while if zt = 1, xt+1 = yt with probability (1−d) and xt+1 = (1−yt)

with probability d. Thus, xt+1 = yt when d = 0, and xt+1 = yt ⊕ zt when d = 1. At

the extreme parameter settings, this system exhibits three different behaviors (Figure 5.3).

With (c = 0, d = 0), Y and Z are independent and X depends only on Y , so the only

influence is unique transfer from Y to X . In contrast, with (c = 1, d = 0), X again depends

only on Y but Y and Z are now synchronized, so there is only redundant transfer from Y

and Z. Indeed, in this case it is impossible to determine from observations alone whether

Y or Z (or both) is driving X . Finally, with (c = 0, d = 1), Y and Z are independent and

Xt+1 = Yt ⊕ Zt, corresponding to pure synergistic transfer.
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Figure 5.4: SDTE from heart rate to breath rate. The information transfer I(Bt+1;Ht|Bt =
bt) from heart rate (H) to breath rate (B) is plotted as a function of bt for bandwidth r = 0.5.
Qualitatively similar results were found for r 2 [0.2, 1.0].

As a final example, we extend the analysis of a multivariate physiological time se-

ries presented in [113, 198]. The data consists of simultaneous recordings of the breath

rate (chest volume), heart rate, and blood oxygen concentration for a patient suffering

from sleep apnea. Previous analysis compared transfer entropy and TDMI for both direc-

tions between the breath and heart signals. However, directly comparing transfer entropy

and TDMI is problematic and potentially misleading, since both measures detect SITE but

differ regarding SDTE and shared information (Figure 5.1). Indeed, with no additional

information, it is impossible to determine even whether transfer entropy and TDMI are

detecting the same or different aspects of an interaction.

To address this issue, we calculated SITE and SDTE between the breath and heart sig-

nals. Joint probability estimates were obtained by kernel estimation using a rectangular

kernel with bandwidth r. Neighboring points closer than 20 time steps were excluded and

points with fewer than 5 neighbors were ignored, following the suggestions of Schreiber

and others [113, 166, 198]. Our main finding is that SITE is consistent with zero in both di-

rections between the breath and heart signals. Thus, for these signals, transfer entropy and

TDMI in fact quantify entirely separate things: TDMI is due only to shared information
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Figure 5.5: SDTE superimposed on the breath rate signal. Darker colors correspond to
higher values of I(Bt+1;Ht|Bt = bt). Heart rate has the largest influence on breath rate
when chest volume is low and, to a lesser extent, when it is high, but minimal influence
when chest volume is near its mean.

from common histories or inputs, while transfer entropy detects state-dependent informa-

tion exchange. This state dependence can be seen by plotting information transfer as a

function of the target state, shown in Figure 5.4 for T (heart ! breath). For pure SITE,

this plot would be uniform across target states, while Figure 5.4 shows a clear bimodal

distribution. These two modes correspond to downswings and upswings in chest volume,

suggesting that heart rate has the largest influence on respiration when chest volume is

low and, to a lesser extent, when it is high, but minimal influence when chest volume is

near its mean. This result is illustrated most clearly in Figure 5.5, where the information

transfer values are superimposed on the breath rate signal.

Finally, we also analyzed the combined influence of heart rate and blood oxygen level

on breath rate (Figure 5.6). We found that the most significant component is consistently

the unique information transfer from the heart rate, indicating that most of the transfer

entropy discussed above is uniquely attributable to the heart signal. However, there is

also considerable redundant and synergistic transfer, of roughly comparable magnitude,

from heart rate and blood oxygen concentration. In contrast, there is essentially no unique

information transfer from blood oxygen concentration, indicating that all of its apparent
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Figure 5.6: Multivariate transfer for the physiological time series. TO!B\H (black),
TH!B\O (gray), T{H}{O}!B (dashed black), and T{H,O}!B (dashed gray) from heart rate
(H) and blood oxygen (O) to breath rate (B) are plotted as a function of the bandwidth r.

influence could also be due to heart rate.

5.2 Quantifying the Flow of Extrinsic Information

In this section, we develop a complementary set of measures for quantifying the flow of

extrinsic information, or information about some variable that is external to the source and

target processes. For example, in a neuroscience context, the external variable could rep-

resent a stimulus ensemble while the source and target processes represent the responses

of different neurons. In this case, our measures would quantify the information about the

stimulus that is carried by and exchanged between the neurons. The ideas behind these

extrinsic measures follow a parallel line of reasoning to those underlying transfer entropy,

the canonical measure of intrinsic information transfer. Thus, for expository purposes,

we will develop our measures of extrinsic information flow by tracing the parallels with

transfer entropy. In particular, we will show that both transfer entropy and our extrinsic

measures follow from identifying: (1) an informational quantity of interest associated with

the target process; (2) how that quantity changes from one moment to the next; and (3)
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what portion of that change can be accounted for by the source process.

For transfer entropy, the informational quantity of interest is the entropy H(Xt+1). That

is, for transfer entropy, the central aim is to account for changes in H(Xt+1); specifically,

the source Y is said to transfer information to X if it reduces H(Xt+1), i.e., if it reduces

uncertainty regarding X’s next state. Note that this is the sense in which transfer entropy

is an intrinsic measure, as the informational quantity of interest is a property of the target

process itself. In contrast, for our measures of extrinsic information flow, the informational

quantity of interest is I(F ;Xt+1), where F is an arbitrary random variable assumed to re-

flect some property of the external environment. In other words, we want our measures

to account for changes in the information that the process X provides about F . For both

transfer entropy and our extrinsic measures, the quantities of interest can be depicted dia-

grammatically as in panels A1 and B1 of Figure 5.7. Note that these diagrams are the sim-

plest possible forms for I-diagrams (Figure 2.1) and PI-diagrams (Figure 4.5), respectively.

Indeed, throughout this section the parallels between transfer entropy and our extrinsic

measures will be mirrored by analogous parallels between I-diagrams and PI-diagrams.

The next step is to identify how the quantities of interest change over time. In par-

ticular, we want to isolate the portion of each informational quantity that is contained by

X at time t + 1 but was not contained by X at time t. For transfer entropy, this change

in the quantity of interest is given by the conditional entropy H(Xt+1|Xt), or the uncer-

tainty regarding Xt+1 that is not accounted for by Xt. In dynamic terms, this quantity

corresponds to the entropy gain for the process X . Note that the complementary portion

of H(Xt+1), the portion that is contained by X at time t, is given by the mutual informa-

tion I(Xt+1;Xt). Again, the relationship between these quantities can be represented with

an I-diagram (panel A2 of Figure 5.7), where H(Xt+1|Xt) corresponds to the set differ-

ence H(Xt+1) \H(Xt) and I(Xt+1;Xt) represents the intersection of H(Xt) and H(Xt+1).
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Figure 5.7: Parallel development of intrinsic and extrinsic flow measures. For intrinsic
flow, I-diagrams depict the informational quantity of interest (A1), the change in that quan-
tity (A2), and the transfer of that quantity (A3). PI-diagrams representing the analogous
quantities for extrinsic flow are shown in B1-B3.
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In contrast, for extrinsic information flow, the intersection of I(F ;Xt) and I(F ;Xt+1)—

our quantity of interest at the current and next time steps—is given by the redundancy

Imin(F ;Xt+1, Xt). Consequently, the information gain at time t+ 1 is given by

IG(F ;Xt+1) = I(F ;Xt+1)− Imin(F ;Xt+1, Xt), (5.4)

or the unique information that X provides about F at time t + 13. Diagrammatically,

these terms have exactly the same structure as those corresponding to measures of intrinsic

information (compare panels A2 and B2 of Figure 5.7), though with a PI-diagram in place

of an I-diagram.

The final step is to identify the portion of the new entropy/information associated with

Xt+1 that can be accounted for by the source process Y , indicating potential information

transfer from Y to X . In other words, we need to answer the question: Of the information

gained by X at time t+ 1, how much was shared by, and thus was potentially transferred

from, Y at time t? Of course, as the discussion in the preceding section hopefully made

clear, we need to consider not only the information shared by Yt, but also the information

shared by the synergy {Xt, Yt}, thus accounting for the possibility of synergistic (state-

dependent) transfer. For transfer entropy, the portion of H(Xt+1) that is shared by Xt, Yt,

or the synergy {Xt, Yt}, is given by the mutual information I(Xt+1;Xt, Yt). Thus, subtract-

ing from this quantity the mutual information I(Xt+1;Xt)—the portion of H(Xt+1) that is

shared by Xt—yields the portion of H(Xt+1)that is shared by Yt and {Xt, Yt}, the transfer

3It is worth noting that, complementary to this measure of information gain, one can also define a measure
of information loss IL(F ;Xt+1) by simply reversing Xt+1 and Xt in Equation (5.4). This measure quantifies
the information that X contained about F at time t that it lacks at time t+1. Similarly, one can define entropy
loss as H(Xt|Xt+1). Taken together, information gain and loss specify how the information contained by a
component changes from one moment to the next:

I(F ;Xt+1) = I(F ;Xt)− IL(F ;Xt+1) + IG(F ;Xt+1).

However, while information loss happens generically for the components of a dissipative dynamical system,
information gain signals the influence of another component in transferring information, which is the reason
why we focus only on information gain here.
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entropy TY!X (panel A3 of Figure 5.7):

I(Xt+1;Xt, Yt)− I(Xt+1;Xt) = I(Xt+1;Yt|Xt) = TY!X .

Analogously, for extrinsic information flow, the portion of I(F ;Xt+1) that is shared by Xt,

Yt, or {Xt, Yt}, is given by the redundancy Imin(F ;Xt+1, {Xt, Yt}). Thus, subtracting from

this quantity the redundancy Imin(F ;Xt+1, Xt)—the portion of I(F ;Xt+1) that is shared by

Xt—yields the portion of I(F ;Xt+1) that is shared by Yt and {Xt, Yt} (panel B3 of Figure

5.7). We will call this measure the information transfer4 from Y to X about F :

T (F ;Y ! X) = Imin(F ;Xt+1, {Xt, Yt})− Imin(F ;Xt+1, Xt). (5.5)

Lastly, as a sanity check, we can verify that our extrinsic and intrinsic measures are

equivalent in the case that F = Xt+1, i.e., when the “extrinsic” variable F is equivalent

to the intrinsic variable representing the next state of X . First, in this case the quantity of

interest I(F ;Xt+1) simplifies to I(Xt+1;Xt+1) = H(Xt+1), or the self-information for Xt+1.

Second, the information gain IG(F ;Xt+1) can be rewritten as

IG(Xt+1;Xt+1) = I(Xt+1;Xt+1)− Imin(Xt+1;Xt+1, Xt)

= H(Xt+1)− I(Xt+1;Xt)

= H(Xt+1|Xt),

where the second step follows from Theorem 4.3, since Xt+1 ! Xt+1 ! Xt. Third and

4Note that, as with the decomposition of TY !X into SDTE and SITE, one could also decompose T (F ;Y →
X) into separate contributions from Yt and {Xt, Yt} (the two PI-terms shaded in panel B3 of Figure 5.7),
corresponding to information transferred uniquely from Y versus information transferred synergistically by
X and Y . However, we will ignore this distinction here and instead treat T (F ;Y → X) as a unitary measure.
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finally, the information transfer T (F ;Y ! X) simplifies as follows:

T (Xt+1;Y ! X) = Imin(Xt+1;Xt+1, {Xt, Yt})− Imin(Xt+1;Xt+1, Xt)

= I(Xt+1;Xt, Yt)− I(Xt+1;Xt)

= I(Xt+1;Yt|Xt) = TY!X .

Thus, our “extrinsic” measures of information flow may be more aptly named general-

ized measures of information flow, as they subsume the intrinsic measures in the special

case that F , an arbitrary variable, corresponds to the next state of the target process itself.

However, we retain the label “extrinsic” here in light of our later applications to brain-

body-environment systems, where these measures will be used to quantify the flow of

information, through neural and bodily variables, about features of the external world.

5.3 Discussion

The fact that transfer entropy, or intrinsic information flow more generally, can be de-

rived as a special case of our ”extrinsic” (or generalized) measures suggests a number

of intriguing questions for future work. For instance, is there a useful physical and/or

computational distinction between one system transferring entropy (increasing predica-

bility) in another system versus one system transferring (potentially useful) information

to another? If so, in what sense is the former a special case of the latter (since intrinsic

measures correspond to a single parameter setting—F = Xt+1—of extrinsic ones)? Or,

more generally, what is the relationship between these two classes of measures? One in-

teresting possibility is that intrinsic information flow may correspond to the upper bound

on extrinsic information flow. This idea seems mathematically plausible considering that

mutual information is maximally equal to the entropy (I(F ;Xt+1)  H(Xt+t)), with the

latter commonly interpreted as a variable’s “maximum information-carrying capacity”.
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The idea also seems intuitively reasonable, as the total influence that Y has on X is surely

an upper bound on the information that Y can transfer to X about some variable F . If this

relationship proves to be true it could, for example, have useful applications in fields like

neuroscience, where measures of intrinsic flow could first be used to identify neurons that

are significant transmitters and/or receivers of information, and subsequently measures of

extrinsic flow could be used to tease apart the specific messages carried by their incoming

and outgoing transmissions.

On a related note, another interesting possibility for future work involves the measure

of information loss, complementary to that of information gain, mentioned in the previous

section. In particular, by following the same steps that led from information gain to infor-

mation transfer, one could similarly derive a measure of the transfer of information loss.

In other words, while our measure of information transfer quantifies the extent to which

one process anticipates (or drives/causes) information gain in another process, one could

similarly quantify the extent to which one process leads to information loss in another.

What might be the computational, or cognitive, significance of the transfer of information

loss? The precise answer is unclear, but one could envision such transfer playing a crucial

role in, e.g., attentional processes, where it is essential to ignore, or to systematically lose,

information about extraneous features.

Finally, we conclude by mentioning how the measures presented in this chapter gen-

eralize to larger systems of interacting processes. First, note that the multivariate gen-

eralization of transfer entropy described in Section 5.1 extends naturally to any number

of information sources simply by applying the general form of PI-decomposition. The

two extensions of transfer entropy described in Section 5.1 can also be applied in con-

junction, allowing one to quantify, e.g., state-dependent synergistic transfer. Finally, the

extrinsic measures introduced in Section 5.2 are also easily extended using higher-order

PI-decompositions, so that one can quantify how multiple processes interact to carry and
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transfer information about external features. Thus, together these techniques provide a

completely general framework for characterizing the dynamics of information exchange

in complex systems.



6

Embodied Models of Relational
Categorization

This chapter introduces the model agents that will be used in Chapter 7 to illustrate the

application of information dynamics to embodied cognitive systems. These agents per-

form a simple kind of relational categorization, which is a phenomenon that has garnered

considerable interest in cognitive science and poses a number of challenging problems for

analysis. Two key properties of these model agents distinguish them from other models of

relational categorization and make them ideally suited for our purposes here. First, with

these models, relational categorization is defined as a particular kind of behavior exhibited

by embodied agents, rather than as an abstract computational task as it has traditionally

been studied. Second, the models were developed using an evolutionary paradigm that

imposes minimal constraints on how the relational behavior is implemented. In particular,

the evolved solutions are free to span the brain-body and body-environment boundaries,

making full use of the resources available to an embodied agent. Thus, from an analytical

perspective, these models present us with many of the same challenges as organisms in the

real world, for which cognition is typically identified as a set of adaptive behaviors and it

is the task of analysis to reveal the mechanisms underlying these behaviors.

The chapter begins with a brief overview of relational categorization and its importance

for cognitive science. Then we describe previous efforts to model relational categorization

87
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and elaborate on the important features that distinguish our approach. Afterwards, we

detail the methods used to evolve our model agents and present the results from a set of

evolutionary studies. This is followed by an analysis of the best evolved agent using the

mathematical tools of dynamical systems theory, with this analysis providing some pre-

liminary insights into the mechanisms underlying relational categorization in our model

agents. Finally, we conclude the chapter by summarizing the main findings from our dy-

namical analysis, thereby setting the stage for further exploration using the techniques of

information dynamics in Chapter 7.

6.1 Relational Categorization

Relations and relational categories have attracted a considerable amount of attention

in cognitive science and related fields [72, 78, 90, 116, 129, 148]. Relational categories are

categories that are determined by common relational structure among category members,

in contrast with object categories, which are determined by intrinsic similarities between

members. Thus, relational categories, such as same or smaller, can include instances that

have few or no intrinsic similarities (e.g., Texas is smaller than Alaska; Muggsy Bogues is

smaller than Shaquille O’Neal) so long as they share the core relationship, whereas object

categories, such as round or camel, are confined to instances that all share intrinsic proper-

ties (e.g., the properties of roundness or camelness). Because of this, relational categorization

is often considered a hallmark of “higher-level” cognition, since it requires the ability to

abstract properties of individual entities in order to identify their higher-order similarities.

Indeed, relational categories are fundamental to many topics in higher cognition, such as

analogy and metaphor, language, and mathematics [71, 90]. However, relational catego-

rization is not an ability that is restricted to humans and other higher organisms. Rather,

a sensitivity to relational categories has been demonstrated in a wide range of species,

including pigeons [35, 254, 260], baboons [58, 246], rats [163, 194], and insects [75, 154].
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Relational categorization tasks can be described in terms of two sets of features of the

related objects, commonly referred to as roles and fillers. To illustrate this idea, consider a

situation in which a book is above a table. Each object has both an object category (book, ta-

ble) as well as a spatial relational feature (above, below). A crucial requirement for relational

categorization is that one is able to distinguish this situation from the opposite situation in

which the table is above the book. To do so, one must associate or bind each object cate-

gory with its appropriate relational feature, where the latter can be thought of as roles and

the former as fillers for those roles. Thus, book must be bound to the above role and table to

the below role. In the relational task explored here, an agent is presented with two objects,

one after the other, and its task is to catch the second object if it is smaller than the first and

to avoid it otherwise. Again, this task can be described in similar terms: each of the two

objects is either first or second and either larger or smaller, and the appropriate behavioral

response requires that these two sets of features be aligned properly.

6.2 Modeling Relational Categorization

Models of relational categorization have traditionally taken its role-filler description as

a reflection of the solution to the categorization problem, by assuming explicit representa-

tions for each of the features and focusing on mechanisms for binding them. For instance,

in the numerous connectionist and hybrid symbolic-connectionist models of relational cat-

egorization that have been developed, features are represented explicitly either as sym-

bols or as distributed patterns of activity over sets of neural units [67, 101–103, 116, 229].

A natural consequence of adopting this approach is the so-called binding problem, which

concerns how features can be associated with each other in such a way that the two possi-

ble bindings are distinguished. Diverse solutions to the binding problem have been pro-

posed, as reviewed in [67]. One common solution is to dynamically mark separate role
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and filler elements as belonging together [1, 102, 104, 207]. That is, in addition to an ac-

tivation, elements have another associated value which, when it matches that value for

another element, represents a binding between them. An alternative solution is to incor-

porate role information directly into the encoding of a set of input values. For example, a

feature vector and a special “role” vector may be combined—e.g., using convolution [178]

or the tensor product [211]—to form the inputs to a connectionist network [89]. In this

way, binding is implemented through an explicit combination mechanism. A third solu-

tion is to allocate different parts of the relational system—e.g., separate banks of units in a

connectionist network—to represent different roles [88].

A key point about all of these solutions is that they rely on a conception of relational

categorization as an abstract computational task, in which information is represented as

a set of abstract features and is processed in a stepwise computational procedure. These

assumptions allow modelers to make ad hoc decisions in designing their representations

or network architectures to deal with the binding problem. In contrast, our approach to

relational categorization makes no such assumptions. Instead of studying relational cat-

egorization in terms of abstract representations for the features belonging to a high-level

description of the problem (first, second, larger, smaller) and a way to bind these represen-

tations together, we focus on grounded relational behavior in embodied agents. A crucial

advantage of this approach is that it significantly broadens the playing field for possible

relational mechanisms. In particular, the analysis presented below will demonstrate how

relational categorization may be carried out without any obvious binding mechanisms,

thus avoiding consideration of the binding problem altogether.

Several other models are noteworthy for eschewing the binding view of relational cat-

egorization and, like the models studied here, demonstrating the ability of dynamical neu-

ral circuits to perform relational tasks. For example, in one study a simple recurrent net-

work was trained to recognize string sequences of the form anbn, and thus to identify a
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same count relationship between sequences of inputs [188]. However, the task performed

by this model, as with those performed by binding models, is disembodied and computa-

tional in nature, whereas the work here is concerned with relational behavior in situated

and embodied agents. In another study, a large-scale spiking network model was de-

veloped to capture experimental findings from a relational task performed by macaque

monkeys [26, 155, 189]. In this case, though, the relational mechanism was hand-designed,

while in the work presented here we employ evolutionary techniques, thereby attempting

to minimize a priori assumptions about how the relational mechanisms should work.

The modeling approach used here has been applied to a wide variety of behaviors, in-

cluding chemotaxis and walking [19], navigation [242], object categorization [16, 17, 244],

short-term memory [210], associative learning [177], decision making [237], selective atten-

tion [77,210,245], agency detection [51], and communication [184,253]. The central idea of

this approach is to use evolutionary algorithms to evolve “nervous systems” for embodied

and situated model agents as a way to develop the conceptual foundations and theoreti-

cal tools necessary for understanding brain-body-environment systems [20, 33, 50, 94, 162].

Since animals were evolved, not designed, they were selected for their overall behavioral

efficacy rather than their understandability. Thus, by mimicking the process by which bi-

ological brain-body-environment systems were produced, we can likewise evolve model

agents that can exploit the freedom to partition solutions across brain-body-environment

boundaries in ways that will not necessarily align with our preconceptions about how

such systems should work. However, our evolved model brain-body-environment sys-

tems have the significant advantage that we have complete access to and control over their

nervous systems, bodies, and environments, allowing us to undertake detailed analyses

of their operation. In addition, many analysis techniques, including those of informa-

tion dynamics, are quite data-intensive, and it is better to understand the strengths and

limitations of these techniques in a context where data is plentiful before turning to the
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approximations necessary for working with empirical data.

6.3 Methods

The model agent and environment used in this study are essentially the same as those

used in previous work on object categorization [16,17]. The agent has a circular body with

a diameter of 301, and an array of 7 distance sensors equally spaced over an angle of π
6

radians on the agent’s top side (Figure 6.1(a)). Each distance sensor has a maximum length

of 220. Distance sensors take on values that are inversely proportional to the distance

at which their corresponding rays intersect objects in the environment, with a minimum

value of zero when rays are at their maximum length and a maximum value of 10 when

rays are at zero length (i.e., when an object is immediately above the agent). The agent is

positioned along the bottom edge of a planar environment and is able to move horizontally

with a maximum velocity of 5 in either direction. The environment extends indefinitely

in both horizontal directions, so that the agent’s motion is unimpeded by environmental

boundaries. Circular objects fall towards the agent from above with a constant vertical

velocity of -3. As will be elaborated later, the agent’s task is to “catch” or “avoid” various

of these objects, where catching or avoidance is determined by the horizontal separation

between the agent and object when the object completes its fall.

The agent’s behavior is controlled by a continuous-time recurrent neural network [15,

18], which is a particular instance of the general class of additive neural network models

that have been extensively studied in neuroscience [86, 95, 99, 100, 170]. Each unit in the

network is governed by the state equation

τiṡi = −si +
NX

j=1

wjiσ(sj + θj) + Ii i = 1, . . . , N (6.1)

1Note that the units of measurement are essentially arbitrary. For concreteness, one can assume that
distances are in centimeters, time is in seconds, and velocities are in cm/sec.
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(a) (b)

Figure 6.1: The agent and environment. (a) The agent moves horizontally while circles
fall towards it from above. The agent’s sensory apparatus consists of an array of seven
distance sensors. (b) The distance sensors fully project to a layer of fully interconnected
interneurons, which in turn fully project to the two motor neurons.

where si is the state of neuron i, τi is its time constant, wji is the strength of the connection

from the jth to the ith neuron, θj is the bias for neuron j, σ(x) = 1
1+e−x is a logistic activation

function, and Ii represents an external input to neuron i. The output of neuron i is given

by oi = σ(si + θi). The standard neurobiological interpretation of this model is that si rep-

resents the mean membrane potential for neuron i, σ(·) represents its mean firing rate, τi

represents its membrane time constant, θi represents its threshold, the weights wji,j 6=i rep-

resent synaptic connections from neuron j to neuron i, and wii represents a simple active

conductance. Alternatively, the model can also be interpreted as representing nonspiking

neurons [54] or subcellular signalling pathways [46,212], or can be viewed simply as a con-

venient and extremely general basis of dynamics2. The neural architecture for an agent is

depicted in Figure 6.1(b). The seven sensors (black boxes 1-7) are fully connected to a layer

2Indeed, continuous-time recurrent neural networks have been shown to be universal approximators of
smooth dynamics [31, 65, 118], so that in principle they can reproduce the behavior of any smooth dynamical
system to an arbitrary degree of accuracy.
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of three interneurons (circles 1-3), which are fully interconnected and project fully to two

motor neurons (circles 4-5). The agent’s horizontal velocity is proportional to the differ-

ence between the outputs of the two motor neurons. Thus, the equations for the complete

model take the form

ẏ = −3

τiṡi = −si +
3X

j=1

wjiσ(sj + θj) +

7X

j=1

Ij(x, y, d) i = 1, 2, 3

τiṡi = −si +
3X

j=1

wjiσ(sj + θj) i = 4, 5 (6.2)

ẋ = 5(σ(s4 + θ4)− σ(s5 + θ5))

where x is the horizontal position of the object relative to the agent’s midline, y is the

vertical position of the object relative to the agent, and Ij(x, y, d) is the sensory input from

the jth distance sensor due to a circular object with diameter d at location (x, y) in agent-

centered coordinates. Models were simulated using the forward Euler method with an

integration step size of 0.1.

The evolutionary algorithm used in this study is essentially the same as that described

in [16]. The algorithm acts on a population of real-valued vectors, where each vector rep-

resents the neural parameters for an individual agent, including its time constants, biases,

and connection weights (from sensors to neurons and between neurons). The components

for each vector are mapped to neural parameters using linear maps from ±1 to the follow-

ing ranges for each parameter: time constants 2 [1, 30], biases 2 [−16, 16], and connection

weights 2 [−16, 16]. Additionally, time constants are clipped to be greater than or equal to

1, so that they never become too small relative to the integration step size. At the outset,

a population is initialized by assigning each component of every vector a random value

uniformly distributed over the range ±1. Then, the fitness of each individual is evaluated
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using a method that will be described momentarily, and individuals are selected for re-

production using fitness proportionate selection with linear fitness scaling and a fitness

scaling multiple of 1.01 [11, 76]. For each selected individual, a “child” is produced via

mutation by adding to it a random vector whose direction is uniformly distributed on the

M -dimensional hypersphere ( [126], p. 130) and whose magnitude is normally distributed

with a mean of 0 and a variance of 4. Finally, for each slot in the next generation, the child

is chosen if its performance is greater than or equal to that of its parent, and otherwise the

parent is copied.

Agents are evolved for the ability to make discriminations based on the relational cat-

egory smaller. This ability is assessed in a task wherein agents are shown pairs of circular

objects, presented one after the other, and the objective is to catch the second circle in each

pair if it is smaller than the first, and to avoid it otherwise3. Crucially, the same circle may

be either smaller or larger depending on the other, so the agent must attend to the size rela-

tion between the two circles. An agent’s performance in this task is determined based on

its behavior in a number of evaluation trials, where each trial proceeds as follows. First,

the agent’s neural states are initialized to 0. Then, a circular object with diameter 2 [20, 50]

begins falling from the top of the environment with a horizontal offset of 0 and a vertical

offset of 220 relative to the topmost point on the agent’s body. Thus, the object begins its

fall along the agent’s midline and just beyond its field of view. The object falls until it

reaches a vertical position coinciding with the top of the agent and is then removed from

the environment. Then, a second circular object begins falling from the same initial posi-

tion as the first object. The second object also has diameter 2 [20, 50], but with this value

differing from that of the first object by at least 5 so that the size difference between the

two objects will be perceptible to the agent given the coarse spatial resolution of its sensors.

The second circle falls until it reaches the agent, and then the final horizontal separation

between the agent and the second object is recorded. This final separation constitutes the

3Interestingly, a very similar task was used in an earlier study on imprinting behavior [107].
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Figure 6.2: Procedure for fitness evaluation. Black dots indicate the 40 evaluation trials.
Scores on these trials are combined to form two aggregate measures, represented in (a)
and (b), respectively. These two measures are then combined to determine overall fitness.
See the main text for details.

agent’s catch/avoid response, with a separation of 0 corresponding to a perfect catch and

a separation of MaxDistance (= 75) or greater corresponding to perfect avoidance. The

agent’s score on a trial is 1 − d if the second circle is smaller and d if the second circle is

larger, where d is the final separation clipped to MaxDistance and normalized to [0, 1].

The fitness of each agent is calculated from a total of 40 evaluation trials, where each

trial consists of a different combination of first and second object sizes (black dots in Fig-

ure 6.2). Initially, we tried simply averaging the scores on all trials in order to determine

the overall fitness for an agent. However, assigning fitness in this way resulted in agents

adopting one of two suboptimal solutions: agents would catch or avoid based on the size

of either the first or second object alone (e.g., always catching if the first object size was

greater than 35, and avoiding otherwise), and thus would ignore the size relation between

the two objects. To compensate for this, we used a slightly more sophisticated procedure



6. Embodied Models of Relational Categorization 97

0 20 40 60 80 100 120 140

-50

0

50

100

150

200

time

x

(a) active

0 20 40 60 80 100 120 140

-50

0

50

100

150

200

time

x

(b) passive

Figure 6.3: Active and passive behavioral strategies. Sample trajectories of the agent’s
x-position for the (a) active and (b) passive agents. Blue trajectories correspond to trials
where the second object is smaller than the first (catch trials), while red trajectories corre-
spond to trials where the second object is larger (avoid trials).

for weighting and averaging the trial scores. First, an aggregate measure called rowAgg

was calculated by averaging the scores in each solid oval in Figure 6.2(a), resulting in ten

numbers, and then taking the average of those ten numbers. Thus, for each second object

that appears in at least one trial where it is smaller and one trial where it is larger, rowAgg

assigns equal weight to smaller and larger trials. In this way, rowAgg penalizes strategies

based on observing the size of the second object only. Next, an analogous procedure was

carried out for the dashed ovals in Figure 6.2(b) to calculate a second aggregate measure

colAgg. Thus, colAgg penalizes strategies based on observing the size of the first object

only. Overall fitness was then computed as the minimum of rowAgg and colAgg.

6.4 Results

We performed ten evolutionary runs each for agents having five, four, and three in-

terneurons, respectively. In each run, a population of 200 individuals was evolved for

1,000 generations. The best agent in each run had a fitness of at least 90% on 10,000 ran-

dom size combinations. A further attempt to evolve agents with two interneurons was
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unsuccessful, suggesting that three interneurons may be the minimum necessary for high

performance on this task.

The behavioral strategies of the agents with three interneurons fall into two categories.

One group of agents employ an active strategy, moving back and forth repeatedly to scan

circles as they fall (Figure 6.3(a)). The other group use a passive strategy, remaining mostly

still as the first circle falls, and then either remaining in place to catch the second object or

veering to one side and avoiding it (Figure 6.3(b)). For the remainder of this chapter, we

will focus exclusively on the passive strategy, though in Chapter 7 we will also analyze

some aspects of the active strategy. This decision to concentrate our preliminary analysis

on the passive strategy was based on three considerations: (1) the agent with the best per-

formance uses it; (2) the majority of agents (6 out of 10) use it; (3) the relational mechanism

underlying it is more straightforward. In particular, we will focus on the best evolved

agent as a characteristic example of the passive strategy. The best agent had a fitness of

99.83% over 10,000 random size combinations. A quick glance at the agent’s performance

over the range of object sizes verifies the desired pattern for relational categorization (Fig-

ure 6.4), with the agent’s behavior divided into distinct catch and avoid regions coinciding

with smaller and larger second objects, respectively.

6.5 The Dynamics of Relational Categorization

To understand what produces the agent’s relational behavior, it is necessary to exam-

ine the agent’s neural dynamics. In particular, two features of the dynamics turn out to

be essential. The first feature has to do with how the agent stores the size of the first ob-

ject. The agent must store this size in order to respond differently to the second object

when it is smaller or larger. This means that some aspect of the agent’s state—its neural

activations and horizontal position—must correspond to the size of the first object at the
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Figure 6.4: Performance of the best evolved agent. A density plot of the agent’s final
horizontal separation from the second object, with black indicating a perfect catch and
white indicating perfect avoidance. The gray line indicates where the two object sizes are
equal. The blue lines indicate where the size difference between the two objects equals the
minimum size difference used in evaluation trials.

trial midpoint (i.e., when the first object is removed and the second object begins its fall).

In general, this correspondence could be quite complex and nonlinear, incorporating any

subset of the agent’s state variables. However, in the agent under consideration the size in-

formation is stored directly; namely, the output of one interneuron, Neuron 3 (N3), stores

the size. The output of N3 linearly correlates with the size of the first object at the trial

midpoint (Figure 6.5), whereas all other state variables take on essentially constant values.

We verified this property of N3 by setting the other state variables to suitable fixed values

at the trial midpoint and confirming that performance changed negligibly as a result.

The second feature of the dynamics has to do with what initiates the agent’s catch/avoid

response. The crucial observation here is that another interneuron, N1, either switches off

(i.e., its activation decays to zero) or remains on during the fall of the second object (Fig-

ure 6.6). Furthermore, whether or not N1 switches off determines the agent’s catch/avoid
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Figure 6.5: Output of N3 at the trial midpoint. The output of N3 is plotted as a function of
first object size. The output of N3 stores the size by linearly correlating with it.

response. If N1 switches off, the agent catches the second object, while if N1 remains on the

agent avoids it. Thus, we can account for the agent’s relational behavior by understanding

what factors determine whether or not N1 switches off. Consequently, we next need to

explore how these two features of the dynamics—the stored size in N3 and the switching

behavior of N1—interface with one another. Specifically, how does the activation of N3

combine with the influence of the second object to trigger the switching behavior of N1,

and as a result the agent’s catch/avoid response?

To probe this question, we first examine the effect of N3 on N1. This effect is deter-

mined primarily by the connection from N3 to N1, which is negative (i.e., inhibitory).

Thus, N3 tends to cause N1 to switch off, and greater activations of N3 cause N1 to switch

off more quickly (Figure 6.7). Since N3 stores the size of the first object, this means that

larger first object sizes tend to produce faster decays in the output of N1. However, despite

this tendency of N3 to switch N1 off, we know that in some cases N1 remains on, and that

whether or not N1 switches off determines the agent’s catch/avoid response. So, what



6. Embodied Models of Relational Categorization 101

Figure 6.6: Switching behavior of N1. Trajectories of N1 corresponding to a first object size
of 35 for a range of second object sizes. Whether or not N1 switches off determines the
agent’s catch/avoid response.

determines whether or not N1 switches off? To answer this question, we must explore the

underlying equilibrium structure of the neural dynamics.

The neural circuit is a nonautonomous dynamical system, since it receives time-varying

inputs from the distance sensors. A common strategy to analyze a nonautonomous sys-

tem is to examine its autonomous dynamics when the inputs are held constant, and then

to examine how this dynamics varies for different sets of inputs. The nonautonomous

dynamics can then be approximated by considering the sequence of autonomous systems

corresponding to the particular inputs that the nonautonomous system receives. In our

case, three factors determine the inputs to the agent’s neural circuit: (1) the size of the

object; (2) the vertical offset of the object; (3) the horizontal offset of the object. However,

since the agent remains still for most of each trial (i.e., it uses the passive strategy), we can

simplify our analysis by ignoring changes in the input due to (3). Thus, we can explore the

dynamical structure of the neural circuit by considering it as a function of two variables:

the size of the object and its vertical separation from the agent.

It turns out that the only limit sets exhibited by the neural circuit are equilibrium points,
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Figure 6.7: The impact of N3 on N1. Trajectories of N1 and N3 over the second half of a
trial for several first object sizes. Gray trajectories are catch trials and black trajectories are
avoid trials. Higher activations of N3 cause N1 to switch off more quickly.

whose positions and stabilities we can calculate [222]. The circuit has a single stable equi-

librium point when the object is very far or very close to the agent, but is bistable when

the object is at an intermediate distance, with saddle-node bifurcations separating these

unistable and bistable regions. Thus, at intermediate distances, the circuit has two stable

equilibrium points, which serve as attractors for system trajectories, and a single saddle

point, which separates the two basins of attraction. How does this equilibrium structure

explain the switching behavior of N1? To answer this question, we can superimpose rep-

resentative trajectories of N1 over a plot of the system’s equilibrium points (Figure 6.8),

showing how the trajectories of the system are shaped by the underlying organization

of its dynamics. Note that the bistable region separates the trajectories of N1 into those

that switch off and those that remain on, corresponding to catch and avoid trials, respec-

tively. The bistable region is produced by a bifurcation that occurs when the second object

reaches a certain vertical offset. The timing of this bifurcation correlates with the size of

the second object (occurring earlier for larger second objects), so that trajectories of N1 are

appropriately partitioned into catch and avoid regions.
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Figure 6.8: The influence of bistability on N1. Trajectories of N1 for a range of first object
sizes (gray and black lines) along with the equilibrium points (EPs) of the neural circuit.
Blue EPs are stable and green EPs are saddles. The bistable region separates the trajectories
into two basins of attraction. The dashed red lines show where the agent’s ray sensors are
first broken. Other abrupt changes in the underlying dynamics are due to bifurcations.
Note that there is a minor inconsistency between the trajectories and EPs due to the fact
that horizontal offsets between the agent and object were ignored.

With these results, we can now assemble a dynamical account of the agent’s relational

mechanism as follows. During the first half of a trial, the output of N3 comes to correlate

with the size of the first object, while N1 switches to fully on. Then, during the second

half of a trial, N1 begins to switch off. Due to the inhibitory effect that N3 has on N1, N1

switches off more quickly for larger first objects. As the second object falls, a bifurcation

occurs whose timing depends on the size of the second object. If the activation of N1 is

low enough by the time the bifurcation occurs, N1 switches off completely and the second

circle is caught. Otherwise, N1 returns to fully on and the second circle is avoided. The

inhibitory effect of N3 on N1 and the timing of the bifurcation are coordinated such that
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smaller second objects are caught and larger second objects are avoided.

6.6 Discussion

One significant feature of the analysis presented above is that it demonstrates the cru-

cial role that time can play in a dynamic neural mechanism. For example, the activation

of N3, which stores the size of the first object, affects the subsequent network dynamics

by causing N1 to switch off more quickly for larger first objects. Also, the size of the sec-

ond object determines the timing of when a bifurcation occurs in the system, dividing the

trajectories into catch and avoid responses. Finally, the relational mechanism as a whole

relies on the coordinated timing of N1 switching off and the occurrence of the bifurcation.

The central importance of time runs as a common thread throughout these examples.

The analysis also shows how information can be “represented” and “processed” in a

variety of ways in a dynamic neural circuit. One piece of information, the size of the first

object, is stored in the activation level of N3. This encoding of a perceptual feature by

a neural activation fits with the standard approach to representation in connectionist net-

works. However, if we try to identify what serves to represent the size of the second object,

the only obvious candidate is the bifurcation that the system undergoes. This correspon-

dence between a stimulus feature and the onset of a bifurcation is an entirely different way

for information to bear on the network dynamics. Nevertheless, the analysis makes clear

how these different features are integrated seamlessly to produce relational categorization.

As we will see in the next chapter, other agents use their position in the environment to

store information about object sizes. Thus, in this case the position of the agent, as well as

its neural dynamics, plays a crucial role in the relational mechanism. As we will discuss,

this kind of strategy fits nicely with one popular idea about the importance of situatedness
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and embodiment for cognition, which is that they allow a cognitive agent to offload infor-

mation to its environment. One strength of dynamical approaches is that neural, bodily,

and environmental variables are all represented in the same dynamical language, so that

cognitive processes may naturally spread across the entire brain-body-environment sys-

tem. Similarly, our information dynamics approach described in the next chapter applies

just as easily to bodily and environmental variables as it does to neural ones, allowing us

to track the flow of information for embodied and extended solutions to cognitive tasks.



7

Information Dynamics of Embodied
Relational Categorization

In this chapter, we apply our information dynamics framework to analyze the mod-

els of relational categorization described in the previous chapter. First, in Section 7.1, we

provide the details of our approach, describing how the tools introduced in Chapter 5

are applied to our model agents. Then, in Section 7.2, we analyze several features of the

passive agent that was the focus of Chapter 6, including how the agent extracts informa-

tion about the sizes of objects and how the agent integrates information about the sizes of

different objects. In Section 7.3, we then turn to an analysis of an agent using an active be-

havioral strategy for relational categorization. The analysis of this agent illustrates several

of the unique ways that embodiment can influence information dynamics, including the

ability of embodied agents to actively elicit and structure sensory information, and their

ability to offload information to their bodies and environments. Finally, in Section 7.4, we

conclude with some general discussion and directions for future work.

7.1 Information Dynamics of Embodied Agents

The central idea of our information dynamics approach is to use the tools developed in

Section 5.2 to explore how information about particular stimulus features flows through

a brain-body-environment system. For example, in our analysis of the relational agents,

106
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Figure 7.1: Brain-body-environment system as a dependency graph. Each component of
the brain-body system (sensors S1-S7, neurons N1-N3, motors M1-M2, and body position
X) is represented by a time-indexed sequence of nodes, with a directed arrow from one
node to another representing a causal influence of the former onto the latter. The influence
of environmental features is represented by the nodes labeled F .

the stimulus features that we will consider are the sizes of the first and second objects pre-

sented to an agent. Traditionally, information-theoretic analyses have focused on static or

time-averaged measures of informational structure. In contrast, our approach is to unroll

these static measures across time to explore how informational structure evolves over the

course of behavior. In addition, by further unrolling across values of the stimulus feature,

we are able to trace how information about particular stimuli flows through the system.

To conceptualize our approach, it is helpful to visualize a brain-body-environment sys-

tem as a dependency graph (Figure 7.1). In such a graph, each component of the brain-

body system is represented by a time-indexed sequence of nodes (circles in Figure 7.1),

with a directed arrow from one node to another representing a causal influence of the for-

mer onto the latter. For example, the dependency graph in Figure 7.1, representing the

network of dependencies for one of our relational agents, includes nodes for all sensory

(S1-S7), neural (N1-N3), motor (M1-M2), and bodily (X; the agent’s horizontal position)
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components of the agent’s brain and body. Additionally, the influence of environmental

variables, such as the size of a falling object, is represented by the nodes labeled F , with the

arrows from these nodes to those of the sensors representing the influence of environmen-

tal features on the sensory input that the agent receives. Also note the cyclic progression

of arrows from S ! N ! M ! X ! S, which represents the feedback relationship be-

tween sensory inputs and the agent’s motion. In the context of such a diagram, the aim

of our approach can be interpreted graphically as that of tracking the flow of information

about F along various paths through the dependency graph. For example, the question of

how information flows through the neural components can be answered by tracking the

information about F along the path Nt ! Nt+1 ! Nt+2 ! · · · . Similarly, to answer the

question of how the agent’s motion shapes its sensory input requires an understanding of

the path M ! X ! S.

Concretely, the first step in our analysis is to evaluate an agent’s behavior for a uni-

formly distributed sample of the stimulus feature, recording the trajectories of all neural

and bodily state variables for each stimulus presentation. From the values taken on by

each state variable at each moment in time and the corresponding stimuli that produced

them, we then estimate a joint probability distribution over values of the state variable and

the stimulus feature. In other words, the stimulus feature is treated as a random variable

F , and each state variable of the agent system (its sensors, neurons, and body position)

is treated as a stochastic process—a time-indexed sequence of random variables—and we

estimate joint distributions for F paired with each time-indexed random variable. To es-

timate these distributions, we use average shifted histograms [199], a simple form of ker-

nel density estimation, because they provide a beneficial trade-off between computational

and statistical efficiency, though other density estimation techniques could certainly be

used [200,208]. In particular, for our analysis of the relational agents, each agent was eval-

uated on object sizes in the range [20, 50] (the same used during evolution) sampled at an
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interval of 0.01. Probability distributions were then estimated using average shifted his-

tograms with 100 bins and 8 shifts along each dimension, though all reported results were

qualitatively robust over a broad range of discretizations (20 to 200 bins).

Our analysis then proceeds by calculating informational measures on the basis of these

estimated probability distributions. First, we calculate the mutual information I(F ;Vt) for

each state variable V and time index t, thereby generating a flow of information for each

state variable of the system. To better understand the dynamic properties of these flows,

we next apply our measure of information gain (Equation (5.4)) to the flow for each state

variable. Then, to determine the sources of information gain, we quantify the informa-

tion transfer (Equation (5.5)) originating from each of the causal influences onto a state

variable. Finally, to explore the structure of information flow at a finer level of detail, we

use the concept of specific information (Section 2.4) to expand our analysis. Specifically,

we unroll our measures of information flow I(F ;Vt) to consider the specific information

I(F = f ;Vt) that each state variable V provides about each particular stimulus f at each

time t. Similarly, applying specific information to expand our measures of information

gain and transfer, we explore how state variables acquire and exchange information about

particular stimuli as a function of time.

7.2 Analysis of Passive Relational Categorization

As a first demonstration of our information dynamics approach, we next apply it to

explore two questions about the passive relational agent discussed at length in Chapter

6. First, we examine how the agent extracts information about the size of the first object.

Then, we explore how the agent integrates size information from the first and second ob-

jects in order to make its relational discrimination.
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Figure 7.2: The flow of first object size information for sensors S1-S3. All plots throughout
this chapter are normalized to [0,1] by dividing by the maximum possible value for specific
information.

We begin by examining what information about first object size (henceforth F ) is avail-

able to the agent. In general, this amounts to examining the flow of information about F

in each of the agent’s seven sensors. However, since the agent uses a passive strategy and

objects are always presented at the agent’s midline, information from the sensors is bilat-

erally symmetric and thus we can simplify our analysis by considering only the sensors

on one side. Plots of the information flow for sensors S1-S3 are shown in Figure 7.2, where

specific information is plotted as a function of object size and time. The flow of information

for each sensor exhibits the same prominent feature: a high “ridge” of information that be-

gins first for large sizes and travels across to successively smaller sizes. However, the time

at which this ridge forms varies for the three sensors, beginning first for the innermost

sensor (S3) and later for sensors further from the agent’s midline.

What do these plots tell us about the information available to the agent? Recall that a

high value for the specific information indicates that a particular object size is unsurprising

given the state of the sensor at a certain point in time. This means that the sensor tends

to take on distinct values for that object size, serving to distinguish that object size from

differently sized objects. Thus, the high ridge of information informs us that the state

of each sensor first distinguishes large objects, then objects successively smaller in size.

Furthermore, by examining the path of the object with respect to the agent, the origin of
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these ridges becomes immediately clear: the peak value in information for each object size

occurs at precisely the time when objects of that size first intersect the corresponding ray

sensor. Since larger objects intersect earlier, the sensors first provide information about

these sizes. Thus, the primary information available to the agent stems from the timing

of when differently sized objects intersect each ray sensor, with this timing information

varying for each of the three sensors.

The next step is to inspect how size information flows through other components of the

brain-body-environment system. In general, this includes both the interneurons and the

position of the agent’s body; however, since the agent uses a passive strategy, we can sim-

plify our analysis by considering only neural state variables. Each of the three interneurons

shows a markedly different pattern of information flow (Figure 7.3). First, consider the in-

formation contained by each neuron at time 73.5, which corresponds to the time when

the first object is removed. Previously, in Chapter 6, we noted the primary role played by

N3 in storing information about F , a fact that is also evident from the plots of informa-

tion flow. When the object is removed, N3 contains a high amount of information about

all object sizes, while N1 and N2 contain no information. However, crucially, while our

previous observation about N3 was based on a single snapshot of the agent’s state, the

plots in Figure 7.3 depict the entire temporally-extended process that leads to this even-

tual state. Thus, by examining information flow, we can move beyond considering simply

how information ends up stored, and instead explore the dynamic process that results in

this storage. In particular, the plots in Figure 7.3 make clear that, although size information

ends up concentrated in N3, both N1 and N2 also contain size information at earlier times

in the trial. N1 contains a high amount of information about small and large sizes late in

the trial, while N2 contains information first about small and then about large sizes. Thus,

contrary to the picture of N3 as the sole bearer of size information, these observations sug-

gest that N1 and N2 may also play an important informational role, an idea that we return
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Figure 7.3: Flow of first object size information for neurons N1-N3 of the passive agent.

to momentarily.

Nonetheless, the most striking feature of these information flow plots is the gradual

build-up of size information in N3 (Figure 7.3C). In contrast with N1 and N2, which both

gain and subsequently lose information, N3 continually accumulates information through

a succession of information “waves”. To better understand the source of these waves, we

next examine the dynamics of information gain for N3 (Figure 7.4). Comparing Figures

7.3C and 7.4 reveals that the waves of information flow translate to ridges of information

gain. In particular, the plot of information gain shows a series of four prominent ridges,

each traveling across from large to small sizes, as well as some other secondary ridge-

like features. Importantly, the prominent ridges of information gain closely align with the

ridges of information flow produced by the agent’s sensors (Figure 7.2). Recall that the

latter are produced by objects intersecting the ray sensors at different times depending

on their size. Thus, together these observations suggest a hypothesis for how the agent

Figure 7.4: Information gain for N3.
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Figure 7.5: Transfer of first object size information for sensors S1-S3 to neuron N3.

extracts size information: N3 primarily integrates information available from the sensors,

stemming from the timing of when each sensor is broken by differently sized objects.

To explore this hypothesis, we next calculate the transfer of information about first

object size from each of the three sensors to N3 (Figure 7.5). The results of these calcula-

tions provide strong evidence in support of our hypothesis, confirming the relationships

between sensor information flow and information gain in N3 that can be gleaned from a

visual comparison of Figures 7.2 and 7.4. In particular, each of the four prominent ridges of

information gain can be accounted for by one of the agent’s sensors, with the two ridges oc-

curring earliest in time linked to S3, and the ridges occurring third and fourth associated

with sensors S2 and S1, respectively. However, one must be cautious when interpreting

these results, as information that appears to be transferred by one component may also

be provided redundantly by another. In this sense, our measure of extrinsic information

transfer, like transfer entropy, is actually a measure of apparent transfer, as its redundant

portion is ambiguous with regards to the underlying causal structure (recall the discussion

in Section 5.1). Indeed, calculating the information transfer from N2 to N3 (Figure 7.6), we

find that this sort of causal ambiguity is exactly the case. Specifically, the information trans-

fer from N2 includes portions of three of the four prominent ridges of information gain,

indicating that this information may be transferred either from N2 or from the sensors.
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Figure 7.6: Transfer of first object size information for neuron N2 to neuron N3.

Unfortunately, this ambiguity cannot be resolved using purely informational measures—

those based only on observing, rather than perturbing, a system—as the determination of

causal relationships requires some method for intervening in the system.

Consequently, to test our hypothesis regarding how information accumulates in N3, we

next explored the impact of removing information from particular components using an

interventional method called informational lesioning [115]. The basic idea of informational

lesioning is to systematically diminish a component’s ability to convey information while

simultaneously minimizing its deviation from normal behavior. In this way, the informa-

tional contribution of a component can be quantified independently from other functional

roles that the component might play.

We first applied this idea to remove the information provided by each sensor. For each

of the sensors, normal behavior is essentially the same: it remains off for a certain period

before intersecting the object, then begins to increase monotonically, with the timing of

this transition dependent on the size of the object. Additionally, the rate at which sensor

values increase, i.e., the curvature of the sensory trajectory, also varies with object size.

Thus, size information actually comes from two features of the sensory input: the timing

of the off/on transition, and the curvature of the subsequent trajectory. In order to isolate

timing information, which our analysis predicts to be the most salient, we first removed

information due to varying curvatures. This was done by replacing the curved portion of
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sensor trajectories with a single best-fit linear approximation, formed separately for each

sensor, so that trajectories for a given sensor differed only in the timing of their off/on

transition. Performing this manipulation simultaneously on all sensors had essentially no

impact on performance (99.67%), thus confirming our prediction that timing information

is primarily what the agent uses to extract object size.

Next, to test the prediction that timing information from different sensors is integrated,

we independently removed the timing information from each symmetric pair of sensors

by setting their values according to the mean off/on transition time. Under this manipula-

tion, performance dropped to 71.84% for S1/S7, 92.53% for S2/S6, and 96.93% for S3/S5.

Thus, timing information clearly is integrated from the different sensor pairs, though with

varying contributions made by each. Interestingly, the relative contribution from each pair

correlates with the magnitude of information gain that each produces for N3 (height of

ridges in Figure 7.4). For example, the greatest impact on performance results from le-

sioning S1/S7, which also produce the largest information gain for N3. Thus, not only

does information flow analysis yield a correct qualitative prediction for how information

is extracted, but also points to some quantitative features of this process.

However, as alluded to earlier, this explanation does not provide the full story. In par-

ticular, the other two interneurons also contain size information at different times, and

thus may also contribute to the information stored in N3. Moreover, the results conveyed

by Figure 7.6 indicate that N2 may transfer information directly to N3, with N2 potentially

accounting for several features of N3’s information gain. To explore these possibilities,

we performed analogous informational lesioning experiments for N1 and N2. The results

were a minimal change in performance when N1 was lesioned (98.59%) but a considerable

decrease when N2 was lesioned (92.27%). Thus, the results indicate that N2 also plays a

significant informational role with respect to F . In particular, it is likely that N2 accounts

for some of the features in the plot of information gain for N3 (Figure 7.4), though further
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testing would be needed to determine exactly which of these features are due to N2 versus

which are due to the sensors. However, in general the results make clear that, contrary

to the view of one neuron capturing size information, information is in fact distributed

both spatially—across different components of the system—and temporally—with differ-

ent components carrying information at various times.

Let us now examine how the agent integrates information about first and second ob-

ject size (abbreviated S). Rather than an exhaustive informational analysis, our primary

interest here will be to compare with previous dynamical findings; thus, we will focus

primarily on N1, which we know plays a critical role in triggering the agent’s decision.

To understand the information flow for each feature, we found it most useful to consider

different fixed values of the other stimulus, instead of averaging over them. Thus, we first

examined the flow of information for F with different fixed values of S. An example is

shown in Figure 7.7A for S = 35, with qualitatively similar results for other values of S.

In examining these plots, we can ignore values occurring after time 110, which happen

after the catch/avoid decision is made, and also the narrow band of high values occur-

ring around size 35, which correspond to values of F too similar to S for the agent to

discriminate. Thus, the predominant feature is a rapid increase in information about all

sizes, followed by a sudden collapse just prior to the catch/avoid decision. For different

values of S, this same feature is also present, but with the timing of the collapse occur-

ring earlier or later depending on S. Moreover, examining the flow of information about

S for different fixed values of F (Figure 7.7B), we find essentially the same pattern. N1

quickly gains information about S, then loses it all just before the response is made. Thus,

somewhat strangely, although we know that N1 plays a crucial role in driving the agent’s

response, N1 suddenly loses all information about first and second object size just prior to

the decision being made.

Of course, this result is not actually strange when we consider that what matters for
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Figure 7.7: Flow of information about (a) first object size, (b) second object size, and (c)
relative object size for N1 during the second half of the trial.

categorization is not the size of either object individually, but rather their relative size.

To investigate relative size information, we can define a binary random variable R cor-

responding to whether or not the second object is smaller than the first. The flow of in-

formation for R is shown in Figure 7.7C for several different values of S. As expected,

these plots show a rapid increase in relative size information for N1, reflecting the neural

precursor to the agent’s behavioral response. In addition, the slope of this increase can

be seen to vary for different values of S, corresponding to the varying time of the agent’s

decision for different second object sizes. The timing of this increase in relative size infor-

mation also coincides with the collapse in information about F and S, so that collectively

these features signal the integration of size information in N1. Interestingly, this timing

also aligns with the timing of the underlying bifurcation that occurs to split the trajectories

into catch and avoid bundles (recall the discussion in Section 6.5). Thus, here we observe

an agreement between the dynamical and informational accounts of our relational agent,

with each providing a different view of how its behavioral response is produced. Dynam-

ically, this response is carried out through the timing of a bifurcation relative to a previous

build-up of state, while informationally the response is captured by a sudden increase in

size information for both objects, followed by a collapse in information about individual

object size and a corresponding rise in information about relative size.

Using the techniques of information dynamics, we can also track how the relative size
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Figure 7.8: The flow of relative size information for (A) neuron N1, (B) the right motor
neuron M , and (C) the agent’s x-position X . The transfer of relative size information from
N1!M and from M ! X are shown in (D) and (E), respectively.

information that builds up in N1 ultimately drives the agent’s behavioral response. In par-

ticular, shortly after relative size information accumulates in N1 (Figure 7.8A), a similar

pattern can be observed for the agent’s right motor neuron (Figure 7.8B), followed in turn

by a similar pattern for the agent’s horizontal position (Figure 7.8C). This sequential build-

up of relative size information in N1, in the right motor neuron (M ), and finally in X ,

suggests a direct transfer of relative size information along the path N1!M ! X , where

the high amount of information that ends up in X is the information-theoretic manifesta-

tion of the agent’s catch/avoid response. Indeed, calculating the information transfer from

N1 ! M and from M ! X confirms that this is the case, with a high amount of transfer

from N1 ! M peaking around time 100 (Figure 7.8D), followed by a similar peak in in-

formation transfer from M ! X peaking around time 105 (Figure 7.8E). Thus, from these

plots we see that relative size information first builds up in N1, then flows to the right

motor neuron and subsequently flows to X where it is reflected in the agent’s behavior.
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Figure 7.9: Flow of first object size information for neurons N1-N3 of the active agent.

7.3 Analysis of Active Relational Categorization

In this section, we explore the information dynamics of the best evolved active rela-

tional agent. Recall that, unlike the passive agent discussed in the previous section, this

agent moves continuously during both the first and second object presentations (Figure

6.3(a)). Rather than perform a complete informational analysis of the active agent, here we

focus on several features of its behavior that illustrate the various ways that embodiment

can shape information dynamics.

The first feature has to do with how the active agent stores information about the size

of the first object. As in our analysis of the passive agent, we can begin to address this

question by examining the flow of first object size information for each of the agent’s in-

terneurons (Figure 7.9). And again, as for the passive agent, we find that all three interneu-

rons carry significant amounts of size information at different times during the object’s fall.

However, unlike the passive agent, by the time the object concludes its fall and is removed

from the environment, all of this information has been lost and the agent’s interneurons

are completely uninformative regarding first object size. In contrast, when we perform

an identical information flow analysis for the agent’s horizontal position, we find that its

information content increases steadily as the object approaches and remains high as the

object is removed (Figure 7.10(a)). Behaviorally, this result is produced by the agent posi-

tioning itself to the right of its starting location a distance proportional to the size of the



7. Information Dynamics of Embodied Relational Categorization 120

(a) (b)

Figure 7.10: Information offloading. (a) The flow of information about first object size for
the agent’s x-position. (b) Behaviorally, the increase in size information corresponds to the
agent moving to the right a distance proportional to the size of the first object.

first object (Figure 7.10(b)). Thus, in this instance, the agent’s brain demonstrably plays no

part in storing information about object size1, with this role instead performed by a com-

ponent of the agent’s body (or, more precisely, by a relationship between its body and its

environment). These results present a crisp example of information offloading, which refers

to when an embodied agent substitutes actions in the world for actions in the head, effec-

tively offloading aspects of cognitive processes to the environment [106,119]. For example,

laying out ingredients for a recipe in the order that they will be needed is an everyday in-

stance of offloading. Although numerous studies have discussed the importance of this

kind of offloading for embodied cognition, to our knowledge these results represent the

first time it has been demonstrated within a rigorous information-theoretic framework.

This information offloading also impacts the information that the agent receives about

the size of the second object. In particular, as a result of moving a variable distance depen-

dent on the size of the first object, the second object will appear at differing locations in the

agent’s periphery. Informationally, this interaction between the agent’s motion and where

the second object appears is reflected in the flow of information about S for the agent’s

interior sensors (those on the side where the second object falls). Figure 7.11(a) shows the

flow of information about S for sensor S1, the innermost sensor, revealing the surprising

1However, the agent’s brain certainly plays a crucial role in getting information about object size into X .
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(a) (b)

Figure 7.11: Self-structuring of second object size information. The flow of information
about S for (a) sensor S1 and (b) the synergy of S1 and the agent’s horizontal position.

result that this sensor provides absolutely no information about S. Similar results are also

observed for the other interior sensors, while the remaining sensors do not carry any in-

formation until well after the agent’s catch or avoidance has been initiated. However, if

instead one considers the flow of information provided by the synergy of S1 coupled with

the agent’s horizontal position (Figure 7.11(b)), we find that the sensor is indeed highly

informative about the size of the second object, and likewise for the other interior sensors.

This result can be viewed as a quantitative signature of information self-structuring, another

hallmark of embodied information dynamics. Recall from the discussion in Section 3.4

that information self-structuring refers to an agent’s use of its body to elicit and structure

the information available from its sensory surfaces. In this case, it is purely through the

synergistic interaction between the agent’s sensors and the position of its body that the

agent obtains any information at all about the size of the second object.

Finally, another example of information self-structuring, and one that is far more salient

in the context of the categorization task, has to do with the flow of relative size informa-

tion. Figure 7.12(a) shows the flow of information about R for each of the active agent’s
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sensors (gray lines) as well as for its horizontal position (red line)2. For comparison pur-

poses, Figure 7.12(b) depicts the same information flows for the passive agent. Note that,

for the active agent, several of its sensors provide substantial amounts of relative size in-

formation before such information becomes available in its horizontal position, i.e., before

the agent initiates its catch/avoid response. In other words, prior to initiating its response,

the agent has immediate access to relative size information from its sensors, thus enabling

direct perception [73] of the higher-order variable R and, as a result, vastly simplifying the

categorization task. To envision how this might work, adopt the perspective of our active

agent as the second object begins its fall. At this point in time, the agent is positioned to

the right of the falling object, with the horizontal separation between the object and the

agent proportional to the size of the first object. Consequently, if the agent has positioned

itself in just the right way, the second object will either intersect its interior sensors if it is

larger than the first, or not if it is smaller, and the agent’s task reduces to simply attending

to whether or not the activity of these sensors changes and responding accordingly3. In

contrast, for the passive agent, none of its sensors provide substantial information about

relative size until after the agent begins its response. This can be seen in Figure 7.12(b):

none of the sensors begin increasing towards their peak information values until after in-

formation begins to rise for the agent’s horizontal position. Indeed, it is impossible for the

passive agent’s sensors to gain any information about relative size, aside from the small

amount accounted for in footnote 2, until the agent begins to move, allowing information

2Note that, curiously, the active agent’s horizontal position carries some information about relative size
even before the second object begins falling. At first blush, this result is strange indeed, as it suggests that the
agent has some sort of precognitive ability! However, this seemingly odd result can be readily explained by
the fact that object sizes are drawn uniformly from a fixed size interval of [20, 50]. Because of this, knowing the
size of only one of the two objects often provides some information about their relative size: for instance, if the
size of the first object is 50 then the second object is guaranteed to be smaller, if the size is 45 then the second
object is highly likely to be smaller, and so forth. Thus, since the active agent’s horizontal position starts out
correlated with the size of the first object, it also provides some information about relative size. Similarly, the
sensors of the passive agent provide some information about relative size when they begin to correlate with
S, despite having no access to F until the agent begins to move.

3Though the actual strategy employed by our active agent is slightly more complex, it appears to be similar
in spirit to the one described here.
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Figure 7.12: Self-structuring of relative size information. The flow of relative size informa-
tion for all sensors (gray lines) and the horizontal position (red line) of the (a) active and
(b) passive agents.

about F to flow along the path N3 ! M ! X ! S and influence the sensors. Thus, in

this instance, the benefits of information self-structuring are clearly demonstrated, with

the active agent able to circumvent considerable cognitive demands simply by moving its

body.

7.4 Discussion

One of the primary strengths of our information dynamics approach is that it applies

naturally to situated and embodied aspects of behavior. As demonstrated in the previous

section, techniques for analyzing information dynamics apply just as readily to bodily and

environmental variables as they do to sensory and neural ones, and thus can be used to

investigate interactions that span the brain-body and body-environment boundaries. In

future work, we plan to apply these techniques to analyze other agents that exhibit inter-

estingly embodied and extended solutions to cognitive tasks. For example, a previously

evolved feature categorization agent [17] was found to repeatedly scan falling objects be-

fore deciding to catch or avoid them. We plan to investigate what benefits this scanning
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strategy confers over a more passive strategy, and thus perhaps to identify other advan-

tages of information self-structuring. As a second example, we plan to explore how mul-

tiple agents in a shared environment use embodied interactions to transfer information

to one another. In particular, we plan to explore this idea in a model of referential com-

munication that we developed in previous work [253], in which one agent is required to

communicate the locations of spatially distant targets to another agent solely through the

use of embodied gestural interactions. In this case, the techniques of information dynam-

ics can be used to track the flow of information not only through the sensors, neurons and

body of a single agent, but also across the bodily divide separating two agents.

Another significant strength of our approach is that, by more fully extending information-

theoretic techniques to the temporal domain, it opens up the possibility of exploring the

relationship between informational and dynamical approaches to embodied systems. Al-

though preliminary in nature, the analyses presented in Sections 6.5 and 7.2 point to some

promising possibilities along these lines. For example, the two approaches were found

to provide distinct yet compatible accounts for how the agent makes its categorical dis-

crimination regarding relative object size. In informational terms, this was manifested

by a sudden gain and then loss in information about both first and second object size in

N1, followed by rapid gain in information about relative size, while dynamically this was

explained by an appropriately timed bifurcation in the underlying dynamics. In addi-

tion, one can begin to see how the two approaches might complement one another. Using

informational techniques, it was natural to explore how the agent extracts size informa-

tion, a question that would be difficult to address or even formulate in dynamical terms.

Conversely, the bifurcation identified via dynamical analysis helps to explain why the in-

formation flow in N1 exhibits a sudden collapse in information about particular sizes and

increase in information about relative size.

More generally, it is our view that informational and dynamical approaches are likely
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to provide complementary insights, as a result of the unique perspectives and strengths

that each approach affords. Dynamical tools are especially well-suited for characterizing

the long-term behavior of systems, the stability of this behavior in response to perturba-

tions, and the changes in long-term behavior that systems undergo when aspects of their

structure are modified. In contrast, informational tools offer a view of how the behavior of

a system is realized in terms of the specific interactions between its components, and may

be especially useful for characterizing the non-autonomous and transient aspects of be-

havior that are tied to specific external features. As well as these differences, informational

and dynamical ideas also share deep similarities, and it will undoubtedly be informative

to explore this common ground as it relates to properties of brain-body-environment sys-

tems. For example, information gain and loss are closely related to the divergence or con-

vergence of trajectories in phase space [134], which are characterized dynamically by the

Lyapunov exponents [222]. In general, the divergence of trajectories leads to an increase in

information, while convergence leads to its loss. Similarly, the limit sets and basin bound-

aries of a system also relate directly to its properties of convergence and divergence, and

thus are likely to play a significant role in shaping the flow of information. However, the

true test for all of these ideas will be to apply both dynamical and informational techniques

to analyze concrete systems and to compare and contrast the resulting insights that each

provides. The analysis presented here can be viewed as an initial step in this direction.

Ultimately, such work may hopefully begin to reconcile the dynamical and information

theoretic perspectives on intelligent agents which has generated so much controversy in

recent years.



8

Conclusion

The aim of this thesis has been to develop an information-theoretic framework for

the analysis of embodied cognitive systems. This was done by first generalizing mutual

information—one of the core concepts of information theory—to multivariate interactions

with the new method of partial information decomposition. Second, we applied partial

information decomposition to develop a general set of techniques for quantifying infor-

mation dynamics, or how information about arbitrary features flows within, is gained and

lost by, and is transferred between the components of a complex system. Finally, we ap-

plied these techniques to analyze specific examples of embodied cognitive systems. This

analysis revealed how information about task relevant features was extracted and com-

bined by the components of brain-body-environment systems, and illuminated some of

the profound ways that embodiment can impact cognitive behavior.

In the next section, we summarize the main contributions of this thesis and discuss

how it relates to, unifies and extends existing work. In the following section, we then

conclude with several directions for future research that have opened up as a result of the

work presented here.

126
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8.1 Summary of Contributions

The core contributions of this thesis can be summarized in terms of the four key fea-

tures of our framework identified in Chapter 3: its use of multivariate, dynamic, and specific

informational measures to analyze embodied systems.

At the heart of our framework is the method of PI-decomposition, which provides

a new way of quantifying the constituent elements of multivariate information. As dis-

cussed in Chapter 4, the existing work that most closely resembles PI-decomposition is the

interaction information proposed by McGill [153], and the measures of synergy and re-

dundancy used in neuroscience that derive from interaction information [25,131,169,196].

However, PI-decomposition significantly extends this previous work in that it exhaus-

tively decomposes multivariate information into a collection of nonnegative terms, each

of which can be interpreted unambiguously as a meaningful information quantity. In con-

trast, existing multivariate measures either confound different kinds of informational con-

tributions, as in the case of interaction information, or group them together as a bulk quan-

tity, as in the case of total correlation [247]. As we will discuss further in the next section,

the fact that PI-decomposition can be used to decompose and examine the constituent parts

of other informational measures also makes it a powerful tool for clarifying relationships

between existing measures, as well as for developing new measures of interest.

In terms of dynamic measures, our framework also makes several significant contri-

butions. First, the techniques described in Section 5.1 extend transfer entropy—a widely

applied and influential measure of information transfer—in two significant ways, by de-

composing it into state-dependent and state-independent components and by generalizing

it to the multivariate case. Second, in Section 5.2, we showed that the same ideas could be

broadened to encompass the flow of information about arbitrary variables, and in particu-

lar to include the flow of information about external stimulus features, as was our primary
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interest. In this way, the techniques developed in Section 5.2 provide a theoretical bridge

between applications in neural coding, which are primarily concerned with quantifying in-

formation about particular stimuli, and dynamic informational measures, which have thus

far been limited to quantifying intrinsic information flow. Finally, a significant feature of

our application to embodied systems is that we unroll our dynamic measures over time to

explore the detailed time course of information flow, in contrast with previous work which

has focused solely on time-averaged measures. As discussed in Chapter 7, an important

consequence of this kind of temporally-extended informational analysis is that it opens

up the possibility to explore links between informational and dynamical perspectives on

intelligent agents.

The concept of specific information featured prominently in the development of PI-

decomposition described in Chaper 4. Indeed, the observation that different information

sources may provide the same overall amount of information while providing informa-

tion about different outcomes of a target variable S, and thus that information should be

considered overlapping only when it is about the same outcome of S, was the key insight

behind our redundancy measure Imin. Specific information also played a central role in

our analysis of embodied systems in Chapter 7, where it allowed us to quantify the flow of

information about particular stimulus values. In this context, our use of specific informa-

tion is closely related to applications in neural coding, where, as discussed in Section 3.3,

it has been used to characterize the informativeness of neural responses as a function of

stimulus condition [24, 57,120,227]. However, our approach extends these previous appli-

cations in that we quantify specific information not only in neural but also in bodily and

environmental variables, and we use specific information in conjunction with dynamic

measures to track information as a function of both time and stimulus condition. As il-

lustrated in Chapter 7, these extensions allow us to connect time- and stimulus-specific

features of informational quantities (“waves” of information flow; “ridges” of information
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gain) with key aspects of agent-environment interactions (the timing of visual ray/object

intersections).

Lastly, the work presented here also makes several noteworthy contributions with re-

spect to the informational analysis of embodied systems. First, the relational categorization

behavior explored here is considerably more complex than previously studied behaviors,

which, as discussed in Section 3.4, have essentially been limited to simple forms of object

tracking. Our analysis is also the first of its kind to use measures of specific information

or extrinsic information flow, the first to explore the complete time course of information

flow as opposed to time-averaged quantities, and the first to quantify information in bod-

ily and environmental components as well as neural ones. As in previous studies, our

analysis revealed information self-structuring as a striking feature of embodied cognitive

systems, with the feedback from an agent’s motion leaving characteristic informational

signatures on its sensory stream. However, beyond simply demonstrating the occurrence

of self-structuring, our analysis also highlighted its potential advantages for simplifying

cognitively demanding tasks, something that has not been shown in previous studies. Fi-

nally, our analysis also revealed information offloading as another significant consequence

of embodied action—the first time such a phenomenon has been identified in a rigorous

information-theoretic manner—and demonstrated how offloading and self-structuring can

be integrated seamlessly to produce intelligent behavior.

8.2 Future Work

Several directions for future work have been discussed throughout this thesis. Here

we begin by summarizing these directions, and then conclude by identifying several other

promising avenues of investigation.

In Chapter 4, we mentioned the need to devise efficient ways of calculating PI-terms,
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given that the number of such terms grows rapidly for increasing numbers of variables.

Along these lines, we also noted that the lattice structure of these terms provides a useful

constraint that could likely be exploited for their efficient calculation. In Chapter 5, we dis-

cussed how the relationship between intrinsic and extrinsic (or generalized) information

flow might be used to unravel pathways of information exchange in neural networks or

other complex systems. In particular, since intrinsic flow is likely an upper bound on ex-

trinsic flow, measures of the former kind could first be used to identify significant transmit-

ters and/or receivers of information, while the latter could then be used to decipher their

incoming and outgoing transmissions. In addition, we noted that a measure of the transfer

of information loss can be formulated by following a parallel line of reasoning to that in

Section 5.2, and that such a measure may have useful interpretations in terms of attentional

processes or something similar. Finally, in Chapter 7, we discussed the use of information

dynamics to investigate other interestingly embodied and extended solutions to cognitive

tasks, with the active scanning strategy used by a feature categorization agent [17] and

embodied information transfer in a model of referential communication [253] being two

tantalizing examples. Also, we mentioned the idea of exploring the relationship between

informational and dynamical approaches to embodied systems, with the hope that one

might harness the unique strengths and complementary aspects of each approach to ob-

tain a more complete picture.

In addition to embodied and extended aspects of cognitive behavior, there are a num-

ber of other important issues raised by model agents that we hope to explore within our

framework. For example, as with the relational agents, the feature categorization agent

mentioned above must extract information from its stimuli, but differs from the relational

agents in that, rather than storing the information, the agent must use it to produce an

immediate behavioral response. Analyzing this agent will thus provide a complementary

picture of how information can be extracted and used in an online fashion, as opposed to



8. Conclusion 131

being stored for later use. Another interesting aspect of the feature categorization agent,

and of other agents that perform a task involving selective attention [77, 210, 245], is that

they must intelligently lose or suppress information. Categorical perception involves the

suppression of differences between category members [93], and selective attention to cer-

tain features requires that other features be ignored. Thus, analyzing these agents could

shed light on the mechanisms of information loss available to embodied agents, and could

also clarify the cognitive significance of our measure of the transfer of information loss.

Finally, a recently developed model of visually-guided interception [112] could be used to

examine how an agent extracts information about object trajectories based on optic flow

patterns and its own self-motion. A significant advantage of this model is that it can be

directly connected to experimental studies of object interception in humans [52, 60].

Other promising directions for future work involve the application of PI-decomposition

and the techniques of information dynamics to other kinds of complex systems. Indeed,

this is an area that is already being actively explored by ourselves and others. For exam-

ple, in one recent study Timme and Beggs [228] used PI-decomposition, as well as sev-

eral other multivariate information measures, to analyze Boolean logic gates and a back-

propagation network trained to learn the same gates. The authors reported that, compared

with other multivariate measures, PI-decomposition provided the most complete and ac-

curate description of the interactions present in the logic gates, and also shed new light

on the complexity of learning different rules via back-propagation. Specifically, the au-

thors found that rules involving high amounts of synergy took longer to learn while rules

involving high amounts of redundancy took less time to learn, a relationship that was

obscured by other multivariate measures. In our own recent work, we have applied PI-

decomposition to analyze the local information dynamics and emergent computational

properties of cellular automata [62]. Building on earlier work by Lizier et al. [138–140],
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we developed a new set of spatiotemporal filters to more clearly separate out the emer-

gent computational structures—background domains, particles, and particle collisions—

that are associated with information storage, transfer, and modification, respectively, in

cellular automata. With these filters, information storage is associated with highest-order

redundancy, information transfer with unique information, and information modification

with highest-order synergy. For future work, an obvious direction is to apply our tech-

niques to analyze data from real neural systems. For example, PI-decomposition could be

used to tease apart the synergistic and redundant contributions of neural encodings, with

the aim of clarifying previous analyses, based on interaction information, which confound

the two contributions [25, 131, 169, 196]. The techniques of information dynamics could

also be used to perform more fine-grained analyses of functional brain networks, extend-

ing previous analyses based on transfer entropy [98]. Indeed, we are currently pursuing, in

collaboration with experimental neuroscientists, investigations in both of these directions.

Finally, on the theoretical front, other promising research avenues involve using PI-

decomposition to dissect and analyze the constituent terms of other informational mea-

sures. Investigations of this kind can both clarify relationships between existing measures

and facilitate the development of new measures of interest. In this thesis, we saw two

examples of this kind of dissection: first, when PI-decomposition was used to analyze in-

teraction information, revealing the fact that it confounds synergistic and redundant terms

(Figures 4.8 and 4.9); and second, when PI-decomposition was used to decompose transfer

entropy into state-dependent and state-independent parts (Figure 5.1). As another exam-

ple, in our work developing spatiotemporal filters for cellular automata described above,

we began by decomposing the multivariate informational measures that were previously

proposed as filters by Lizier et al. [62, 140]. By first decomposing these measures, we were

then able to develop our new filters by either pulling out the constituent PI-terms that cap-

tured the desired computational properties, or by devising alternative PI-measures that
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better captured the properties of interest. In another recent study, James et al. [109] applied

PI-decomposition to analyze the ways in which the past and future of a stochastic time

series can contribute information about its present. Specifically, by decomposing the infor-

mation that the past and future provide about the present into contributions that both the

past and future provide redundantly, parts that are provided uniquely by the past or the

future, and parts that are synergistically provided by both the past and future, the authors

were able to connect the meanings of several dynamic informational measures and to draw

out potential asymmetries between the past and future. In future work, similar PI-based

analyses of other multivariate measures, such as those of neural complexity [230, 232] and

integrated information [12, 231], could also be explored.
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Brief Review of Lattice Theory

Here we review only the basic lattice-theoretic concepts needed for the results in Chap-

ter 4. For a thorough treatment, see [44, 85].

Definition A.1. A pair hX,6i is a partially ordered set or poset if 6 is a binary relation on X

that is reflexive, transitive and antisymmetric.

Definition A.2. Let Y ✓ X . Then a 2 Y is a maximal element in Y if for all b 2 Y, a 6 b )

a = b. A minimal element is defined dually. We denote the set of maximal elements of Y by Y

and the set of minimal elements by Y .

Definition A.3. Let hX,6i be a poset, and let Y ✓ X . An element x 2 X is an upper bound

for Y if for all y 2 Y, y 6 x. A lower bound for Y is defined dually.

Definition A.4. An element x 2 X is the least upper bound or supremum for Y , denoted

supY , if x is an upper bound of Y and for all y 2 Y and all z 2 X, y 6 z implies x 6 z. The

greatest upper bound or infimum for Y , denoted inf Y , is defined dually.

Definition A.5. A poset hX,6i is a lattice if, and only if, for all x, y 2 X both inf{x, y} and

sup{x, y} exist in X . If hX,6i is a lattice, it is common to write x ^ y, the meet of x and y, and

x _ y, the join of x and y, for inf{x, y} and sup{x, y}, respectively. For Y ✓ X , we use
V
Y and

W
Y to denote the meet and join of all elements in Y , respectively.

Definition A.6. For a, b 2 X , we say that a is covered by b (or b covers a) if a < b and

a 6 c < b) a = c. The set of elements that are covered by b is denoted by b−.

The classic example of a lattice is the power set of a set X ordered by inclusion, de-

noted hP(X),✓i. Lattices are naturally represented by Hasse diagrams, in which nodes
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∆

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

(a)

∆

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

(b)

∆

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

(c)

Figure A.1: Basic lattice-theoretic concepts. (A) Hasse diagram of the lattice hP(X),✓i for
X = {1, 2, 3}. (B) An example of a chain (blue nodes) and an antichain (red nodes). (C)
The top > and bottom ? are shown in gray. Green nodes correspond to {1, 2, 3}−, the set
of elements covered by {1, 2, 3}. The orange region represents # {1, 3}, the down-set of
{1, 3}.

correspond to members of X and an edge exists between elements x and y if x covers y.

Figure A.1(a) depicts the Hasse diagram for the lattice hP(X),✓i with X = {1, 2, 3}.

Definition A.7. If hX,6i is a poset, Y ✓ X is a chain if for all a, b 2 Y either a 6 b or b 6 a. Y

is an antichain if a 6 b only if a = b.

Figure A.1(b) shows examples of a chain and an antichain.

Definition A.8. If there exists an element ? 2 X with the property that ? 6 x for all x 2 X , we

call ? the bottom element of X . The top element of X, denoted by >, is defined dually.

Definition A.9. For any x 2 X , we define

# x = {y 2 X : y 6 x} and #̇x = {y 2 X : y < x}

where # x and #̇x are called the down-set and strict down-set of x, respectively.

Figure A.1(c) depicts top and bottom elements, covering relations, and down-sets.



B

Proof of Theorem 5.1

As defined in [235], a system has perfect controllability if, and only if, for any initial

state x and final state x0 there exists a controller state c such that p(x0|x, c) = 1. We first

prove that an equivalent definition of perfect controllability is that a system can be moved

deterministically to any final state from any distribution of initial states.

Lemma B.1. A system is perfectly controllable if, and only if, for any x0 there exists a distribution

p(c|x) such that p(x0) = 1 for any distribution p(x).

Proof. If a system is perfectly controllable, we know that for a given x0 there exists at least

one c for each x such that p(x0|x, c) = 1. Thus, we can choose

supp(C|x) = {c : p(x0|x, c) = 1} (B.1)

for each x 2 X , which guarantees that p(x0) = 1 for any distribution p(x). As this is verified

for any x0, this proves the direct part of the theorem.

Conversely, note that if p(x0) = 1 for a given x0 and any distribution p(x), it must be

that

p(x0|x) =
X

c

p(x0|x, c)p(c|x) = 1 (B.2)

for each x 2 X , and thus for each x there must be at least one c for which p(x0|x, c) = 1. As

this holds for any x0, the converse is proven.

In order for a system to be perfectly controllable via open-loop control, we also require

that the controller acts independently of the initial state, leading to the following definition.
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Definition B.1. A system has perfect open-loop controllability if, and only if, for any x0 there

exists a distribution p(c|x) such that p(x0) = 1 for any distribution p(x), and I(X;C) = 0.

An alternative definition of perfect open-loop controllability is given by the following

lemma.

Lemma B.2. A system has perfect open-loop controllability if, and only if, for any x0 there exists a

c such that p(x0|c) = 1.

Proof. If I(X;C) = 0, then p(x0) can be written as

p(x0) =
X

c

p(c)
X

x

p(x)p(x0|x, c). (B.3)

If we also have that p(x0) = 1 for a given x0 and any distribution p(x), then there must exist

a c for which p(x0|x, c) = 1 for all x, i.e., p(x0|c) = 1. This holds for any x0, so the direct part

of the theorem is proven.

Conversely, if for any x0 there exists a c such that p(x0|c) = 1, then for a given x0 we can

choose

supp(C) = {c : p(x0|c) = 1} (B.4)

with p(c) = p(c|x) for all c and x, ensuring that p(x0) = 1 and I(X;C) = 0. As this holds

for any x0, the converse is proven.

In [235], it is shown that an equivalent information-theoretic definition of perfect con-

trollability is that there exists a distribution p(c|x) such that each final state is reachable

from each initial state, i.e.,

p(x0|x) 6= 0 (B.5)
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for all x and x0 and that, for any distribution p(x), I(X 0;C|X) is maximal, i.e.,

H(X 0|X,C) = 0 (B.6)

so that

I(X 0;C|X) = H(X 0|X)−H(X 0|X,C) = H(X 0|X). (B.7)

Consequently, I(X 0;C|X) is naturally interpreted as a system’s degree of controllability,

taking on its maximum value if, and only if, the system is perfectly controllable.

By the same reasoning, Theorem 5.1 establishes that the SITE from C to X 0 is a natu-

ral measure of a system’s open-loop controllability, maximal exactly in the case of perfect

open-loop control. In order to prove Theorem 5.1, we will need the following basic prop-

erty of SDTE.

Lemma B.3. The SDTE from C to X 0 is zero if, and only if, for each x0 2 X 0,

p(x0|x, c) = p(x0|x) 8x, c

or

p(x0|x, c) = p(x0|c) 8x, c.

Proof.

Π(X 0; {X,C})

=I(X 0;X,C)− Imax(X
0;X,C)

=
X

x0

p(x0)
h

I(X 0 = x0;X,C)−max{I(X 0 = x0;X), I(X 0 = x0;C)}
i

=
X

x0

p(x0)min{I(X 0 = x0;C|X), I(X 0 = x0;X|C)}
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where

I(X 0 = x0;C|X) =
X

x

p(x|x0)D(p(c|x, x0) k p(c|x))

and D(· k ·) is the Kullback-Leibler divergence [36]. D(· k ·) is nonnegative, so Π(X 0; {X,C}) =

0 if, and only if, for each x0 2 X 0, I(X 0 = x0;C|X) = 0 or I(X 0 = x0;X|C) = 0. Further-

more, since D(q k r) = 0 if, and only if, q = r, Π(X 0; {X,C}) = 0 if, and only if, for each

x0 2 X 0,

p(c|x, x0) = p(c|x) 8x, c

or

p(x|c, x0) = p(x|c) 8x, c

or, equivalently,

p(x0|x, c) = p(x0|x) 8x, c

or

p(x0|x, c) = p(x0|c) 8x, c.

Now we are in a position to prove Theorem 5.1. To do so, we will show that a system

has perfect open-loop controllability if, and only if, there exists a distribution p(c|x) such

that Equations (B.5) and (B.6) are satisfied and there is no SDTE from C to X 0, i.e.,

Π(X 0; {X,C}) = 0. (B.8)

Proof. If a system is open-loop controllable, then for each x0 there exists a c such that
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p(x0|c) = 1. Choosing

supp(C) = {c : p(x0|c) = 1} (B.9)

over all x0 2 X 0, with p(c) = p(c|x) for all c and x, ensures that H(X 0|X,C)  H(X 0|C) = 0

and p(x0|x) 6= 0. Also, the chosen distribution p(c|x) ensures that p(x0|x, c) = p(x0|c) 8x, c

so that Π(X 0; {X,C}) = 0 by the preceding lemma. This proves the direct part of the

theorem.

For the converse, note that p(x0|x) 6= 0 for a given x0 and x means that there is at least

one c for which p(x0|x, c) 6= 0 and, since H(X 0|X,C) = 0, we can further conclude that

p(x0|x, c) = 1. If we also have that Π(X 0; {X,C}) = 0, we know that, for each x0 2 X 0,

p(x0|x, c) = p(x0|x) 8x, c

or

p(x0|x, c) = p(x0|c) 8x, c

and thus that, for each x0 2 X 0,

9x, p(x0|x) = 1

or

9c, p(x0|c) = 1.

But it cannot be the case that 9x, p(x0|x) = 1, since that would violate the reachability con-

dition (Equation (B.5)), so we conclude that for each x0 there exists a c such that p(x0|c) = 1.

This proves the converse.
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