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Abstract

To provide information security in network we use
the public key GPT (Gabidulin–Paramonov–Tretiyakov)
cryptosystem based on rank codes. This cryptosystem was
the subject of several attacks. Some of them were structural
attacks, others were decoding attacks. In our opinion the
most dangerous are structural attacks because decoding
attacks can be prevented by proper choice of parameters.
To prevent structural attacks, we change some of its secret
keys. We called the modified GPT cryptosystem as GPT-M.
We consider network communication with adversaries where
we use the GPT-M cryptosystem and obtain conditions for
network security.

1. Introduction

The first code based public-key cryptosystem (PKC) was
proposed by McEliece in 1978 year [1]. It is based on Goppa
codes in the Hamming metric. The size of a public key is 500
000 bits. It is too large for practical implementations to be
efficient.

In 1986 year Niederreiter [2] introduced a new version of
PKC based on a family of Generalized Reed-Solomon codes.
It turned out that this cryptosystem is insecure. It was broken
in 1992 year [3].

Gabidulin–Paramonov–Tretiyakov version of McEliece’s
public key cryptosystem is based on codes correcting rank
errors. It was proposed in 1991 year[4] and now it is referred
to as the GPT cryptosystem. The GPT cryptosystem has two
advantages over McEliece’s cryptosystem. Firstly, it is more
robust against decoding attacks than McEliece’s cryptosystem;
secondly, the key size of the GPT is much smaller. This
property is more useful in terms of practical applications.

Rank codes are well structured. Subsequently, using this fact
it was shown in a series of works (for example,[5], [6],[7]) that
the first version of the GPT system is insecure for practical
values of parameters n ≤ 30, where n is the length of a rank
code over the field GF (2N ), N ≥ n as an alphabet. New
structural attacks were proposed by Overbeck in 2008 year
[8], which are more effective than the previous attacks. The
attack is based on the fact that one of parameters, the column
scrambler, is defined over the base field.

In this paper, we focus on using GPT public key 
cryptosys-tem with new parameters in order to transmit 
short cipher texts.

We analyze known Gibson’s and Overbeck’s structural
attacks. To prevent structural attacks, we change some of secret
keys. We denote the modified GPT cryptosystem as GPT-
M. We describe also how the GPT-M cryptosystem can be
implemented in secure network coding.

The paper is structured as follows. Section 2. introduces
the rank metric and optimal rank codes. Section 3. describes
the GPT cryptosystem. Section 4. discusses Gibson’s and
Overbeck’s attacks against the GPT cryptosystem. The new
approach for choosing parameters is presented in Section 5.
Section 6. describes a secure communication in the network
with random network coding and GPT-M. Finally, Section 7.
concludes the paper with some remarks.

2. Rank metric and rank codes

Let GF (q) be a finite field of q elements. Let GF (qN ) be
an extension field of degree N . Let x = (x1, x2, . . . , xn) be
a vector with coordinates in GF (qN ).
The Rank norm of a vector x is defined as the maximal
number of xi which are linearly independent over the base
field GF (q). It is denoted as Rkcol(x | GF (q)).
The Rank distance between vectors x and y is defined
as the rank norm of their difference x− y: d(x,y) =
Rkcol(x− y | GF (q)).

Let M be a matrix with entries in the extension field
GF (qN ). We distinguish two types of ranks for this matrix:

1) The usual rank Rk(M | GF (qN )) of a matrix M is
defined as the maximal number of rows or columns
which are linearly independent over the extension field
GF (qN ).

2) The column rank Rkcol(M | GF (q)) of the same matrix
M is defined as the maximal number of columns which
are linearly independent over the base field GF (q).

The column rank of the matrix M depends on the field. In
particular, Rkcol(M | GF (q)) ≥ Rk(M | GF (qN )).

Let M be a k × n matrix over GF (qN ) with the ordinary
rank s and with the column rank ∆. Then it can be represented
as

M = AB, (1)

where A is a k×s matrix of ordinary rank s over the extension
field GF (qN ), B is a s × n matrix of ordinary rank s over
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the extension field GF (qN ). Another representation is

M = CD, (2)

where C is a k×∆ matrix over the extension field GF (qN ),
and D is a ∆ × n matrix over the base field GF (q) with
column rank ∆.

Any set C ⊂ GF (qN )n is called a vector rank code. A
code C is called a linear (n, k, d) code if it is a k-dimensional
subspace of the space GF (qN )n and has minimal pairwise
rank distance d. Any vector rank (n, k, d) code fulfils the
Singleton-style bound for the rank distance:

Nk ≤ Nn− (d− 1) max{N,n}. (3)

A code C reaching that bound is called a Maximal Rank
Distance (MRD) code. Constructions of optimal MRD (Max-
imal Rank Distance) codes are given in [9].

The notation g[i] := gq
i mod N

means the i-th Frobenius
power of g. It allows to consider both positive and negative
Frobenius powers i.

For n ≤ N , a generator matrix Gk of a (n, k, d) MRD code
is defined by a matrix of the following form:

Gk =


g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

g
[2]
1 g

[2]
2 . . . g

[2]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n

 (4)

where g1, g2, . . . , gn are a set of elements of the extension
field GF (qN ) which are linearly independent over the base
field GF (q). A code with the generator matrix (4) is referred
to as (n, k, d) code, where n is code length, k is the number
of information symbols, d is code distance. For MRD codes,
d = n−k+ 1. Let m = (m1,m2, . . . ,mk) be an information
vector of dimension k with coordinates in the extension field
GF (qN ). The corresponding code vector is the n-vector

g(m) = mGk.

If y = g(m) + e and Rkcol(e) = s ≤ t = d−1
2 , then the

information vector m can be recovered uniquely from y by
some decoding algorithm. There exist fast decoding algorithms
for MRD codes (for instance, [9], [10]). A decoding procedure
requires elements of the (n − k) × n parity check matrix H
such that GkH

T = 0. For decoding, the matrix H should be
of the form

H =


h1 h2 . . . hn

h
[1]
1 h

[1]
2 . . . h

[1]
n

h
[2]
1 h

[2]
2 . . . h

[2]
n

...
...

. . .
...

h
[d−2]
1 h

[d−2]
2 . . . h

[d−2]
n

 , (5)

where elements h1, h2, . . . , hn are in the extension field
GF (qN ) and are linearly independent over the base field
GF (q).

The optimal code design parameters:
1) Code length n ≤ N .
2) Dimension k = n− d+ 1.

3) Rank code distance d = n− k + 1.

3. The GPT cryptosystem

The GPT cryptosystem is described as follows:
A Plaintext is any k-vector m = (m1,m2, . . . ,mk), ms ∈
GF (qN ), s = 1, 2, . . . , k.
The Public key is a k × (n+ t1) generator matrix

Gpub = S
[
Y Gk + X

]
(P + Z) (6)

This is a general form of the public key. Let us explain roles
of the factors.
• The main matrix Gk of size k × n is given by (4). It

is used to correct rank errors. Errors of rank not greater
than t = bn−k2 c can be corrected.

• A matrix S is a row scrambler. This matrix is a non
singular square matrix of order k over the extension field
GF (qN ). It is used to hide any visible row structure of
matrices used for deciphering.

• A matrix Y is the first distortion (k × t1) matrix over
GF (qN ) with full column rank Rkcol(Y | GF (q)) =
t1 and with the ordinary rank Rk(Y | GF (qN )) =
tY , tY ≤ t1. The matrix

[
Y Gk + X

]
has full column

rank Rkcol(
[
Y Gk + X

]
| GF (q)) = n+ t1.

• A matrix X is the second distortion k×n matrix having
the column rank t2 and the ordinary rank tX .

• A matrix (P + Z) is a square column scramble matrix
of order (t1 + n). The matrix P has entries in the base
field GF (q). The matrix Z is the third distortion matrix
and should have entries in the extension field GF (qN ).
Also its column rank should be not greater than an integer
∆ (a design parameter). The matrix (P + Z) should be
nonsingular.

The Private keys are matrices S, Gk, X, Y, P + Z
separately and (explicitly) a fast decoding algorithm of an
MRD code.

Encryption: Let m = (m1,m2, . . . ,mk), mj ∈ GF (qN ),
be a plaintext. The corresponding ciphertext is given by

c = mGpub+eart = mS
[
Y Gk + X

]
(P+Z)+eart, (7)

where eart is an artificial vector of errors of rank t3.
Decryption: The legitimate receiver upon receiving c cal-

culates
c

′
= (c

′

1, c
′

2, . . . , c
′

t1+n) =

c (P + Z)
−1

= mS
[
Y Gk + X

]
+ eart(P + Z)−1

Then from c
′

he extracts the subvector

c
′′

= (c
′

t1+1, c
′

t1+2, . . . , c
′

t1+n) = mSGk+mSX+e
′′

art, (8)

where e
′′

art is the subvector of eart(P + Z)−1. Note that the
rank of mSX is not greater than t2 and the rank of e

′′

art is
not greater than t3 + ∆. If t2 + t3 + ∆ ≤ t = bn−k2 c, then
the legitimate receiver applies the fast decoding algorithm to
correct the error mSX + e

′′

art, extracts mS and recovers m
as m = (mS)S−1.
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In this system, the size of the public key is V = k(t1 +n)N
bits, and the information rate is R = k

t1+n .

4. Attacks against the GPT cryptosystem

There are two types of attacks against the GPT cryptosystem
and its variants. The first one is the decoding attacks. The
second is the structural attacks, for example Gibson and
Overbeck’s attacks. The decoding attacks are presented in
details in the works [11], [12], [13], [14]. The focus of our
attention is the known structural attacks against the GPT
cryptosystem and its variants.

4.1. Gibson’s attacks

Gibson analyzed in [5], [6] the variant of the GPT cryp-
tosystem with the public key

Gpub = S(Gk + X),

where the distortion matrix X has the column rank t2 and the
ordinary rank 1 ≤ tX ≤ t2. He obtained using Gpub three
matrices Ŝ, Ĝk, X̂ such that

Gpub = Ŝ(Ĝk + X̂).

It has runtime
O
(
N3(n− k)3qNtX

)
,

or,

O
(
k3 + (k + t2)f · qf(k+2) + (m− k)t2 · qf

)
,

where f = max(0, t2 − 2tX , t2 + 1− k).

4.2. The first Overbeck attack

The variant of the GPT cryptosystem with the public key

Gpub = S
[
Y Gk + X

]
P

was analyzed in [7]. The column rank and length of the
matrix Y is t1. The matrix X has the column rank t2. The
Overbeck attack is as follows. The public key is written over
the extension field GF (qN ) but one can rewrite it over the
super extension field GF (qaN ), where a =

⌈
n+t1
N

⌉
. It allows

to represent the public key in the form

Gpub = S
[
Ĝk + X̂

]
,

where Ĝk is a virtual rank code of length t1 + n over the
super extension field FqaN and a virtual distortion matrix X̂
has the column rank t1 + t2. Thus one reduced the problem
to Gibson’s case.

4.3. The second Overbeck attack

An artificial error eart is a correctable rank error. The
column scrambler P + Z must be chosen in such a manner
that the vector eart(P + Z)−1 is a correctable rank error too.

First variants of GPT cryptosystems used matrices P and P−1

over the base field GF (q), i.e. Z = 0. In this case

Rkcol(eart) = Rk(eartP
−1) ≤ t =

⌊
d− 1

2

⌋
.

Overbeck shows in [8] that in this case the GPT cryptosystem
with the public key of the form

Gpub = S
[
Y G

]
P

can be broken in polynomial time. The crucial point of the
attack is based on the condition that all entries of the matrix
P are in the base field GF (q).

We recall briefly this attack. For x ∈ GF (qN ) let σ(x) = xq

be the Frobenius automorphism. For the matrix T = (tij) over
GF (qN ), let σ(T) = (σ(tij)) = (tqij).
For any integer s, let σs(T) = σ(σs−1(T)). It is clear that
σN = σ. Thus the inverse exists σ−1 = σN−1.
The following simple properties if σ are well known:

• σ(a+ b) = σ(a) + σ(b).
• σ(ab) = σ(a)σ(b).
• In general, for matrices σ(T) 6= T.
• If P is a matrix over the base field GF (q), then σ(P) =

P.

Description of Overbeck’s attack: To break a system, a
cryptanalyst constructs for some integer u from the public key
Gpub = S

[
Y Gk

]
P the extended public key Gext,pub as

follows:

Gext,pub =

∥∥∥∥∥∥∥∥∥∥
Gpub

σ(Gpub)
σ2(Gpub)

. . .
σu(Gpub)

∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥
S

[
Y Gk

]
P

σ(S)
[
σ(Y) σ(Gk)

]
P

σ2(S)
[
σ2(Y) σ2(Gk)

]
P

. . . . . . . . . . . . . . .
σu(S)

[
σu(Y) σu(Gk)

]
P

∥∥∥∥∥∥∥∥∥∥
(9)

The property that σ(P) = P, if P is a matrix over the base
field GF (q), is used in (9).

Rewrite this matrix as

Gext,pub = Sext

[
Wext Gext

]
P, (10)

where

Sext = Diag
[
S σ(S) . . . σu(S)

]

Wext =


Y

σ(Y)
...

σu(Y)

 , Gext =


Gk

σ(Gk)
...

σu(Gk)


Choose

u = n− k − 1 (11)
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For a k × t1 matrix

Y =


Y11 Y12 . . . Y1,t1

Y21 Y22 . . . Y2,t1
...

...
...

...
Yk−1,1 Yk−1,2 . . . Yk−1,t1

Yk,1 Yk,2 . . . Yk,t1

 , (12)

let

Y1 =


Y11 Y12 . . . Y1,t1

Y21 Y22 . . . Y 2, t1
...

...
...

...
Yk−1,1 Yk−1,2 . . . Yk−1,t1

 (13)

be the (k − 1) × t1 matrix, obtained from X by deleting the
last row. Let

Y2 =


Y21 Y22 . . . Y2,t1

...
...

...
...

Yk−1,1 Yk−1,2 . . . Yk−1,t1

Yk,1 Yk,2 . . . Yk,t1

 (14)

be the (k − 1) × t1 matrix, obtained from Y by deleting the
first row.

Define a linear mapping T : GF (qN )k×t1 →
GF (qN )(k−1)×t1 by the rule: if Y ∈ GF (qN )k×t1 , then

T (Y) = W = σ(Y1)−Y2.

Let

Wext =


W

σ(W)
σ2(W)
. . .

σu−1(W)

 . (15)

Using suitable transformations of rows, one can rewrite for
analysis (10) in the form

G̃pub,ext = S̃ext

[
Z | Gn−1

Wext | 0

]
P (16)

where Gn−1 is the generator matrix of the (n, n−1, 2) MRD
code.

Let us try to find a solution u of the system

S̃ext

[
Z | Gn−1

Wext | 0

]
PuT = 0, (17)

where u is a vector-row over the extension field GF (qN ) of
length t1 + n. Represent the vector PuT as

PuT =
[
y h

]T
,

where the subvector y has length t1 and the subvector h has
length n. Then the system (17) is equivalent to the following
system:

ZyT + Gn−1h
T = 0, (18)

Wexty
T = 0 (19)

Assume that the next condition is valid:

Rk(Wext | GF (qN )) = t1 (20)

Then the equation (19) has only the trivial solution yT = 0.
The equation (18) becomes

Gn−1h
T = 0 (21)

It allows to find the first row of the parity check matrix for
the code with the generator matrix (16) (see,[8], for details).
Hence this solution breaks a GPT cryptosystem in polynomial
time. The Overbeck attack requires O((n + t1)3) operations
over GF (qN ) in order to break the system.

Note 1: The Overbeck attack requires O((n + t1)3) · qaN
operations over GF (qN ) in order to break the system, if

Rk(Wext | GF (qN )) = t1 − a, a ≥ 2 (22)

.

4.4. How to prevent the second Overbeck attack

The Overbeck attack completely fails if one replaces in the
public key the matrix P over the base field GF (q) by a matrix
P + Z where a matrix Z is chosen over the extension field
GF (qN ). Nevertheless another problem rises: the artificial er-
ror vector eart(P + Z)−1 may become an uncorrectable error.
In [15], this problem was overcome. Our main contribution is
the construction of the set of matrices (P + Z)−1 such that
for any vector e we will have

Rkcol(e(P + Z)−1 | GF (q)) ≤ Rkcol(e | GF (q) + ∆,

where ∆ is a given positive integer.
First of all, consider the case when (B + Z)−1 = I + E

where I is the identity matrix of order t1 + n and a matrix E
has column rank ∆.

Lemma 1: If E is a (t1 +n)× (t1 +n) matrix with column
rank ∆, then for any vector e with column rank s we have

Rkcol(e(I + E) | GF (q)) ≤ s+ ∆.

Proof: The function of the column rank is a norm. Thus
we have

Rkcol(e(I + E) | GF (q)) ≤ Rkcol(e | GF (q))+Rkcol(eE | GF (q)) ≤ s+∆

Lemma 2: Assume that the matrix E satisfies the condition

E2 = γE (23)

and γ 6= −1. Then the matrix I + E is nonsingular and

(I + E)−1 = I− 1

1 + γ
E. (24)

Proof: Calculate the product

(I + E)(I− 1

1 + γ
E) = I− 1

1 + γ
E + E− 1

1 + γ
E2 =

(25)

= I− 1

1 + γ
E + E− γ

1 + γ
E = I.

(26)

A construction of matrices E satisfying the condition (23)
and having column rank ∆ is given by the following Lemma.
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Lemma 3: Let a matrix E be of the form

E = AB,

where A is a (t1 + n)×∆ matrix of full rank ∆ and B is a
∆× (t1 + n) of column rank ∆. There exist matrices A and
B such that

BA = γI∆,

where I∆ is the identity matrix of order ∆.
Proof: Choose a matrix B with column rank ∆ as

B =
[
B1 B2

]
, where the square ∆ × ∆ submatrix B1 is

nonsingular.

Choose a matrix A as A =

[
A1

A2

]
, where the square ∆×∆

submatrix A1 will be chosen later. Let us require that

BA = B1A1 + B2A2 = γI∆,

where γ ∈ GF (qN ) and γ 6= −1. Take from this equation

A1 = B−1
1 (γI∆ −B2A2) .

Corollary 1: It follows that

E2 = ABAB = A(γI∆)B = γAB = γE.

Theorem 1: Let (P + Z)−1 = R(I + E)Q, where R and
Q are nonsingular matrices over GF (q). Then

Rkcol(e(P + Z)−1) ≤ Rkcol(e) + ∆.

The column scrambler P + Z is represented as P =
Q−1R−1; Z = − 1

1+γQ
−1ER−1.

Proof: It follows from lemmata above.

5. Secure variants of the GPT
cryptosystem

Consider a public key of the form

Gpub = S
[
Y Gk

]
(P + Z),

where Y is a k × t1 distortion matrix with column rank t1,
Gk is a k×n generator matrix of a MRD code, P is a square
(t1 + n) × (t1 + n) nonsingular matrix over the base field
GF (q), Z is a (t1 + n) × (t1 + n) matrix with column rank
∆. A ciphertext for a plaintext m has the form

c = mGpub + e = mS
[
Y Gk

]
(P + Z) + e, (27)

where an artificial error e has column rank t3. An authorized
party choose t3 + ∆ = n−k

2 . It allows to correct the emergent
artificial error e(P + Z)−1.

An unauthorized party does not know the matrix
(P + Z)−1. Also one can not apply the second Overbeck
attack since a scramble matrix (P + Z) is chosen over the
extension field. There is still a possibility to use the first
Overbeck attack. An unauthorized party tries to represent the
public key over the superextension field GF (qaN ), where
a =

⌈
t1+n
N

⌉
. It allows to introduce a virtual generator matrix

of extended MRD code of the form

Ĝk =
[
Gk(t1) Gk

]
,

where Gk(t1) is a k × t1 matrix of Frobenius-type over the
superextension field. A column f is called Frobenius-type
if it has the form f =

(
f f [1] . . . f [k−1]

)>
. A matrix

F is called Frobenius-type if it consists of Frobenius-type
columns. By this assumption, the public key can be considered
as follows:

Gpub = S
[
Ĝk + Ŷ

]
(P + Z) =

= S
(
ĜkP + ŶP + (Ĝk + Ŷ)Z

)
,

(28)

where

Ŷ =
[
Y −Gk(t1) 0

]
.

The term ĜkP is a virtual k × (t1 + n) generator matrix of
an MRD code over the superextension field FqaN . The term
ŶP has column rank t1. The term (Ĝk + Ŷ)Z has column
rank ∆. The Overbeck–Gibson attack does not work if

t1 + ∆ >
t1 + n− k

2
.

Recall that an authorized user has chosen t3 + ∆ = n−k
2 .

Hence we should choose t1 > 2t3 to prevent the Overbeck–
Gibson attack.
Nevertheless it is possible to rewrite the public key (28) as an
instance of Overbeck’s attack:

Gpub = S
[
Y1 + F1 F2

]
(Q),

where F1 is a r× t1 +∆ matrix, F2 is k×n−∆ matrix such
that the matrix

[
F1 F2

]
is a generator matrix of a MRD

(t1 + n, k, d) code over the superextension field GF (qaN ).
The matrix Y1 is a new k × (t1 + ∆) distortion matrix. This
approach is under investigation now.

Another way to prevent Overbeck’s attack is given in Note
1. The cryptographer should choose a distortion k× t1 matrix
Y such that the rank of the matrix Wext satisfies the condition
(22). Choose the matrix Y as follows:

Y =



m0

m
[ 1 ]
0 + m1

m
[ 2 ]
0 + m

[1]
1 + m2

m
[ 3 ]
0 + m

[2]
1 + m

[1]
2 + m3

...
m

[k−1]
0 + m

[k−2]
1 + · · ·+ mk−1


, (29)

where m0 is a vector of column rank t1. Calculating the matrix
W gives

W = σ(Y1)−Y2 = −


m1

m2

m3

...
mk−1

 . (30)

Choose all vectors mi over the base field GF (q) in such a
manner that the column rank of the matrix W is equal to
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t1 − a. Hence

Wext =


W

σ(W)
σ2(W)
. . .

σk−1(W)

 =


W
W
W
. . .
W

 . (31)

Therefore

Rk(Wext | GF (qN )) = Rk(W | GF (qN ) = t1 − a,

and the condition (22) is satisfied.
In a similar manner we can show that even more secure

variant of the GPT cryptosystem can be obtained if we use
the general public key

Gpub = S
[
Y Gk + X

]
(P + Z).

6. GPT-M in random network coding

We denote secure variants as GPT-M.

We consider the GPT cryptosystem which has been pre-
sented in [15].

We took the matrix P + Z over the extension field GF (qN ),
or, the proper choice of the distortion matrix Y. Then the
Overbeck attack completely fails: all equations since (13) do
not work.

Now, we consider a network with one source and one
destination. The similar model was used in the work [18]. The
difference is the following: we implement the GPT-M instead
of the GPT.

The source transmits messages u = (u1 . . . uk) which are
enciphered by the cryptosystem GPT-M. As a result we have
a ciphertext in vector representation c = (c1 . . . cn). The
enciphered messages cj are represented as n packets over the
extension field. Each of them can be converted into vectors of
length m over the base field. These packets are gathered in the
matrix M with elements over the base field. A concatenation
V of two matrices M and In is created.

V =
{
V : V =

[
In M

]}
, (32)

where In is the identity matrix of order n.
V (1), . . . , V (n) are rows of the matrix V. Then each row is

a packet which has length n+m and consists of elements over
the base field GF (q). The matrix V has size n×(n+m). Every
packet is also an element of the finite field GF (qn+m). In the
Silva–Kötter–Kschischang network model [16] a message is a
row spanned subspace of the matrix V. Hence, the matrix V
can be considered as a generator matrix of the subspace.

In this paper, to provide secure transmission in random
network coding we focus on using the GPT public key
cryptosystem to transmit encrypted messages and information
on secret keys distribution. Both random network coding and
the GPT cryptosystem are based on rank codes. It allows to
combine in a most effective way the problems of deciphering
and decoding. It is shown that our system provides secure
communication in random network coding under definite con-
ditions on the system parameters. In the GPT cryptosystem,

a plaintext is an information vector u of dimension k over
the extension field GF (qm). The corresponding ciphertext c
is calculated as

c = uGpub + eart, (33)

where the public key Gpub is a generator matrix of size k ×
n over the extension field GF (qm). It is a product of three
matrices:

Gpub = S[Yk Gk]P + Z.

In the network, every inner node calculates a random linear
combination of the received packets which is express as
operation:

Y = AV, (34)

where A is a matrix of the size nr × n corresponding to
all linear transformations at all inner nodes. If inside of the
network there is an adversary, who insert his own packets in
common flow, the network channel model is the following:

Y = AV + Eout, (35)

where A is the same matrix as in (35), Eout is a matrix of size
nr × (n+m), which corresponds to the adversary messages.
These messages are errors which a legal user has to correct.

At the receiver, packets Y (1), . . . , Y (nr) of length n+m are
gathered. The matrix Y of size nr × (n+m) is constructed.
For the random number nr, we have three possibilities: be
equal to n, or greater than, or less than n. The problem is to
reconstruct V from Y. To solve this problem it is necessary to
do two rounds of linear transformations (see, [18] for details).

A is the matrix of size nr×n corresponding to all the linear
transformations at inner nodes. For the noncoherent network
model, the matrix A is unknown but in our case we can find
it. Represent the matrix Y as the concatenation of matrices
Y1 and Y2, where the matrix Y1 has size nr × n.

We get at the receiver side the matrix Y = [A AM], or,
Y1 = A. Therefore the matrix A is known in this case.
Assume that the rank of A is equal to r, where r ≤ n.

Before decoding we fulfill the preliminary linear transfor-
mations over the matrix Y which correspond to the Gauss
elimination procedure over Y1 = A and create the row
reduced echelon form of the matrix Y1.

As a result of the first round we have (see, [17], for details)

R̂ = M + LM + DC + Erest, (36)

where the matrix L of rank n− r, and the matrix C of rank
nr − r are known. Convert the matrix R̂ over the base field
into a vector r̂ over the extended field:

r̂ = uGpub + eart + a(M1 + Eart) + dC + erest, (37)

where the matrix M is converted into a vector uGpub + eart;
the matrix L is converted into a vector a of rank n− r with
known coordinates; the matrix D is converted into a vector d
of rank nr − r with unknown coordinates; the matrix Erest is
converted into an error vector erest.

Then we have to do the second round of transformations.
Choose a matrix (P + Z)

−1 as in Eq. (??). Multiply on
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the right the both sides of the equation (37) by the matrix
(P + Z)

−1:

The first member uSG is a vector of the rank code. It
corresponds to the information vector u. The second member
eartP + Z−1 is a vector of rank t2 + ∆. The last three
members we can take as row erasures, column erasures and
additional errors. The rank of row erasures is n − r. The
rank of column erasures (the matrix C) is nr − r. Denote
the rank of the additional error by p. The next operation is
rank decoding. Decoding will be successful, if the following
inequality satisfies:

2(t2 + ∆ + p) + (n− r) + (nr − r) ≤ d− 1,

where d = n− k + 1 is the rank distance of the code.

7. Conclusion

Secure capability of all versions GPT cryptosystems de-
pends on values of its parameters.

The known decoding attacks can be prevent by a proper
choice of parameters.

Overbeck’s structural attack of 2008 year was successful, it
had broken a version of GPT cryptosystem. To prevent new
structural attacks of such type we have introduced structure
and parameter changes. We propose a new family of column
scramble matrices P + Z to prevent structural attacks.

We use GPT-M cryptosystem in the network with random
network coding. We show it provides secure communication in
network under a definite condition on the system parameters.
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v̂

+dC(P+ Z)−1 + erest(P+ Z)−1. (38)

def
= r̂(P + Z)−1= uSG+eart(P + Z)−1+a(M1 + Eart)(P + Z)-1
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