
An Infrastructure for Evolving Dynamic Web Services Composition

Frederico G. Alvares de Oliveira Jr.
Technological Institute of Aeronautics (ITA)

Prac¸a Marechal Eduardo Gomes, 50
Sao Jose dos Campos - SP - Brasil

José M. Parente de Oliveira
Technological Institute of Aeronautics (ITA)

Praça Marechal Eduardo Gomes, 50
S˜ao Jose´ dos Campos - SP - Brasil

Abstract

Web services are becoming de facto a standard for data
exchanging, since they provide a clear way to express and
access information throughout the Internet. Sometimes, one
service alone is not able to perform a certain task, and it
might be necessary to compose two or more services in or-
der to accomplish that task. In this context, semantic web
services play an essential role, since they provide a frame-
work to formally describe services in a way that it is possi-
ble to machines to automatically discover, compose, invoke,
and monitor them. On the other hand, only functionality
is not enough to fulfill users’ satisfaction, in the sense that
service providers should guarantee the quality delivered by
their services. In this paper, we present an infrastructure
for dynamic web service composition. The main element
of the infrastructure is the composition mechanism which is
based on quality of service. Experimental results indicates
the proposal soundness.

1 Introduction

A web service can be defined as a piece of software that
conforms to a set of open interoperability facilities, such
as WSDL (Web Service Description Language) [7], SOAP
(Simple Object Access Protocol) [4], and UDDI (Univer-
sal Description, Discover and Integration) [14], for descrip-
tion, messaging protocol and discovering, respectively [12].
These facilities allow the integration of systems written in
different languages and running on computers with different
platforms. However, all of them offer only a common gram-
mar for describing, publishing and exchanging information
of web service and workflows, which means that there is a
lack of semantics in the information provided by services
defined with those facilities [2].

A Semantic Web Service (SWS) is a service whose in-
put, output, preconditions and effects (IOPEs) are associ-
ated with a formal description rather than just a datatype.

A straightforward impact of having Web Services semanti-
cally annotated is the fact that their functionality can be au-
tomatically matched (discovered) and composed with func-
tionalities provided by other services when only one ser-
vice is not able to produce the desired functionality. Conse-
quently, new functionalities and applications can be dynam-
ically built based on existing services.

Many times, however, only the matching of service func-
tionalities based on input and output description is not
enough to fulfill the users requirements. A service user, i.
e. a person or another computer, may impose constraints
on the required service. For this purpose, services should
guarantee a minimum level of quality to be delivered to
their consumers. The quality of a service is often expressed
by means of non-functional attributes, such as performance,
availability, cost etc.

This paper proposes an infrastructure that supports the
dynamic composition of SWS, in which every new gener-
ated composition is made readly available in order to be
used as a new component of future compositions. This in-
frastructure comprises two distinct modules: the composer,
which is in charge of composing the services before execut-
ing them; and execution engine, which manages the actual
execution. For the latter we leverage existing work [13],
while we concentrate our contributions on the composer
module.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the related works; Section 3 presents the pro-
posed infrastructure; Section 4 shows some experimental
results and a motivating example of usage of the proposed
infrastructure and Section 5 gives the final remarks and fu-
ture works.

2 Related Work

In this section, we discuss a selected set of recent rele-
vant works related to our proposal.

In [20], a middleware for QoS-based web service com-
position was proposed. It finds the optimal set of service

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 81

http://www.infonomics-society.org/IJICR/Contents%20Page%20Volume%201%20Issue%201%20and%202.pdf

implementations for a static abstract service composition.
Similarly, in [5], an approach for runtime adaptation of
QoS-based web service composition was proposed. In our
work, we consider that there is no information about the
structure of the composition, and the services are discov-
ered and composed on demand.

In [6], Chafle et. al. proposed an approach for adapta-
tion of service composition that considers QoS properties.
The adaptation is performed by a monitoring system that
triggers adaptation procedures in different stages (runtime,
physical, and logical). However, it was not clear what is
the overhead of that spread of information on every envi-
ronment changing.

Claro et. Al [8] proposed a framework for semantic web
service composition that relies on GPA (Goal-oriented Plan-
ning Algorithm), and allows re-planning of compositions.
In addition, the composition is based upon user profiles,
which besides grouping personal information (name, con-
tact, etc.), non-functional information (Cost, Turnover, Ex-
ecution Time and Reputation) are considered. The profile
is saved as a predicate along with a user rate on the service.
Contrary to our approach, the framework provides all possi-
ble compositions before ranking them. As our concern is to
provide a correct solution spending as less processing time
as possible, our algorithm does not search in all the state
space.

Oh et al. [15] proposed an algorithm for semantic and
syntactic service composition. Similarly to the algorithm
of our infrastructure, their algorithm takes into account the
overall cost of invoking a service in order to improve the
quality of compositions. However, their approach is limited
to the composition algorithm, and nothing else about the
composition infrastructure is presented.

In [17], three different approaches for service compo-
sition were proposed. An uninformed approach, which
is based on a Depth-First Search, an informed approach,
which is based on a heuristic that guides the composition
process, and a generic approach, which is based on evo-
lutionary algorithms. Experiments have shown that the
heuristic-based approach outperformed the others. In fact,
our approach was developed based on that informed ap-
proach. However, we add to that algorithm QoS properties
and propose a whole evolving dynamic service composition
infrastructure.

Yan et al. [18] proposed an approach for automated se-
mantic service composition based on And/Or Graph. Al-
though experiments have shown that the proposed algorithm
performs well, specially in cases of parallel composition of
web services, quality issues are not discussed.

From the literature review carried out, it is possible to
infer two important aspects. First, the use of QoS for the
dynamic composition of Semantic Web services together
with a fast search algorithm is not used. Second, success-

ful compositions based on QoS that are generated are not
made promptly available for new compositions. These two
aspects not used together in other works can provide impor-
tant improvements in terms of general QoS of compositions,
as well as reductions in their execution times.

3 An Infrastructure for Dynamic Web Ser-
vices Composition

This section describes the infrastructure porposed in this
paper. Firstly, an overview of the infrastrucre will be given,
and then the module composer will be described in more
details along with its implementation.

3.1 Infrastructure Overview

Figure 1 depicts an overview of the infrastructure pro-
posed in this paper. This overview represents a three-
layered architecture, from the most abstract (Semantics) to
the most concrete (Implementation). A composition starts
when a Requester, a person or a computer system, requests
some functionality (required outputs) by providing some
known information (provided inputs) and imposing Qual-
ity of Service (QoS) Constraints for the Composer which,
by its turn, is the module responsible for finding a set of ser-
vices that together provide the required outputs and meet the
QoS constraints. Services are described by a Service Ontol-
ogy, which can be described in OWL-S 1 or WSMO (Web
Service Modeling Ontology) 2, for instance, and their func-
tionality are mapped onto concepts defined by the Domain
Ontology, which can be described in OWL (Web Ontology
Language) 3, for instance. In addition, Quality of Service
Characteristics (or criteria) provided by the services are also
specified in SLA (Service Level Agreement) in OWL-S or
even in a simple XML file. The composition algorithm tries
to match one or more services by reasoning on concepts that
describe the service functionality and which definition is
provided by the Domain Ontology. Furthermore, the com-
position should be aware if the composition that is being
formed also meet the QoS Constraints.

Once a composition is found, it can be represented by a
Composite Service in OWL-S in order to be executed by
the Execution Engine. The Execution Engine’s main re-
sponsibility is to invoke constituent services of a compo-
sition by obtaining their syntactical description (WSDL, for
instance), which has information about their location and
how to invoke them. The implementation of the services to
be invoked might be available anywhere over the Internet.
Apart from that, the Execution Engine is in charge of moni-
toring the execution in order to keep QoS values up to date,

1http://www.w3.org/Submission/OWL-S/
2http://www.w3.org/Submission/WSMO/
3http://www.w3.org/TR/owl-features/

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 82

Figure 1: Proposed Infrastructure

as well as to detect QoS violation i.e. if a service does not
meet the QoS previously announced.

It is important to mention that in some QoS criteria (e.
g. availability, duration etc), the values assigned to them
vary according to the number of execution and thus every
execution should be monitored. In other words, it is also
the execution engine’s responsibility to observe the quality
delivered by each executed service as well as to update their
corresponding specification. For example, the quality crite-
rion Duration is measured based on the average of the past
execution observations. Hence, it may be established for in-
stance that in every 100 executions of a certain service, its
Duration should be updated.

If the execution of a composition fails, the Execution En-
gine can request the composer an adaptation of the failed
composition or even another composition. If everything
goes well, the executed composition is stored as a new ser-
vice in the Service Repository, avoiding all the search pro-
cedure when the same request arrives later on.

Technologies such as OWL, OWL-S, WSMO were men-
tioned only to show some technologies that can be used to
deploy the solutions for Evolving Dynamic Web Service
Composition, and thus, other similar technologies could be
used instead.

3.2 Composer Model

Semantic Web Service Composition consists in compos-
ing two or more well-described (ontology-based) services in
order to accomplish a requested functionality. The proposed
approach in this work is intended to perform Dynamic Ser-
vice Composition taking into account both the semantic de-
scription of a service and its non-functional properties that
composes the quality it delivers. The algorithm to perform
this composition receives as input a request, which consists
of the provided input concepts, required output concepts
and QoS constraints, and produces as output a set of ser-
vices that together can provide the required concepts speci-
fied in the request, as illustrated in Figure 2.

Figure 2: Proposal Overview.

Each concept (c1, c2, . . . , cn) in the request input or out-
put is defined in a ontology named Domain Ontology. Each
QoS constraint consists of a triple with the quality crite-
rion, a value representing a constraint on this criterion and a
weight representing the user’s preference on this criterion.
Following are some definitions extended from [17] to incor-
porate QoS.

Domain Ontology. A domain ontologyO consists of a set
of concepts used to describe the domain in which a group of
services is inserted. These concepts are related to each other
according to subsumption relations, i. e. a concept c1 ∈ O
subsumes another concept c2 ∈ O if c1 is a superclass of c2;
c2 subsumes c1 if c1 is a subclass of c2; c1 and c2 subsume
each other if they are the same concept.

Request. A composition request R consists of a set of
provided inputs Rin ⊆ O, a set of required outputs
Rout ⊆ O and a set of quality of service constraintsRqos =
{(q1, v1, w1), (q2, v2, w2), . . . , (qk, vk, wk)}, where qi (i =
1, 2, . . . , k) is a quality criterion, vi is the required value
for criterion qi, wi is the weight assigned to this criterion
such that

∑k
i=1 wi = 1, and k the number of quality crite-

ria involved in the request. A quality criterion can be either
negative, i. e. the higher the value the lower the quality, or
positive, i. e. the higher the value the higher the quality.

A service composition is built by discovering services
available in a Service Repository that match with concepts
required by either service inputs or request output. A ser-
vice is selected to take part of certain composition if at least
one of its output concepts is related to a required concept

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 83

(request output or a required input of another service in the
composition) according to the subsumption relations above
mentioned.

A valid composition is a composition where all the re-
quired output concepts can be provided by its constituent
services as well as each service input concepts should be
provided by either the available concepts in the request or
other services in the composition. In addition, a valid com-
position also must meet the imposed QoS constraints.

Service Repository. A Service Repository D consists of
a set of available services. Each service s ∈ D is com-
posed of a set of required inputs sin ⊆ O, a set of pro-
vided outputs sout ⊆ O and a set of provided quality
criteria sqos = {(q1, v1), (q2, v2), . . . , (qk, vk)}, where qi
(i = 1, 2, . . . , k) is a quality criterion, vi is the value asso-
ciated to criterion qi provided by the service, and k is the
number of criteria involved.

Service Composition. A Service Composition C is a Di-
rect Acyclic Graph (DAG) with vertices Cv = {s | s ∈ D}
and edges Ce = {(u, v) | u, v ∈ Cv ∧ ∃c1 ∈ uout ∧ ∃c2 ∈
vin : c2 subsumes c1}

Valid Composition. A composition C is considered valid
for a request R if the predicate valid(C,R) in Equation 1,
holds.

valid (C,R)⇔
∀c1 ∈ (Rout

⋃
∀s∈Cv sin) ∃c2 ∈ (Rin

⋃
∀s∈Cv sout)

(c1 subsumes c2 ∧
∀(q, v, w) ∈ Rqos

(q is negative ∧ overall(C, q) ≤ v) ∨
(q is positive ∧ overall(C, q) ≥ v)))

(1)
where overall(C, q) represents the model that calculates the
overall value of criterion q in composition C.

The following subsections gives an overview of the
Greedy Search strategy used to construct the algorithm
which is the basis of the proposed approach. In addition,
the adaptation made in the QoS models for composite ser-
vice is described.

3.2.1 Quality of Service Models

Quality of Service (QoS) is the quality delivered by one ser-
vice, expressed by means of non-functional characteristics
with quantifiable parameters [16]. Examples of those crite-
ria are described as follows:

• Duration (qdu(s)) of a service s measures the ex-
pected delay between the moment when a request is
sent and the moment when the result are received;

• Reputation (qrep(s)) of a service s is a measure of its
trustworthiness. It is given by end users’ opinions on
the service;

• Availability (qav(s)) of a service s is the probability
that it is accessible and

• Price (qpr(s)) of a service s is the fee that its invokers
have to pay for invoking it.

In order to provide the QoS models of a composite ser-
vice S = {s1, s2, . . . , sn}, Zeng et al. [20] defined a set of
aggregation functions, which are presented as follows.

The equation 2 defines the overall price of a composite
service by summing all elementary service’s price.

qpr(S) =
n∑

i=1

qpr(si) (2)

Since a composition can be both sequential or parallel,
the overall duration is computed by applying the Critical
Path Algorithm in order to always capture the execution
duration of the most time-demanding service in a parallel
composition, as expressed in 3.

qdu(S) = CPA(S, qdu) (3)

The overall reputation is the average of the reputation of
all constituent services of the composition, as expressed in
Equation 4.

qrep(S) =
1

n

n∑
i=1

qrep(si) (4)

The aggregation function for availability is defined by
Zeng et al. [20] as the probability of all events happen to-
gether. So, it is computed by the product of all probabilities,
as defined in Equation 5.

qav(S) =
n∏

i=1

(qav(si))
zi

(5)

where zi is 0 if service si is part of a critical path and 1
otherwise. It means that if a service si is not available, the
execution engine have some time (since si is not in a critical
path) to replace si for another service.

3.2.2 The Algorithm

This subsection presents an extension of the algorithm pro-
posed in [11]. The Algorithm 1 performs a service com-
position for a given request R. It starts by finding all ser-
vices that can provide as output a concept which is semanti-
cally equivalent (by subsumption reasoning) to the required
outputs specified in Rout ∈ R (Algorithm 1, lines 2-9).
A service will be a candidate solution if it can meet the
QoS constraints specified in Rqos ∈ R. The predicate

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 84

meetQoS(R, C) (Algorithm 1, lines 5-7) filters the candi-
date compositions that no longer meet the constraints im-
posed in the request and therefore should be discarded. The
Equation 1 cannot be used since in some criteria, such as
Reputation, it is not possible to determine if a certain com-
position does not meet the constraints imposed by the re-
quest without knowing the final number of services in the
composition, because its value is determined by the average
of the services’ individual values. In such cases, this kind
of criterion is just ignored and is not checked.

The candidate compositions are sorted according to a
comparator function which compares two candidate com-
positions C1 and C2 and return a value below zero if C2 is
a more prospective composition than C1, above zero if C1
is a more prospective composition than C2, and zero if both
are equally evaluated (Algorithm 1, line 11). The compara-
tor function proposed by [17] considers four composition
properties: (i) known concepts; (ii) unknown concepts;
(iii) eliminated concepts; and the number of services in a
composition. The property known (Equation 6) of a given
composition C and request R is the set of all known con-
cepts, i. e. the input concepts provided by the requester
and output concepts provided by the output of all services
in composition C. The property unknown (Equation 7) of a
given composition C is a set of the concepts needed to make
the composition C (functionally) valid. This set is composed
of the concepts required in the request (i.e. request outputs)
and concepts required to execute each service in the com-
position C. The property eliminated (Equation 8) is a set
of unknown concepts that has already been provided.

known(C) = Rin

⋃
∀s∈Cv

sout (6)

unknown(C) = { c | ∃s ∈ Cv : c ∈ sin ∧
c 6∈ known(C)} (7)

eliminated(C) = { c | ∃s ∈ Cv : c ∈ sin ∧
c ∈ known(C)} (8)

In this work, a fifth property was added: The Overall
Quality of Service Score. This property aims at represent-
ing in a single value all the quality criteria values of a com-
position. For this purpose, the Multiple Criteria Decision
Making (MCDM) [19] named Simple Additive Weighting
(SAW) [19] technique is used. This technique allows the
calculation of a score taking into account several, and some-
times conflicting, criteria. First, all criteria are put in the
same scale. Equations 9 and 10 provides a function that
calculates the scaled value of a criterion q of composition
C considering if q is positive (i.e. the higher the value the
higher the quality) or negative (i.e. the higher the value the
lower the quality). In practice, the values are scaled based

Input: R - the user Request, D - the Service
Repository

Result: C - the composition found or ∅
Data: X - the set of candidate compositions
begin1

foreach outR ∈ Rout do2

foreach3

s ∈ D | ∃ c ∈ sout(outR subsumes c) do
Cv ←− {s};4

if meetQoS(R, C) then5

append(X, C);6

end7

end8

end9

while X 6= ∅ do10

sort(X, comparator);11

C ←− removeMostProspective(X);12

if valid(C,R) then13

return C;14

end15

foreach outR ∈ unknown(C) do16

if17

¬∃s ∈ D(∃ c ∈ sout(outR subsumes c))
then

break;18

end19

foreach20

s ∈ D | ∃ c ∈ sout(outR subsumes c)
do

newCandidatev ←− Cv ∪ {s};21

newCandidatee ←−22

Ce ∪∀s2∈cv(∃c2∈s2inc2 subsumes outR)

{(s, s2)};
if meetQoS(R, newCandidate)23

then
append(X,newCandidate);24

end25

end26

end27

end28

return ∅;29

end30

Algorithm 1: Composition Algorithm.

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 85

on the highest and lowest values of a given criterion of the
compositions in the list of candidates compositions.

sc(C, q) =

{
overall(C,q)−qm(q)

qM (q)−qm(q) if qM (q)− qm(q) 6= 0

1 otherwise
(9)

sc(C, q) =

{
qM (q)−overall(C,q)

qM (q)−qm(q) if qM (q)− qm(q) 6= 0

1 otherwise
(10)

where qM = Max{overall(C, q) : C ∈ X} and qm =
Min{overall(C, q) : C ∈ X} and X is the list of candidate
compositions.

The overall QoS value of a composition considering all
quality criteria can be determined by a score which takes
into account the scaled values and the weights provided in
the request R associated with each criteria. Equation 11
defines the function that calculates the Overall QoS Score
for a given composition C.

score(C) =
∑

∀(q,v,w)∈Rqos

sc(C, q) ∗ w (11)

Originally, the comparator function choose one of the
compositions that has no unknown concepts left. If both
compositions does not need any unknown concept left,
it returns the composition that has less services. If both
of them have unknown concepts, the function returns the
composition with more eliminated concepts. But, if both
have the same number of eliminated concepts, it returns
the composition that has less unknown concepts. If both
of them have the same number of unknown concepts, it re-
turns the composition with less services. But if both of them
have the same number of services, the function returns the
composition with more known concepts.

The comparator function now should also take the Over-
all QoS Score into account, along with the other four com-
position properties (unknown concepts, eliminated con-
cepts, composition size, and known concepts). A number
of experiments were performed in order to figure out the
best place in terms of priority to put the QoS Score property
in the comparator function without affecting the algorithm
performance. The comparator function works as follows:

1. unknown = 0 (↑) - The comparator function returns
the composition that has no unknown concepts left,
that is, the composition that is functionally valid.

1.1. score (↑) - The Overall QoS Score takes place
as a tiebreaker when both compositions have the
same number of unknown concepts. Thus, when
both compared compositions have no unknown

concepts left, the compositions with higher score
is chosen.

1.1.1. size (↓) - If both compositions have the
same score, the one with less services is cho-
sen.

2. eliminated (↑) - The composition with more elimi-
nated concepts is chosen when both compositions still
have unknown concepts.

3. unknown (↓) - When both compositions have the
same number of eliminated concepts, the one with
less unknown concepts is chosen.

4. score (↑) - The composition with higher score is cho-
sen when both compositions have the same number of
unknown concepts.

5. size (↓) - When both compositions have the same
score, the one with less services is chosen.

6. known (↑) - Finally, if both compositions are of the
same size, the composition with more known concepts
is chosen.

Once the list is sorted using the comparator function,
it is possible to choose the composition which is the most
prospective composition in terms either of functionality and
Quality of Service (Algorithm 1, line 12).

If the chosen composition is valid, that is, if the com-
position does not need any additional concept to supply the
services inputs or request outputs, and meets the constraints
imposed in the request, it is returned by the algorithm (Al-
gorithm 1, lines 13-15). Otherwise, the chosen composi-
tion is expanded to form new candidate compositions with
services that provide concepts required by the composition
(Algorithm 1, lines 16-27). Again, if the actual composi-
tion does not meet the QoS constraints, it is discarded (Al-
gorithm 1 lines 23-25). If at least one unknown concept
cannot be provided with the services in the repository this
composition is also discarded (Algorithm 1, lines 17-19).
The algorithm runs until a candidate solution is found or all
candidate solutions are expanded and rejected, which is the
worst case of execution.

If the Overall QoS Score property had preference against
the unknown and eliminated, the algorithm would per-
form similarly to a Breadth-first search. For instance, sup-
pose the set of criteria Price, Duration and Availability.
The compositions with less services would more likely have
higher scores, since it would be cheaper, more available and
with less time-demanding. As a consequence, these compo-
sitions would be always selected to be expanded. However,
as the composition is expanded, it gets larger, decreasing its
chance to be chosen in the next time.

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 86

On the other hand, by considering the Overall Score as
a tiebreaker when properties eliminated and unknown of
the compared compositions are equal, the search process
will not be affected very much in terms of performance. The
advantage then is that it will always expand the composition
with higher score.

3.3 Composer Implementation

The implementation of the infrastructure proposed in this
paper follows the layered approach depicted in Figure 3.

OWL, OWL-S, QoS. The Domain Ontology is expressed
in OWL. The Service Repository is expressed in a set of
OWL-S files. For the sake of compatibility, the QoS at-
tributes of each services are expressed separately in XML.
Finally, as a result of the composition process, another
OWL-S file, describing the composite web service, is gen-
erated to be executed by the Execution Engine. If the ex-
ecution succeeds, the composition is stored in the Service
Repository, avoiding process time spent by the the com-
poser when the same request arrives later on.

Jena, OWLS-API, SAX. The Composer makes use of
three APIs for parsing the files described on the underly-
ing layer. Jena 4 is used for parsing ontologies described
in OWL. OWL-S API 5 is used for parsing Semantic Web
Services described in OWL-S. SAX 6 is used to parse XML
files used to describe the QoS attributes. Finally, the OWL-
S API is used again to generate the OWL-S of the resulting
composition.

IO Manager. On top of the APIs described above, the IO
Manager layer is responsible for translating the reposito-
ries and ontologies stored in OWL, OWL-S, as well as the
QoS description, in Business Rules layer classes. In the
way back, the IO Manager serves as a bridge to translate
the Business Rules classes into OWL-S models.

Business Rules. This layers represents the model (in Java
classes) for representing entities such as Request, Con-
cept, Service, and so on. The model is described in the
UML (Unified Modeling Language) Class Diagram, illus-
trated in Figure 4.

Algorithms and Heuristics. The Java implementation of
the algorithm and the heuristics presented in subsection
3.2.2.

4http://jena.sourceforge.net/
5http://owlapi.sourceforge.net/
6http://www.saxproject.org/

The layered approach allows to add other algorithms and
heuristics than those presented in subsection 3.2.2, as well
as to work with other kinds of Repository and Ontology rep-
resentations.

Figure 3: Composer Layered Representation

4 Experiments

This section aims at evaluating the proposed infrastruc-
ture, focusing on the composer module. First, some Exper-
imental Results obtained over the Web Service Challenge
Benchmark [3, 1] is described, then a Motivating Scenario
is presented.

4.1 Experimental Results

The experiments were performed under a variation of
test sets provided by the Web Service Challenge (WSC)
[3, 1] on a computer with processor Intel Core 2 Duo - 2.16
GHz, with 2GB of RAM. The test sets consist of groups of
repositories, ontologies, requests and solutions. For each
repository, there is an ontology associated, a set of requests
and their respective solutions, as illustrated in Table 1. In
WSC, the service specification was limited to required in-
puts and provided outputs, so Quality of Service was not
considered in this competition. Thus, it was necessary to
prepare the WSC test sets in order to accommodate quality
values for each service presented in each test set. The set of
criteria used in these experiments is composed of those de-
fined in subsection 3.2.1, that is, Duration, Price, Availabil-
ity, Successful Execution Rate and Reputation, with values
ranging from 20 to 500, 0.10 to 1.75, 0.3 to 1.0, 0.3 to 1.0
and 0.3 to 1.0, respectively, randomly generated, following
a uniform distribution. In addition, as the WSC provides
the possible solution for each request, it is possible to have
a QoS-based ranking of these possible solutions by exhaus-
tively searching the solutions with highest QoS score (Equa-
tion 11). This allows the comparison of compositions found
by the algorithm that takes into account QoS, the one that

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 87

Figure 4: Business Rule Layer Class Diagram

does not take into account QoS, and the optimal solution for
each defined request.

All requests were performed using the following weight
distribution: Duration: 0.3; Price: 0.3; Availability: 0.1;
Reputation: 0.2; Successful Execution Rate: 0.1. The re-
striction imposed by the user on each quality criteria was
omitted in these experiments, since it is just simple con-
trol checking performed after a composition is found. As
previously stated, these experiments aim at evaluating the
proposed approach in terms of feasibility and improvement
on the QoS of the compositions.

The experiments compare the compositions found by the
approach proposed here and the approach proposed in [17]
with regard to the execution time and the overall quality
of the compositions. Figure 5 illustrates the overall quality
of the compositions found by both approaches for each re-
quest of the test set as well as the optimal solution. As can
be seen, for all the request the algorithm of the proposed
composer could find compositions with better QoS values
than those found by the other approach. Figure 6 shows the
execution time for finding the composition for each one of
the requests for both approaches. Although the composi-
tions found by the proposed composer have better overall
QoS values, the time for finding them is almost the same of
the other approach.

The experiments developed were intended to evaluate the
impacts of the insertion of QoS in the algorithm proposed
by [17]. The impacts can be negative, for instance the over-

Table 1: Experimental Test Sets.

R |D| |O| |C| Solutions
1 118 1590 2 9
2 118 1590 3 8
3 118 1590 4 81
4 481 15541 4 81
5 481 15541 3 125
6 481 15541 2 100
7 481 15541 4 64
8 481 15541 3 30
9 481 15541 2 48
10 1000 56210 5 3125
11 1000 56210 12 500000
12 2000 58254 15 160000
13 4000 10891 8 6561
14 4000 10891 4 81
15 4000 58254 30 78125
16 8000 58254 40 177147
17 10000 58254 10 337500

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 88

!"##$%

&'(#)%

% * + , - . / 0 1 %2 %% %* %+ %, %- %. %/

2

23%

23*

23+

23,

23-

23.

23/

230

2

23%

23*

23+

23,

23-

23.

23/

230
23/-

23.% 23.*

23/

23-1

23/%

23/-

23/

230

23./

23-/

23.-

23-1

23/
23./

23.+

23./

45$"67$)86!

45$")86!

9:$5;'<!"#$"%&

'
(
"
)*
++
,-
.
/
)"
,0
1
23
45

=>"#)"5("#?)$"#)@'<7#A)$"#)"5("#?)$"#)B7'<5$C

Figure 5: Overall Composition Score.

!"##$%

&'(#)%

% * + , - . / 0 1 %2 %% %* %+ %, %- %. %/

2

-2

%22

%-2

*22

*-2

+22

+-2

,22

,-2

34$"56$)75!

34$")75!
!"#$"%&

'
"
(
)
*+
,-
.
"
%
%
/)
0
*1
/2
"
*3
2
%
4

% * + , - . / 0 1 %2 %% %* %+ %, %- %. %/

2

%222

*222

+222

,222

-222

.222

/222

0222

1222

%2222

34$"56$)75!

34$")75!

89$4:';
!"#$"%&

5
6
"
,(
77
*8
$
,(
&/
-
)
*3
2
%
49

Figure 6: Mean Processing Time.

head in the processing time, or positive, such as on the im-
provement of the overall quality of the compositions. The
experiments were performed by executing the original al-
gorithm, i. e. the algorithm not considering the QoS crite-
ria, and the algorithm considering QoS criteria under each
request of test sets of Table 1. Primarily, several execu-
tions for each request were performed in order to measure
the mean processing time of both versions of the algorithm.
Then, the overall criteria values of each composition found
was computed and contrasted in order to determine whether
or not a composition is better than other in terms of a spe-
cific QoS criterion.

Further details about the experiments can be found in
[10].

4.2 Evolving Dynamic Web Service Composition
Scenario

This section presents an example scenario of evolving
dynamic web service composition in order to detail the pro-
posed approach. The main elements of this scenario are
described as follows:

• The domain ontology O, which is given by the taxon-
omy shown in Figure 7.

• The service repository D, in which services describe

their Inputs and Outputs parameters with concepts of
ontology O and provide values for each quality crite-
ria, as shown in Table 2.

• The request R has a set of available in-
puts Rin = {c5}, set of required outputs
Rout = {c10, c19} and a vector of qual-
ity Rqos = {(qdu, 150, 0.2), (qav, 0.60, 0.2),
(qrep, 0.94, 0.2), (qpr, 0.8, 0.2), (qrat, 0.35, 0.20)},
where qdu is Duration, qav is Availability, qrep is Rep-
utation, qpr is Price and qrat is Successful Execution
Rate.

Figure 7: Domain Ontology of the Example Scenario.

The algorithm starts by trying to find out the services that
produce as output concepts that are related under subsump-
tion reasoning to the concepts c19 and c10. Service A is se-
lected as a candidate composition, because it provides either
c19 which is equal to one of the required concepts and c21
which is subsumed by the required concept c10. After the
first iteration, the list of candidate compositions will have
only one candidate composition, as shown in Table 3 where
e is the number of eliminated concepts, u is the number of
unknown concepts and k is the number of known concepts.
Since there is only one candidate composition, this com-
position will have both the maximum and minimum values
for every criteria, and thus will receive the maximum score
(1.0) and will be chosen as the most promising composi-
tion. As service A provides concepts for both required con-
cepts, the only concept needed at this moment is the con-
cept required to execute the service A, i. e. concept c12.
The criteria values of each candidate compositions should
be re-calculated in every iteration, since they are based on
the maximum and minimum values of the current candidate
compositions.

The next iteration will search for service that provide
concept c12. Services B, C and D are selected to form three
new candidate compositions with service A. So, Table 4
shows the calculated and retrieved values for the candidates
compositions {B,A}, {C,A} and {D,A} where e is the
number of eliminated concepts, u is the number of unknown

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 89

Services sin sout qdu qav qrep qpr qrat QoS Score
A c12 c19, c21 45.00 0.90 0.92 0.15 0.95 -
B c11 c23 32.00 0.95 0.90 0.10 0.87 -
C c7 c24 30.00 0.95 0.90 0.12 0.90 -
D c8 c12 35.00 0.85 0.95 0.07 0.90 -
E c6 c8 40.00 0.91 0.97 0.17 0.90 -
F c14 c8 30.00 0.89 0.99 0.20 0.95 -
G c13 c8 23.00 0.92 0.95 0.40 0.86 -
H c5 c14 19.00 0.96 0.86 0.25 0.99 -
I c5 c14 16.00 0.98 0.90 0.33 0.94 -
J c15,c22 c14 25.00 0.89 0.94 0.34 0.96 -

B,A c11,c12 c19,c21,c23 77.00 0.86 0.91 0.25 0.83 0.40
C,A c7,c12 c19,c21,c24 75.00 0.86 0.91 0.27 0.86 0.50
D,A c8,c12 c19,c21,c12 80.00 0.76 0.94 0.22 0.86 0.60

Table 2: Service repository(D).

Candidates e u k qdu qav qrep qpr qrat QoS Score
{A} 2 1 1 45.00 0.90 0.92 0.15 0.95 1.00

Table 3: Candidate compositions in the first iteration.

concepts and k is the number of known concepts. It should
be noticed that these candidate compositions are searched
in the Service Repository to check their existence and to
retrieving their corresponding QoS values. The composi-
tions {B,A}, {C,A} and {D,A} already exist and their
QoS are retrieved. Again, according to the proposed heuris-
tics (comparator function), the most prospective composi-
tion will be determined by the overall QoS Score, since the
eliminated concepts e and unknown concepts u are the same
for the three candidates. Composition {D,A} is then se-
lected. To be completed this composition requires concept
c8.

The next iteration will search for services whose outputs
are semantically related to concept c8. Services E, F and G
are selected to form another three compositions along with
composition {D,A}, as shown in Table 5. Now there are
two compositions with three eliminated concepts (e) and
three compositions with four eliminated concepts and all of
them have only one unknown concept (u). Thus, the over-
all QoS Score is used again as a tiebreaker and composition
{F,D,A} is selected.

Composition {F,D,A} will have only one unknown
concept, which, by the way, is the concept required to trig-
ger the execution of service F . The next iteration will then
look for services that provide a concept which is seman-
tically related to concept c14. Thus, services H , I and J
are selected to form another three compositions with com-
position {F,D,A}, as shown in Table 6. It is important
to notice that all of these new compositions have the same

number of unknown concepts and thus might be valid so-
lutions. The QoS Score is once more used to select com-
position {H;F ;D;A} as the most prospective composi-
tion. However, this composition does not meet the con-
straints imposed by the request, since the minimum repu-
tation specified was 0.94, whereas the overall reputation of
{H;F ;D;A} is 0.93 and therefore is not a valid composi-
tion. Composition {I;F ;D;A} should be selected, instead,
because it meets the constraints imposed by the request as
shown Table 6. Figure 8 represents the final composition.
This figure represents services as components with their in-
put and output interfaces. It should be noted that every par-
tial or final compositions are registered in the Service Direc-
tory, in order they can be discovered and plugged in other
requests, then reducing process time.

Figure 8: Final Resultant Composition

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 90

Candidates e u k qdu qav qrep qpr qrat QoS Score
{B,A} 3 1 1 77.00 0.86 0.91 0.25 0.83 0.40
{C,A} 3 1 1 75.00 0.86 0.91 0.27 0.86 0.50
{D,A} 3 1 1 80.00 0.76 0.94 0.22 0.86 0.60

Table 4: Candidate compositions in the second iteration.

Candidates e u k qdu qav qrep qpr qrat QoS Score
{B,A} 3 1 1 77.00 0.86 0.91 0.25 0.83 0.76
{C,A} 3 1 1 75.00 0.86 0.91 0.27 0.86 0.78
{E,D,A} 4 1 1 120.00 0.70 0.95 0.39 0.77 0.39
{F,D,A} 4 1 1 110.00 0.68 0.95 0.42 0.81 0.49
{G,D,A} 4 1 1 103.00 0.70 0.94 0.62 0.74 0.26

Table 5: Candidate compositions in the third iteration.

Candidates e u k qdu qav qrep qpr qrat QoS Score
{B,A} 3 1 1 77.00 0.86 0.91 0.25 0.83 0.77
{C,A} 3 1 1 75.00 0.86 0.91 0.27 0.86 0.79
{G,D,A} 4 1 1 103.00 0.70 0.94 0.62 0.74 0.43
{E,D,A} 4 1 1 120.00 0.70 0.95 0.39 0.77 0.54
{H,F,D,A} 6 0 2 129.00 0.65 0.93 0.67 0.80 0.26
{I,F,D,A} 6 0 2 126.00 0.67 0.94 0.75 0.76 0.25
{J,F,D,A} 5 2 1 135.00 0.61 0.95 0.76 0.78 0.24

Table 6: Candidate compositions in the forth and last iteration.

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 91

5 Conclusion

The semantic web enriches web services functional de-
scription by adding ontology-based annotations so that it
is possible to computers automatically discover these ser-
vices and compose them in order to have new functionalities
based on existing ones.

In this work, an infrastructure for evolving dynamic web
service composition was presented. The infrastructure is di-
vided into two main modules: the execution engine, where
the actual services are executed and monitored; and the
composer module, where the several semantically annotated
services are automatically composed to accomplish a given
task. A scenario and experiments were used to show the
practical usage and feasibility of the infrastructure.

The use of services’ effects and preconditions is left for
future works. In addition, other techniques used for search
problems like Dynamic Programming [9] should also be
studied and compared to the proposed approach.

Questions like parallel composition remain to be inves-
tigated. Due to the concurrency, the composition execution
time can be significantly reduced.

References

[1] 9th IEEE International Conference on E-Commerce Tech-
nology (CEC 2007) / 4th IEEE International Conference on
Enterprise Computing, E-Commerce and E-Services (EEE
2007), 23-26 July 2007, National Center of Sciences, Tokyo,
Japan, 2007. IEEE Computer Society.

[2] R. Akkiraju. Semantic web services. In K. Klinger,
K. Roth, J. Neidig, S. Reed, S. Berger, and J. LeBlanc,
editors, Semantic Web Services: Theory, Tools and Appli-
cations, pages 191–216. IGI Global, London, UK/Hershey,
PA, USA, 2007.

[3] M. B. Blake, W. K. Cheung, M. C. Jaeger, and A. Wom-
bacher. Wsc-07: Evolving the web services challenge. E-
Commerce Technology, IEEE International Conference on,
and Enterprise Computing, E-Commerce, and E-Services,
IEEE International Conference on, 0:505–508, 2007.

[4] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer. Sim-
ple Object Access Protocol (SOAP) 1.1, April 2000.

[5] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.
Qos-aware replanning of composite web services. Web Ser-
vices, IEEE International Conference on, 0:121–129, 2005.

[6] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Sri-
vastava. Adaptation inweb service composition and exe-
cution. Web Services, IEEE International Conference on,
0:549–557, 2006.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (wsdl) 1.1.
W3C note, W3C, Mar. 2007.

[8] D. B. Claro, O. Licchelli, P. Albers, and R. J.
de Araújo Macêdo. Personalized reliable web service com-
positions. In F. L. G. de Freitas, H. Stuckenschmidt, H. S.

Pinto, A. Malucelli, and Ó. Corcho, editors, WONTO, vol-
ume 427 of CEUR Workshop Proceedings, Salvador-Bahia,
Brazil, 2008. CEUR-WS.org.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-
duction to algorithms. MIT Press and McGraw-Hill, Cam-
bridge, MA, USA, 1990.

[10] F. G. A. de Oliveira Jr. A qos-based approach for dy-
namic web service composition. Master’s thesis, Instituto
Tecnológico de Aeronáutica, São José dos Campos, Brasil,
2009.

[11] F. G. A. de Oliveira Jr. and J. M. P. de Oliveira. A heuristic-
based runtime ranking for service composition. In ICITST-
2009: International Conference for Internet Technology and
Secured Transactions, London, UK, 2009. IEEE Computer
Society.

[12] T. Erl. SOA Principles of Service Design (The Prentice Hall
Service-Oriented Computing Series from Thomas Erl). Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2007.

[13] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar.
Comprehensive qos monitoring of web services and event-
based sla violation detection. In MWSOC ’09: Proceedings
of the 4th International Workshop on Middleware for Ser-
vice Oriented Computing, pages 1–6, New York, NY, USA,
2009. ACM.

[14] OASIS. Universal description, discovery, and integration
(UDDI) version 3.0.2, April 2004.

[15] S.-C. Oh, J.-W. Yoo, H. Kil, D. Lee, and S. R. T. Kumara.
Semantic web-service discovery and composition using flex-
ible parameter matching. E-Commerce Technology, IEEE
International Conference on, and Enterprise Computing, E-
Commerce, and E-Services, IEEE International Conference
on, 0:533–542, 2007.

[16] J. O’Sullivan, D. Edmond, and A. T. Hofstede. What’s in
a service? Distrib. Parallel Databases, 12(2-3):117–133,
2002.

[17] T. Weise, S. Bleul, D. Comes, and K. Geihs. Different ap-
proaches to semantic web service composition. In ICIW ’08:
Proceedings of the 2008 Third International Conference on
Internet and Web Applications and Services, pages 90–96,
Washington, DC, USA, 2008. IEEE Computer Society.

[18] Y. Yan, B. Xu, and Z. Gu. Automatic service composition
using and/or graph. E-Commerce Technology and Enterprise
Computing, E-Commerce and E-Services, IEEE Conference
and Fifth IEEE Conference, 0:335–338, 2008.

[19] P. K. Yoon, C.-L. Hwang, and K. Yoon. Multiple Attribute
Decision Making: An Introduction (Quantitative Applica-
tions in the Social Sciences). Sage Publications Inc, Thou-
sand Oaks, CA, USA, March 1995.

[20] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware for
web services composition. IEEE Transactions on Software
Engineering, 30(5):311–327, 2004.

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 4, December 2010

Copyright © 2010, Infonomics Society 92

