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ABSTRACT 

Sensor Networks are expected to sustain for a long period of 

time with limited battery power. Among the many approaches 

used, Node Scheduling is effective in increasing the Network 

Lifetime. Existing node scheduling approaches perceives the 

happenings in the Sense region as a random phenomenon. But 

the proposed approach studies the behaviour of targets in its 

region and uses the acquired knowledge to predict future 

presence of the target in a locality. Simulation results prove 

the effectiveness of prediction. Once the locality is known in 

advance, the sensor motes participate in a game to achieve an 

energy efficient schedule for the nodes. A Pareto-optimal 

Node Schedule for the game is determined by a metaheuristic 

approach called the Water Cycle algorithm. Again the energy 

efficiency of the solution is proved by the simulation results.  

General Terms 

Energy Efficient Algorithm 

Keywords 

Wireless Sensor Network, Network Lifetime, Bayesian 
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1. INTRODUCTION 
A Wireless Sensor Network (WSN) is a network of 

computation constrained, memory constrained and energy 

constrained sensor nodes deployed in the Region of Interest 

(ROI) [1]. The energy scarcity has kindled the development of 

many energy efficient protocols for a WSN [2-7]. Sleep 

scheduling the sensor nodes is one such technique, where 

redundant sensor nodes among the densely deployed WSN are 

put in a low power deep sleep state. Many energy efficient 

sleep scheduling strategies have been developed recently.  

In [8] Manju et al. have proposed a heuristic which iteratively 

builds sensor covers. These sensor covers have comparatively 

high energy and cover the maximum targets. A target is said 

to be covered, if and only if it is in the vicinity of at least one 

sensor cover. Sensor covers are built such that all the targets 

are covered. Only one sensor cover is active at any given time 

thus saving energy.  

Jingwen et al. [9] have proposed a metaheuristic approach 

which solves the Node Scheduling as a multi-dimensional 

optimization problem. Maximum coverage set and minimum 

node set are two objectives solved. The cost function has 

accounted both and arrives at an optimal node set which saves 

energy. In [10] the authors have predicted the trajectory of a 

target based on its current direction and kinematics.   

The major setbacks of existing Node Scheduling strategies 

are: 

 

1. Only Initial Energy is considered for determining 

the Node Set. The Node Sets are developed 

centrally.  

2. Majority of the Scheduling Strategies work with the 

assumption of fixed targets. 

3. In case of moving targets, the algorithm is highly 

complex.  

The proposed approach is a simple Node Scheduling strategy 

for tracking the moving targets. Animals and human beings 

stick to familiarity. Jakob et al. in his behavioral studies [11] 

describes that animals always show preference to familiar 

places and familiar paths. Unless its usual path is obstructed, 

an animal takes the same path almost daily. Similarly seismic 

occurrence in an earthquake prone zone triggers seismic 

activities in predictable areas. This has been proved by 

Andrew et al. [12]. Many natural phenomena have a pattern of 

occurrence and this has been proved time and again. The 

proposed approach is hence developed for such applications 

which exhibit a pattern of occurrence. The proposed Node 

Scheduling Game (NSG), learns the trajectory of the target, 

predicts its future trajectory by Bayesian Estimation. If the 

locality of the next event is predicted, the nodes elsewhere 

enter a deep sleep state, only entering the Active Sensor 

Group when there is a probability of event occurring in its 

region. Not all the sensor nodes in the Awake Region need to 

be Active for sensing. Only few sensor nodes (depending on 

the probability) are put in an Active state and they form the 

sensor cover. Since Lifetime of a Sensor Network is measured 

by the time of its First Node Death (FND), to prolong the 

lifetime nodes should die more or less around the same time. 

To achieve this, energy must be spent proportionately by the 

nodes. This is possible if the sensor cover is chosen every 

time based on the nodes’ residual energy.  To choose the 

sensor cover, a metaheuristic approach called the Water Cycle 

Algorithm has been used (WCA). Here, it is assumed that the 

WSN has been clustered with any one of the state of art 

clustering algorithms. 

 The remaining of this paper is organized as follows. Section 2 

describes the Bayesian Estimation; Section 3 introduces Game 

Theory for Node Scheduling and the concept of Pareto 

Optimality. Section 4 elaborates the WCA. Section 5 analyses 

the results and Section 6 concludes the paper. 

2. BAYESIAN ESTIMATION 
Bayesian Estimation begins with knowing the Initial or Prior 

Probability of an event P (θ). The observations from history 

determine the Conditional Probability P (θ/D).  

The Posterior Probability of an event is then given by Baye’s 

theorem (Eq. 1). 
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In target tracking application, the Prior Probability of an event 

is the Probability (Prob.) of sensing a target at a cluster. The 

target's trajectory is then observed and recorded. When the 

trajectory has been partially studied, related events are spotted 

from the recorded data i.e. P (C1/C2). This is the probability of 

a target being spotted at Cluster C1 given it is spotted by 

sensors at Cluster C2. When the learning becomes more 

mature, the accuracy of conditional probability increases. 

Now at some point in future, when an event is spotted by 

Cluster C1, combining the Initial probability P (C1) , P(C2) 

and the Conditional Probability P (C1/C2) the probability of an 

event occurring in Cluster C2 right after event spotted at 

Cluster C1 (P(C2/C1)) is determined by Baye's Theorem. 

Similar to C2, all the remaining neighboring Clusters of C1 

thus determine the probability of an event occurring in its 

range. Thus all the clusters likely to be impacted are alerted 

and only those impacted clusters stay awake for sensing. 

Hence by Bayesian estimation, only a chain of necessary 

clusters along the target's trajectory are alerted for sensing. 

3. NODE SCHEDULING GAME 
The Lifetime of a WSN is defined by its time of First Node 

Death (FND). Hence as described earlier, to prolong the 

Network Lifetime, the nodes should run out of energy more or 

less around the same time. This is achieved by bringing a 

balance in the depletion of energy among the sensor nodes. 

The sensors in a cluster vary from each other in terms of their 

Residual Energy. When the prob. of event occurring near a 

cluster is high, the Cluster is an Awake Region and the sensor 

nodes of the impacted cluster decide on the number of nodes 

to remain in an Active State. This is calculated by Eq.  2. 

                                      𝐴 = 𝑝 ∗ 𝑁                                        (2) 

In Eq. 2 ‘N’ is the number of cluster members and ‘p’ is the 

probability of occurrence of an event in the cluster. To 

determine the 'A' nodes that remain active and 'N-A' nodes 

that go to a low power state, the nodes start a Node 

Scheduling Game. 

3.1 Defining the Node Scheduling Game 
The Node Scheduling Game (NSG) for Sleep Scheduling is 

defined as follows. 

Players: All the nodes of the impacted cluster participate in 

the game. The players are {CM1, CM2 ..., CMN}. 

Strategy:  Each node has two strategies available to it. It is 

represented by S = {W, W}. It can either WakeUp ‘W’ and 

remain in Sense State or does not Wakeup ‘W’. Since a node 

Ni can play either of the strategies with a positive probability, 

this is a mixed strategy game. 

Payoff:  It is the incentive each player receives for each of  its 

strategies. 

3.2 Pareto-optimal Solutions 
In some games, few strategies (actions) are dominant over 

others. Elaborately, if a player has two strategies S and S*, it 

can be said that S strictly dominates S*, when it is the case 

that, for all other strategy profiles (all possible combination of 

actions other players could take) the utility of player ‘i’ is 

strictly higher when he chooses strategy S over S*. S is said to 

have a weakly dominance over S*, when its utility for playing 

S is at least as high as choosing S*, for all the strategy profiles 

chosen by other players.   

Generally Nash Equilibrium provides the solution concept of 

a game. Nash Equilibrium is a stable state achieved by the 

players, where each player plays his/her best response, 

knowing the behavior of other players. Instead of players 

choosing their Best Response, taking a perspective from 

outside, there must be an outcome which is suited for all the 

players and is a stable solution. This stable solution which 

suits every player can be given by the concept of Pareto 

Optimality. 

When outcome O is preferred over O' for everybody and is 

strictly preferred over O' for at least one player, then ‘O’ 

Pareto-dominates O'. Hence an outcome O is said to be a 

Pareto - optimal solution if it isn’t Pareto dominated by any 

other outcome. Intuitively it can be observed that there can be 

more than one Pareto-optimal outcome and in addition there 

has to be at least one Pareto-optimal outcome for a game. The 

set of Pareto-optimal outcomes form the Pareto-optimal 

Archives. The Water Cycle Algorithm determines the Pareto-

optimal Archive for the Node Scheduling Game. One solution 

from the Archive is chosen as the Node Scheduling Set for the 

impacted Cluster. 

4. WATER CYCLE ALGORITHM 

4.1 Hydrological Cycle 
Water Cycle Algorithm (WCA) developed by Eskandar et. al 

[13] is a recently developed metaheuristic approach based on 

the observation of the water cycle process in nature. The 

WCA imitates the behavior of streams and rivers that flow 

downward to the sea. The Water Cycle Process in nature starts 

with raining. Rain drops join together to form streams and two 

or more streams join together and moves downhill to form 

bigger streams. These streams either join the rivers or enter 

the sea. Additionally, when glaciers and snow melt, the water 

enters the underground stream (aquifers) and flows downhill. 

The underground stream discharges to a lake or a river which 

flows to the sea eventually. Finally the water from the sea 

evaporates and along with water vapor from plants (as result 

of photosynthesis) forms the clouds. As a result of 

condensation, water from the clouds reaches the earth in the 

form of rain. The WCA mimics the behavior of this process 

(Fig. 1) in nature for solving optimization problems. 

4.2 Initial Population 
WCA like the Genetic Algorithm and Particle Swarm 

Optimization Algorithm is a population based Metaheuristic. 

The initial population in WCA is a collection of RainDrops.  

Each RainDrop (Eq. 3) represents a possible solution. 

          RainDrop = [X1, X2…. XN]                                         (3) 

If the optimization problem is N dimensional, each raindrop is 

a 1 X N dimensional array (Eq. 3).  
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Fig: 1Water Cycle Process 

The initial population   (Eq. 4) is a randomly generated matrix 

of dimension pop_size X N, where pop_size is the size of 

initial population. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =   

𝑋1
1 ⋯ 𝑋𝑁

1

⋮ ⋱ ⋮

𝑋1
𝑝𝑜𝑝 _𝑠𝑖𝑧𝑒

⋯ 𝑋𝑁
𝑝𝑜𝑝 _𝑠𝑖𝑧𝑒

            (4) 

Each design variable X1, X2 ...,Xn can be either a real valued 

number or a predefined set depending on the optimization 

problem to be solved. The aim of the Node Scheduling Game 

is to determine a highly energy efficient Node Set which also 

provides maximum coverage. Node scheduling game is a 

single dimensional optimization problem which strives to 

optimize the energy efficiency inside a cluster. Since NSG is a 

discrete optimization problem, the design variable (X) is a 

randomly generated Node Set. Initial population is a matrix of 

raindrops with a single design variable namely the NodeSet 

which the forms the Sensor Cover. From Eq. 2 the number of 

nodes 'A' that remain active is determined. Each RainDrop 

hasa set of 'A' nodes chosen randomly among the 'N' nodes.                           

4.3 Cost Function 
The Cost function of each Raindrop is calculated by the 

following equation. 

                   𝐶𝑜𝑠𝑡𝑖 = 𝑓 𝑋1
𝑖 , 𝑋2

𝑖 , … , 𝑋𝑁
𝑃𝑜𝑝 _𝑠𝑖𝑧𝑒

                            (5) 

NSG being a single dimensional optimization problem 

designed to solve the energy efficiency problem, the cost 

function is the negative summation of Residual Energy of 

each node in the Node Set of the RainDrop (Eq. 6).  

 

                      𝐶𝑜𝑠𝑡𝑖 = −   𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦𝑗𝑗 =1 𝑡𝑜  𝐴           (6) 

The aim of WCA is to minimize the cost of the solution. 

4.4 Streams and Rivers 
When 'Pop_size' raindrops are created, the raindrop with the 

minimum Costi becomes the Sea. Next best RainDrops in Nsr 

become the rivers. The remaining RainDrops are the streams 

which flow directly to the sea or join the rivers. Nsr is the 

summation of a sea and rivers. 

 

                  Nsr = Number of Rivers + 1 (sea)                        (7)  

                            NRainDrops = Pop_size - Nsr                          (8) 

RainDrops are assigned to rivers and the sea. The number of 

raindrops (NSn) assigned to rivers and sea depends on the 

intensity of the flow which is given by Eq. 9. 

 

 

𝑁𝑆𝑛 = 𝑟𝑜𝑢𝑛𝑑 
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,

𝑛 = 1,2, …… , 𝑁𝑠𝑟  

                                                                                             (9) 

The Fig 2 represents the flow of streams to Sea and river. As 

described earlier, the raindrops join to form streams which 

join the rivers and everything finally ends up in the sea (the 

highest optimal point so far).  

 

Figure 2 Flow of Stream towards River 

As seen in the Fig. 2, the Streams join the Rivers or the Sea 

and the Rivers join the Sea along the connecting path (of 

distance d) existing between them. The stream joins the river 

by travelling a randomly chosen distance X calculated by Eq. 

10. In Eq. 10, fixing a value greater than 1 for ‘C’ enables the 

streams to follow in varied paths towards the river. The same 

is extended for the rivers joining the sea. 

                            X Є (0, C x d), C > 1                              (10) 

The New positions of the Stream and River are calculated by 

Eq. 11 and Eq. 12. 

𝑋𝑆𝑡𝑟𝑒𝑎𝑚
𝑖+1 = 𝑋𝑆𝑡𝑟𝑒𝑎𝑚

𝑖 + 𝑟𝑎𝑛𝑑 𝑋 𝐶 𝑋 ( 𝑋𝑅𝑖𝑣𝑒𝑟
𝑖 −  𝑋𝑆𝑡𝑟𝑒𝑎𝑚

𝑖 )    (11) 

𝑋𝑅𝑖𝑣𝑒𝑟
𝑖+1 =  𝑋𝑅𝑖𝑣𝑒𝑟

𝑖 + 𝑟𝑎𝑛𝑑 𝑋 𝐶 𝑋  𝑋𝑆𝑒𝑎
𝑖 −  𝑋𝑅𝑖𝑣𝑒𝑟

𝑖                  (12) 

If the new positions are better (based on cost function of the 

new streams and the new Rivers) than the Old Rivers and Sea 

their positions are interchanged (Fig. 3). 

4.5 Evaporation Condition 

Another important aspect of the WaterCycle process is 

evaporation. In nature water evaporates from 

Rivers/Lakes/Sea and also plants release water due to 

transpiration during photosynthesis. The evaporated water 

form clouds which condenses and the water reaches back as 

rain. 

   

d 

X 

River 

New Position of Stream 
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Fig. 3 Exchange of Positions of Sea and River 

This is incorporated in the WCA to prevent the quick 

convergence of the algorithm and ending up in local optimum. 

When the algorithm satisfies the following condition, 

evaporation begins.  

If       𝑋𝑠𝑒𝑎
𝑖 −  𝑋𝑅𝑖𝑣𝑒𝑟

𝑖  < 𝑑𝑚𝑎𝑥    i = 1, 2, 3,…., Nsr – 1.           

        Evaporation and Raining 

End 

If the distance between the Sea and a River is less than dmax, 

evaporation condition is satisfied and precipitation starts. 

Lower value of dmax, increases the search intensity near the 

sea resulting in a highly optimal solution. The value of dmax 

iteratively decreases for each round. 

                                 𝑑𝑚𝑎𝑥
𝑖+1 =  𝑑𝑚𝑎𝑥

𝑖 −  
𝑑𝑚𝑎𝑥

𝑖

max 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
               (13) 

The precipitation begins with introducing new solutions as 

Raindrops which form the streams.  

                    𝑋𝑛𝑒𝑤  𝑠𝑡𝑟𝑒𝑎𝑚 = 𝐿𝐵 + 𝑟𝑎𝑛𝑑 𝑋 (𝑈𝐵 −  𝐿𝐵)         (14) 

In Node Scheduling Game the Lower Bound (LB) and Upper 

Bound (UB) constraints restricts the Raindrops to have sensor 

nodes which are members of the current cluster. The new 

Raindrops form the streams which join the Rivers or join the 

sea directly. The WCA is run till maximum number of 

iterations has been reached. At the end of each iteration, the 

Sea becomes a member of the Pareto Optimal Archive. At the 

end of each iteration, the non-dominated Pareto optimal 

solutions are retained and the dominated solutions are 

discarded. Table 1 describes the flow of WCA algorithm for 

determining the Pareto optimal Node Schedule. Column 2 

shows the actions and column 3 briefs either the calculation or 

the conditions behind the actions.  

Table 1 Flow of WCA Algorithm 

Step 1 

 

Initialize max_iteration, Nsr,initial population 

(Raindrops), dmax, Pareto optimal Archive 

Step 2 

 

Initialize Sea 

 

Best Raindrop by Eq. 6 

Step 3 Initialize Rivers 
Next (Nsr-1) best 

Raindrops 

Step 4 

 

Streams 

 

Remaining Raindrops 

Step 5 
Determine 

[cost_raindrops] 
By Eq. 6 

 

Step 6 

 

Intensity of Flow 

 

By Eq. 9 

Step 7 

 

Streams  Flow  to 

Rivers 

By Eq. 11 

 

Step 8 

 

Rivers Flow  to Sea 

 

By Eq. 12 

 

Step 9 

 

Swap Sea & River 

 

If Cost(River)  < Cost(sea) 

 

Step 10 

 

Swap River &Stream 

 

If Cost(Stream)  < Cost(River) 

Step 11 

 

Evaporation & 

Precipitation of New 

RainDrops 

 

If Evaporation condition 

is satisfied 

 

Step 12 

 

Reduce dmax 

 

By Eq. 13 

 Step 13  

 

Update the Pareto 

optimal Archive 

Removing the 

dominated solutions 

 

Check whether Sea 

dominates existing 

Solutions in the Archive 

 

Step 14 

 

Go to Step 7 

 

If #_iteration 

<max_iteration 

5. SIMULATION AND ANALYSIS 
The following scenario as shown in Table 2 was setup for 

comparing and analyzing the results. A moving target with a 

path similar to animals was used. The Mean residual Energy, 

Mean Standard Deviation of Residual Energy, Time of Death 

of Nodes and Prediction Accuracy were all studied for NSG 

and compared with IGA-BACA [9]. IGA- BACA is chosen, 

as it uses a metaheuristic approach for node scheduling. 

Table 2 Simulation Settings 

Sensor Nodes 100 

Sensing Field 1000 m X 1000 m 

Transmission Range 100 m 

Receiving Range 100 m 

Initial Energy 0.2 J – 2 J 

Transmit Power 35.28e-3 W 

Receiving Power 31.32e-3 W 

Simulation Time 20000 s 

5.1 Comparison of Residual Energy 
Table 3 Mean Standard Deviation of Remaining Energy 

Round (R) 

1R=100s 

Mean Std. Deviation / Energy Mean 

NSG IGA-BACA 

10 0.122 / 0.295 0.105 / 0.315 

30 0.108 / 0.288 0.101 / 0.291 

60 0.067 / 0.280 0.101 / 0.261 

90 0.061 / 0.276 0.100 / 0.247 

120 0.059 / 0.271 0.099 / 0.233 

150 0.058 / 0.266 0.099 / 0.219 

180 0.056 / 0.261 0.099 / 0.203 

 200 0.055 / 0.260  0.098 / 0.200 

 

Table 3 shows comparison of Mean Standard Deviation of 

Residual Energy and Mean Residual Energy of nodes across 

rounds. The performance of NSG is compared with IGA-

BACA.  The rate of decrease of residual energy in IGA-

BACA is 36.5% whereas in NSG it is as low as 3.5%.  

Bayesian prediction predicts the occurrence of event in a 

region. This has greatly reduced the number of idle listening 

nodes waiting for the arrival of target or occurrence of event. 

Idle listening consumes as much power as needed by the 
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River 

 

 
 

 

 

 

Sea 

River  
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receiving circuitry. This has greatly reduced rate of decrease 

of energy as time goes by, in NSG when compared to [9]. 

Mean Standard Deviation of Residual Energy gives a measure 

of the residual energy difference among the sensor nodes at a 

given point in time. When NSG’s Std. Dev of Residual 

Energy is compared with that of IGA-BACA, it can be seen 

that the energy difference among the sensor nodes has been 

reduced greatly. This energy difference arises in IGA-BACA 

because of the onetime determination of the Sensor Cover 

based on the initial residual energy. In NSG the sensor covers 

are highly dynamic, as they are determined each time based 

on their residual energy. This decrease in energy difference 

also leads to a higher network lifetime. 

5.2 Comparison of Network Lifetime 
Figure 4 plots the Lifetime of the WSN. The decrease in the 

differences in residual energy among the sensor nodes plays 

the vital role in increasing the Lifetime of WSN when 

compared to IGA-BACA. The improved performance of NSG 

with time is explained by the increase in accuracy of 

Conditional Probability. The sensor nodes start the NSG when 

the learning of the target is still somewhat immature. But as 

time increases, the conditional probability gets more accurate 

which results in decrease in the number of Idle Listening 

Nodes and hence the increased Lifetime. 

 

Fig 4: Lifetime of WSN 

5.3  Comparison of Prediction Accuracy 

Figure 5 plots the Prediction accuracy of Baye’s Theorem. 

Prediction accuracy is measured as the ratio of accurate 

predictions to the actual occurrence of events in the sensing 

region. Initial rounds show higher miss in prediction by NSG. 

As time goes by, the accuracy increases. This is because as 

the target’s trajectory is better understood, Conditional 

Probability gets more fine-tuned.  

This results in NSG’s prediction accuracy to be on par with 

IGA-BACA a fixed coverage set approach after 140 rounds. 

This also explains the improved performance by NSG in 

terms of Network Lifetime (Figure 4) as time increases. 

 

Fig 5: Comparison of Prediction Accuracy 

6. CONCLUSION 
A Node Scheduling approach based on Bayesian Probability 

and Game Theory has been proposed. The Node Scheduling 

Game is specifically proposed for moving targets or 

phenomenon that can be learnt and predicted. The sensor 

nodes study the trajectory of the moving target and using 

Bayesian Estimation predicts the future locality of occurrence 

of event. The sensor nodes in the predicted locality start a 

game with the goal of determining the appropriate number of 

sensor nodes that must stay awake. Using Water Cycle 

Algorithm, a Pareto optimal archive of solutions is determined 

and one solution among the archive is chosen as the sensor 

cover. Prediction of events combined with proportional 

expenditure of energy by sensor nodes has resulted in 

significant increase in Lifetime. Network Lifetime (35% Node 

Death Time) is enhanced by 52% when compared to IGA-

BACA. The sensor covers are chosen only based on the 

residual energy, but in future this can be extended to selection 

of node covers based on additional parameters like total 

coverage angle, total coverage area and WCA can be used for 

solving the multi-dimensional optimization problem.  

7. REFERENCES 
[1] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., and 

Cayirci, E., (2002). A survey on sensor networks.IEEE 

Communications Magazine, vol.  40, no.  8,       pp.   102 

– 114. 

[2] Anastasi, G., Conti, M., Francesco, M., Passarella A. 

(2009). Energy Conservation in wireless sensor 

networks: A survey. Ad Hoc Networks, vol. 7, no.3,     

pp.  537-568. 

[3] Leu, J., Chiang, T., Yu, M., and Su, K. (2015).Energy 

efficient clustering scheme for prolonging the lifetime of 

wireless sensor network with isolated nodes. IEEE 

communication letters, vol.19, no. 2, pp. 259-262.   

[4] Mini, R., and Loureiro, A. (2012). Energyefficient design 

of wireless sensor networks based on finite energy 

budget. Computer Communications, vol. 35, no. 14,     

pp. 1736-1748. 

[5] Rault, T., Bouadallah, A., and Challal, Y. (2014). Energy 

efficiency in wireless sensor networks: A top down 

survey. Computer Networks, vol. 67, pp. 104-122. 



International Journal of Computer Applications (0975 – 8887) 

Volume 164 – No 9, April 2017 

25 

[6] Torres, C., Glosekotter, P. (2011). Reliable and energy 

optimized WSN design for a train application. Journal of 

System Architecture, vol. 57, no. 10, pp. 896-904. 

[7] Xiong, N., Huang, X., Cheng, H., and Wan, Z. (2013). 

Energy efficient algorithm for broadcasting in ad hoc  

wireless sensor networks. Sensors, vol. 13, no. 4,         

pp. 4922-4946. 

[8] Manju, Satish, C., Bijender, K. (2016). Maximising 

network lifetime for target coverage problem in wireless 

sensor networks, IET Wireless Sensor Systems.vol. 6, 

no. 6, pp. 192–197. 

[9] Jingwen, T., Meijuan, G., Guangshuang, G. (2016).  

Wireless sensor network node optimal coverage based on 

improved genetic algorithm and binary ant colony 

algorithm.EURASIP Journal on Wireless 

Communications, no. 1, pp. 104-114. 

[10] Bo, j., Binoy, R., Hyeonjoong, C. (2013). Probability-

Based prediction and Sleep Scheduling for Energy 

Efficient Target Tracking in Sensor Networks.IEEE 

Transactions on Mobile Computing, vol. 12, no. 4, pp. 

735-747. 

[11] Jakob, V.U. (2010). A Foray into the Worlds of Animals 

and Humans. (University of Minnesota Press, 

Minneapolis, London. 

[12] Andrew, A.D., Kevin, C., Kazushige, O., Paul A.J. 

(2015). Cascading elastic perturbation in Japan due to the 

2012 Mw 8.6 Indian Ocean earthquake.  Science 

Advances,vol. 1, no. 9. 

[13] Eskandar, H., Sadollah, A., Bahreininejad, A., 

andHamdi, M. (2012). Water cycle algorithm–A novel 

metaheuristic optimization method for solving 

constrained engineering optimization 

problems. Computers & Structures, vol. 110,pp. 151-166. 

 

 

IJCATM : www.ijcaonline.org 


