
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 5 Issue 09 September 2016 Page No.17916-17920

Azfar Inayat Khan, IJECS Volume 5 Issue 09 September 2016 Page No.17916-17920 Page 17916

A Review on Performance of Database Systems
Azfar Inayat Khan

Research Scholarsinghania University, Rajasthan

Azfarkhan_78@Hotmail.Com

Abstract

Presently most of the researchers focus on works in the area of pattern recognition, computer networks,

mobile computing, information security, image processing, data mining, bio inspired computing, theoretical

computer science and cloud computing. Research in the area of data modelling for relational databases has

trimmed down considerably.

Since research in the area of data modelling for relational databases has trimmed down considerably, it has

been comprehended that the fissure between user expectation and product delivered, in database systems

design and development, has to be diminished. The field of modelling and design of databases is vast, with a

surplus of methodologies as well as techniques, but designers need authentic guidelines that can be used for

designing proficient database management systems. This paper reviews the different techniques used to perk

up the performance of databases.

Keywords: Database, ER Diagram,

Normalization, Refactoring

1. Introduction

Data modeling is the foundation for understanding

consumer‟s necessities and designing information

system of any organization. It is a process used to

identify and examine data necessities needed to

sustain the business processes within the scope of

consequent information systems in organizations.

During the information systems growth, process

within an organization, data resources are usually

analyzed in the form of a data model. When

developing a data model, it is imperative to

communicate with the stakeholders about the

necessities.

It visually signifies the nature of data, business

policies that are pertinent to data, and how it will

be organized in the database. Data modelling

assists the end-users to define their necessities, and

the developers are able to develop a system to

meet those specified necessities.

According to the types of concepts used to portray

the database structure, data model can be classified

as high-level or conceptual data model,

representational or implementation model and low-

level or physical data model [1].

A conceptual or high-level model is a model of the

actual world expressed in terms of data necessities.

This model provides conceptions that are close to

the way many users recognize data. This model

uses the conception of entities, attributes and

relationship. Physical or low-level model describes

the details of how data is stored in the computer by

representing information such as record formats,

record ordering and access path. Conception

provided by physical models are generally

intended for computer experts and not for typical

end users. Representational or realization model

are the intermediary model that provide conception

that may be understood by end users and hiding

some details of data storage. The conception of

representational model fall between the above two

models, balancing user views with some computer

storage details.

The hierarchical data model is described as the

data model which organizes data logically in

accordance with the structural relationships of

hierarchical definition trees. A hierarchical

database therefore consists of an assortment of

records that are connected with each other through

links.

Each record is an assortment of fields or attributes,

each of which contains one data value. A link is an

association between precisely two records.

mailto:azfarkhan_78@hotmail.com

DOI: 10.18535/ijecs/v5i9.21

Azfar Inayat Khan, IJECS Volume 5 Issue 09 September 2016 Page No.17916-17920 Page 17917

2. ER Model

There are several notations for data modeling. The

most general and traditionally used conceptual

data model is the Entity-Relationship (ER) model.

The rationale of using ER model is to provide a

common, informal and expedient model for

communication between users and the database

administrator for the purpose of modeling the data

structures.

The ER model portrays data as entities, attributes

and relationships among entities. The basic

constituent that the ER model represents is an

entity. An entity is a thing in the real world with an

independent existence. An entity may be an object

with a physical survival like car, house or

employee. An entity may be an object with a

conceptual existence like a company, a job or a

university course. An attribute is a property that

portrays the entity. A particular entity will have a

value for each of its attributes. The attribute values

become a major part of a data stored in the

database. The various types of attributes available

in the ER model are simple versus composite,

single valued versus multi-valued, and stored

versus derived.

An et al [2] presented a round-trip engineering

framework and a set of principles and procedures

that automatically and incrementally maintain

conceptual-relational mappings as schemas. The

first principle for mapping maintenance under

schema evolution is to locate the appropriate

elements in the conceptual model for adding

new attributes. The location process is guided by

analyzing the key and foreign key information

in the original and new schemas. The second

principle is to locate the anchors of the

appropriate skeleton trees for discovering or

adding relationships. The location process is

guided by using key and foreign key structures

in the schemas. The third principle is to arrange

the primary key and foreign key constraints in

the (new) schema with the cardinality constraints

in the new conceptual model. The authors also

propose two procedures for maintaining the

mappings. The first procedure maintains the

mappings when schemas evolve. Given a set of

consistent conceptual-relational mappings as

input, the procedure gives a synchronized

conceptual model and a set of updated mappings

as output. The second procedure obtains a set of

consistent conceptual-relational mappings

between a conceptual model and a relational

schema as input and gives an updated new set of

mappings.

De Lucia et al [3] in their work aimed to analyze

the comprehensibility ER diagrams and UML

class diagrams in data model maintenance.

They performed three sets of controlled

experiments. They stated that the results

demonstrate that using UML class diagrams

achieved better comprehension levels and the

support given by the two notations during

maintenance activities are same, while in general

UML class diagrams provide a better support

during verification activities.

Dhabe et al [4] proposed an Articulated Entity-

Relationship (AER) diagram which is an

extension of Entity-Relationship (ER) diagram to

accommodate the functional dependency (FD)

information as its integral part for complete

automation of normalization. As the proposed

AER diagram is designed by taking into account

the normalization process, normalization up to

BCNF becomes an integral part of conceptual

design. Any modifications made to the AER

diagram will automatically be reflected in its FD

information. FDs are diagrammatically

represented using two types of connectors:

attribute connectors and functional dependency

connectors. They have shown complete AER

diagram for banking enterprise. They concluded

that AER diagrams could be extended to

include multi-valued dependencies and join

dependencies. They stated that it should be

possible to the domain and key constraints to

automate normalization up to DKNF.

Cuadra et al [5] in their work provided a

methodological framework to inspire the

database designer to use ternary relationship, the

constraint which database designers find it very

difficult to detect, represent and manage

according to the domain requirements. The three

approaches are taken namely Chen‟s approach,

Merise‟s method and their proposed strategy

consisting of a combination of these approaches.

Calculation of cardinality constraints in binary

and ternary relationships is shown in their

method. Based on the study, it is proved that

their approach has a high level of participant

confidence.

3. Database Normalization

The purpose of any data model, relational or

otherwise, is to allow the user of the model to

describe and manipulate those relationships

DOI: 10.18535/ijecs/v5i9.21

Azfar Inayat Khan, IJECS Volume 5 Issue 09 September 2016 Page No.17916-17920 Page 17918

among entities in the real world that the user

intends to store in the database. In the relational

model, such a collection of relationships is

represented in a relational schema. A relational

schema consists of a set of database relations and

for each relation the specification of candidate

key(s) and relationship among relations

represented through foreign keys. It is vital to

consider functional relationships when selecting

grouping of attributes into relations.

Functional relationships among database

attributes are formalized in the concept of

functional dependency. The resulting relations

may contain undesirable structures unless data is

normalized. Such a database design often leads

to undesirable properties called data anomalies.

These anomalies often lead to repetition of

information, inability to present certain

information, and loss of information.

Normalization is essential to avoid insertion,

deletion and updation anomalies. Normalization

is the process of grouping attributes into well

structured relations free of anomalies.

4. Code modularization

A widely used representational data model is the

relational model. In software engineering

discipline and practice, the modules and their

relationships are established in the architectural

design before coding takes place. Modularization

of code is similar to data normalization which

gives the benefits of reusability, reliability,

manageability, readability. In order to acclimatize

to the constantly evolving necessities, software

designers and developers add new features or alter

the existing design. Because of this, the software

becomes more and more complex and drift away

from its original design thereby the quality of the

software is getting reduced and hence effort on

maintenance is increased. A huge portion of the

total software development cost is usually spent on

software maintenance[6]. To alleviate the

maintenance, the existing code is to be restructured

so that the changes made in a module will not

create any adverse effect in any other module,

which brings down the ripple effect. This

diminishes the software intricacy by perking up the

internal software quality.

5. Refactoring

Refactoring is “the process of changing an object-

oriented software system in such a way that it does

not alter the external behaviour of the code, yet

improves its internal behaviour. The key idea

behind refactoring or restructuring is to promote

code reuse. Clean, modular, well written code is

easy to recycle and diminishes future

programming efforts. Furthermore, refactoring

aims to perk up several factors of quality namely,

understandability, portability, maintainability,

testability, reliability, usability, reusability and

adaptability.

Fokaefs et al [7] proposed a methodology which

identifies extract class refactoring opportunities

by a class decomposition method. An

agglomerative clustering algorithm is used

based on the Jaccard distance between class

members. In terms of cohesion this work

facilitates to recognize novel conceptions and

rank the solutions according to their impact on

the design quality of the system. Specific kind

of bad smells called “God Class” is considered

for this reason. Data god class and behavioural

god class are defined. A class which has many

system‟s data in terms of number of attributes is

called data god class. When it has greater portion

of the systems functionality in terms of number

and complexity of methods is called behavioural

god class. Behavioural god class may be avoided

by splitting the class by extracting a cohesive

and independent piece of functionality. This

refactoring is called “Extract Class”. Two

projects namely eRisk, an electronic adaptation

of the well known board game and

SelfPlanner[8], an intelligent web based

calendar application have been taken for this

purpose and the result shows that this

methodology identifies relatively large number of

new concepts that can be potentially extracted in

new classes.

Tsantalis and Chatzigeorgiou et al [9] have

proposed the placement of attributes or methods

within classes in an object-oriented system which

is typically guided by conceptual criteria and

aided by suitable metrics. Moving state and

behaviour between classes can assist to diminish

coupling and to increase cohesion, but it is

nontrivial to recognize. They proposed a

methodology for the recognition of move method

refactoring opportunities that comprise a way

for solving numerous familiar feature envy

awful smells.

Bavota et al [10] have proposed an approach

using game theory to identify extract-class

refactoring opportunities. Game theory

DOI: 10.18535/ijecs/v5i9.21

Azfar Inayat Khan, IJECS Volume 5 Issue 09 September 2016 Page No.17916-17920 Page 17919

techniques can often be used to deal contrasting

goals. Game theory is successfully used to

propose solutions to strategic situations, in which

an individual‟s achievement in making choices

depends on the choices of others. It is very

common in software engineering to find a

solution often for problems having competing

goals, like integrity versus efficiency, reusability

versus reliability, reusability versus integrity,

quality versus cost, cohesion versus coupling by

the developers and managers. The extract-class

refactoring setback can be modelled as a non-

cooperative game involving two players. Given

a class to be refactored, the two players compete

with the methods of the original class to

construct two novel classes with high cohesion

and poorer coupling than the original class. Their

approach considers S and T as two players in

charge of building a novel class selecting

methods from the original class to be refactored.

The process starts by assigning to S and T two

methods that have the lowest structural and

semantic similarity. S and T will then iteratively

contend with the remaining methods of the class

to be refactored. In single iteration, S or T could

add at least one method to its class by

considering the impact of adding the method on

the cohesion and coupling of its class. The

process stops when each method of the original

class is assigned to either S or T. The move to be

performed during iteration is chosen by finding

the Nash equilibrium in the payoff matrix.

6. Game Theory

Game Theory is the branch of mathematics that is

widely used in many fields especially in

economics for the purpose of making decision on

conflicting goals and to obtain a single optimum

solution. The games studied in game theory are

well-defined mathematical objects involving two

or more usually non-cooperating players each of

which playing a set of strategies. More precisely,

a game consists of a set of players, a set of

moves or strategies available to those players,

and a specification of payoffs for each

combination of moves. For a given game, it is

necessary to determine the game solutions in

which no player gains anything by changing only

her or his own scheme unilaterally (situation of

equilibrium). Game theory is fruitfully used in

other fields, particularly in economics, to

mathematically propose solutions to strategic

situation, in which an individual‟s

accomplishment in making choices depends on

the choices of others.

In game theory, the Nash equilibrium is a

elucidation conception of a non-cooperative

game involving two or more players, in which

each player is assumed to be acquainted with the

equilibrium strategies of the other players, and no

player has anything to gain by changing only his

own strategy unilaterally. If each player has

chosen a strategy and no player can gain by

changing strategies while the other players keep

theirs unchanged, then the current set of strategy

choices and the corresponding payoffs compose

Nash equilibrium. Game theorists use the Nash

equilibrium conception to analyze the result of

the strategic interaction of numerous decision

makers. In other words, it provides a way of

envisaging what will happen if numerous people

or several institutions are making decisions at

the same time and if the outcome depends

on the decisions of the others.

7. Conclusion

Database design is a challenging and complex

task due to its importance in the overall

performance of the database system. Recently,

various techniques have been under use across

different stages of database application

modelling, design and implementation and they

have been under continuous study and

improvements by various researchers.

In this paper we reviewed the work done in the

ER modelling, code modularization, refactoring

and gaming theory techniques.

References

[1]. Elmasri, R. and Navathe, S.B.

Fundamentals of Database Systems, sixth

ed., Pearson, 2010.

[2]. An, Y., Hu, X. and Song. Y.

“Maintaining Mappings between

Conceptual Models and Relational

Schemas”, Journal of Database

Management, Vol.21, No.3, pp.36-68,

2010.

[3]. De Lucia, A., Gravino, C., Oliveto, R.

and. Tortora, G. “An experimental

comparison of ER and UML Class

diagrams for data modeling”, Empirical

Software Engineering, Vol.15, No.5,

pp.455-492, 2010.

[4]. Dhabe, P. S., Patwardhan, M. S., Asavari

DOI: 10.18535/ijecs/v5i9.21

Azfar Inayat Khan, IJECS Volume 5 Issue 09 September 2016 Page No.17916-17920 Page 17920

Deshpande, A., Dhore, M. L., Barbadekar,

B.V. and Abhaynkar, H.K. “Articulated

Entity Relationship (AER) Diagram for

complete automation of relational database

normalization”, International Journal of

Database Management Systems , Vol.2,

No.2, pp.84-100, 2010.

[5]. Cuadra, D., Martínez, P. and Castro, E.

“Guidelines for representing complex

cardinality constraints in binary and ternary

relationships”, Software & Systems

Modeling, 2012.

[6]. Mens, T. and Tourwe, T. “A Survey of

Software Refactoring”, IEEE Transactions

on Software Engineering, Vol.30, No.2,

pp.126-139, 2004.

[7]. Marios Fokaefs, Nikolaos Tsantalis and

Jorg Sander Alexander Chatzigeorgiou,

“Decomposing Object-Oriented Class

Modules using an Agglomerative

Clustering Technique”, IEEE Conference,

2009.

[8]. Refanidis, I. and Alexiadis, A.

“SelfPlanner: Planning your time”, ICAPS

Workshop on Scheduling and Planning

Applications, 2008.

[9]. Tsantalis, N. and Chatzigeorgiou,

A.“Identification of Move Method

Refactoring Opportunities”, IEEE

Transactions on Software Engineering,

Vol.35, No.3, pp.347-367, 2009.

[10]. Bavota, G., Oliveto, R. and Lucia, A.D.

“Playing with refactoring: Identifying

extract class opportunities through game

theory”, in ICSM „10 Proc. of the IEEE

International Conference on Software

Maintenance, pp 1-5, 2010.

