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Abstract 

Optimized task scheduling is one of the most important challenges in multiprocessor 

environments such as parallel and distributed systems. In such these systems, each 

parallel program is decomposed into the smaller segments so-called tasks. Task execution 

times, precedence constrains and communication costs are modeled by using a directed 

acyclic graph (DAG) named task graph. The goal is to minimize the program finish-time 

(makespan) by means of mapping the tasks to the processor elements in such a way that 

precedence constrains are preserved. This problem is shown to be NP-hard in general 

form and some restricted ones. Therefore, utilization of heuristic and meta-heuristic 

approaches to solve this problem is logical. Learning automata (LA) is an abstract model 

to interact with stochastic environment, which tries to reform itself based on the 

environment feedback. Although a learning automaton itself is a simple component, a 

group of them by cooperating each other can show complicated behavior, and can 

coverage to desired solutions under appropriate learning algorithm. In this paper, an 

ingenious graph-like learning automata in which each task in the task graph is 

represented by a learning automaton tries to solve the multiprocessor task-scheduling 

problem in a collective manner. Set of different experiments on various real-world task-

graphs has been done and archived results are so promising compared to the traditional 

methods and genetic algorithm. 

 

Keywords: Learning automata, multiprocessor task scheduling, parallel and 

distributed systems, task graph. 

 

1. Introduction 

Today, utilization of multiprocessor systems has been increased due to increase in time-

complexity of programs and decrease in hardware costs. In such these systems, programs 

are decomposed into the smaller and dependent segments named tasks. Some tasks as 

input need data generated by other tasks, and hence, the problem can be modeled by using 

a directed acyclic graph (DAG) so-called task graph. In the aforementioned graph, nodes 

are tasks and edges indicate precedence constraints between tasks. Required execution 

time of tasks, precedence constraints and communication costs are determined during 

compile step. Tasks must be mapped into processors with respect to their precedence in 

such a way that overall finish-time (Makespan) of the program can be minimized. 

Multiprocessor task scheduling problem is NP-hard in general form, and achieving the 

best possible solution is generally too time-consuming and maybe impossible especially 

when there are a large number of tasks in the task graph.  

Different algorithms proposed to schedule multiprocessor task graph are divided into 

two categories, heuristics and non-heuristics. Some heuristics named TDB (Task 

Duplication Based) allow task duplication redundantly over processors to eliminate the 

communication costs between tasks and their children to make the finish time shorter such 
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as PY [16], DSH [15], LWB [17], BTDH [18], LCTD [19], CPFD [20], MJD [21], and 

DFRN [22]. However, some tasks like bank-transactions cannot be repeated.  

Other heuristics do not allow task-duplication; themselves are divided into two groups. 

First, the UNC (Unbounded Number of Clusters) methods like LC [23], EZ [24], MD [25], 

DSC [26], and DSP [27], which work on unbounded number of processors using task 

graph clustering. That is, they part task graph into some clusters and then assign them to 

processors. They find optimal number of clusters (processors) implicitly. However, 

unlimited number of processor elements may not be available in the real problems. 

Second, the BNP (Bounded Number of Processors) methods like HLFET [28], ISH [15], 

CLANS [20], LAST [30], EFT [31], DLS [46], and MCP [25], which number of 

processors are restricted using list scheduling (the proposed approach is in this group). 

They make a list of ready tasks in each stage and assign some priorities to them. Then the 

task that has the most priority in the ready list is selected to schedule on the processor that 

allows the earliest start time, until all tasks of task graph are scheduled.  

Finally, between non-heuristic approaches, one can see genetic algorithm (GA) [1]-

[10], simulated annealing (SA) [33], ant colony optimization (ACO) [44], and local search 

[34]. Among them, genetic algorithm has significant contribution. However, necessary 

time to execute genetic algorithm is usually more than random running of tasks. ACO has 

identical performance with genetic algorithm in so lesser overload and its results are so 

promising. 

Learning automata (LA) is an abstract model to interact with stochastic environment, 

which can perform finite set of actions [43]. The choice of an action depends on the state 

of LA represented by an action probability vector. The stochastic environment evaluates 

each selected action of LA, and responds to it. The LA uses this response to reform itself 

for the next situations. This interact is done until LA would learn to select the best action 

in each situation where the best action is that which has the most probability to get reward 

from environment. The environment is represented by triple E = {, , c}, where  = {1, 

2,…, r} is inputs set,  = {1, 2,…, m} is responses-set of environment and c = {c1, 

c2,…, cr} is set of probabilities of penalty of each input.  can be a two-member set so that 

1 = 0 indicate reward and 2 = 1 is penalty. Note that values of c will never change in 

stationary environments. LA can adapt itself to environment by using an iterative learning 

algorithm. LA have been used successfully in many applications such as control of 

broadcast networks [37], intrusion detection in sensor networks [38], database systems 

[39], and solving shortest path problem in stochastic networks [40], [41], to mention a 

few.  
The full potential of LA is realized when multiple automata interact with each other. 

Interaction may assume different forms such as tree, mesh, array, etc. In this paper, a 

graph of learning automata tries to solve multiprocessor task-graph scheduling in a 

cooperative manner. In the proposed approach, a learning automaton represents each node 

(task) of the task graph. An iterative algorithm is executed in which iteration makes 

complete scheduling. After extracting the achieved scheduling length, penalty or reward 

signal to feed to LA is created. Learning automata are trained to improve themselves 

based on desirability of achieved solution. The algorithm continues until convergence of 

the solutions produced by learning automata. 

The rest of the manuscript is organized as follows. In the next section 

multiprocessor task scheduling is discussed. Section III introduces learning 

automata. The proposed approach is expanded in section IV. Section V devoted to 

implementation details and achieved results. Finally, the paper is concluded in the 

last section. 
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2. Multiprocessor Task Scheduling 

A directed acyclic graph G = {N, E, W, C} named task graph is used to modele a 

parallel program, where  

N = {n1, n2,…, nn},  

E = {(ni, nj) | ni, nj  N},  

W = {w1, w2,…, wn},  

C = {c(ni, nj) | (ni, nj)  E), and n are set of nodes, set of edges, set of weight of nodes, 

set of weight of edges, and number of nodes respectively.  

Fig. 1 shows task graph of a program with nine tasks. In the task graph, nodes are tasks 

and edges specify precedence constrains between tasks. Edge (ni, nj)  E demonstrate that 

task ni must be finished before starting of task nj. Each node weight wi is the necessary 

execution time of task ni and each weight of edge c(ni, nj)  is the required time for data 

transmission from task ni to task nj identified as communication cost. If both tasks ni and 

nj are executed on the same processor then communication cost will be zero between them, 

else nj must wait as c(ni, nj) after finishing ni. Tasks execution times, precedence 

constraints between tasks and communication costs are generated during the program 

compile stage. Tasks must be mapped into the given m processor elements with respect to 

their precedence so that overall finish time of tasks would be minimized.  

Most BNP scheduling algorithms are based on the so-called list-scheduling technique. 

The basic idea of list scheduling is to make a sequence of nodes as a list for scheduling by 

assigning them some priorities, and then repeatedly remove the highest priority node from 

the scheduling list, and allocate the node to which processor that allows the earliest-start-

time (EST) until all nodes in the graph are scheduled. If all predecessors of task ni are 

executed on the processor pj, EST(ni, pj) will be Avail(pj) that is, the earliest time that pj is 
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Figure 1. Task Graph of a Program with 
Nine Tasks [14] 
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available to execute next task, else the earliest-start-time of task ni on processor pj must be 

compute by using:  

                                                   

(1) 

 

where FT(nm) = EST(nm) + wm is actual finish-time of task nm, and Parents(ni) is set of all 

parents of ni. Finally, total finish time of program (makespan) is calculated: 
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(2) 

Some frequently used attributes to assign priority to tasks are TLevel (Top Level), 

BLevel (Bottom Level), SLevel (Static Level), ALAP (As-Late-As-Possible), and the new 

proposed NOO (Number-Of-Offspring). The TLevel or ASAP (As-Soon-As-Possible) of a 

node ni is length of a longest path from an entry-node to ni excluding ni itself, where the 

length of a path is the sum of all the nodes and edges weights along the path. TLevel of 

each node in task graph can be computed by traversing the graph in topological order 

using: 
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The BLevel of a node ni is the length of the longest path from ni to an exit-node. It can 

be compute for each task by traversing the graph in reversed topological order as follow: 

 
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(4) 

where Children(ni) is set of all children of ni.  

If we do not take into account the edges weights in computing the BLevel, a new 

attribute can be generated called Static-Level or simply SLevel using (5). 
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 The ALAP start-time of a node is a measure of how far the node's start-time can be 

delayed without increasing the schedule length: 

 
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nChildrenj
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where CPL is Critical-Path-Length that is, length of the longest path in the task graph.  

The NOO of ni is simply number of all its descendants. Table I lists the aforementioned 

measures of each node in the task graph of fig. 1. Four well-known traditional scheduling 

algorithms of the BNP class are surveyed as follows.  

 

2.1 The HLFET Algorithm 

The HLFET (Highest Level First with Estimated Times) [28] first calculate SLevel of 

each node. Then, make a ready list in a descending order of SLevel. At each instant, it 

schedules the first node in the ready list to a processor that allows the earliest execution 

time using the non-insertion approach and then, updates the ready list by inserting the 

nodes that are now ready. Until all nodes are scheduled. Fig. 2 (a) shows scheduling of the 

fig. 1 graph using HLFET algorithm on two processor elements. 
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2.2 The MCP Algorithm 

The MCP (Modified Critical Path) algorithm [25] uses the ALAP of a node as the 

scheduling priority. It first computes the ALAP times of all nodes, and then constructs a 

ready list in an ascending order of ALAPs. Ties are broken by considering the ALAP 

times of the children of a node. The MCP algorithm then schedules the nodes on the list 

one by one to a processor that allows the earliest start time using insertion approach. 

Scheduling of the fig. 1 graph using MCP algorithm on two processor elements is shown 

by fig. 2 (b). 

2.3 The DLS Algorithm 

The DLS (Dynamic Level Scheduling) algorithm [46] uses an attribute called dynamic 

level (DL) that is the difference between the SLevel of a node and its earliest start time on 

a processor. At each scheduling step, the DLS algorithm computes the DL for every node 

in ready list on all processors. The node-processor pair that gives the largest value of DL 

is selected to schedule. Until all nodes are scheduled. The algorithm tends to schedule 

nodes in a descending order of SLevel of nodes at the beginning but tends to schedule 

nodes in an ascending order of their TLevel near the end of scheduling process. Fig. 2 (c) 

shows scheduling of the fig. 1 graph using DLS algorithm on two processor elements. 

2.4 The ETF Algorithm 

The ETF (Earliest Time First) algorithm [31] computes the earliest start times for 

all nodes in ready list by investigating the start time of a node on all processors 

exhaustively. Then, it selects the node that has the smallest start time; ties are 

broken by scheduling the node with the higher SLevel priority. Scheduling of the 

fig. 1 graph using EST algorithm on two processor elements is shown by fig. 2 (d).   

 

3. Learning Automata 

Learning automata (LA) are, by design, “simple agents for doing simple things,” and 

was first publicized by Narendra and Thathachar [36]. Since then, LA has been used 

successfully in many applications. The full potential of an LA is realized when multiple 

automata interact with each other. Interaction may assume different forms such as tree, 

mesh, array, etc. Depending on the problem that needs to be solved, one of these 

structures for interaction may be chosen. In most applications, local interaction of LA, 

which can be defined in a form of graph such as tree, mesh, or array, is more suitable [42]. 

Variable structure learning automata is represented by a 4-tuple {, , p, T} where 

 = {1, 2,…, r},  = {1, 2,…, m}, p = {p1, p2,…, pr}, T, r, and m are action-set, 

inputs-set (environment response), action-probability-vector, the learning algorithm, 

Table 1. 
TLevel, BLevel, SLevel, ALAP, and NOO of Each Node in the 

Task Graph of Figure 1 

Node TLevel BLevel SLevel ALAP NOO 

n1 0 37 12 0 8 

n2 6 23 8 14 4 

n3 3 23 8 14 3 

n4 3 20 9 17 2 

n5 3 30 10 7 2 

n6 10 15 5 22 1 

n7 22 15 5 22 1 

n8 18 15 5 22 1 

n9 36 1 1 36 0 
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number of permitted action of  automata, and number of inputs (reactions of environment) 

respectively. The learning algorithm is a recurrence relation and is used to modify 

action-probability-vector p of the automaton. Various learning algorithms have been 

reported in the literature. Below, a learning algorithm, called linear learning algorithm is 

given. Let i be the action chosen at stage n as a sample realization from probability 

distribution pi(n). In this learning algorithm, if the environment response is favorable, the 

action-probability-vector will be updated using (reward): 

 
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(7) 

Moreover, if the environment response is unfavorable, the action-probability-vector will 

be updated by (penalty): 
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where a and b are reward parameter and penalty parameter respectively should be 

tuned experimentally. If a = b, the algorithm will be called LR-P, else if b < a, the 

algorithm will be LR- P, and else if b = 0, the algorithm will be named LR-I. 
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4. The Proposed Approach 

In the proposed approach called LA-MTS, each task in the task graph is represented by 

a learning automaton. So, a graph of learning automata is generated regarding the given 

task-graph. Then, an iterative algorithm is executed (fig. 3) so that each iteration like t 

results in a solution (a complete scheduling). Each iteration consists of n stage, where n is 

Figure 2. Scheduling of the Fig.1 Task Graph using Four Traditional 
Heuristics. (a) The HLFET Algorithm. (b) The MCP Algorithm. (c) The DLS 

Algorithm. (d) The ETF Algorithm. 
 



International Journal of Grid Distribution Computing  

Vol. 8, No. 1 (2015) 

 

 

Copyright ⓒ 2015 SERSC  47 

the number of tasks in the task graph. In each stage like k, learning automatons that do not 

have any parents or all of their parents have already been executed, are activated to 

schedule. Among the activated learning automatons, that which has the highest priority is 

selected. The selected automaton selects a processor to execute based on its 

action-probability-vector, that is, the permitted action of an automaton which is to select a 

processor among the available processors (various priority measures such as TLevel, 

BLevel, SLevel, ALAP, and NOO can be used to select an automaton among the ready 

automatons). Finally, after executing all learning automatons, a problem solution or a 

complete scheduling is obtained for iteration k. if obtained solution in iteration k, is better 

than the previous ones (or equal to the best pervious), learning automata will get a reward 

using (7), else they get a penalty by (8). The iterations continue until solutions converge 

to a unique scheduling. A flowchart of the proposed approach is also demonstrated in fig. 

3.  

Whereas LR-P learning algorithm guarantees converging, it has been used to adapt 

the learning automata. However, the reward and penalty parameter should be tuned 

experimentally. Table II lists six task graphs and their comments considered to 

evaluate the proposed LA-MTS. The four first graphs compare the LA-MTS with 

traditional heuristics for multiprocessor task graph scheduling on bounded number 

of processors (BNP) [35], and two last graphs evaluate it in comparison with the 

genetic algorithm. 

 

5. Implementation and Results 

 The proposed approach was implemented on a Penitum4 (2.6GHz) desktop computer 

with Microsoft Windows XP (SP2) platform using Microsoft Visual Basic 6.0 

programming language. Quit condition of the algorithm was 50 iterations with same 

makespan, and maximum number of iteration was set to 2000. Table II lists six task 

graphs and their comments considered to evaluate the proposed approach. The four first 

graphs compare the proposed approach with the traditional heuristics not only the BNP 

algorithms but also UNC ones, and then two last graphs that are G5 and G6 evaluate it in 

comparison with the genetic algorithm. Set of different experiment to select proper 

reward parameter of learning automata, task priority measurement, and to compare with 

the other traditional heuristics and genetic algorithm has been done. 

5.1 Reward Parameter of Learning Automata 

At first, set of experiments has been done to detect the appropriate value of a parameter 

(reward parameter). Whereas LR-P learning method has been used to adapt the learning 

automata, and b parameter (penalty parameter) should be so small, therefore b = 0.01 × a 

has been considered in all experiments. 

Table 2. Selected Task Graphs for Evaluating the LA-
MTS 

Communication   

Costs 
Nodes Comments Graph 

Variable 9 Kwok and Ahmad [13] G1 

Variable 17 Al-Mouhamed [32] G2 

60 and 40 18 Wu and Gajski [25] G3 

Variable 16 Al-Maasarani [45] G4 

Variable 9 Fig. 1 [14] G5 

120 and 80 18 Hwang et al. [14] G6 
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Fig. 4 shows diagram of archived makespan of LA-MTS based on various values of a 

parameter (mean of 10 times of algorithm execution has been used). The above numbers 

of diagram are mean of number of algorithm iterations, which demonstrate how much the 

problem space has been explored by learning automata before it converge to a minimum 

solution. It can be concluded that 0.1 is a qualified value for a parameter. A sample of 

algorithm execution using this value as reward parameter has been shown in fig. 5.   
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5.2 Priority Measurement 

 In primary LA-MTS in each time instance among ready automatons, that which has the 

least topological number is selected to execute, while various measure of priority can be 

used intelligently. Therefore, we introduce five new algorithms namely LA-MTST, LA-

MTSB, LA-MTSS, LA-MTSA, and LA-MTSN which use TLevel, BLevel, SLevel, ALAP, 

NOO as priority measurements of nodes to break ties respectively. Table III and table IV 

list results of mean and minimum of 10 times of these algorithms execution on the four 

first graphs. Results of scheduling by LA-MTSN that uses number of offspring of nodes 

as priority measurements, is very promising; it outperforms the others. LA-MTSN among 

ready automatons selects one that has the most number of offspring in each time instance. 

It seems to be better priority measurement. Since, the task, which has lesser offspring or is 

near the leaves, may be more desirable in the other measurements, which early selecting 

of it to schedule may increases the overall finish time. Therefore, LA-MTSN will be used 

in the remained experiments.  
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Figure 5. A Sample of Algorithm Execution using a = 0.1. The Algorithm was 
Terminated after 240 Iteration and the Minimum Makespan was 22 Time-Slot 
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 Fig. 4. Diagram of Archived Makespan of LA-MTS Based on Various Values 
of a Parameter (Mean of 10 Times of Algorithm Execution has Been Used). 

The Above Numbers of Diagram are Mean of Number of Algorithm Iterations 
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5.3 Compare with Traditional Heuristics 

Whereas the proposed LA-MTS is a BNP algorithm, four BNP heurists namely HLFET, 

MCP, DLS, and ETF are considered to evaluate it. Fig. 6 shows diagram of mean 

achieved scheduling of 10 times of algorithm execution and these heuristics for the four 

first graphs on various number of processors. The diagram bars are normalized to the 

range of (0, 1] by dividing the archived makespan of each algorithm for each graph by 

maximum achieved makespan for that graph. It can be seen that LA-MTS has 

outperformed the heuristics. 

5.4 Compare with Genetic Algorithm 

The two last graphs evaluate the ACO-MTS compared to one of the best genetic 

algorithm proposed for multiprocessor task scheduling without task duplication 

[14]. Table V lists achieved results of not only these two algorithms but also four 

other traditional ones (BNP as well as UNC methods). Number of processors is 

large enough to achieve the best possible results for the BNP methods that are, 

MCP, LA-MTS, and the genetic algorithm. The results show that LA-MTS had the 

best performance in the first graph and equal to the genetic algorithm in the second 

one (Note that LA-MTS has used two processors to schedule the first and second 

Table 4. Results of Minimum of 10 Times of 
Execution of LA-MTST, LA-MTSB, LA-MTSS, 

LA-MTSA, AND LA-MTSN 

Graph 
LA-

MTST 

LA-

MTSB 

LA-

MTSS 

LA-

MTSA 

LA-

MTSN 

G1 20 17 18 17 17 

G2 43 43 43 43 41 

G3 440 420 420 410 400 

G4 55 56 57 56 58 

 

Table 3.  Results of Mean of 10 Times of 
Execution of LA-MTST, LA-MTSB, LA-MTSS, 

LA-MTSA, AND LA-MTSN 

Graph 
LA-

MTST 

LA-

MTSB 

LA-

MTSS 

LA-

MTSA 

LA-

MTSN 

G1 20 17.4 18.8 17.4 17.1 

G2 43.6 44.2 44.8 43.9 43 

G3 451 437 428 437 427 

G4 58.1 57.3 60.3 58.3 59.4 

 

Table 4. The Best Achieved Results of LA-
MTN, Genetic Algorithm, and Four 

Traditional Heuristics [14] 

Graph MCP DSC MD DCP Genetic LA-MTS 

G5 29 27 32 32 23 22 

G6 520 460 460 440 440 440 
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graph). Nevertheless, in this genetic algorithm, each generation has 100 

chromosomes and maximum number of generations is 1000, that is, it achieves the 

best scheduling by generating 100,000 solutions while the LA-MTS examines only 

2000 complete solutions (2000 iterations) to find the best scheduling. It 

demonstrates that LA-MTS finds solution so faster than the genetic algorithm. 

 

6. Conclusion 

In this paper, a new BNP (Bounded Number of Processors) approach for 

multiprocessor task-graph scheduling based on a graph of learning automata was 

introduced. In the proposed approach named LA-MTS, each task in the task graph 

was represented by a learning automaton. In each stage, the most priority ready 

automaton was selected to execute on which processor it selects. Among different 

introduced priority measurements, number of offspring (NOO) outperformed the 

others. The automaton selected one of available processors to schedule in based on 

its action-probability-vector, until all automatons were scheduled. The learning 

automata would get reward or penalty with respect to desirability of the achieved 

makespan because of generating better scheduling in the next iterations. Six task 

graphs, which results of the other BNP methods were already specified on them, 

were elected to evaluate the proposed LA-MTS (scheduling of them using LA-MTS 

has been shown in fig. 7). The four first graphs evaluated LA-MTS against the 

traditional BNP heuristics. In a set of experiments, LA-MTS outperformed them. 

Another set of experiments evaluated LA-MTS in comparison with one of the best 

genetic algorithm in this field (without task duplication). In one graph, LA-MTS had 

better performance and in the second graph was equal to GA. While, the genetic 

algorithm examined too more scheduling to achieve the best result (almost 100,000 

scheduling). All of these demonstrate that the proposed LA-MTS is so successful in 

multiprocessor task scheduling. 
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