
International Journal of Grid Distribution Computing

Vol.8, No.1 (2015), pp.41-54

http://dx.doi.org/10.14257/ijgdc.2015.8.1.05

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2015 SERSC

Multiprocessor Task Graph Scheduling Using a Novel Graph-Like

Learning Automata

H. R. Boveiri

Sama Technical and Vocational Training College, Islamic Azad University,

Shushtar Branch, Shushtar, Iran

E-mail: boveiri {@shoushtar-samacollege.ir or @ymail.com}

Abstract

Optimized task scheduling is one of the most important challenges in multiprocessor

environments such as parallel and distributed systems. In such these systems, each

parallel program is decomposed into the smaller segments so-called tasks. Task execution

times, precedence constrains and communication costs are modeled by using a directed

acyclic graph (DAG) named task graph. The goal is to minimize the program finish-time

(makespan) by means of mapping the tasks to the processor elements in such a way that

precedence constrains are preserved. This problem is shown to be NP-hard in general

form and some restricted ones. Therefore, utilization of heuristic and meta-heuristic

approaches to solve this problem is logical. Learning automata (LA) is an abstract model

to interact with stochastic environment, which tries to reform itself based on the

environment feedback. Although a learning automaton itself is a simple component, a

group of them by cooperating each other can show complicated behavior, and can

coverage to desired solutions under appropriate learning algorithm. In this paper, an

ingenious graph-like learning automata in which each task in the task graph is

represented by a learning automaton tries to solve the multiprocessor task-scheduling

problem in a collective manner. Set of different experiments on various real-world task-

graphs has been done and archived results are so promising compared to the traditional

methods and genetic algorithm.

Keywords: Learning automata, multiprocessor task scheduling, parallel and

distributed systems, task graph.

1. Introduction

Today, utilization of multiprocessor systems has been increased due to increase in time-

complexity of programs and decrease in hardware costs. In such these systems, programs

are decomposed into the smaller and dependent segments named tasks. Some tasks as

input need data generated by other tasks, and hence, the problem can be modeled by using

a directed acyclic graph (DAG) so-called task graph. In the aforementioned graph, nodes

are tasks and edges indicate precedence constraints between tasks. Required execution

time of tasks, precedence constraints and communication costs are determined during

compile step. Tasks must be mapped into processors with respect to their precedence in

such a way that overall finish-time (Makespan) of the program can be minimized.

Multiprocessor task scheduling problem is NP-hard in general form, and achieving the

best possible solution is generally too time-consuming and maybe impossible especially

when there are a large number of tasks in the task graph.

Different algorithms proposed to schedule multiprocessor task graph are divided into

two categories, heuristics and non-heuristics. Some heuristics named TDB (Task

Duplication Based) allow task duplication redundantly over processors to eliminate the

communication costs between tasks and their children to make the finish time shorter such

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

42 Copyright ⓒ 2015 SERSC

as PY [16], DSH [15], LWB [17], BTDH [18], LCTD [19], CPFD [20], MJD [21], and

DFRN [22]. However, some tasks like bank-transactions cannot be repeated.

Other heuristics do not allow task-duplication; themselves are divided into two groups.

First, the UNC (Unbounded Number of Clusters) methods like LC [23], EZ [24], MD [25],

DSC [26], and DSP [27], which work on unbounded number of processors using task

graph clustering. That is, they part task graph into some clusters and then assign them to

processors. They find optimal number of clusters (processors) implicitly. However,

unlimited number of processor elements may not be available in the real problems.

Second, the BNP (Bounded Number of Processors) methods like HLFET [28], ISH [15],

CLANS [20], LAST [30], EFT [31], DLS [46], and MCP [25], which number of

processors are restricted using list scheduling (the proposed approach is in this group).

They make a list of ready tasks in each stage and assign some priorities to them. Then the

task that has the most priority in the ready list is selected to schedule on the processor that

allows the earliest start time, until all tasks of task graph are scheduled.

Finally, between non-heuristic approaches, one can see genetic algorithm (GA) [1]-

[10], simulated annealing (SA) [33], ant colony optimization (ACO) [44], and local search

[34]. Among them, genetic algorithm has significant contribution. However, necessary

time to execute genetic algorithm is usually more than random running of tasks. ACO has

identical performance with genetic algorithm in so lesser overload and its results are so

promising.

Learning automata (LA) is an abstract model to interact with stochastic environment,

which can perform finite set of actions [43]. The choice of an action depends on the state

of LA represented by an action probability vector. The stochastic environment evaluates

each selected action of LA, and responds to it. The LA uses this response to reform itself

for the next situations. This interact is done until LA would learn to select the best action

in each situation where the best action is that which has the most probability to get reward

from environment. The environment is represented by triple E = {, , c}, where  = {1,

2,…, r} is inputs set,  = {1, 2,…, m} is responses-set of environment and c = {c1,

c2,…, cr} is set of probabilities of penalty of each input.  can be a two-member set so that

1 = 0 indicate reward and 2 = 1 is penalty. Note that values of c will never change in

stationary environments. LA can adapt itself to environment by using an iterative learning

algorithm. LA have been used successfully in many applications such as control of

broadcast networks [37], intrusion detection in sensor networks [38], database systems

[39], and solving shortest path problem in stochastic networks [40], [41], to mention a

few.
The full potential of LA is realized when multiple automata interact with each other.

Interaction may assume different forms such as tree, mesh, array, etc. In this paper, a

graph of learning automata tries to solve multiprocessor task-graph scheduling in a

cooperative manner. In the proposed approach, a learning automaton represents each node

(task) of the task graph. An iterative algorithm is executed in which iteration makes

complete scheduling. After extracting the achieved scheduling length, penalty or reward

signal to feed to LA is created. Learning automata are trained to improve themselves

based on desirability of achieved solution. The algorithm continues until convergence of

the solutions produced by learning automata.

The rest of the manuscript is organized as follows. In the next section

multiprocessor task scheduling is discussed. Section III introduces learning

automata. The proposed approach is expanded in section IV. Section V devoted to

implementation details and achieved results. Finally, the paper is concluded in the

last section.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 43

2. Multiprocessor Task Scheduling

A directed acyclic graph G = {N, E, W, C} named task graph is used to modele a

parallel program, where

N = {n1, n2,…, nn},

E = {(ni, nj) | ni, nj  N},

W = {w1, w2,…, wn},

C = {c(ni, nj) | (ni, nj)  E), and n are set of nodes, set of edges, set of weight of nodes,

set of weight of edges, and number of nodes respectively.

Fig. 1 shows task graph of a program with nine tasks. In the task graph, nodes are tasks

and edges specify precedence constrains between tasks. Edge (ni, nj)  E demonstrate that

task ni must be finished before starting of task nj. Each node weight wi is the necessary

execution time of task ni and each weight of edge c(ni, nj) is the required time for data

transmission from task ni to task nj identified as communication cost. If both tasks ni and

nj are executed on the same processor then communication cost will be zero between them,

else nj must wait as c(ni, nj) after finishing ni. Tasks execution times, precedence

constraints between tasks and communication costs are generated during the program

compile stage. Tasks must be mapped into the given m processor elements with respect to

their precedence so that overall finish time of tasks would be minimized.

Most BNP scheduling algorithms are based on the so-called list-scheduling technique.

The basic idea of list scheduling is to make a sequence of nodes as a list for scheduling by

assigning them some priorities, and then repeatedly remove the highest priority node from

the scheduling list, and allocate the node to which processor that allows the earliest-start-

time (EST) until all nodes in the graph are scheduled. If all predecessors of task ni are

executed on the processor pj, EST(ni, pj) will be Avail(pj) that is, the earliest time that pj is

4

6n

4

7n

4

8n

5

5n

1

9n

4

4n

3

3n

2

1n

3

2n

1

1

10
10

10

10

1 5

5

5

1

1

1

20

4

Figure 1. Task Graph of a Program with
Nine Tasks [14]

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

44 Copyright ⓒ 2015 SERSC

available to execute next task, else the earliest-start-time of task ni on processor pj must be

compute by using:

(1)

where FT(nm) = EST(nm) + wm is actual finish-time of task nm, and Parents(ni) is set of all

parents of ni. Finally, total finish time of program (makespan) is calculated:

 )(max
1

i

n

i
nFTmakespan




(2)

Some frequently used attributes to assign priority to tasks are TLevel (Top Level),

BLevel (Bottom Level), SLevel (Static Level), ALAP (As-Late-As-Possible), and the new

proposed NOO (Number-Of-Offspring). The TLevel or ASAP (As-Soon-As-Possible) of a

node ni is length of a longest path from an entry-node to ni excluding ni itself, where the

length of a path is the sum of all the nodes and edges weights along the path. TLevel of

each node in task graph can be computed by traversing the graph in topological order

using:

 jijj
nParentsj

i wnncnTLevelnTLevel
i




),()(max)(
)(

(3)

The BLevel of a node ni is the length of the longest path from ni to an exit-node. It can

be compute for each task by traversing the graph in reversed topological order as follow:

 
ijij

nChildrenj
i wnncnBLevelnBLevel

i




),()(max)(
)(

(4)

where Children(ni) is set of all children of ni.

If we do not take into account the edges weights in computing the BLevel, a new

attribute can be generated called Static-Level or simply SLevel using (5).

 
ij

nChildrenj
i wnSLevelnSLevel

i




)(max)(
)(

(5)

 The ALAP start-time of a node is a measure of how far the node's start-time can be

delayed without increasing the schedule length:

 
ijij

nChildrenj
i wnncnALAPCPLnALAP

i




),()(,min)(
)(

(6)

where CPL is Critical-Path-Length that is, length of the longest path in the task graph.

The NOO of ni is simply number of all its descendants. Table I lists the aforementioned

measures of each node in the task graph of fig. 1. Four well-known traditional scheduling

algorithms of the BNP class are surveyed as follows.

2.1 The HLFET Algorithm

The HLFET (Highest Level First with Estimated Times) [28] first calculate SLevel of

each node. Then, make a ready list in a descending order of SLevel. At each instant, it

schedules the first node in the ready list to a processor that allows the earliest execution

time using the non-insertion approach and then, updates the ready list by inserting the

nodes that are now ready. Until all nodes are scheduled. Fig. 2 (a) shows scheduling of the

fig. 1 graph using HLFET algorithm on two processor elements.

 






 


),()(max),(max),(
)(

imm
nParentsn

jji nncnFTpAvailpnEST
im

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 45

2.2 The MCP Algorithm

The MCP (Modified Critical Path) algorithm [25] uses the ALAP of a node as the

scheduling priority. It first computes the ALAP times of all nodes, and then constructs a

ready list in an ascending order of ALAPs. Ties are broken by considering the ALAP

times of the children of a node. The MCP algorithm then schedules the nodes on the list

one by one to a processor that allows the earliest start time using insertion approach.

Scheduling of the fig. 1 graph using MCP algorithm on two processor elements is shown

by fig. 2 (b).

2.3 The DLS Algorithm

The DLS (Dynamic Level Scheduling) algorithm [46] uses an attribute called dynamic

level (DL) that is the difference between the SLevel of a node and its earliest start time on

a processor. At each scheduling step, the DLS algorithm computes the DL for every node

in ready list on all processors. The node-processor pair that gives the largest value of DL

is selected to schedule. Until all nodes are scheduled. The algorithm tends to schedule

nodes in a descending order of SLevel of nodes at the beginning but tends to schedule

nodes in an ascending order of their TLevel near the end of scheduling process. Fig. 2 (c)

shows scheduling of the fig. 1 graph using DLS algorithm on two processor elements.

2.4 The ETF Algorithm

The ETF (Earliest Time First) algorithm [31] computes the earliest start times for

all nodes in ready list by investigating the start time of a node on all processors

exhaustively. Then, it selects the node that has the smallest start time; ties are

broken by scheduling the node with the higher SLevel priority. Scheduling of the

fig. 1 graph using EST algorithm on two processor elements is shown by fig. 2 (d).

3. Learning Automata

Learning automata (LA) are, by design, “simple agents for doing simple things,” and

was first publicized by Narendra and Thathachar [36]. Since then, LA has been used

successfully in many applications. The full potential of an LA is realized when multiple

automata interact with each other. Interaction may assume different forms such as tree,

mesh, array, etc. Depending on the problem that needs to be solved, one of these

structures for interaction may be chosen. In most applications, local interaction of LA,

which can be defined in a form of graph such as tree, mesh, or array, is more suitable [42].

Variable structure learning automata is represented by a 4-tuple {, , p, T} where

 = {1, 2,…, r},  = {1, 2,…, m}, p = {p1, p2,…, pr}, T, r, and m are action-set,

inputs-set (environment response), action-probability-vector, the learning algorithm,

Table 1.
TLevel, BLevel, SLevel, ALAP, and NOO of Each Node in the

Task Graph of Figure 1

Node TLevel BLevel SLevel ALAP NOO

n1 0 37 12 0 8

n2 6 23 8 14 4

n3 3 23 8 14 3

n4 3 20 9 17 2

n5 3 30 10 7 2

n6 10 15 5 22 1

n7 22 15 5 22 1

n8 18 15 5 22 1

n9 36 1 1 36 0

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

46 Copyright ⓒ 2015 SERSC

number of permitted action of automata, and number of inputs (reactions of environment)

respectively. The learning algorithm is a recurrence relation and is used to modify

action-probability-vector p of the automaton. Various learning algorithms have been

reported in the literature. Below, a learning algorithm, called linear learning algorithm is

given. Let i be the action chosen at stage n as a sample realization from probability

distribution pi(n). In this learning algorithm, if the environment response is favorable, the

action-probability-vector will be updated using (reward):

 
  













ijifpa

ijifnpanp
np

j

jj

j 1

)(1)(
)1(

(7)

Moreover, if the environment response is unfavorable, the action-probability-vector will

be updated by (penalty):

 

  



















ijifnpb

r

b

ijifbnp

np
j

j

j
)(1

1

1)(

)1(

(8)

where a and b are reward parameter and penalty parameter respectively should be

tuned experimentally. If a = b, the algorithm will be called LR-P, else if b < a, the

algorithm will be LR- P, and else if b = 0, the algorithm will be named LR-I.

(a)

n1

n4

n5

n3

n2 n6

n8

n7

n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

(b)

n1

n2

n5

n4

n3 n6

n8

n7

n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

(d)

n1

n4

n5

n3

n2 n6 n7n8 n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

(c)

n1

n4

n5

n3

n2 n6 n7n8 n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

4. The Proposed Approach

In the proposed approach called LA-MTS, each task in the task graph is represented by

a learning automaton. So, a graph of learning automata is generated regarding the given

task-graph. Then, an iterative algorithm is executed (fig. 3) so that each iteration like t

results in a solution (a complete scheduling). Each iteration consists of n stage, where n is

Figure 2. Scheduling of the Fig.1 Task Graph using Four Traditional
Heuristics. (a) The HLFET Algorithm. (b) The MCP Algorithm. (c) The DLS

Algorithm. (d) The ETF Algorithm.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 47

the number of tasks in the task graph. In each stage like k, learning automatons that do not

have any parents or all of their parents have already been executed, are activated to

schedule. Among the activated learning automatons, that which has the highest priority is

selected. The selected automaton selects a processor to execute based on its

action-probability-vector, that is, the permitted action of an automaton which is to select a

processor among the available processors (various priority measures such as TLevel,

BLevel, SLevel, ALAP, and NOO can be used to select an automaton among the ready

automatons). Finally, after executing all learning automatons, a problem solution or a

complete scheduling is obtained for iteration k. if obtained solution in iteration k, is better

than the previous ones (or equal to the best pervious), learning automata will get a reward

using (7), else they get a penalty by (8). The iterations continue until solutions converge

to a unique scheduling. A flowchart of the proposed approach is also demonstrated in fig.

3.

Whereas LR-P learning algorithm guarantees converging, it has been used to adapt

the learning automata. However, the reward and penalty parameter should be tuned

experimentally. Table II lists six task graphs and their comments considered to

evaluate the proposed LA-MTS. The four first graphs compare the LA-MTS with

traditional heuristics for multiprocessor task graph scheduling on bounded number

of processors (BNP) [35], and two last graphs evaluate it in comparison with the

genetic algorithm.

5. Implementation and Results

 The proposed approach was implemented on a Penitum4 (2.6GHz) desktop computer

with Microsoft Windows XP (SP2) platform using Microsoft Visual Basic 6.0

programming language. Quit condition of the algorithm was 50 iterations with same

makespan, and maximum number of iteration was set to 2000. Table II lists six task

graphs and their comments considered to evaluate the proposed approach. The four first

graphs compare the proposed approach with the traditional heuristics not only the BNP

algorithms but also UNC ones, and then two last graphs that are G5 and G6 evaluate it in

comparison with the genetic algorithm. Set of different experiment to select proper

reward parameter of learning automata, task priority measurement, and to compare with

the other traditional heuristics and genetic algorithm has been done.

5.1 Reward Parameter of Learning Automata

At first, set of experiments has been done to detect the appropriate value of a parameter

(reward parameter). Whereas LR-P learning method has been used to adapt the learning

automata, and b parameter (penalty parameter) should be so small, therefore b = 0.01 × a

has been considered in all experiments.

Table 2. Selected Task Graphs for Evaluating the LA-
MTS

Communication

Costs
Nodes Comments Graph

Variable 9 Kwok and Ahmad [13] G1

Variable 17 Al-Mouhamed [32] G2

60 and 40 18 Wu and Gajski [25] G3

Variable 16 Al-Maasarani [45] G4

Variable 9 Fig. 1 [14] G5

120 and 80 18 Hwang et al. [14] G6

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

48 Copyright ⓒ 2015 SERSC

Fig. 4 shows diagram of archived makespan of LA-MTS based on various values of a

parameter (mean of 10 times of algorithm execution has been used). The above numbers

of diagram are mean of number of algorithm iterations, which demonstrate how much the

problem space has been explored by learning automata before it converge to a minimum

solution. It can be concluded that 0.1 is a qualified value for a parameter. A sample of

algorithm execution using this value as reward parameter has been shown in fig. 5.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 49

Yes

Yes

No

No Yes

No
Yes

Initialize learning automatons

Activate ready LAs

Select the highest priority LA

Is this
the last

LA?

Compute Makespan

Is exit
criterion

satisfied?

Start

End

Run LA to select a processor

Is it
the best

makespan?

Penalty Reward

Figure 3. Flowchart of the Proposed Approach

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

50 Copyright ⓒ 2015 SERSC

5.2 Priority Measurement

 In primary LA-MTS in each time instance among ready automatons, that which has the

least topological number is selected to execute, while various measure of priority can be

used intelligently. Therefore, we introduce five new algorithms namely LA-MTST, LA-

MTSB, LA-MTSS, LA-MTSA, and LA-MTSN which use TLevel, BLevel, SLevel, ALAP,

NOO as priority measurements of nodes to break ties respectively. Table III and table IV

list results of mean and minimum of 10 times of these algorithms execution on the four

first graphs. Results of scheduling by LA-MTSN that uses number of offspring of nodes

as priority measurements, is very promising; it outperforms the others. LA-MTSN among

ready automatons selects one that has the most number of offspring in each time instance.

It seems to be better priority measurement. Since, the task, which has lesser offspring or is

near the leaves, may be more desirable in the other measurements, which early selecting

of it to schedule may increases the overall finish time. Therefore, LA-MTSN will be used

in the remained experiments.

10

15

20

25

30

35

40

45

50

2 42 82 122 162 202

Iteration

M
ak

es
p

an

Figure 5. A Sample of Algorithm Execution using a = 0.1. The Algorithm was
Terminated after 240 Iteration and the Minimum Makespan was 22 Time-Slot

1906

1389

970608

157

8975

60

20

22

24

26

28

30

32

0.5 0.4 0.3 0.2 0.1 0.08 0.06 0.04

Reward Parameter (a)

M
ak

es
p

an

 Fig. 4. Diagram of Archived Makespan of LA-MTS Based on Various Values
of a Parameter (Mean of 10 Times of Algorithm Execution has Been Used).

The Above Numbers of Diagram are Mean of Number of Algorithm Iterations

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 51

5.3 Compare with Traditional Heuristics

Whereas the proposed LA-MTS is a BNP algorithm, four BNP heurists namely HLFET,

MCP, DLS, and ETF are considered to evaluate it. Fig. 6 shows diagram of mean

achieved scheduling of 10 times of algorithm execution and these heuristics for the four

first graphs on various number of processors. The diagram bars are normalized to the

range of (0, 1] by dividing the archived makespan of each algorithm for each graph by

maximum achieved makespan for that graph. It can be seen that LA-MTS has

outperformed the heuristics.

5.4 Compare with Genetic Algorithm

The two last graphs evaluate the ACO-MTS compared to one of the best genetic

algorithm proposed for multiprocessor task scheduling without task duplication

[14]. Table V lists achieved results of not only these two algorithms but also four

other traditional ones (BNP as well as UNC methods). Number of processors is

large enough to achieve the best possible results for the BNP methods that are,

MCP, LA-MTS, and the genetic algorithm. The results show that LA-MTS had the

best performance in the first graph and equal to the genetic algorithm in the second

one (Note that LA-MTS has used two processors to schedule the first and second

Table 4. Results of Minimum of 10 Times of
Execution of LA-MTST, LA-MTSB, LA-MTSS,

LA-MTSA, AND LA-MTSN

Graph
LA-

MTST

LA-

MTSB

LA-

MTSS

LA-

MTSA

LA-

MTSN

G1 20 17 18 17 17

G2 43 43 43 43 41

G3 440 420 420 410 400

G4 55 56 57 56 58

Table 3. Results of Mean of 10 Times of
Execution of LA-MTST, LA-MTSB, LA-MTSS,

LA-MTSA, AND LA-MTSN

Graph
LA-

MTST

LA-

MTSB

LA-

MTSS

LA-

MTSA

LA-

MTSN

G1 20 17.4 18.8 17.4 17.1

G2 43.6 44.2 44.8 43.9 43

G3 451 437 428 437 427

G4 58.1 57.3 60.3 58.3 59.4

Table 4. The Best Achieved Results of LA-
MTN, Genetic Algorithm, and Four

Traditional Heuristics [14]

Graph MCP DSC MD DCP Genetic LA-MTS

G5 29 27 32 32 23 22

G6 520 460 460 440 440 440

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

52 Copyright ⓒ 2015 SERSC

graph). Nevertheless, in this genetic algorithm, each generation has 100

chromosomes and maximum number of generations is 1000, that is, it achieves the

best scheduling by generating 100,000 solutions while the LA-MTS examines only

2000 complete solutions (2000 iterations) to find the best scheduling. It

demonstrates that LA-MTS finds solution so faster than the genetic algorithm.

6. Conclusion

In this paper, a new BNP (Bounded Number of Processors) approach for

multiprocessor task-graph scheduling based on a graph of learning automata was

introduced. In the proposed approach named LA-MTS, each task in the task graph

was represented by a learning automaton. In each stage, the most priority ready

automaton was selected to execute on which processor it selects. Among different

introduced priority measurements, number of offspring (NOO) outperformed the

others. The automaton selected one of available processors to schedule in based on

its action-probability-vector, until all automatons were scheduled. The learning

automata would get reward or penalty with respect to desirability of the achieved

makespan because of generating better scheduling in the next iterations. Six task

graphs, which results of the other BNP methods were already specified on them,

were elected to evaluate the proposed LA-MTS (scheduling of them using LA-MTS

has been shown in fig. 7). The four first graphs evaluated LA-MTS against the

traditional BNP heuristics. In a set of experiments, LA-MTS outperformed them.

Another set of experiments evaluated LA-MTS in comparison with one of the best

genetic algorithm in this field (without task duplication). In one graph, LA-MTS had

better performance and in the second graph was equal to GA. While, the genetic

algorithm examined too more scheduling to achieve the best result (almost 100,000

scheduling). All of these demonstrate that the proposed LA-MTS is so successful in

multiprocessor task scheduling.

References

[1]. S. Parsa, S. H. Lotfi and N. Lotfi, “The approach based on evolutional processing for task graph

scheduling in multiprocessor architecture”, Proc. 11th Iranian Int. CSI Computer Conf., Tehran, (2006).

0

0.2

0.4

0.6

0.8

1

G1 G2 G3 G4

HLFET MCP DLS ETF LA-MTS

Figure 6. Diagram of Minimum Achieved Scheduling of 10 Times of
Algorithm Execution and these Heuristics for the Four First Graphs on Two

Processors. The Diagram Bars are Normalized to the Range of (0, 1] by
Dividing the Archived Makespan of each Algorithm for Each Graph by

Maximum Achieved Makespan for that Graph

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 53

[2]. M. Salmani, M. Zali and M. Moghimi, “Task Scheduling in Multi-Processor Systems Using Genetic

Algorithm and Reinforcement Learning”, Proc. 12th Iranian Int. CSI Computer Conf., Tehran, (2007),

pp. 1948-1951.

[3]. M. Abdeyazdan and A. Rahmani, “Task scheduling in multiprocessor systems using a new genetic

algorithm priority based on number of offspring”, Proc. 13th Iranian Int. CSI Computer Conf., Kish,

(2008).

[4]. E. Hou, N. Ansari and H. Ren, “A Genetic Algorithm for Multiprocessor Scheduling”, IEEE Trans.

Parallel Distrib. Syst., vol. 5, no. 2, (1994), pp. 113-120.

[5]. M. Salmani, S. Fakhraie, F. Montazeri, S. M. Fakhraie and M. Nili, “A Representation for Genetic-

Algorithm-Based Multiprocessor Task Scheduling”, IEEE Congr. On Evolutionary Computation,

Vancouver, (2006), pp. 340-347.

[6]. R. Correa, A. Ferreira and P. Rebreyend, “Scheduling Multiprocessor Tasks with Genetic Algorithms”,

IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 8, (1999), pp. 825-837.

[7]. C. W. Zomaya and B. Macey, “Genetic Scheduling for Parallel Processor Systems: Comparative Studies

and Performance Issues”, IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 8, (1999), pp. 795-812.

[8]. M. Dehodhi, I. Ahmad and I. Ahmad, “A Multiprocessor Scheduling Scheme Using Problem-Space

Genetic Algorithms”.

[9]. Wu, H. Yu, S. Jin, K. Lin and G. Schiavone, “An Incremental Genetic Algorithm Approach to

Multiprocessor Scheduling”, IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 9, (2004), pp. 824-834.

[10]. E. Hou, R. Hong and N. Ansari, “Efficient Multiprocessor scheduling Based on Genetic Algorithms”.

[11]. P. Chretienne, “Scheduling Theory and Its Application”, New York: Wiley, (1995).

[12]. Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs to

Multiprocessors”, Hong Kong Research Grants Council, Hong Kong, Rep. HKUST 734/96E and

HKUST 6076/97E, (1998).

[13]. Ahmad and Y. Kwok, “On Parallelizing the Multiprocessor Scheduling Problem”, IEEE Trans.

Parallel Distrib. Syst., vol. 10, no. 8, (1999), pp. 795-812.

[14]. R. Hwang, M. Gen and H. Katayama, “A comparison of multiprocessor task scheduling algorithms with

communication costs”, Computer & Operations Research, vol. 35, (2008), pp. 976-993.

[15]. B. Kruatrachue and T. G. Lewis, “Duplication Scheduling Heuristics (DSH): A New Precedence Task

Scheduler for Parallel Processor Systems”, Oregon State University, Corvallis, Tech. Rep. OR 97331,

(1987).

[16]. C. H. Papadimitriou and M. Yannakakis, “Scheduling Interval-Ordered Tasks”, SIAM J. Computing,

vol. 8, (1979), pp. 405-409.

[17]. J. Y. Colin and P. Chretienne, “C.P.M. Scheduling with Small Computation Delays and Task

Duplication”, Operations Research, (1991), pp. 680-684.

[18]. Y. C. Chung and S. Ranka, “Application and Performance Analysis of a Compile-Time Optimization

Approach for List Scheduling Algorithms on Distributed-Memory Multiprocessors”, Proc.

Supercomputing, (1992).

[19]. H. Chen, B. Shirazi and J. Marquis, “Performance Evaluation of A Novel Scheduling Method: Linear

Clustering with Task Duplication”, Proc. Int’l Conf. Parallel and Distributed Systems, (1993).

[20]. Ahmad and Y. K. Kwok, “On Exploiting Task Duplication in Parallel Program Scheduling”, IEEE

Trans. Parallel and Distributed Systems, vol. 9, no. 9, (1998), pp. 872-892.

[21]. M. A. Palis, J. C. Liou and D.S.L. Wei, “Task Clustering and Scheduling for Distributed Memory

Parallel Architectures”, IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 1, (1996), pp. 46-55.

[22]. G. L. Park, B. Shirazi, and J. Marquis, “DFRN: A New Approach for Duplication Based Scheduling for

Distributed Memory Multiprocessor Systems”, Proc. 11th Int’l Parallel Processing Symposium, (1997).

[23]. S. J. Kim and J. C. Browne, “A General Approach to Mapping of Parallel Computation upon

Multiprocessor Architectures”, Proc. Int’l Conference on Parallel Processing, (1988).

[24]. V. Sarkar, “Partitioning and Scheduling Parallel Programs for Multiprocessors, Cambridge, MA: MIT

Press, (1989).

[25]. M. Y. Wu and D. D. Gajski, “Hypertool: A Programming Aid for Message-Passing Systems”, IEEE

Trans. Parallel and Distributed Systems, vol. 1, no. 3, (1990), pp. 330-343.

[26]. T. Yang and A. Gerasoulis, “List Scheduling with and without Communication Delays”, Parallel

Computing, vol. 19, (1993), pp. 1321-1344.

[27]. Y. K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling: An Effective Technique for Allocating

Task Graphs to Multiprocessors”, IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 5, (1996),

pp. 506-521.

[28]. T. L. Adam, K. M. Chandy and J. Dickson, “A Comparison of List Scheduling for Parallel Processing

Systems”, Comm. ACM, vol. 17, no. 12, (1974), pp. 685-690.

[29]. C. McCreary and H. Gill, “Automatic Determination of Grain Size for Efficient Parallel Processing”,

Comm. ACM, vol. 32, (1989), pp. 1073-1078.

[30]. Baxter and J. H. Patel, “The LAST Algorithm: A Heuristic-Based Static Task Allocation Algorithm”,

Proc. 1989 Int’l Conf. Parallel Processing, (1989).

[31]. J. J. Hwang, Y. C. Chow, F. D. Anger and C. Y. Lee, “Scheduling Precedence Graphs in Systems with

Interprocessor Communication Times”, SIAM J. Computing, vol. 18, no. 2, (1989), pp. 244-257.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

54 Copyright ⓒ 2015 SERSC

[32]. M. A. Al-Mouhamed, “Lower Bound on the Number of Processors and Time for Scheduling Precedence

Graphs with Communication Costs”, IEEE Trans. Software Engineering, vol. 16, no. 12, (1990), pp.

1390-1401.

[33]. P. Shroff, D. Watson, N. Flann and R. Freund, “Genetic simulated annealing for scheduling data-

dependent tasks in heterogeneous environments”, 5th IEEE Heterogeneous Computing Workshop

(HCW), (1997), pp. 98-104.

[34]. M. Wu, W. Shu and J. Gu, “Local Search for DAG Scheduling and Task Assignment”, Proc. Int'l Conf.

Parallel Processing, (1997).

[35]. Y. Kwok and I. Ahmad, “Benchmarking and Comparison of the Task Graph Scheduling Algorithms”,

Hong Kong Research Grants Council, Hong Kong, Rep. HKUST 734/96E and HKUST 6076/97E,

(1999).

[36]. S. Narendra and M. A. L. Thathachar, “Learning Automata: A Survey”, IEEE Trans. Syst., Man,

Cybern., vol. SMC-14, (1974), pp. 323–334.

[37]. G. I. Papadimitriou, M. S. Obaidat and A. S. Pomportsis, “On the use of learning automata in the control

of broadcast networks: A methodology”, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 6,

(2002), pp. 781–790.

[38]. S. Misra, K. I. Abraham, M. S. Obaidat and P. V. Krishna, “LAID: A learning automata-based scheme

for intrusion detection in wireless sensor networks”, Security Commun. Netw., vol. 2, no. 2, (2009), pp.

105–115.

[39]. E. Fayyoumi and B. J. Oommen, “Achieving micro aggregation for secure statistical databases using

fixed structure partitioning based learning automata”, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.

9, no. 5, (2009), pp. 1192–1205.

[40]. H. Beigy and M. R. Meybodi, “Utilizing distributed learning automata to solve stochastic shortest path

problems”, Int. J. Uncertain., Fuzziness Knowl.-Based Syst., vol. 14, no. 5, (2006), pp. 591–615.

[41]. S. Misra and B. J. Oommen, “Using pursuit automata for estimating stable shortest paths in stochastic

network environments”, Int. J. Commun. Syst., vol. 22, no. 4, (2009), pp. 441–468.

[42]. H. Beigy and M. R. Meybodi, “Cellular Learning Automata With Multiple Learning Automata in Each

Cell and Its Applications”, IEEE Trans. Syst., vol. 40, no. 1, (2010), pp. 54–65.

[43]. L. Thathachar and P. S. Sastry, “Varieties of Learning Automata: An Overview”, IEEE Trans. Syst., vol.

32, no. 6, (2002), pp. 711–722.

[44]. H. R. Boveiri, “ACO-MTS: A New Approach for Multiprocessor Task Scheduling Based on Ant Colony

Optimization”, 3rd Int. Conf. on Intelligent and Advanced Systems.

[45]. Al-Maasarani, “Priority-Based Scheduling and Evaluation of Precedence Graphs with Communication

Times”, M.S. Thesis, King Fahd University of Petroleum and Minerals, (1993).

[46]. G. C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained

Heterogeneous Processor Architectures”, IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2,

(1993), pp. 75-87.

Author

Hamid Reza Boveiri received the B.Sc. degree from Birjand

University, Birjand, Iran, in 2005, and M.Sc. degree from Islamic

Azad University Science and Research Branch, Ahwaz, Iran, in 2009,

both in software engineering.

He is currently a faculty member of computer department of Sama

College, Islamic Azad University, Shushtar Branch, Shushtar, Iran.

He is also member of Young Researchers Club of Islamic Azad

University, Shushtar Branch, and there, he is the head advisor of

research workgroup. His research interests include optimization,

meta-heuristics, signal processing, and pattern recognition.

