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Abstract 

When Global Positioning Systems are obstructed, standalone pedestrian tracking can 

be very daunting. Users in such obstructed environments (especially in home 

environments) will find it difficult to perform on-site navigation. It is important to create a 

standalone pedestrian tracking system that provides better location determination 

services with less computational complexity and deployment cost. One promising way to 

implement this service is through the use of Inertial Measurement Unit (IMU) sensors. 

This tracking method provides the pinpointing of standalone tracking information but is 

handicapped by missing stance phase during pedestrian walking activities. A new 

pedestrian stance detection using simultaneously localization and mapping (SLAM) will 

be designed in this paper with a focus on robust indoor positioning systems. We will 

present our preliminary results to illustrate the performance of the system for an indoor 

environment set-up at the end of this paper. 

 

Keywords: Simultaneously Localization and Mapping, Global Positioning System, 

Inertial Measurement Unit, Wi-Fi 

 

1. Introduction 

Widespread advances of devices and technologies and the necessity for seamless 

solutions in location-based services have increased the relevance and necessities of Indoor 

Positioning Systems (IPS) [1]. The tracking of people or pedestrians (referred to as 

mobile nodes in the sequel) within a corridor or any enclosed structure is a salient part of 

IPS. Tracking tasks include emergency rescue locating, first-responder navigation, asset 

navigation and tracking or people movers [2]. A network of dedicated satellites offers a 

worldwide service coverage with the use of the widely diffused Global Navigation 

Satellite System (GNSS) [3]. GNSS is recognized as a legacy system for outdoor 

environments and, to a great extent, one of the most accurate sources of positioning 

information when available. 

However, alternative systems need to be adopted for indoor environments, as GNSS is 

proving to be unfeasible in this area. 

A large number of parameters need to be taken into account (for example: cost, 

accuracy, robustness, scalability, and coverage) to design and IPS with the latest and best 

technological equipment[4]. Obviously, there doesn’t exist a single solution that works 

fine for all scenarios. It is vital then to consider and evaluate all available technological 

performance parameters and match them with specific user requirements which have to be 

analysed and articulated precisely for each application. Moreover, various factors and 
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conditions affect and govern the performance parameters. A customized solution will only 

succeed if the right trade-off among performance parameters, user requirements and 

environmental are identified. 

Bayesian tracking, distributed and cooperative tracking, fingerprinting, fusion method 

and pedestrian simultaneously localization and mapping (SLAM)were some of the many 

indoor positioning methods brought forward to track human pedestrians (PDR) [1]. 

Among these methods, the most capable method to determine pedestrian positions in 

unknown and changing environments was the SLAM method[5]. For many domestic 

environments where pedestrians were expected to enter all areas within a room or home, 

this approach had been proven to robust and successful [5]. It is more appropriate to 

utilize an existing map for pedestrians entering a large building in search of a specific 

destination. The initial map could be generated by Pedestrian SLAM and eventually 

updated to include changes in the environment and increase the navigational accuracy 

within the community. Yet, Pedestrian SLAM requires dedicated infrastructure and 

equipment [6] like Radio Frequency Identification (RFID) [7] or WLAN radio access 

points [8-11] which incur high costs. In additional, these infrastructures might be 

unavailable or are slow to deploy inexpensively thus making Pedestrian SLAM unsuitable 

for emergency, security and rescue applications. Other approaches do not require that high 

cost like Inertial Measurement Units (IMUs) [12-14], cameras [15] and laser scanners[16] 

because they do not require extensive deployment of infrastructure as they only rely on 

sensors. Among these methods, techniques based on IMU sensors are the only ones that 

can provide better mobility, privacy and are cheaper. Nevertheless, only [13, 14] can 

provide activity and location simultaneously (which fulfils the context awareness 

condition). A new technique that uses Rao-Blackwellized particle filters based on 

resampling analysis and KLD sampling in Pedestrian SLAM for efficient computational 

complexity will be discussed in this research. The suggested technique will be able to 

reduce the computational complexity and RMS errors in Pedestrian SLAM. It is hoped 

that the results of this research will assist in the modernisation of location determination 

systems as well as contribute to the current field of studies of Pedestrian SLAM. The 

outline of this paper is as follows: Section 2 will present the basic concepts related to 

robust indoor positioning, our problem formulation will be covered in Section 3, Section 4 

will present our proposed methods, Section 5 will outline our experiment setup, followed 

by a discussion on our preliminary results in Section 6 and a discussion on the future 

direction of the project will be provided in Section 7. 

 

2. Concept of Activity Pedestrian SLAM 

The concept of Activity Pedestrian SLAM (see Figure 1) for fundamental system 

architecture) regards positioning determination and mapping across all environments 

[17-21]. It usually depends upon a multi-sensor setup while augmenting standalone 

positioning with other signals, motion sensors, and environmental features. Three 

dimensional (3D) mapping, context awareness and cooperation between users may 

enhance its capabilities. As indicated in Figure 1, three (3) subsystems make up the 

Activity Pedestrian SLAM: the field subsystem, the interface subsystem, and the 

database subsystem. The transmitters will always continuously broadcast their 

signal within coverage under normal circumstances. Devices equipped with special 

sensors within their coverage area will receive a signal. The central processing unit 

(where the algorithm is installed) will process the received signals before referring 

with the data in the database server. Finally, a device screen will display the 

mapping location sent by the system. 
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Figure 1. General System Architecture of Pedestrian SLAM 

3. Problem Formulation 

The concern in Pedestrian SLAM is the extensive computational resources needed by 

the engine framework during the resampling. This is because it involves iteration 

processes which are used to prevent weight degeneracy (by getting rid of particle if the 

weight is less).The reduction of computational complexity will affect the sampling quality 

in this research paper. The system will experience particle depletion if there is no 

reduction of computational complexity and eventually degrade the resampling quality. 

 

4. System Design 

Figure 2 depicts the two main phases in the Activity Pedestrian SLAM framework: the 

pre-processing phase and SLAM update phase. The system derives a step estimate, ̂, 

during pre-processing and recognizes the location-related actions,  ̂ , from wearable 

inertial sensors. A Rao-Blackwellized particle filter [22] then fuses these measurements. 

The system then segments the paths into stance phases  with poses                  

and steps   that connect     and   . In this notation,            which denotes the 3D 

position of the user at time  and   , the foot’s heading. The outputs of the system are a 

path of            } composed of poses                  and a map   made up 

of     landmarks                    is the index of the landmark, and     the number of 

landmarks in the map. 
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Figure 2. System Architecture of Activity Pedestrian SLAM 

4.1. Pre-Processing 

In this section, the pre-processing [22] (see Figure 3) phase will be discussed in two (2) 

subsections: action recognition and user trajectory. Figure 3 shows the action recognition 

and user trajectory phases within Pedestrian SLAM. In action recognition, the standing 

still, stair low (reaching the lower end of a stair) and stair high (reaching the upper end of 

a stair) are the four (4) basic detectable actions. The action recognition phase is needed to 

detect these kinds of actions. Action recognition basically comprises of sit, stance and 

stair detection. Sit detection is used to detect sitting actions by setting a limit to the upper 

leg sensor’s orientation. There are two subcomponents for stance detection (generally 

used to detect standing still action). They are the standing still detection and adaptive 

stance detection with walking path segmentation. An example of a standing still detection 

that needs to be measured or captured is the action of a user putting on a pair of socks. 

Initially, walking path segmentation will be broken down to steps followed by applying 

adaptive stance detection. Concurrently, standing still detection is implemented to identify 

standing still actions by identifying stance phases with duration < 0.75s that happen 

during gait interruptions. Stair detection is used to detect stair low and stair high actions 

by computing the variance of the ZUPT-PDR altitude,       )), as an output of   )in a 

sliding window of   length. The phase is identified either as a stair ascent or descent 

depending if        )) stays for at least    above a    threshold. The action recognition 

block of the system then provides observations{sitting, standing still, stair high, stair low} 

associated to the  stance phasesin the final output. 
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Figure 3. Action Recognition and User Trajectory in Activity Pedestrian 
SLAM 

In user-trajectories [22], the pre-processing’s first output is the open-loop 

estimate, ̂ ,of the person’s trajectory which is made up of  ̂ steps. ZUPT-PDR is used to 

estimate 3D foot coordinates. The walking path is segmented by ZUPT-PDR stance 

detection into  ̂  steps described by the horizontal step length,  ̂ , altitude change,  ̂  and 

heading change where   ̂    ̂    ̂   . 

 

4.2. Proposed Rao-Blackwellized Particle Filter 

As compared to standard SLAM problem of estimating         ̂   ̂   ̂ ) , the 

highlights of the system are not immediately identifiable with  ̂  , but only with their  ̂  

action types. Moreover, the estimated landmark position observed at time   is always 

equal to the person’s position of similar time. Therefore,   and   alone are enough to 

derive  ̂  and this reduces SLAM’s problem in approximating          ̂
   ̂ ) . The 

system uses Rao-Blackwell factorization [22] (see Figure 4) for motion fusion and 

observational measurements. 

 

 (     | ̂
   ̂ )         ̂ )∏  (      | 

   ̂ )
    

     
                                     (1) 

This factorization decomposes the SLAM problem of estimating a path,   , in a 

previously unknown environment,  , into separate estimators for the person’s path, s, and 

each of the     landmarks,      . The system is capable of approximating non-Gaussian 

distributions and performing nonlinear filtering by estimating the path 

probability,      ̂ ),in a particle filter with    particles. Meanwhile, the landmark 

probability distributions  (      | 
   ̂ ) are estimated by the      individual filters. Each 
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    particle must maintain its own map,     , together with the pose,  
   

, because the 

landmark characteristics,      , are conditioned on the person’s path. The system estimates 

  
   

during motion update while the     map update is done in the observation update 

 

and only in response to action observations. 

T 

 

Figure 4. Algorithm Flow of Proposed Rao-Blackwellized Particle Filter in 
Activity Pedestrian SLAM 
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4.2.1. Motion Update 

A motion update (see Figure 5) [22] and sequential calculation of       ̂ )s performed 

by the system at the start of each t phase stance by sampling particle poses from: 
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Figure 5. Algorithm Flow of Motion Update in Activity Pedestrian SLAM 

The probability density function, (  
   

|    
   

  ̂ ), is described by the motion model. 

Exponential error growths in long phases without stance detections were not taken into 

account in the model. The time that passed between the two subsequent stance phases 

    and   is now defined as   . An unbiased and calibrated gyroscope gives a heading 

error that follows a random walk with         being a property of the gyroscope. The 

gyroscope further added a random walk position error with           )         when 

foot swings were assumed to have constant forward velocity. Apart from sensor errors, 

the ZUPT-PDR position and heading estimates were also affected by inaccuracies in 

stance detection. These errors were modelled as additive Gaussian noise with standard 

deviations     for position and     forheading and both were independent of   . The sum 

of the previous     
   

pose, the ZUPT-PDR estimate,  ̂ , and a sampled error,      , 

equalled the new pose,  
   

,of a particle after a   step. The resulting motion equations are: 
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4.2.2. Observation Update 

The system performs observation updates (see Figure 6) [22] after the motion update, 

associated to stance phase   , for non-empty  ̂ . The action recognition triggers multiple 

subsequent observation updates if more than one action occurs during a single stance 

phase (e.g., stairs high and standing still). As compared to the previous [22], there are no 

changes to the observation update itself except that we now assign an additional 

coordinate, , for vertical displacement to landmarks. The system modifies the maps 

    
   

of each particle, given its current pose,  
   

, and the observation, ̂   during the 

observation update. Initially, the algorithm determines whether the observation 

corresponds to a landmark already in the map. If the algorithm successfully locates the 

corresponding landmark, it then identifies the landmark. The algorithm either adds a new 

landmark       
   

 with            or modifies the associated     
   

. Figure 6describes the 

decision procedure. Since different foot placements in a plane can correspond to the same 

location-related action, landmarks in the system have aplanar elliptic shape. Consider for 

example the act of sitting. There may not be any changes in upper-body posture with foot 

movements in an area of       diameter. Centroid location               , the ellipse shape 

parameters                       and the altitude of the landmark       were the parameters 

used in the system to describe a landmark. On top of that, each landmark had an 

accompanying action type        {sitting, standings till, stair high, stair low} that stayed 

stationary. For the sake of better readability, we set aside the particle index,    . The 

system first calculates the probability of linking the current observation to each of the 

previously inserted landmarks in the particle’s map. The probability of 

association,      ,equals   if  ̂      . The difference vector,  ̂   , between the current 

location of the foot and the landmark’s shape in all other cases is calculated, using the 

formulas for ellipse intersection (with      as intersection angle): 
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Figure 6. Algorithm Flow of Observation Update in Activity Pedestrian 
SLAM 
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  is a normalization factor so that the sum of all     with               is 1. 

The sum of the landmark position covariance ∑       , and the measurement covariance 

   is the observation covariance matrix     .  
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)                                            (18) 

 

Given the probabilities,    , the system samples the data association decision ̂  

              . If the outcome is  ̂        +1,  the system adds a new landmark with 

the following characteristics to the map     of the particle:  

 

  ̂        ̂        ̂                                           (19) 
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∑   ̂                                                                     (22) 

 

The system up dates the associated landmark’s position in a Kalman filter with gain K 

if  ̂         : 
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 ̂                                                           (23) 
 

The new position of the landmark   ̂  and the updated position covariance 

∑ ̂  are: 
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The two ellipses are combined into a single ellipse landmark,  ̂  
 ,if the centre of the 

  ̂  landmark is within the ellipse shape of another landmark     of identical action type. 

An ellipse is set by the system around all observation locations of landmarks      and 

  ̂  with the semi-major axis lengths constrained to       .  
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4.2.3. Compensation Technique and KLD-Resampling 

The algorithm (see Figure 7) will calculate the effective particle number      
 

∑    
   

)
  
   

, which performs compensation technique [23] and systematic resampling [24], 

if         after each observation update.In this way, the filter better approximates 

         ̂
   ̂ ) in areas which arenot close to zero and gets rid of particles with very low 

weight. The observation update phase sometimes adds landmarks due to non-location 

related actions, for example when a person stops in the middle of a room to answer a 

phone call. Such landmarks should be eliminated because they may lead to erroneous data 

association in later observation updates. An observation time,     , is stored by the system 

for each landmark and is reset to the current time whenever ̂           measured walking 

distance within the indoor area. The system’s particle filter estimates the probability 

density,          ̂
   ̂ ) , but we are actuallykeen on    and   . The system 

approximates    and    of   while  are the paths on the map of the best particle    . 
This is the particle which best reflects the current belief of the filter according to the 

following heuristically defined rules: 1)     candidates are all particles with   
  ̃ 

 

  
   

minimum number of landmarks and 2)     is the particle with the highest weight, 

  
 , among these candidates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Algorithm Flow of Compensation Technique and KLD-Resampling 
in Activity Pedestrian SLAM 

5. Conclusions and Future Directions 

This paper discussed solutions on developing a standalone pedestrian tracking in 

obstructed areas that is block Global Positioning System signals. Users usually find it 

hard to move around on-site in such conditions, especially in obstructed environments like 

the inside of homes. The establishment of a standalone pedestrian tracking method is 

needed to provide better location determination services with less computational 

complexity and deployment cost. Based on IMU technology, this tracking technique 
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allows for the determination of standalone tracking information but suffers from missing 

stance phase during human walking activities. In order to overcome this shortcoming, a 

new stance detection in pedestrian simultaneously localization and mapping (SLAM) 

needs to be designed for robust indoor positioning systems. To illustrate the performance 

of the system in an indoor environment set-up, we will present our preliminary results in 

the future. 
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