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Abstract 

Identification of the disease-causal genomic variants that alter human phenotypes, 

particularly those that lead to diseases, is the central goal of human genetics studies. In 

the past decade, genome-wide studies have identified several hundreds of common 

variants associated with complex human diseases and traits. Despite these successes, 

most of the common variants only have a small individual contribution to the estimated 

heritability underlying common diseases and traits.  Many explanations for these missing 

heritabilities have been suggested, including rare variants, structural variants, 

regulatory variants, and epigenetic variants. Recent advances in high-throughput 

technologies have provided an opportunity to construct comprehensive maps of genetic 

variation, including the several million single nucleotide variants, thousands of small 

insertion or deletion events, and thousands of structural variants, in both the protein-

coding and noncoding regions of the human genome without time and cost limitations. 

The present review describes current bioinformatics tools for identifying deleterious 

variants in protein-coding regions based on the evolutionary and functional constraints 

of human proteins. 
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1. Introduction 

Nonsynonymous single nucleotide polymorphisms (nsSNPs) are coding variants that 

cause amino acid changes in their corresponding proteins. An nsSNP alters the protein 

structure and function, resulting in drastic phenotypic consequences. Because most of the 

alterations in coding regions are deleterious, they are eventually eliminated through 

purifying selection. By contrast, beneficial mutations can sweep through the population 

and become fixed, thus evolutionarily contributing to species differentiation. Deleterious 

nsSNPs are associated with both Mendelian diseases and common complex diseases. 

Nonsynonymous substitutions account for approximately half of the genetic changes 

known to cause disease in databases such as Online Mendelian Inheritance in Man 

(OMIM) and Human Gene Mutation Database (HGMD) [1, 2]. Prediction methods for 

deleterious nonsynonymous substitutions have been successfully developed to distinguish 

between nonsynonymous changes that cause simple Mendelian diseases from neutral 

changes. Although most of the simple Mendelian diseases remain rare due to purifying 

selection, some have become relatively common in certain populations because of 

overdominant selection, which occurs when the heterozygote carrier has higher fitness 

than both the mutant and normal homozygotes. For example, the E6V substitution in β-

globin is common in malaria-endemic populations, because heterozygous carriers are 

more resistant to malaria than normal homozygotes, whereas individuals that are 

homozygous for the rare allele have sickle-cell anemia. Another well-known example of 
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over dominance involves methylenetetrahydrofolate reductase (MTHFR) alleles. Variants 

that reduce MTHFR activity can cause mental retardation and cardiovascular disease in 

carriers. Nevertheless, these protein function-damaging variants have become relatively 

common in human populations, because reduced MTHFR activity is considered to have 

been beneficial to an individual’s overall fitness during recent human evolution. Because 

these overdominant nonsynonymous substitutions can severely affect protein function, 

they can readily be detected using some prediction methods [3]. 

Owing to emerging high-throughput sequencing techniques, such as next-generation 

sequencing, it is now feasible to detect large amounts of nsSNPs without time and cost 

limitations. Two general models, the common disease-common variant model and the 

common disease-rare variant model, have been proposed to explain the nature of the 

genetic variations underlying common complex diseases such as hypertension, diabetes, 

heart disease, and cancer [4-8]. However, for both rare variants with a large effect and 

common variants with a weak effect on the common phenotype, the use of prior 

knowledge could be crucial for the discovery of disease-causing genes [9-12].  The 

deleteriousness of nsSNPs can be used as prior knowledge to filter out the millions of 

benign variants. Several constraint-based methods for prediction of the deleteriousness of 

nsSNPs have been proposed (Table 1); these approaches generally presume that 

deleterious variants break the evolutionary and structural constraints for governing native 

protein functions. 

In the present review, we provide a survey of the evolutionary and structural con-

straint-based approaches developed to date for detecting the deleteriousness of human 

genetic variants. We focus on the particular considerations and difficulties of these 

methods, and highlight their role and potential in improving our ability of readily 

detecting disease-causing variants. 

 

2. Predicting Deleterious nsSNPs Based on Evolutionary Constraints 

There are two major assumptions required for predicting deleterious nsSNPs from a 

phylogeny. First, nonsynonymous SNPs that destroy the stability and biochemical 

functions of their corresponding proteins, and thus cause medically detrimental phe-

notypes, are subject to purifying selection due to the reduction in evolutionary fitness. 

Second, a deleterious nsSNP in the current population is also assumed to be deleterious in 

homologous genes of different species. Homologous genes are considered to be 

orthologous if they separated at the time of species divergence; thus, the copies of the 

same gene in the two resulting species are said to be orthologous. Subsequently, the two 

orthologous protein-coding genes fulfilling the same biological function in the two 

diverging species start to accumulate mutations independently. Despite their independent 

evolutionary trajectories, the accumulation of mutations usually follows a similar pattern 

in the two diverging species, owing to similar structural and functional constraints of the 

proteins. For example, myoglobins of different species must fold into similar three-

dimensional structures to fulfill their similar function. Therefore, the relative probability 

of mutations that are deleterious can be expected to be identical for the two orthologous 

genes. In the case of orthologous genes with well-established functions, the great 

majority of nonsynonymous substitutions will be deleterious. Under these assumptions, 

the functional effect of a nonsynonymous substitution can be predicted from the pattern 

of amino acids observed in a multiple sequence alignment of orthologous protein 

sequences. The statistical probability of a nonsynonymous substitution causing a genetic 

disease in the overall disease increases monotonically with an increase in the degree of 

evolutionary conservation of the mutation site [13, 14]. Besides the nonsynonymous 

substitutions at evolutionarily conserved sites of a multiple sequence alignment, the three 

following considerations are essential for predicting deleterious nsSNPs: 

 



International Journal of Bio-Science and Bio-Technology 

Vol.7, No.6 (2015) 

 

 

Copyright ⓒ 2015 SERSC  289 

 Sequence conservation is not a predictor of deleteriousness; instead, conservation in 

excess of neutral expectations is used to infer constraint. 

 The phylogenetic scope [15-17] 

 Many protein sequence-based methods also exploit biochemical data, including amino 

acid properties (such as charge, solvent accessibility), sequence information (such as 

the presence of a binding site), and secondary structural information. The integration 

of these data with comparative sequence analysis can significantly improve 

predictions of deleteriousness [18-21]. 

 

Table 1. Computational Methods for Prediction of Deleterious 
Nonsynonymous Variants 

Name Description URL 

Align-GVGD 

Phylogenetic method using 

phyisco-chemical amino acid 

properties  

 http://agvgd.iarc.fr/agvgd_input.php 

LRT  
Phylogenetic method using 

estimated evolutionary rate  
No server 

 MAPP  

Phylogenetic method using 

patterns of physico-chemical 

properties of amino acid 

substitutions  

 

http://mendel.stanford.edu/sidowlab/d

ownloads/MAPP/index.html  

PMut  

Phylogenetic and structural 

features combined with machine 

learning  

 http://mmb2.pcb.ub.es:8080/PMut/  

 PolyPhen-2  

Phylogenetic and structural 

features combined with machine 

learning  

  

http://genetics.bwh.harvard.edu/pph2  

SIFT  

Phylogenetic method using 

patterns of amino acid 

substitutions  

http://sift.jcvi.org/  

SNAP 

Phylogenetic and structural 

features combined with machine 

learning  

 

http://cubic.bioc.columbia.edu/service

s/SNAP/ 

MutationTaster 

Phylogenetic and 

biochemical/structural features 

combined with machine learning  

http://www.mutationtaster.org/ 

 

With these considerations, the typical method for predicting deleterious nsSNPs is as 

follows [22] (Figure 1). The first step is to choose appropriate homologous sequences and 

conduct a multiple sequence alignment. The choice of sequences is critical because very 

shallow alignments are uninformative, whereas deep alignments may include very distant 

sequences that will cause misleading predictions. Therefore, the most straightforward 

method of constructing an alignment would be to include only orthologous sequences; 

however, most existing methods also include paralogs [15]. This may be justified because 

the majority of damaging mutations affect the stability of the protein structure, which is 
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expected to be highly similar among paralogs. Limiting the analysis to orthologs would 

frequently result in shallow alignments given current methods of prediction. However, 

this may be resolved as a result of many new sequencing projects, and the development 

of new methods that could allow for the choice to limit the analysis to orthologs among 

closely related species only if sufficiently diverse and informative alignments can be 

generated [15-17]. The second step is to evaluate how well an allelic variant fits the 

amino acid pattern observed in the phylogeny. Existing methods for this purpose use 

positional conservation measures, probabilistic scoring functions, or both. MAPP [23] 

and Align-GVGD [24, 25] use a different approach based on the conservation of the 

physico-chemical properties of amino acids. Phylogenetic relationships among sequences 

are taken into account using sequence weights (SIFT, PMut, MAPP) [26, 27, 23], a pre-

computed species tree (LRT) [28], or other heuristic algorithms such as PSIC (PolyPhen-

2 and SNAP) [29, 30]. 

 

3. Structural and Functional Constraints in Deleterious nsSNPs 

Most of the phylogeny-based methods for the prediction of nsSNPs also exploit the 

structural and functional constraints in protein evolution arising from the stability of the 

folding state, retaining essential conformational flexibility that mediates the protein’s 

functions in the cell, and the need to avoid opportunistic interactions and the 

accumulation of amyloid fibrils formed from misfolded proteins. Missense mutations 

result in the loss of stability of the folding state and the native functions of the protein, 

and thus may cause genetic diseases. Hydrophobic interactions in the highly 

evolutionarily conserved solvent-inaccessible regions are crucial for maintaining the 

overall structural stability of a protein. Thus, introducing a charged residue into the 

protein’s interior generally affects the entropy of the system due to the resulting change 

in solvent accessibility. This destabilizes the protein, resulting in a misfolded protein 

structure [31, 32]. Although the hydrophobic interactions in the buried non-polar regions 

are a major constraint in protein evolution, it is important to consider the average effect 

of both solvent accessibility and the type of secondary structure formed by hydrogen-

bond interactions. The buried and hydrogen-bonded polar side may be relatively more 

conserved in the course of protein evolution than the buried and non-polar side that does 

not form any hydrogen bonds. This is because a buried polar residue that is satisfied in 

terms of side-chain hydrogen bonding stabilizes the protein structure, and hydrogen 

bonding further helps to increase the packing density in the protein’s interior [33]. 

Therefore, the structural constraints on protein evolution could be evaluated based on the 

integrity of the effects arising from hydrophobic interactions, hydrogen bonding 

interactions, and other factors (such as electrostatic interactions) [23, 31, 32, 34]. 

The various functional constraints in protein evolution mainly result from 

interactions with other molecules such as substrates, ligands, nucleic acids, and 

other proteins; these are often components of interaction networks that are 

conserved throughout evolution [31,34]. Several masking models that exclude 

functional residues from multiple sequence alignment have been developed using 

various combinations of functional residues, and were compared with a non-

masking model including functional residues in the calculation of substitution 

probabilities. The average probability of amino acid conservation for the non-

masking model was reported to be ~1.36% higher than that of the masking model, 

although the difference was less distinct when the enzymes’  active sites were 

omitted from masking [35]. Overall, this demonstrates that functional residues are 

under greater pressure to be conserved throughout evolution when they are crucial 

to the activity of proteins and to the interaction with partner molecules [31]. 
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Figure 1. Typical Workflow for Prediction of Deleterious Non-
synonymous Variants 

4. Realizing the Identification of Disease-Causal Variants by Using 

Bioinformatics Tools 

There is a need for integrated workflow combining the heterogeneous output data of 

bioinformatics tools in realizing the identification of disease-causal variants from the 

given input genome. Several bioinformatically-capable workflow management systems 

(WMSs) have been developed for allowing clinicians or researchers to construct complex 

workflows orchestrating heterogeneous output data of bioinformatics tools and to 

automate the execution of the workflows [36-39]. There are mainly required 

considerations to effectively implement a bioinformatically-capable WMS as follows: 

 

 There are many bioinformatics tools and databases literally developed by 

geographically distributed organizations, research institutes, or related industries 

across the world. Some make their tools web accessible; some provide command line 

based standalone programs or software libraries. Standardization and extensible 

integration of distributed tools is necessary for providing seamless access to them. 

 Bioinformatics tools are highly heterogeneous in their input/output data types. These 

heterogeneity leads to be difficult to make links among tool tasks according to data 

flow. A WMS should provide flexible integration methods to resolve data type 

heterogeneity. 

 Workflow scalability is important to help in large-scale data analysis like NGS data 

analysis, protein interaction network analysis, and docking simulation through high 

performance computing resources, e.g., running a large number of parallel jobs on a 



International Journal of Bio-Science and Bio-Technology 

Vol.7, No.6 (2015) 

 

 

292  Copyright ⓒ 2015 SERSC 

cluster computer. However, most research groups seem to be impossible to maintain 

such computing resources due to the high cost of computer hardware and the lack of 

professional human resources to manage and utilize them. 

 Reproducibility of scientific analyses and processes is at the core of the scientific 

method, in that it enables researchers to evaluate the validity of each other‟s 

hypothesis and to repeat techniques and analysis methods to obtain scientifically 

similar results. In order to support reproducibility, WMS should capture and generate 

provenance information as a critical part of the workflow-generated data. Provenance 

information can be referred as a historical metadata that provides explanations on how 

a particular intermediate result data has been generated from the given input data 

 

In order to meet these requirements, a bioinformatically-capable WMS called Bioworks 

has been developed as presented in our previous work [40, 41].  Bioworks is 

implemented in Java, and based on client/server system architecture as shown in Figure 

2). The Bioworks client program provides the user-friendly graphical user interface 

(GUI) which enables users to easily compose workflows for complex bioinformatics 

analysis. Workflows are executed at the server side on high-performance cluster 

computing resources. Users can monitor the status of workflow execution through the 

client program anywhere, anytime. Especially, by adopting Java Web Start technology, it 

can be automatically installed and upgraded via web. Figure 2 shows the implementation 

of identifying disease-causal variants from the given input genome data by using 

Bioworks. 

 

5. Conclusions 

Nonsynonymous mutations in protein-coding regions result in drastic phenotypic 

consequences by altering the structure and function of proteins, leading to both 

Mendelian and common complex diseases. Several computational methods have been 

developed to estimate the functional effect of human nsSNPs, as shown in Table 1. These 

methods presume that most deleterious nsSNPs break down the evolutionary and 

structural constraints that govern the functions of native proteins. The typical workflow 

for these methods consists mainly of constructing a multiple sequence alignment from 

appropriate homologous sequences and estimating how strongly the nsSNPs break the 

evolutionary and structural constraints that mediate protein functions. There are essential 

considerations in the workflow, including sequence conservation as an evolutionary 

constraint, the phylogenetic scope, and the integration of structural and physico-chemical 

information with comparative sequence analysis. The structural and functional 

constraints in protein evolution can result from the integrative effects of hydrophobic 

interactions, hydrogen-bonding interactions, and interactions with other molecules such 

as substrates, ligands, nucleic acids, and other proteins. 
In this review, we focused on computational methods for predicting deleterious 

variants in only protein-coding regions. However, the development of high-throughput 

DNA sequencing technologies now makes it feasible to identify whole maps of genetic 

variants in both the protein-coding and noncoding regions of individual human genomes. 

Indeed, current available tools allow for the identification of deleterious variants in both 

protein-coding and noncoding regions (for example, MutationTaster [42], VAAST [43], 

and CADD [44]). Bioinformatically-capable WMSs, such as Bioworks enable clinicians 

or researchers to realizing the identification of disease-causal variants from the given 

input genome data by allowing to construct workflows orchestrating heterogeneous 

output data of bioinformatics tools and to automate the execution of the workflows. We 

anticipate that this bioinformatics research area at the interface of molecular evolution, 

structural biology, and human genetics will increase in importance in the forthcoming 

personal genomics era. 
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Figure 2. Client/Server System Architecture of Bioworks 
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Figure 3. Implementation of Identifying Disease-causal Variants by using 
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