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Abstract: Transforming the unstructured textual information contained in 
various social media streams into useful business knowledge is an extremely 
difficult computational task, mainly, due to the underlying hard pattern 
classification problem of sentiment analysis, especially within the context of 
the Greek language. In this paper, we address the pattern classification problem 
of sentiment analysis through the utilisation of support vector machines 
(SVMs). In particular, we conducted an extensive experimental comparison 
where we tested the aforementioned classifier against a set of state-of-the-art 
machine learning classifiers on a benchmark dataset originating from the Greek 
bank sector by collecting data from the streaming API of Twitter that were 
explicitly referring to the major banks of Greece. Our results present 
classification accuracy and execution time metrics for each classifier, revealing 
the superiority of the SVM learning paradigm in assigning patterns to the 
correct sentiment class. 

Keywords: sentiment analysis; support vector machines; SVMs; classification; 
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1 Introduction 

The popularity and increased usage of online social networks (e.g., Twitter, LinkedIn, 
Facebook, Instagram, and many others) has generated an unprecedented wealth of 
content that may be leveraged for social media analysis. Social media analytics (SMA) 
may be defined as the application of data mining and associated information retrieval 
techniques to extract patterns of enacted knowledge from complex sets of relationships 
between members of social systems – such as online social networks and microblogging 
applications. From a business perspective, social media data represent a rich information 
source to capture public sentiment and analyse it for actionable decision making in 
several application contexts as marketing (Cambria et al., 2012), politics (Hong and 
Nadler, 2012), finance (Bollen and Mao, 2011), and civil security (Cheong and Lee, 
2011). Recently, scholars advocated that social media metrics may yield better prediction 
of corporate performance than conventional metrics (Luo et al., 2013). 

Sentiment analysis is an important research field of SMA, which concentrates on 
detecting the emotional or opinionated polarity of online social media text segments, 
commonly referred to as social sentiment. Extant research has focused on perfecting the 
prediction accuracy of social sentiment by developing approaches based on machine 
learning algorithms or dictionary-based sentiment classification (Thelwall et al., 2011; 
Paltoglou and Thelwall, 2012). Interestingly, although academic scholars and 
practitioners may select from a plethora of tools to capture social sentiment, the domain 
of explaining what influences the formulation of a given social sentiment state remains 
largely understudied. 

This paper addresses the extremely hard pattern classification task that underlies the 
problem of sentiment classification through the utilisation of the machine learning 
paradigm of support vector machines (SVMs). Their classification superiority is 
demonstrated through the utilisation of an extensive experimentation session were their 
classification accuracy is tested against a benchmark set of state-of-the-art classifiers. Our 
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results provide significant insights that justify the efficiency of the SVM classifier in 
addressing the extremely sparse and imbalanced problem of sentiment analysis. 

The structure of the paper is as follows: Section 2 reviews the relevant literature of 
sentiment analysis while Sections 3 and 4 summarise the data collection and corpus 
vectorisation procedures. Section 5 discusses the problem of sentiment analysis within 
the context of pattern classification emphasising on its extremely sparse and imbalanced 
nature. Section 6 inspects the fundamental notions behind the machine learning 
paradigms of SVMs and Section 7 provides an extensive presentation of the acquired 
comparative classification results. Finally, Section 8 concludes the paper and highlights 
avenues of future research. 

2 Literature review 

Performing sentiment analysis and opinion mining through Twitter is an area that has 
drawn the interest of many researchers. The challenge to accurately predict social mood 
based on text mined from Twitter, still remains a big challenge and is currently being 
explored in various market and academic segments. O’Connor et al. (2010) connected 
measures of public opinion measured from polls with sentiment measured from text and 
found that opinions measured from polls correlate to sentiment word frequencies in 
contemporaneous Twitter messages. The study concludes with the potential of the use of 
text streams as a substitute and supplement for traditional polling. Jansen et al. (2009) 
investigated the overall structure of micro-blog postings, types of expressions, and 
sentiment fluctuations discussing the implications for organisations in using  
micro-blogging as part of their overall marketing strategy and branding campaigns. 
Mishne and Glance (2006) in their study, show that, in the domain of movies, there is 
good correlation between references to movies in weblog posts – both before and after 
their release – and the movies’ financial success. Furthermore, they demonstrate that 
shallow usage of sentiment analysis in weblogs can improve this correlation. Tumasjan  
et al. (2010) used the context of the German federal election to investigate whether 
Twitter is used as a forum for political deliberation and whether online messages on 
Twitter validly mirror offline political sentiment. In more detail, the study found that the 
mere number of messages reflects the election result and even comes close to traditional 
election polls. Bollen et al. (2011) argue that Twitter mood predicts the stock market. In 
their study, they conclude that changes in public mood state can indeed be tracked from 
the content of large-scale Twitter feeds, by means of rather simple text processing 
techniques and that such change responds to a variety of socio-cultural drivers in a highly 
differentiated manner, which in turn is correlated or even predictive of DJIA values. 

Sentiment analysis of online text content is now in a mature state and a big part of 
market business analytics software such as Radian6 or IBM Cognos Consumer Insight. 
L.A. Times, IBM and the University of Southern California Annenberg Innovation Lab 
(L.A. Times et al., http://graphics.latimes.com/sentimeter/) have used sentiment analysis 
in twitter feeds to predict the Oscars, in the 2012 ceremony. IBM along with  
USC Annenberg Innovation Lab (SuperBowl, http://asmarterplanet.com/blog/2012/02/ 
superbowl-analysis-takes-us-beyond-the-tweets.html) performed sentiment analysis on 
Super Bowl XLVI analysing fan sentiment across 600,000 tweets to determine which 
players and teams have the most support. Although research in the field of sentiment 
analytics includes many studies that estimate the polarity of social sentiment with a 
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variety of approaches (e.g., based on machine learning algorithms or lexicon 
classification methods) there is limited knowledge regarding the causes leading to a 
particular social sentiment state. Indeed, social sentiment may be viewed as a  
multi-dimensional phenomenon; collective opinions on key discussion topics may 
positively or negatively influence the polarity of social sentiment. This explanatory 
investigation of social sentiment may yield critical insights for the performance of the 
object under study. Social media data analysts would know the decomposing factors of 
social sentiment in the form of semantically defined properties. Our study adopts this 
investigation perspective and aims at developing a framework that explains the causes of 
social sentiment rather than simply capturing it. The following section highlights the 
activities we undertook to develop and empirically assess the proposed framework. 

3 Data collection 

We randomly collected and analysed a set of over 9,000 tweets during the time period 
between 2013 and 2015, by utilising the streaming API of Twitter. The data collection 
process was focused on gathering tweets that were explicitly referring to the four leading 
banks of Greece, namely National Bank of Greece (NBG), Alpha Bank, Piraeus Bank and 
Eurobank. This task was accomplished by parsing the official streaming API of Twitter 
through keyword filtering on the terms ‘National Bank’, ‘NBG’, ‘Alpha Bank’, ‘Piraeus 
Bank’ and ‘Eurobank’. The resulting dataset was subsequently submitted to a series of 
data clearing and pre-processing operations. The data preparation process, in particular, 
involved text tokenisation into words, elimination of Greek stop-words and words with 
less than three characters, and stem extraction from each word. Therefore, the final 
version of our corpus was formed by a collection of 9,552 purified documents where each 
document contained the text from a single tweet. The number of documents pertaining to 
the class of positive sentiment was 3,132 while the number of documents pertaining to 
the negative class of sentiment was 6,460. Sentiment class labels were manually obtained 
by assigning each document with the majority label of polarity provided by a group of 
post-graduate students. Each student, in particular, undertook the task to associate each 
document with a distinct sentiment category according to his/hers individual opinion. 
Therefore, majority voting was utilised in order to eliminate personal biases. 

4 Corpus vectorisation 

A fundamental prerequisite in order to perform sentiment analysis through the 
exploitation of any machine learning algorithm is to obtain a mathematical representation 
of the corpus, so that each document can be treated as a point in a multi-dimensional 
vector space. A natural approach towards this end was the employment of the standard 
vector space model (VSM) for our corpus, which was originally introduced by Salton  
et al. (1975). The main idea behind VSM is to transform each document d into a vector 
containing only the words that belong to the document and their frequency by utilising 
the so called ‘bag of words’ representation. According to VSM, each document is 
represented exclusively by the words it contains by tokenising sentences into elementary 
term (word) elements losing the associated punctuation, order and grammar information. 
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The underlying mathematical abstraction imposed by VSM entails a mapping which 
transforms the original purified document to its corresponding bag of terms 
representation. This transformation can be formulated by the following equation: 

( ) ( )1: ( ) , , ..., , M
Mφ d φ d tf t d tf t d⎡ ⎤→ = ∈⎣ ⎦ R  (1) 

where tf(ti, dj) is the normalised frequency of term ti in document dj given by the 
following equation: 

( ) ( )
( ){ }

,
,

max , :
i j

i j
j j

f t d
tf t d

f t d t d
=

∈
 (2) 

given that f(ti, dj) is the absolute frequency term ti in document dj. 
Based on the adopted mathematical formulation for the fundamental notions of 

corpus and dictionary, such that a corpus D of n documents and a dictionary T of M terms 
may be represented according to equations (3) and (4). 

{ }1, ..., nD d d=  (3) 

and 

{ }1, ..., MT t t=  (4) 

Having in mind, equation (1) and the formal definitions for the notions of corpus and 
dictionary, the mathematical representation for corpus in the context of VSM can be done 
through the utilisation of the document-term matrix given by the following equation: 

( ) ( )

( ) ( )

1 1 1

1

, ,

, ,

M

n M n

tf t d tf t d
D

tf t d tf t d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

where N is typically, quite large resulting in a sparse VSM representation such that a few 
matrix entries are non-zero. In our approach, in order to mitigate the effect relating to the 
compete loss of context information around a term, we incorporated the term-frequency 
inverse document frequency (TF-IDF) weighting scheme according to which each term ti 
is assigned a weight of the form: 

( )
{ }

| |, log
:

i i
i

Dw idf t D
d D t d

= =
∈ ∈

 (6) 

so that the relative importance of each term for the given corpus is taken into 
consideration. 

5 Sentiment analysis as a pattern classification problem 

Sentiment analysis may be regarded as the computational study of opinions, sentiments, 
subjectivity, evaluations, attitudes, appraisal, affects, views and emotions that are 
exclusively expressed in textual form. In the context of machine learning, however, 
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sentiment analysis constitutes an extremely hard pattern classification task which in turn 
can be formally defined as the problem of estimating a mapping of the following form: 

:F D C→  (7) 

where C = {Cpos, Cneg}, Cpos such that Cpos indicates the class of positive sentiment and 
Cneg indicates the class of negative sentiment. Having in mind that the original 
unstructured textual information contained in a given corpus D will be mapped onto an 
M-dimensional vector space according to VSM, equation (7) could be rewritten in the 
following form: 

: MF C→R  (8) 

Letting I = {1, ∙∙∙, n} be set of indices that span the purified collection D of documents 
that pertain to our dataset, the subsets of tweets that are associated with positive and 
negative sentiment evaluations may be designated as Ipos and Ineg, respectively such that: 

pos negI I I∪ =  (9) 

and 

pos negI I∩ = ∅  (10) 

In this setting, the ideal functionality provided by the discrimination function defined in 
equation (8) can be reduced to the following operations: 

( )( ),pos i posi I F φ d C∀ ∈ =  (11.1) 

( )( ),neg i negi I F φ d C∀ ∈ =  (11.2) 

Figure 1 Three-dimensional corpus representation (see online version for colours) 
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Figure 1 presents a three-dimensional representation of our dataset where the green dots 
correspond to the positive class patters while the red dots correspond to the negative class 
patterns. The original dimensionality of our corpus was significantly larger, however, 
since the number of (TF-IDF)-based feature was experimentally selected to be M = 400. 
Therefore, acquiring a three-dimensional representation of our dataset could only be 
possible through the utilisation of a dimensionality reduction technique such as principal 
components analysis. The resulting spatial distribution of the sampled tweets which is 
illustrated in Figure 1 justifies the severe complexity of the underlying pattern 
classification problem as well as the highly nonlinear nature of the mapping F that is to 
be estimated. 

The severity of the pattern classification problem that underlies the task of sentiment 
analysis, however, relates to the extreme degree of sparsity which is associated  
with the (TF-IDF)-based representation of our corpus. In order to estimate the overall 
sparsity ratio of the dataset along with the partial sparsity ratio values associated  
with each distinct class of patterns we need to adapt the following formulation.  
Having in mind that n m×Φ∈R  is the matrix storing the particular (TF-IDF)-based feature 
values for each document in the given corpus, we may consider its column-wise 
expansion as: 

[ ]1, , , ,j nΦ = Φ Φ Φ  (12) 

where 1[ , , ] ,T n
j j njφ φΦ = ∈R  ∀j ∈ [M]. The sparsity ratio (0 ≤ λj ≤ 1) associated with 

the term tj ∈ T may then be defined as: 

( )sup
, [ ]

j
jλ j M

n
Φ

= ∀ ∈  (13) 

having in mind that sup(Φj) corresponds to the support of the jth textual feature according 
to following equation: 

( ) { }: 0j ijsip i I φΦ = ∈ ≠  (14) 

Thus, the overall sparsity ratio for the complete set of terms T and therefore for the whole 
dataset stored in matrix Φ will be given by the following equation: 

( )
[ ] [ ]

0

sup j jj M j M
λ

λ
nM M

∈ ∈
Φ

= =
∑ ∑

 (15) 

The stem plot appearing in Figure 2 illustrates the sparsity ratio per term tj ∈ T where the 
red line parallel to the x-axis depicts the overall sparsity ratio which was estimated to be 
λ0 = 0.0149. It is clearly evident that the majority of the derived textual features are 
associated with sparsity ratios that are close to zero. This fact is indicative of the 
complexity of the discrimination function that has to be learned given that the available 
training instances lie in a high dimensional and extremely sparse vector space. 
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Figure 2 Sparsity ratio per feature (see online version for colours) 

 

Additional insights concerning the critical role of sparsity when faced with the pattern 
classification task associated with sentiment analysis could be derived by measuring the 
partial sparsity ratio per textual feature tj ∈ T over the acquired corpus D. Such a 
measurement may be conducted by imposing a slight modification on equations (11.1) 
and (11.2) so that the relative computation of the support is constrained within each 
distinct sentiment category as designated by the following set of equations: 

{ }: 0pos
pos ijjS i I φ= ∈ ≠  (16.1) 

{ }: 0neg
neg ijjS i I φ= ∈ ≠  (16.2) 

Equations (16.1) and (16.2) may be subsequently utilised in order to derive the exact 
formulation for the partial sparsity ratio per term as follows: 

, [ ]
pos
jpos

j
pos

S
λ j M

I
= ∀ ∈  (17.1) 

, [ ]
neg
jneg

j
neg

S
λ j M

I
= ∀ ∈  (17.2) 

Therefore, the overall sparsity ratio per sentiment class can be easily estimated as: 

[ ]
0

pos
jj Mpos

pos

S
λ

I M
∈=

∑
 (18.1) 

[ ]
0

neg
jj Mneg

neg

S
λ

I M
∈=

∑
 (18.2) 
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The stem plots presented in Figures 3 and 4 depict the partial sparsity values for the 
positive and the negative class respectively. The red lines parallel to the x-axis 
correspond to the overall sparsity ratios for each class and they are associated with the 
particular values 0 0.0130posλ =  and 0 0.0158.negλ =  Once again, only a insignificant 
fraction of textual features are assigned partial sparsity ratios that considerably exceed 
zero. This is indicative of the fact that the majority of the extracted textual features 
cannot be associated with a particular sentiment class rendering the problem of sentiment 
classification as extremely hard. 

Figure 3 Positive sentiment sparsity ratio per feature (see online version for colours) 

 

Figure 4 Negative sentiment sparsity ratio per feature (see online version for colours) 
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6 Support vector machines 

Sentiment analysis was conducted through the utilisation of a state-of-the-art classifier, 
namely SVMs. SVMs are nonlinear classifiers that were initially formulated by Vapnik 
(1995), operating in higher-dimensional vector spaces than the original feature space of 
the given dataset. Letting 1{( , ) { 1, 1},n

iS x y= ∈ × − +R  ∀i ∈ [m]} be the set of m training 
patterns with associated binary labels, such that –1 denotes the class of negative 
sentiment and +1 the class of positive sentiment, the learning phase of the SVMs 
involved solving the following quadratic optimisation problem: 

2

, ,
1

1min
2

m

i
w ξ b

i

w C ξ
=

+ ∑  (19.1) 

( )1s.t. , 1 , [ ]i iy w x b ξ i m+ ≥ − ∀ ∈  (19.2) 

and 

0, [ ]iξ i m≥ ∀ ∈  (19.3) 

Equations (19.1), (19.2) and (19.3) define the primal optimisation problem whose 
corresponding dual gives rise to a discrimination function of the form: 

( ) * *
1,

m

i i
i SV

g x y x x b
∈

= +∑α  (20) 

where *{ , [ ]}i i m∈α  and b* denote the optimal solutions for the corresponding 
optimisation variables and SV is the subset of training patterns associated with positive 
Lagrange multipliers. Given that the training patterns appear only in dot product terms of 
the form 1, ,x x〈 〉  a positive definite kernel function such as ( , ) ( ) ( )K u v u f v= Φ  can be 
employed in order to implicitly map the input feature space into a higher-dimensional 
vector space and compute the dot product. In this paper, we utilised the Gaussian kernel 
function defined by the following equation: 

( ) ( )2, expK u v γ u v= − −  (21) 

7 Experimental results 

In order to demonstrate the validity of the SVM algorithm for the sentiment classification 
problem, we adopted the standard ten-fold cross-validation process on a set of  
9,552 previously labelled Tweets and measured the corresponding training and testing 
sentiment classification accuracy. Each fold involved splitting the complete set of  
pre-labelled samples into a 90% training data – 10% testing data ratio, where the fist 
subset of data instances was utilised to build the classifier and the latter for assessing its 
ability to infer the sentiment polarity of unseen data patterns. 
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To justify the superiority of SVMs in order to address the problem of sentiment 
classification we measured its classification accuracy against a series of state-of-the-art 
classifiers which is presented in the following list: 

• linear SVMs 

• radial basis function neural networks (RBFNs) 

• random forests 

• multi-layer neural networks (MLPs) 

• Bayesian networks 

• naïve Bayes 

• classification via clustering. 

It has to be mentioned that the linear SVM classifier implements a different kernel 
function than the Gaussian one defined in equation (21) which is given by the inner 
product of the corresponding input vectors according to the following equation: 

( ), ,K u v u v=  (22) 

RBFN classifier is parameterised by the number of clusters to be estimated which was set 
equal to the number of sentiment classes pertaining to our dataset. The number of clusters 
to be estimated was also set to 2 for the classification via clustering approach since the 
natural number of clusters should coincide with the number of distinct categories of 
patterns in the dataset. Accordingly, random Forrest classifier is parameterised by the 
number of trees to be estimated which was allowed to vary in the discrete range {10, 15}. 
The structure of the MLP classifier is parameterised by the number of hidden layers that 
was experimentally set to vary in the discrete range {1, 3, 5}. 
Table 1 Overall classification accuracy per classifier 

Classifier Correct (%) 
classification rate 

Incorrect (%) 
classification rate 

SVM RBF 91.7118 8.2882 
Random Forrest (trees number = 15) 91.1906 8.8094 
Random Forrest (trees number = 10) 91.055 8.945 
Multi-layer network (hidden layers = 5) 90.0855 9.9145 
Multi-layer network (hidden layers = 3) 89.7519 10.2481 
Multi-layer network (hidden layers = 1) 89.1993 10.8007 
SVM linear 88.2923 11.7077 
Bayesian network 83.5905 16.4095 
RBF network 79.5246 20.4754 
Naïve Bayes 65.6902 34.3098 
Classification via clustering 64.9708 34.9562 

Table 1 presents a comparative evaluation of the classification accuracy for each of the 
utilised machine learning paradigms by averaging the acquired correct and incorrect 
classification percentages over all folds. SVM classifier with RBF kernel exhibits the 
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highest classification accuracy by obtaining a correct classification rate of over 91.7%. 
Comparable classification results were achieved by the random Forrest classifier which 
exceeded the 91% of accuracy for both number of trees. The machine learning paradigm 
of multi-layer networks occupies the third ranking position in decreasing order of correct 
classification accuracy by approaching a value that is marginally greater than 90%. 
Table 2 Positive sentiment classification accuracy per classifier 

Classifier Precision Recall 
SVM RBF 0.901 0.838 
Random Forrest (trees number = 15) 0.884 0.841 
Random Forrest (trees number = 10) 0.87 0.853 
Multi-layer network (hidden layers = 5) 0.855 0.839 
Multi-layer network (hidden layers = 3) 0.848 0.836 
Multi-layer network (hidden layers = 1) 0.843 0.823 
SVM linear 0.862 0.764 
Bayesian network 0.708 0.847 
RBF network 0.634 0.882 
Naïve Bayes 0.486 0.906 
Classification via clustering 0.399 0.139 

Note: Precision/recall: metrics 

The linear SVM classifier despite its simplicity dominates the machine learning 
approaches provided by the Bayesian network, the RBF network, naïve Bayes and 
classification via clustering by ranking in the fourth position. Bayesian network is the 
fifth classifier that exceeds the correct classification rate boundary of 80% with RBF 
network, naïve Bayes and classification via clustering occupying the sixth, seventh and 
eighth positions, respectively. 

An issue worth discussing relates to the imbalanced nature of the acquired dataset. 
That is, the majority of the available training patterns pertain to the negative sentiment 
category with the ratio R of positive to negative training instances be given as: 

0.4848pos

neg

I
R

I
= =  (23) 

This entails that the a priori probability of a document to convey a negative sentiment is 
at least twice as much as the corresponding probability of expressing a positive 
sentiment. This fact could in principle obscure the correct interpretation of the obtained 
classification results since a trivial majority classifier that would completely ignore the 
positive class of patterns could achieve a minimum correct classification accuracy given 
by the following equation: 

min 0.6763negI
P

n
= =  (24) 

Therefore, it is possible for a classifier to score a 67.63% of correct classification rate but 
at the same time being totally ignorant of the presence of positive patterns in the dataset. 
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Table 3 Negative sentiment classification accuracy per classifier 

Classifier Precision Recall 

SVM RBF 0.924 0.955 
Random Forrest (trees number = 15) 0.925 0.946 
Random Forrest (trees number = 10) 0.93 0.938 
Multi-layer network (hidden layers = 5) 0.923 0.931 
Multi-layer network (hidden layers = 3) 0.921 0.927 
Multi-layer network (hidden layers = 1) 0.915 0.926 
SVM linear 0.892 0.941 
Bayesian network 0.918 0.83 
RBF network 0.929 0.753 
Naïve Bayes 0.922 0.536 
Classification via clustering 0.682 0.898 

Note: Precision/recall: metrics 

Table 4 Positive sentiment classification accuracy per classifier 

Classifier F-measure ROC 

SVM RBF 0.869 0.897 
Random Forrest (trees number = 15) 0.862 0.967 
Random Forrest (trees number = 10) 0.862 0.962 
Multi-layer network (hidden layers = 5) 0.847 0.935 
Multi-layer network (hidden layers = 3) 0.842 0.93 
Multi-layer network (hidden layers = 1) 0.833 0.903 
SVM linear 0.81 0.852 
Bayesian network 0.771 0.919 
RBF network 0.738 0.842 
Naïve Bayes 0.633 0.732 
Classification via clustering 0.206 0.519 

Note: (F-measure/ROC: metrics 

According to the previous analysis, the bottom ranked classifiers, namely, naïve Bayes 
and classification via clustering could in fact be characterised as worse than majority 
classifiers since they achieve a worse classification accuracy than Pmin. Therefore, one 
should provide additional classification metrics such as precision and recall focusing on 
each distinct sentiment class. These particular classification measures for each sentiment 
class over the complete set of the utilised machine learning paradigms are summarised in 
Tables 3 and 4. It has to be mentioned that the presentation order reflects the initial 
ranking of the classifiers according to their overall accuracy scores. Surprisingly, there 
exists no classifier that completely ignores the minority class of positive sentiment. 
Moreover, our top ranked classifier, SVM with RBF kernel, is able to recognise both 
sentiment classes with an accuracy level that exceeds the 90% over all folds. Similar 
classification performance on both classes is also exhibited by the random Forrest. 
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Table 5 Negative sentiment classification accuracy per classifier 

Classifier F-measure ROC 
SVM RBF 0.955 0.939 
Random Forrest (trees number = 15) 0.935 0.967 
Random Forrest (trees number = 10) 0.934 0.962 
Multi-layer network (hidden layers = 5) 0.927 0.935 
Multi-layer network (hidden layers = 3) 0.924 0.93 
Multi-layer network (hidden layers = 1) 0.92 0.903 
SVM linear 0.915 0.852 
Bayesian network 0.872 0.919 
RBF network 0.832 0.842 
Naïve Bayes 0.678 0.85 
Classification via clustering 0.776 0.518 

Note: F-measure/ROC: metrics 

The effect of class imbalance becomes apparent for the machine learning paradigms that 
obtained the worst overall classification results, namely, Bayesian network, RBF 
networks and naïve Bayes. The classification accuracy for each one of the 
aforementioned classifiers on the majority (negative) class is over 90% while the 
corresponding correct classification percentage on the minority class is significantly 
lower. The ability of our top scored classifiers to cope with the imbalanced sentiment 
classification problem is also evident by taking into consideration the F-measure and 
ROC metrics which are summarised in Tables 4 and 5. 

Finally, besides reporting classification related metrics we also provide an execution 
time-based ranking of the utilised classifiers. Such an effort is critical in order to assess 
the trade-off between computational complexity and classification accuracy. The training 
time for each classifier is summarised in Table 6 according to which a positive 
correlation may be revealed between computational complexity and classification 
accuracy. 
Table 6 Execution time per classifier 

Classifier Training time (secs) 

SVM RBF 472.45 
Random Forrest (trees number = 15) 22.26 
Random Forrest (trees number = 10) 16.84 
Multi-layer network (hidden layers = 5) 426.02 
Multi-layer network (hidden layers = 3) 258.38 
Multi-layer network (hidden layers = 1) 160.88 
SVM LINEAR 63.46 
Bayesian network 2.85 
RBF network 22.73 
Naïve Bayes 1.27 
Classification via clustering 8.54 
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8 Conclusions and future work 

This paper addressed the extremely hard pattern classification task that underlies the 
problem of sentiment classification through the utilisation of the machine learning 
paradigm of SVMs. Their classification superiority was demonstrated through the 
utilisation of an extensive experimentation session were their classification accuracy was 
tested against a benchmark set of state-of-the-art classifiers. Our results justify the 
efficiency of the SVM classifier in addressing the extremely sparse and imbalanced 
problem of sentiment analysis. Specifically, SVMs acquired the highest overall 
classification accuracy in assigning patterns to the correct sentiment category. 
Comparable classification results were exhibited by random Forests and multi-layers 
networks. SVMs, however, were proved to be extremely successful in detecting patterns 
from both sentiment categories despite the fact that the majority of available patterns 
originated from the negative class. This particular behaviour was not common amongst 
the rest of the employed classification mechanisms which were significantly biased 
towards the majority sentiment class. In fact, lower overall classification accuracy was 
found to be positively correlated with a higher degree of bias towards the negative 
sentiment category. 

Future research will focus on the utilisation of alternative machine learning 
approaches such as the biologically inspired classification paradigm of artificial immune 
systems (AIS). AIS-based classification has been proven to be highly efficient in 
addressing classification tasks under sever imbalance conditions. Sentiment classification 
provides an ideal experimentation framework in order to extend the existing research that 
investigates the effects of the class imbalance problem on AIS-based classification 
mechanisms. This is true, since the vast majority of the publicly announced opinions over 
the various social media streams are biased towards the negative sentiment class. 
Moreover, the problem of sentiment analysis reduces to a hard text classification problem 
over extremely sparse datasets. AIS-based classification algorithms rely on sophisticated 
subspace sampling operations that aim to generate a minimal set of representative 
training patterns that reproduce the spatial distribution of the original dataset. Textual 
feature spaces, however, tend to be extremely sparse rendering the utilisation of  
AIS-based classifier as an open research problem. 
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