International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

Integrated Ontology for Agricultural Domain

Susan F. Ellakwa
Central Lab for Agricultural Expert
Systems (CLAES), ARC, Giza,

ABSTRACT

Ontologies provide a shared and common understanding
of a domain that can be communicated between people
and across application systems. An ontology for a certain
domain can be created from scratch or by merging
existing ontologies in the same domain. Establishing
ontology from scratch is hard and expensive. Multiple
ontologies of different systems for the same domain may
be dissimilar, thus, various parties with different
ontologies do not fully understand each other in spite of
these ontologies are for the same domain. To solve this
problem, it is necessary to integrate these ontologies.
Integrated ontology, should be consistent and has no
redundancy. This work presents a semi-automated
system for building an integrated ontology by matching
and merging existing ontologies. The proposed system
has been applied on the agricultural domain for Faba
Bean crop to get a dynamic integrated ontology, it can be
applied also on all crops whatever field crops or
horticulture crops. Source ontologies in the proposed
system have been implemented in XML language.
CommonKADS Methodology has been used in building
the target ontology. CommonKADS Methodology deals
with the following kinds of entities: Concepts, properties,
and values. The proposed system proposed a technique to
solve the matching and merging problems by using a
multi-matching technique to find the correspondences
between entities in the source ontologies and merging
technique which deals with concepts, properties, values
and hierarchical classifications. The outcome of the
proposed system is an integrated ontology in hierarchical
classification of the concepts’

Keywords

Artificial intelligence; knowledge representation; ontology;
matching; merging

1. INTRODUCTION

An Ontology is a formal, explicit specification of a shared
conceptualization [1]. There are several reasons for
developing ontology, first of all, sharing common
understanding of the structure of information among people or
software agents. The second reason is to enable reuse of
knowledge. The third reason is to make domain assumptions
explicit. Fourth reason is to separate domain knowledge from
the operational knowledge. Fifth reason is to analyze domain
knowledge. Sixth reason is to increase interoperability among
various domain of knowledge. Seventh reason is to enhance
scalability of new knowledge into the existing domain.

El-Sayed El-Azhary
Central Lab for
Agricultural Expert
Egypt Systems (CLAES),
ARC, Giza, Egypt

Passent El-Kafrawy
Mathematics and Computer Science
Department, Faculty of Science,Menoufia
University, Egypt

Finally, searching and reasoning a specific knowledge in a
domain knowledge.

The starting point for creating ontology could arise from
different situations. An ontology can be created from scratch;
from existing ontologies; from a corpus of information
sources; or a combination of the latter two approaches.
Multiple ontologies need to be accessed from different
systems; these ontologies are dissimilar for the same or
overlapping domains, thus, various parties with different
ontologies do not fully understand each other. To solve these
problems, it is necessary to use integrating ontologies.
Ontology integration aims to building ontologies from other
ontologies to get integrated ontology. Integrated ontology
should be consistent, coherent and has no redundancy
Establishing ontology from scratch is hard and expensive.
This work presents a semi-automated system for building
integrated ontology by matching and merging existing
ontologies. The proposed system has been applied on
agricultural domain to get a dynamic integrated ontology.
Dynamic means that: the integrated ontology can be modified
by adding, deleting, or editing some terms when needed. The
proposed system performs three iterations; each iteration
manipulates one type of entities. The first iteration
manipulates the concepts, while the second iteration handles
the properties, and the third iteration handles the values. In
each iteration, the system uses five matchers (exact method,
substring method, prefix method, suffix method, wordnet
method) sequentially to cover different kinds of alignments
(matching entities) and to make the integrated ontology
perfect and has no redundancy. The system uses thresholds in
substring, prefix, and suffix methods to reduce useless
correspondences and involves user to confirm alignments.

2. RELATED WORK

Several tools exist for ontology establishment, ranging from
fully manual to fully automated. Many of the semi-automated
ontology merging and matching tools are listed in this section.
PROMPT [2] begins with the linguistic-similarity matches for
the initial comparison, but generates a list of suggestions for
the user based on linguistic and structural knowledge and then
points the user to possible effects of these changes.
OntoMorph [3] provides a powerful rule language for
specifying mappings, and facilitates ontology merging and the
rapid generation of knowledge-base translators. It combines
two powerful mechanisms for knowledge-base
transformations such as syntactic rewriting and semantic
rewriting. Syntactic rewriting is done through pattern-
directed rewrite rules for sentence-level transformation based
on pattern matching.

46

International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

;
' 1

[]

ar
\A M,
M,

oz

Matcher 5
s

;
i

:

1 H
| h
H 1
| h
|

h H
h

h 1
i H
= |
i Matcher '
H N
i H
i 1
h 1
i H
i

H 1
H h
h

1 :
h 1
i 1
h

h 1
:

\J

Fig.1: Matching Process

Semantic rewriting is done through semantic models and
logical inference. A concept hierarchy management for
ontology alignment and merging is provided in Hierarchical
Concept Alignment system (HICAL) [4], where one concept
hierarchy is aligned with another concept in another concept
hierarchy. HICAL uses a machine-learning method for
aligning multiple concept hierarchies, and exploits the data
instances in the overlap between the two taxonomies to infer
mappings. It uses hierarchies for categorization and
syntactical information, not similarity between words, so that
it is capable of categorizing different words under the same
concept. Another system that employs machine learning
techniques to find ontology mappings is GLUE [5]. If given
two ontologies, for each concept in one of the ontologies,
GLUE finds the most similar concept in the other one. GLUE
works with several similarity measures that are defined with
probabilistic definitions. Multiple learning strategies exploit
different types of information from instances or taxonomy
structures. GLUE can also use common sense knowledge and
domain constraints instead of relaxation labeling. It is a well-
known constraint optimization technique adapted to work
efficiently. Quick Ontology Mapping (QOM) [6] is based on
the hypothesis that mapping algorithms can be streamlined so
that the loss of quality is marginal, but the improvement of
efficiency is tremendous for the ad-hoc mapping of large-size
light-weight ontologies. A generic ontology mapping system,
called LILY [7], is based on the extraction of semantic
subgraph. LILY exploits both linguistic and structural
information in semantic subgraphs to generate initial
alignments. After that, a subsequent similarity propagation
strategy is applied to produce more alignments if necessary.
Finally, LILY uses the classic image threshold selection
algorithm to automatically select the threshold, and then
extracts final results based on the stable marriage strategy.
LILY has different functions for different kinds of tasks: for
example, Generic Ontology Matching method (GOM) is used
for common matching tasks with small size ontologies; Large
scale Ontology Matching method (LOM) is used for matching
tasks with large size ontologies; and Semantic Ontology
Matching method (SOM) is used for discovering the semantic
relations between ontologies. The two limitations of LILY are
that it requests the user to manually set the size of subgraph

according to different mapping tasks and the efficiency of
semantic subgraph is very low in large-scale ontologies.
DKP-AOM [8] is a system that exploits linguistic, synonym
and axiomatic matching to find correspondences

between concepts. In addition, it employs test criterion for the
detection of semantic inconsistencies that originates when
concepts contradict according to their subsumption or
disjointness in local ontologies criterion. In this way, it detects
explication and conceptualization mismatches between
heterogeneous ontologies and promotes a larger pool of
knowledge and information to be integrated to facilitate new
reliable communication and reuse.

The RIMOM [9] system integrates multiple strategies, such as
edit distance, statistical learning, and three similarity
propagation-based strategies. Then, it applies a strategy
selection method in order to decide on which strategy it will
rely more. As a result, RIMOM combines the conducted
alignment. RiIMOM offers three possible structural
propagation strategies: concept-to-concept propagation
strategy (CCP), property-to-property propagation strategy
(PPP), and concept-to-property propagation strategy (CPP).
To choose between them, RiIMOM uses heuristic rules. For
example, if the structure similarity factor is lower than some
threshold, then RIMOM does not use the CCP and PPP
strategies, but uses CPP. The basic idea of CCP, PPP, and
CCP is to propagate the similarities of (concept pairs or
property pairs) across the concept/property hierarchy
structure. For instance, in CCP, similarities of concept pairs
are propagated across the concept hierarchy structure.

In [10] shows that recent studies on ontology merging show
that due to conceptualization and mismatches between local
ontologies, fully automatic merging is unattainable

oMap [11] deploys a number of matchers in order to find the
correspondences between entities of the input ontologies. The
matchers include a string similarity measure, learning
methods used on instance data, and a matcher that propagates
preliminary weights through the ontology constructors used in
the definitions of ontology entities. At the end, the results are
aggregated using a weighted average.

H-Match [12] takes OWL ontologies as its input. Internally,
these input ontologies are represented by graphs using the H-
model representation. Moreover, H-Match computes two
types of similarities: linguistic and contextual. These are then
combined using weighting schemas to yield a final measure,
called semantic similarity. In determining the contextual
similarity, H-match considers neighboring concepts, e.g.,
linked through the taxonomy of the actual concept

47

International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

oy o
|
| |
Select Conteptsl,_ @ { Determine Unmatched
| Enitities
‘L - -
Fol | Mlerge Hierarchical Classification | e
= o
Cwollect T
Properties =
= | Sl

!

Cuollect
Aalues

Fig.2: Merging Process

Our system consists of two techniques: matching and
merging, matching consists of five matchers, each matcher
manipulates kind of heterogeneity between two ontologies to
detect inconsistency. These matchers executes sequentially to
reduce redundancy and speed up system execution time, user
is involved to confirm mappings (correspondences) between
two ontologies and user can select concepts, properties and
values from correspondences. Threshold is involved to reduce
unmeaning mappings. Merging is fully automatic process. It
handles hierarchy classifications of two ontologies effectively
to get merged ontology with new hierarchy classification.

3. THE PROPOSED SYSTEM

This section presents a system for establishing dynamic
ontology from two or more existing ontologies in the same
domain. The end users of the system may be experts or
specialists in the domain. This system introduces matching
and merging technique, which uses a multi-level search to
find the correspondences between entities in the input
ontologies. An important feature of this technique is that it
uses several match methods sequentially and combines their
results. There are a large variety of languages for expressing
ontologies [13]. Fortunately, most of these languages share
the same kinds of entities, often with different names but
comparable interpretations. In the proposed system, source
ontologies have to be expressed in XML language. Ontology
language in the proposed system deals with Concepts,
properties, and values.

3.1 Matching Process

Fig. 1describes matching process. The matchers are the
building blocks on which the matching solution is built. Once
the similarities between ontology entities are available, the
alignment can be computed. Matching strategy is built by
organizing the combination matchers, aggregating the results
of matchers in order to compute the compound similarity
between entities, involving users in the system and extracting
the alignments from the resulting similarity.

Matcher composition is a global method to combine local
methods (or basic matchers) in order to define the matching
algorithm. A way of composing matchers in the proposed
system uses sequential composition. In sequential
composition, combination of matchers is more classically
used to improve an alignment. In the proposed system, it
consists of five matchers; each matcher extract additional
alignment without redundancy, the input of each matcher
depends on the output of the previous matcher. The inputs of
the system are two ontologies 01, 02 and initial alignment A.

Entities of source ontology are concepts C, properties P and
values V. The input of a matcher is the unmatched entities of
the last matcher. The matched entities are to be aggregated in
final alignment A'.

This cycle performs three times; first iteration for extracting
matched concepts, second iteration for extracting matched
properties of the matched concepts and third iteration for
extracting matched values of the matched properties. Each
iteration, all matchers are sequentially applied to entities. First
matcher (matcherl) based on exact string method, it searches
for identical terms, the output is M1 (similarity matrix).
Second matcher (matcher2) based on substring method. The
input of this matcher is the unmatched entities of previous
matcher, the output is M2.

M2 should be filtered according to a threshold, the threshold
should be determined by the system or the user, and then the
user discards the unaccepted correspondences. Third matcher
(matcher3) based on prefix method. The input of this matcher
is unmatched entities of previous matchers, the output is the
M3.

M3 should be filtered according to the pre-determined
threshold, and then the wuser discards the unaccepted
correspondences. Fourth matcher (matcher4) is based on
suffix method. The input of this matcher is unmatched entities
of previous matchers, the output is the M4. M4 should be
filtered according to the pre-determined threshold, and then
the user discards the unaccepted correspondences.

Fifth matcher (matcher5) based on WordNet method; it
searches for terms which have the same meaning. The input of
this matcher is unmatched entities of previous matchers, the
output is the M5. M5 can be filtered by the user. This matcher
uses tokenization method and Stopword elimination method.
The output of the five matchers in the first iteration is
matched concepts which aggregated in A (initial alignment) to
be the input of the second iteration. The output of matchers in
second iteration is the matched properties which aggregated in
A (initial alignment) to be the input of the third iteration. The
output of matchers in third iteration is matched values.
Matched concepts, Matched properties, Matched values are
aggregated in A'(final alignment).

3.2 Merging Process

Fig. 2 describes merging process, it consists of five
operations: Determine unmatched entities, Select concepts,
Merge hierarchical classification, Collect properties and
Collect values.

48

The input of this process is the two source ontologies 01, 02,
the alignment A’ (the output of the matching process), A (the
matched concepts). The output is the merged ontology.
Determine unmatched entities operation identifies unmatched
concepts C' and its properties P' and its values V'. Select
concepts operation selects a concept from its correspondence.
Merge hierarchical classification determines concept location
in the hierarchy structure. Collect properties determines
properties of the selected concept from its correspondence.
Collect values determines values of a property from its
correspondence. The output of the system is the merged
ontology of two source ontologies 01, 02.

4. MULTI-MATCHING and MERGING

AIGORITHM (MMMA)

This section presents MMMA (Multi-Matching and Merging
Algorithm) in detail which describe matching and merging
process in the proposed system.

Matching Algorithm consists of three parts: Matching
concepts (Fig. 3), Matching properties (Fig. 4), and Matching
values (Fig. 5).

Merging Algorithm consists of five parts: Select concepts
(Fig. 6), Collect properties (Fig. 7), Collect Values (fig 8),
Unmatched entities (Fig. 9), and Merge hierarchical
classification (Fig. 10))

Input Ontologies is 01, 02
LC1 is the List of concepts of ol [c1, ¢2... cn]
LC2 is the List of concepts of 02 [c1, c2... cm]
Number of Matchers = 5
A is the List of concept alignments
A=I]
L=n
W=m
Mat=0
Repeat
Mat = Mat + 1
1=0
Repeat
I=1+1
Select concept cl of LC1
J=0
K=0
Repeat
J=J+1
Select concept ¢J of LC2
IF match (cl, cJ)
THEN {A= [(cl, cJ)|A],
K=1,
W=W-1,
LC1 = SUBTRACT (LC1, cl),
LC2 = SUBTRACT (LC2, cJ)}
UntilJ=W OR K=1
Until I=LORW=0
Until mat=5
Fig.3: Matching Concepts

Al=A
A2=1]
Mat =0
Repeat
Mat=Mat+1
Repeat
Al =[H|Tail]
H=(C1,C2)
Get Pl of C1 /* Pl is the list of properties of c1 from o1*/
Get PJ of C2 /* PJ s the list of properties of c2 from 02*/
PJJ=PJ
Repeat
Pl = [HPI| T1]

International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

PJ=PJJ
Repeat
K=0
PJ=[HPJ|T2]
IF match (HPI, HPJ)
THEN {A2 = [[(c1, HPI), (c2, HPJ)] | A2],
PJJ = DIFFERENCE(PJJ, HPJ), K=K+ 1},
PI=[T2]
UntilK=10RPJ=[]

Pl =[T1]
Until PI=[]ORPI =[]
Al =[Tail]
Until A1 =]
Until mat=5
Get A2
Fig. 4: Matching Properties
A3=A2
Ad=[]
Mat=0
Repeat
Mat = Mat + 1
Repeat
A3 =[H | Tail]
H = [(C1, P1), (C2, P2)]
Get VI of P1 I* V1is the list of values of P1 */
Get VJ of P2 /* V] is the list of values of P2 */
Vi =V]
Repeat
VI =[HVI| T1],
V=V,
k=0
Repeat
VI=[HVI[T2]

IF match(HVI,HVJ)
THEN {A4 = [[(C1, PL, HVI), (C2, P2, HVJ)] | Ad],
VJJ = DIFFERENCE(VJJ, HVJ) k=1}

VI=[T2]
UNTIL VJ=[] OR k=1
VI=[T1]
UNTILV1=[]OR VI =[]
A3 = [Tail]
Until A3=1]
Until Mat=5
A'=A4

Fig.5: Matching Values

LC1=1[] I* selected concepts of 01 */
LC2=1[] /* selected concepts of 02 */
B=A
Repeat
B =[[(C1, P1, V1), (C2 ,P2, V2)]|Tail],
IF user select C1
THEN
IFCl¢ LC1
THEN LC1=][C1, LC1]
IF user select C2
THEN
IFC2¢ LC2
THEN LC2=][C2, LC2]
B = [Tail]
untilB=1[]

Fig.6: Select Concepts

49

LP1=1[] /* properties of selected concepts of 01 */
LP2=1] I* properties of selected concepts of 02 */
Repeat

LC1 = [CTail]

Get list of selected properties of C (LP) /*properties of C
selected by user */
LP1 = [(C, LP)|LP1],

LC1 = Tail,
Until LC1 =[]
Repeat

LC2 = [CJTail]

Get list of selected properties of C (LP) /*properties of C
selected by user */

LP2 = [(C, LP)|LP2],

LC2 = Tail,

Until LC2 =[]

International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

Fig.7: Collect Properties

LV1 =[] /* values of selected properties of selected concepts of
ol */
LV2 =[] /* values of selected properties of selected concepts of
02 */
Repeat
LP1 = [(C, [P|Tail1])[Tail2]
Repeat
LP1 = [(C, [P[Tail1])|Tail2]
Get list of selected values of P (LV)
[*values of P selected by user */
LV1=[(C, [(P, LV)|Tail3)]|LV1],
LP1 = [(C, [Tail1])|Tail2]
Until Taill =[]
LP1 = Tail2,
Until Tail2 =[]
Repeat
LP2 = [(C, [P|Tail1])[Tail2]
Repeat
LP2 = [(C, [P|Tail1])|Tail2]
Get list of selected values of P (LV)
[*values of P selected by user */
LV2 =[(C, [(P, LV)|Tail3)]|LV2],
LP2 = [(C, [Tail1])|Tail2]
Until Taill =[]
LP2 = Tail2,
Until Tail2 =[]

01, 02 are two source ontologies
Hierarchical Classification of concepts of o1 is HCol
Hierarchical Classification of concepts of 02 is HCo2
A is the alignment concepts of 01, 02 /* A is a list of matched
concepts */
HCo = Append(HCo1, HCo2)
Repeat
A=[(X, Y)|Tail]
IF user select X
THEN
{Get Offspring concepts OY of Y,
Link OY with X,
Delete Y from HCo}
IF user select Y

THEN
{Get Offspring concepts OX of X
Link OX with Y,
Delete X from HCo }
A =[Tail]
UntilA=T]
Get HCo

Fig 8: Collect VValues

Get list of concepts C1 of ol

Get list of concepts C2 of 02

Get list of properties P1 of each concept of 01

Get list of properties P2 of each concept of 02

Get list of values V1 of each property of each concept of 01

Get list of values V2 of each property of each concept of 02

Get matched concepts MC1 of ol

Get matched concepts MC2 of 02

Get matched properties MP1 of each concept of o1

Get matched properties MP2 of each concept of 02

Get matched values MV1 of each property of each concept of 01
Get matched values MV2 of each property of each concept of 02

Unmatched concepts UC1 of ol = DIFFERENCE(C1, MC1)

Unmatched concepts UC2 of 02 =DIFFERENCE(C2, MC2)

Unmatched properties UP1 of each concept of 01 =

DIFFERENCE(P1, MP1)

Unmatched properties UP2 of each concept of 02 =

DIFFERENCE(P2, MP2)

Unmatched values UV1 of each property of each concept of 01 =
DIFFERENCE(V1, MV1)

Unmatched values UV2 of each property of each concept of 02 =
DIFFERENCE(V2, MV2)

Fig.9: Determine Unmatched Entities

Fig. 10: Merge Hierarchical Classification

5. ESTABISHING DYNAMIC
ONTOLOGY FOR AGRICULTURAL
DOMAIN

Domain of Agriculture has huge data and large information
which consists of a lot of terms and relations among them.
The advantages of ontology in agricultural domain can be
summarized as follows: Standardization of agricultural terms,
Knowledge sharing, reusing knowledge of agricultural
domain. Several ontologies have been built for some topics
for some agricultural crops. These ontologies can be
integrated for each crop by the proposed system to get global
ontology for each crop.

This section presents two ontologies of faba bean crop of food
legume crops of field crops obtained from Central Laboratory
of Agricultural Expert Systems (CLAES-ARC) and the
merged ontology of the two ontologies. The proposed system
has been applied on the two ontologies by matching and
merging them. Fig.11 shows the screen of browsing the two
ontologies. Fig.12 and Fig.13 show the two ontologies.
Fig.14 presents the selection of threshold value. Fig.15 shows
the alignment of accepted matched concepts. Fig.16 shows the
alignment of accepted matched properties. Fig.17 shows the
alignment of accepted matched values.

Fig.18 shows number of all system and accepted alignments
for concepts, properties and values. "Alignment Match File" is
a link to present all system alignments while "Accepted
Matched File" is a link to present all accepted alignments.
Fig.19 shows the screen to rename the file of the merged
ontology and to merge the source ontologies. Fig.20 shows
number of concepts, properties and values for the source
ontologies and merged ontology, "Print Ontology" is a link to
present the merged ontology in HTML file (show Fig.21).
"Global ontology file" is a link to present the merged ontology
in XML file (show Fig.22). Fig.23 shows the hierarchical
classification of concepts and their properties and values.

6. CONCLUSION

This paper presents a dynamic ontology for agricultural
domain. It presents a system used for building an ontology
from different other ontologies in the same domain.

The proposed system has a capability to modify, delete, or add
entities from integrated ontology. So the integrated ontology
is dynamic, it means that it can be modified when needed by
using the proposed system. The proposed system has been

50

applied on the agricultural domain for faba bean crop to get a
dynamic integrated ontology, it can be applied also on all
crops. This system uses Multi-Matching and Merging
Algorithm (MMMA) to get the integrated ontology. It uses
five matchers to match between entities in all cases. The using
of five matchers makes the matching process perfect and
prevents redundancy and inconsistency. The proposed system
has been implemented by using ASP.NET C#. This system
can be applied on ontologies of different domains. The source
ontologies and the target ontology of the proposed system are
in XML language. The manipulated ontologies have been
represented using CommonKADS methodology [14]. Domain
of Agriculture has huge data and large information which
consists of a lot of terms and relations among them. The
advantages of ontology can be summarized as follows:
Standardization of agricultural terms, Knowledge sharing,
reusing knowledge of agricultural domain.

1. -]M l '

Home Stopword Match Ontologies ~ Merge Ontologies Preview Ontology ~ Edit Ontology

; Select source ontologies Biowse !m
List of selected ontologies

FababeanOntology!.xmi

Match Oatologies FababeanOrtobogy2ami m

Merge Ontologies m

Preview Ontology M
Fig.11: Matching Window

Home

Stopword

Select Ontology file: FababeanOntology1 =
Concepts Properties Values
[E) fababean lemon vellow leaves
) pest

[fungus

[virus

[nematodes

[weed

[insect

[E]] physiclegical-dissases

[nutrition-deficiency
[/ iron-deficiency
[manganese-deficiency
[zinc-deficiency
[nitrogen-denciency
[0 phosphorus-deficiency
[potassium ~deficiency

[drought

[frest

@D chemical-injury

[extra-of-nitrogen

O satt-ingury

[vanety

Fig.12: Part of first ontology (FababeanOntology1)

Select Ontology file: F 3
Concepts Properties Values
& fababean dead seedlings
B pests cut stem
pale green leaves
[&)] fungal yellow leaves
& viral white leaves
@ nematode dropping flower
@ weeds reduced size pod

empty seeds

(o] eficle
[0 manganese-deficiency
[0 magnesium-deficiency

[calcium-deficiency
[0 zinc-deficiency
[nitrogen-deficiency
[0 phosphorus-deficiency
O potassium-deficiency
[0 boron-deficiency
[0 molybdenum-deficiency
[0 drougnt
[frost
[water-logging

Fig.13: Part of second ontology (FababeanOntology?)

International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

v

Home Stopword ~ Match Ontologies Merge Ontologies Preview Ontology Edit Ontology

Home

. o " B

Stopword Threshold Value (I «

Wk O _—

Merge Ontologies

Preview Ontology

Edit Ontology

Fig.14: Threshold Window

Alignments For Matched Concepts

extra-of-nifrogen Aligns To excess-of-nifrogen
fungus Aligns To fungal

virus Aligns To viral

vartety Aligns To varities

physiological-diseases Aligns To physiological-disease
lesser-army-worms Aligns To lesser-army-worm

nematodes Aligns To nematode
Fig.15: Part of Concept Alignment

Alignments For Matched Properties

chocolate-spot . symptoms Aligns To chocolate-spot .symptom

rust . symptoms Aligns To rust .symptom

alternaria-leaf-spot . symptoms Aligns To alternaria-leaf-spot .symptom
powdery-mildew . symptoms Aligns To powdery-mildew .symptom
downy-mildew . symptoms Aligns To downy-mildew .symptom

root-rot . symptoms Aligns To root-rot .symptom

wilt-diseases . symptoms Aligns To wilt-diseases .symptom
bean-yellow-mosaic-virus . symptoms Aligns To bean-yellow-mosaic-
virus .symptom

bean-leaf-roll-virus . symptoms Aligns To bean-leaf-roll-virus .symptom
root-knot-nematode . symptoms Aligns To root-knot-nematode .symptom
orobanche . symptom Aligns To orobanche .symptom

orobanche . appearance Aligns To orobanche .appearance
pea-leaf-weevil . symptoms Aligns To pea-leaf-weevil .symptom
leafminer . symptoms Aligns To leafminer .symptom

thrips . symptoms Aligns To thrips .symptom

pod-borer . symptoms Aligns To pod-borer .symptom

leathoppers . symptoms Aligns To leathoppers .symptom
iron-deficiency . symptoms Aligns To iron-deficiency .symptom

Fig.16: Part of Property Alignment

51

Alignment
First Value matched Second Value

chocolate-spot . symptoms . chocolate-spot . symptom . small
small reddish brown spots on Align To or elongated reddish brown spots
stem on stem
chocolate-spot . symptoms .
reddish brown spots on leaves

drought . symptoms . wilted

chocolate-spot . symptom .

Align To chocolate spots on leaves

Align To drought . symptom . gray leaves

leaves
drought . S}m[{toms - wilted Align To drought . S}Tm?rom . wilting
leaves leaves
chemical-injury . symptoms - Align To chemical-injury . symptom .

white spots on leaves white or brown spots on leaves

chemical-injury . symptoms .
brown burning spots on leaves

. chemical-injury . symptom .
AlignTo .. ULy - symp
white or brown spots on leaves

green-aphid . symptoms . green-aphid . symptom .

distorted pods kD malformed pods
pea-aphid . symptoms _ distorted | .. pea-aphid . symptom .
pods Align To malformed pods
lesser-army-worms . symptoms . . T lesser-army-worm . symptom .
cutting leaves Align To inner eating in leaves
cutworm . symptoms . wilted Align To cutworms . symptom . wilting

leaves leaves
Fig.17: Part of Value Alighment

38 75
82 110
136 168

Accepted Matched Alignment Match
File File

Fig.18: Final Alignment

_—
Home Stopword Match Ontologies Merge Ontologies Preview Ontology Edit Ontology

Name Global Ontotolgy
Select Global Ontotolgy: FabaBeanMersedOntoogy 16201 2.ml « ‘EE

Fig.19: Merge Window

International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

N as &

Home Stopword Match Ontologies Merge Ontologi Preview Ontology ~ Edit Ontology

Name Global Ontotolgy
Select Global Ontotolgy: FabaBeanMergedOntology116201 * * mm

101

[rpata 91 126 135

Values ’

. 1 453 49
Print Ontology

Fig.20: Merged ontology and ontologies information

o [EEE

et e e

e Fovns | 50 0 & - & - - & e - & -
Pror—" BB 0w b e ke @
= fababean
@ pest
@ variety
Congept name: chocolatc-spot

Sub-Concept of: fungus
Property name: |symptoms
chocolate spots on leaves
spots with reddlish brown margin and tan center on leaves
defoliation of lower leaves

Val
e small o elongated reddish brown spofs on stem
lesions on stem
necrosis flowers.
Concept name: rust

Sub-Concept of: | fungus.
| Property name: | symptoms
white spots of leaves.
white or dark brown spots surrounded by yellow halo on leaves
pustules on leaves
longitudinal cracks in epidermis with dark brown pustules at stem
Concept name: alternaria-leaf-spot

Sub-Concepi of: [fungus.

Property name; | sympioms

Fig.21: Part of merged ontology in HTML file
[T e ED

Values

Bl
Fe B e Fomies Tk Hp
seronts | 5 [lsseesciss - gl =~ Elmaini- Bl - & Elvesio e~ Bl st on -
[y B8 S@me sy
- <KB Merged_Files="Fabab logy1.xml,FababeanQntology2.xml">
- <CONCEPTS>

<CONCEPT NamelL="fababean" NameA="" DascriptionA="" DescriptionL="" Supperhame=""
SupperNID="-1"nID="1" Matched="1" />
<CONCEPT NameL="pest" NameA=""DescriptionA=""DescriptionL="defects which appear
on parts of plant” Supperilame="" SupperNID="1" nID="2" Maiched="1" />
- <CONCEPT NzmeL="fungus" NameA=""Description&="" Description_="defects which
appear on parts of plant’ SupperName="" SupperiID="2" nID="3" Matched="1">
<PROPERTY NameL="symptoms" NameA="" Type="string" PramptA="" PromptL="
Default="" Source="User" Matched="1" />
<[CONCEPT>
- <CONCEPT NameL="chocolate-spot" Name4="" DescriptionA="" DescriptionL=""
Supperiame="" SupperNID="3" nID="4" Matched="1">
- <PROPERTY NameL="symptoms" NameA=""Type="string" PromptA="" PromptL=""
Default="" Source="User" Matched="1">
<LegalValue NameL="chocolate spots on leaves" llameA="reddish brown spots
on leaves” Matched="1" />

Fig.22: Part of merged ontology in XML file

52

Select Ontology file:

[1]
2]
[3]

(4]

(5]

[fababea

FabaBeanMergedOr ~

Properties
5! ptoms

Values

lemon yellow leaves

Concepts

] pest

white leaves
dropping flower
reduced size pod
empty seeds

injjojofoiofo)

afafafalofafalolafa R RS

ooag

Fig.23: Part of merged ontology in hierarchical
classification

REFERENCES
Borst P, Akkermans H, Top J.1997. Engineering
ontologies, International Journal of Human-Computer
Studies 46:pp.365-406.

N. Noy and M. Musen. 2000. PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment,
Proc.ofl7th National Conference on Artificial
Intelligence,(AAAL,), pp. 450-455, Austin, Texas.

H. Chalupsky. 2000.0ntomorph: A Translation System
for Symbolic Knowledge, Principles of Knowledge
Representation and Reasonin.

R. Ichise, H. Takeda, and S. Honiden. 2001. Rule
Induction for Concept Hierarchy Alignment, Proceedings
of the Workshop on Ontology Learning at the 17th
International Joint Conference on Artificial Intelligence
(CAI).

An-Hai Doan, J. Madhavan, Pedro Domingos, and Alon
Halevy. 2003. “Learning to map ontologies on the

International Journal of Computer Applications (0975 — 8887)
Volume 54— No.2, September 2012

semantic web”, In Proceedings of the International
World Wide Web Conference (WWW), pages 662-673.

[6] Marc Ehrig and Steffen Staab. 2004. “QOM: Quick
ontology mapping”, In Proceedings of the 3rd
International Semantic Web Conference (ISWC), pages
683-697.

[71 Peng Wang and Baowen Xu.: Lily: Ontology alignment
results for oaei 2009.1n Shvaiko.

[8] Muhammad Fahad, Nejib Moallaa, Abdelaziz
Bouras.2011. Towardsensuring Satisfiability of Merged
Ontology. International Conference on Computational
Science, ICCS. Procedia Computer Science 4 (2011)
2216-2225.

[9] Li, Y., Zhong, Q., Li, J., and Tang, J.2007.Results of
ontology alignment with RiIMOM. In Proc. International
workshop on Ontology Matching (OM), Busan, Korea.
Pp. 227-235. November 11.

[10] K. Kotis, G.A. Vouros, K. Stergiou, Towards automatic
merging of domain ontologies: The HCONE-merge
approach, Web Semantics: Science, Services and Agents
on the World Wide Web, 4(1) (2006) 60-79.

[11] Straccia, U. and Troncy, R. oMAP: Combining
classifiers for aligning automatically OWL ontologies. In
Proc. 6th International Conf. on Web Information
Systems Engineering (WISE), pp. 133-147, New York
(NY US) 2005.

[12] Castano, S., Ferrara, A., and Montanelli, S. Matching
ontologies in open networked systems: Techniques and
applications. Journal on Data Semantics, V: 25-63, 2006.

[13] Steffen Staab and Rudi Studer. 2004 . Handbook on

ontologies. International handbooks on information
systems. Springer Verlag, Berlin (DE).
[14] Bon J. Wielinga.1994. Expertise Model Definition

Document, University of Amsterdam.

53

