
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

46

Integrated Ontology for Agricultural Domain

Passent El-Kafrawy
Mathematics and Computer Science

Department, Faculty of Science,Menoufia

University, Egypt

ABSTRACT

Ontologies provide a shared and common understanding
of a domain that can be communicated between people
and across application systems. An ontology for a certain
domain can be created from scratch or by merging
existing ontologies in the same domain. Establishing
ontology from scratch is hard and expensive. Multiple
ontologies of different systems for the same domain may
be dissimilar, thus, various parties with different
ontologies do not fully understand each other in spite of
these ontologies are for the same domain. To solve this
problem, it is necessary to integrate these ontologies.
Integrated ontology, should be consistent and has no
redundancy. This work presents a semi-automated
system for building an integrated ontology by matching
and merging existing ontologies. The proposed system
has been applied on the agricultural domain for Faba
Bean crop to get a dynamic integrated ontology, it can be
applied also on all crops whatever field crops or
horticulture crops. Source ontologies in the proposed
system have been implemented in XML language.
CommonKADS Methodology has been used in building
the target ontology. CommonKADS Methodology deals
with the following kinds of entities: Concepts, properties,
and values. The proposed system proposed a technique to
solve the matching and merging problems by using a
multi-matching technique to find the correspondences
between entities in the source ontologies and merging
technique which deals with concepts, properties, values
and hierarchical classifications. The outcome of the
proposed system is an integrated ontology in hierarchical
classification of the concepts.

Keywords

Artificial intelligence; knowledge representation; ontology;

matching; merging

1. INTRODUCTION
An Ontology is a formal, explicit specification of a shared

conceptualization [1]. There are several reasons for

developing ontology, first of all, sharing common

understanding of the structure of information among people or

software agents. The second reason is to enable reuse of

knowledge. The third reason is to make domain assumptions

explicit. Fourth reason is to separate domain knowledge from

the operational knowledge. Fifth reason is to analyze domain

knowledge. Sixth reason is to increase interoperability among

various domain of knowledge. Seventh reason is to enhance

scalability of new knowledge into the existing domain.

Finally, searching and reasoning a specific knowledge in a

domain knowledge.

The starting point for creating ontology could arise from

different situations. An ontology can be created from scratch;

from existing ontologies; from a corpus of information

sources; or a combination of the latter two approaches.

Multiple ontologies need to be accessed from different

systems; these ontologies are dissimilar for the same or

overlapping domains, thus, various parties with different

ontologies do not fully understand each other. To solve these

problems, it is necessary to use integrating ontologies.

Ontology integration aims to building ontologies from other

ontologies to get integrated ontology. Integrated ontology

should be consistent, coherent and has no redundancy

Establishing ontology from scratch is hard and expensive.

This work presents a semi-automated system for building

integrated ontology by matching and merging existing

ontologies. The proposed system has been applied on

agricultural domain to get a dynamic integrated ontology.

Dynamic means that: the integrated ontology can be modified

by adding, deleting, or editing some terms when needed. The

proposed system performs three iterations; each iteration

manipulates one type of entities. The first iteration

manipulates the concepts, while the second iteration handles

the properties, and the third iteration handles the values. In

each iteration, the system uses five matchers (exact method,

substring method, prefix method, suffix method, wordnet

method) sequentially to cover different kinds of alignments

(matching entities) and to make the integrated ontology

perfect and has no redundancy. The system uses thresholds in

substring, prefix, and suffix methods to reduce useless

correspondences and involves user to confirm alignments.

2. RELATED WORK
Several tools exist for ontology establishment, ranging from

fully manual to fully automated. Many of the semi-automated

ontology merging and matching tools are listed in this section.

PROMPT [2] begins with the linguistic-similarity matches for

the initial comparison, but generates a list of suggestions for

the user based on linguistic and structural knowledge and then

points the user to possible effects of these changes.

OntoMorph [3] provides a powerful rule language for

specifying mappings, and facilitates ontology merging and the

rapid generation of knowledge-base translators. It combines

two powerful mechanisms for knowledge-base

transformations such as syntactic rewriting and semantic

rewriting. Syntactic rewriting is done through pattern-

directed rewrite rules for sentence-level transformation based

on pattern matching.

Susan F. Ellakwa
Central Lab for Agricultural Expert

Systems (CLAES), ARC, Giza,
Egypt

El-Sayed El-Azhary

Central Lab for
Agricultural Expert
Systems (CLAES),
ARC, Giza, Egypt

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

47

Semantic rewriting is done through semantic models and

logical inference. A concept hierarchy management for

ontology alignment and merging is provided in Hierarchical

Concept Alignment system (HICAL) [4], where one concept

hierarchy is aligned with another concept in another concept

hierarchy. HICAL uses a machine-learning method for

aligning multiple concept hierarchies, and exploits the data

instances in the overlap between the two taxonomies to infer

mappings. It uses hierarchies for categorization and

syntactical information, not similarity between words, so that

it is capable of categorizing different words under the same

concept. Another system that employs machine learning

techniques to find ontology mappings is GLUE [5]. If given

two ontologies, for each concept in one of the ontologies,

GLUE finds the most similar concept in the other one. GLUE

works with several similarity measures that are defined with

probabilistic definitions. Multiple learning strategies exploit

different types of information from instances or taxonomy

structures. GLUE can also use common sense knowledge and

domain constraints instead of relaxation labeling. It is a well-

known constraint optimization technique adapted to work

efficiently. Quick Ontology Mapping (QOM) [6] is based on

the hypothesis that mapping algorithms can be streamlined so

that the loss of quality is marginal, but the improvement of

efficiency is tremendous for the ad-hoc mapping of large-size

light-weight ontologies. A generic ontology mapping system,

called LILY [7], is based on the extraction of semantic

subgraph. LILY exploits both linguistic and structural

information in semantic subgraphs to generate initial

alignments. After that, a subsequent similarity propagation

strategy is applied to produce more alignments if necessary.

Finally, LILY uses the classic image threshold selection

algorithm to automatically select the threshold, and then

extracts final results based on the stable marriage strategy.

LILY has different functions for different kinds of tasks: for

example, Generic Ontology Matching method (GOM) is used

for common matching tasks with small size ontologies; Large

scale Ontology Matching method (LOM) is used for matching

tasks with large size ontologies; and Semantic Ontology

Matching method (SOM) is used for discovering the semantic

relations between ontologies. The two limitations of LILY are

that it requests the user to manually set the size of subgraph

according to different mapping tasks and the efficiency of

semantic subgraph is very low in large-scale ontologies.

DKP-AOM [8] is a system that exploits linguistic, synonym

and axiomatic matching to find correspondences

between concepts. In addition, it employs test criterion for the

detection of semantic inconsistencies that originates when

concepts contradict according to their subsumption or

disjointness in local ontologies criterion. In this way, it detects

explication and conceptualization mismatches between

heterogeneous ontologies and promotes a larger pool of

knowledge and information to be integrated to facilitate new

reliable communication and reuse.

The RiMOM [9] system integrates multiple strategies, such as

edit distance, statistical learning, and three similarity

propagation-based strategies. Then, it applies a strategy

selection method in order to decide on which strategy it will

rely more. As a result, RiMOM combines the conducted

alignment. RiMOM offers three possible structural

propagation strategies: concept-to-concept propagation

strategy (CCP), property-to-property propagation strategy

(PPP), and concept-to-property propagation strategy (CPP).

To choose between them, RiMOM uses heuristic rules. For

example, if the structure similarity factor is lower than some

threshold, then RiMOM does not use the CCP and PPP

strategies, but uses CPP. The basic idea of CCP, PPP, and

CCP is to propagate the similarities of (concept pairs or

property pairs) across the concept/property hierarchy

structure. For instance, in CCP, similarities of concept pairs

are propagated across the concept hierarchy structure.

In [10] shows that recent studies on ontology merging show

that due to conceptualization and mismatches between local

ontologies, fully automatic merging is unattainable

oMap [11] deploys a number of matchers in order to find the

correspondences between entities of the input ontologies. The

matchers include a string similarity measure, learning

methods used on instance data, and a matcher that propagates

preliminary weights through the ontology constructors used in

the definitions of ontology entities. At the end, the results are

aggregated using a weighted average.

H-Match [12] takes OWL ontologies as its input. Internally,

these input ontologies are represented by graphs using the H-

model representation. Moreover, H-Match computes two

types of similarities: linguistic and contextual. These are then

combined using weighting schemas to yield a final measure,

called semantic similarity. In determining the contextual

similarity, H-match considers neighboring concepts, e.g.,

linked through the taxonomy of the actual concept

Fig.1: Matching Process

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

48

.

Our system consists of two techniques: matching and

merging, matching consists of five matchers, each matcher

manipulates kind of heterogeneity between two ontologies to

detect inconsistency. These matchers executes sequentially to

reduce redundancy and speed up system execution time, user

is involved to confirm mappings (correspondences) between

two ontologies and user can select concepts, properties and

values from correspondences. Threshold is involved to reduce

unmeaning mappings. Merging is fully automatic process. It

handles hierarchy classifications of two ontologies effectively

to get merged ontology with new hierarchy classification.

3. THE PROPOSED SYSTEM
 This section presents a system for establishing dynamic

ontology from two or more existing ontologies in the same

domain. The end users of the system may be experts or

specialists in the domain. This system introduces matching

and merging technique, which uses a multi-level search to

find the correspondences between entities in the input

ontologies. An important feature of this technique is that it

uses several match methods sequentially and combines their

results. There are a large variety of languages for expressing

ontologies [13]. Fortunately, most of these languages share

the same kinds of entities, often with different names but

comparable interpretations. In the proposed system, source

ontologies have to be expressed in XML language. Ontology

language in the proposed system deals with Concepts,

properties, and values.

3.1 Matching Process
Fig. 1describes matching process. The matchers are the

building blocks on which the matching solution is built. Once

the similarities between ontology entities are available, the

alignment can be computed. Matching strategy is built by

organizing the combination matchers, aggregating the results

of matchers in order to compute the compound similarity

between entities, involving users in the system and extracting

the alignments from the resulting similarity.

Matcher composition is a global method to combine local

methods (or basic matchers) in order to define the matching

algorithm. A way of composing matchers in the proposed

system uses sequential composition. In sequential

composition, combination of matchers is more classically

used to improve an alignment. In the proposed system, it

consists of five matchers; each matcher extract additional

alignment without redundancy, the input of each matcher

depends on the output of the previous matcher. The inputs of

the system are two ontologies o1, o2 and initial alignment A.

Entities of source ontology are concepts C, properties P and

values V. The input of a matcher is the unmatched entities of

the last matcher. The matched entities are to be aggregated in

final alignment A'.

This cycle performs three times; first iteration for extracting

matched concepts, second iteration for extracting matched

properties of the matched concepts and third iteration for

extracting matched values of the matched properties. Each

iteration, all matchers are sequentially applied to entities. First

matcher (matcher1) based on exact string method, it searches

for identical terms, the output is M1 (similarity matrix).

Second matcher (matcher2) based on substring method. The

input of this matcher is the unmatched entities of previous

matcher, the output is M2.

M2 should be filtered according to a threshold, the threshold

should be determined by the system or the user, and then the

user discards the unaccepted correspondences. Third matcher

(matcher3) based on prefix method. The input of this matcher

is unmatched entities of previous matchers, the output is the

M3.

M3 should be filtered according to the pre-determined

threshold, and then the user discards the unaccepted

correspondences. Fourth matcher (matcher4) is based on

suffix method. The input of this matcher is unmatched entities

of previous matchers, the output is the M4. M4 should be

filtered according to the pre-determined threshold, and then

the user discards the unaccepted correspondences.

Fifth matcher (matcher5) based on WordNet method; it

searches for terms which have the same meaning. The input of

this matcher is unmatched entities of previous matchers, the

output is the M5. M5 can be filtered by the user. This matcher

uses tokenization method and Stopword elimination method.

The output of the five matchers in the first iteration is

matched concepts which aggregated in A (initial alignment) to

be the input of the second iteration. The output of matchers in

second iteration is the matched properties which aggregated in

A (initial alignment) to be the input of the third iteration. The

output of matchers in third iteration is matched values.

Matched concepts, Matched properties, Matched values are

aggregated in A'(final alignment).

3.2 Merging Process
Fig. 2 describes merging process, it consists of five

operations: Determine unmatched entities, Select concepts,

Merge hierarchical classification, Collect properties and

Collect values.

Fig.2: Merging Process

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

49

The input of this process is the two source ontologies o1, o2,

the alignment A' (the output of the matching process), A (the

matched concepts). The output is the merged ontology.

Determine unmatched entities operation identifies unmatched

concepts C' and its properties P' and its values V'. Select

concepts operation selects a concept from its correspondence.

Merge hierarchical classification determines concept location

in the hierarchy structure. Collect properties determines

properties of the selected concept from its correspondence.

Collect values determines values of a property from its

correspondence. The output of the system is the merged

ontology of two source ontologies o1, o2.

4. MULTI-MATCHING and MERGING

AlGORITHM (MMMA)
This section presents MMMA (Multi-Matching and Merging

Algorithm) in detail which describe matching and merging

process in the proposed system.

Matching Algorithm consists of three parts: Matching

concepts (Fig. 3), Matching properties (Fig. 4), and Matching

values (Fig. 5).

Merging Algorithm consists of five parts: Select concepts

(Fig. 6), Collect properties (Fig. 7), Collect Values (fig 8),

Unmatched entities (Fig. 9), and Merge hierarchical

classification (Fig. 10))

Input Ontologies is o1, o2
LC1 is the List of concepts of o1 [c1, c2… cn]

LC2 is the List of concepts of o2 [c1, c2… cm]

Number of Matchers = 5
A is the List of concept alignments

A = []

L = n
W = m

Mat = 0

Repeat

Mat = Mat + 1

I = 0

 Repeat

 I = I + 1

 Select concept cI of LC1

 J = 0
 K = 0

 Repeat

 J= J + 1
 Select concept cJ of LC2

 IF match (cI, cJ)

 THEN {A= [(cI, cJ)|A],
 K=1,

 W = W – 1,

 LC1 = SUBTRACT (LC1, cI),
 LC2 = SUBTRACT (LC2, cJ)}

 Until J = W OR K = 1

 Until I = L OR W = 0
Until mat=5

 Fig.3: Matching Concepts

A1 = A

A2 = []

Mat = 0

Repeat

Mat=Mat+1

 Repeat

 A1 = [H | Tail]

 H = (C1, C2)

 Get PI of C1 /* PI is the list of properties of c1 from o1*/
 Get PJ of C2 /* PJ is the list of properties of c2 from o2*/

 PJJ = PJ

 Repeat

 PI = [HPI| T1]

 PJ = PJJ

 Repeat

 K = 0

 PJ = [HPJ | T2]

 IF match (HPI, HPJ)
 THEN {A2 = [[(c1, HPI), (c2, HPJ)] | A2],

 PJJ = DIFFERENCE(PJJ, HPJ), K = K + 1},

 PJ = [T2]
 Until K = 1 OR PJ = []

 PI = [T1]

 Until PI = [] OR PJJ = []
 A1 = [Tail]

 Until A1 = []

Until mat=5
Get A2

 Fig. 4: Matching Properties

A3 = A2
A4 = []

Mat = 0

Repeat

Mat = Mat + 1

 Repeat

 A3 = [H | Tail]
 H = [(C1, P1), (C2, P2)]

 Get VI of P1 /* VI is the list of values of P1 */

 Get VJ of P2 /* VJ is the list of values of P2 */
 VJJ = VJ

 Repeat

 VI = [HVI| T1],

 VJ = VJJ,

 k=0

 Repeat
 VJ=[HVJ|T2]

 IF match(HVI,HVJ)
 THEN {A4 = [[(C1, P1, HVI), (C2, P2, HVJ)] | A4],

 VJJ = DIFFERENCE(VJJ, HVJ) ,k=1}

 VJ=[T2]
 UNTIL VJ=[] OR k=1

 VI= [T1]

 UNTIL V1 = [] OR VJJ = []
 A3 = [Tail]

 Until A3 = []

Until Mat = 5
A'= A4

 Fig.5: Matching Values

LC1 = [] /* selected concepts of o1 */

LC2 = [] /* selected concepts of o2 */

B = A'

Repeat

B = [[(C1, P1, V1), (C2 ,P2, V2)]|Tail],

IF user select C1

THEN

 IF C1 ∉ LC1

 THEN LC1 = [C1, LC1]
IF user select C2

THEN

 IF C2 ∉ LC2

 THEN LC2 = [C2, LC2]

B = [Tail]
Until B = []

 Fig.6: Select Concepts

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

50

LP1 = [] /* properties of selected concepts of o1 */

LP2 = [] /* properties of selected concepts of o2 */

Repeat

LC1 = [C|Tail]
Get list of selected properties of C (LP) /*properties of C

selected by user */

LP1 = [(C, LP)|LP1],
LC1 = Tail,

Until LC1 = []

Repeat

LC2 = [C|Tail]

Get list of selected properties of C (LP) /*properties of C

selected by user */
LP2 = [(C, LP)|LP2],

LC2 = Tail,

Until LC2 = []

 Fig.7: Collect Properties

LV1 = [] /* values of selected properties of selected concepts of

o1 */
LV2 = [] /* values of selected properties of selected concepts of

o2 */

Repeat

LP1 = [(C, [P|Tail1])|Tail2]

 Repeat

 LP1 = [(C, [P|Tail1])|Tail2]
 Get list of selected values of P (LV)

 /*values of P selected by user */
 LV1 = [(C, [(P, LV)|Tail3)]|LV1],

 LP1 = [(C, [Tail1])|Tail2]

 Until Tail1 = []
LP1 = Tail2,

Until Tail2 = []

Repeat

LP2 = [(C, [P|Tail1])|Tail2]

 Repeat

 LP2 = [(C, [P|Tail1])|Tail2]
 Get list of selected values of P (LV)

 /*values of P selected by user */

 LV2 = [(C, [(P, LV)|Tail3)]|LV2],
 LP2 = [(C, [Tail1])|Tail2]

 Until Tail1 = []

LP2 = Tail2,
Until Tail2 = []

Fig 8: Collect Values

Get list of concepts C1 of o1

Get list of concepts C2 of o2

Get list of properties P1 of each concept of o1
Get list of properties P2 of each concept of o2

Get list of values V1 of each property of each concept of o1

Get list of values V2 of each property of each concept of o2
Get matched concepts MC1 of o1

Get matched concepts MC2 of o2

Get matched properties MP1 of each concept of o1
Get matched properties MP2 of each concept of o2

Get matched values MV1 of each property of each concept of o1
Get matched values MV2 of each property of each concept of o2

Unmatched concepts UC1 of o1 = DIFFERENCE(C1, MC1)
Unmatched concepts UC2 of o2 =DIFFERENCE(C2, MC2)

Unmatched properties UP1 of each concept of o1 =

DIFFERENCE(P1, MP1)
Unmatched properties UP2 of each concept of o2 =

DIFFERENCE(P2, MP2)

Unmatched values UV1 of each property of each concept of o1 =
 DIFFERENCE(V1, MV1)

Unmatched values UV2 of each property of each concept of o2 =

 DIFFERENCE(V2, MV2)

Fig.9: Determine Unmatched Entities

o1, o2 are two source ontologies

Hierarchical Classification of concepts of o1 is HCo1

Hierarchical Classification of concepts of o2 is HCo2

A is the alignment concepts of o1, o2 /* A is a list of matched

concepts */
HCo = Append(HCo1, HCo2)

Repeat

A = [(X, Y)|Tail]
IF user select X

THEN

 {Get Offspring concepts OY of Y,
 Link OY with X,

 Delete Y from HCo}

IF user select Y

THEN

 {Get Offspring concepts OX of X

 Link OX with Y,
 Delete X from HCo }

A = [Tail]

Until A = []
Get HCo

 Fig. 10: Merge Hierarchical Classification

5. ESTABISHING DYNAMIC

ONTOLOGY FOR AGRICULTURAL

DOMAIN
Domain of Agriculture has huge data and large information

which consists of a lot of terms and relations among them.

The advantages of ontology in agricultural domain can be

summarized as follows: Standardization of agricultural terms,

Knowledge sharing, reusing knowledge of agricultural

domain. Several ontologies have been built for some topics

for some agricultural crops. These ontologies can be

integrated for each crop by the proposed system to get global

ontology for each crop.

This section presents two ontologies of faba bean crop of food

legume crops of field crops obtained from Central Laboratory

of Agricultural Expert Systems (CLAES-ARC) and the

merged ontology of the two ontologies. The proposed system

has been applied on the two ontologies by matching and

merging them. Fig.11 shows the screen of browsing the two

ontologies. Fig.12 and Fig.13 show the two ontologies.

Fig.14 presents the selection of threshold value. Fig.15 shows

the alignment of accepted matched concepts. Fig.16 shows the

alignment of accepted matched properties. Fig.17 shows the

alignment of accepted matched values.

Fig.18 shows number of all system and accepted alignments

for concepts, properties and values. "Alignment Match File" is

a link to present all system alignments while "Accepted

Matched File" is a link to present all accepted alignments.

Fig.19 shows the screen to rename the file of the merged

ontology and to merge the source ontologies. Fig.20 shows

number of concepts, properties and values for the source

ontologies and merged ontology, "Print Ontology" is a link to

present the merged ontology in HTML file (show Fig.21).

"Global ontology file" is a link to present the merged ontology

in XML file (show Fig.22). Fig.23 shows the hierarchical

classification of concepts and their properties and values.

6. CONCLUSION
This paper presents a dynamic ontology for agricultural

domain. It presents a system used for building an ontology

from different other ontologies in the same domain.

The proposed system has a capability to modify, delete, or add

entities from integrated ontology. So the integrated ontology

is dynamic, it means that it can be modified when needed by

using the proposed system. The proposed system has been

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

51

applied on the agricultural domain for faba bean crop to get a

dynamic integrated ontology, it can be applied also on all

crops. This system uses Multi-Matching and Merging

Algorithm (MMMA) to get the integrated ontology. It uses

five matchers to match between entities in all cases. The using

of five matchers makes the matching process perfect and

prevents redundancy and inconsistency. The proposed system

has been implemented by using ASP.NET C#. This system

can be applied on ontologies of different domains. The source

ontologies and the target ontology of the proposed system are

in XML language. The manipulated ontologies have been

represented using CommonKADS methodology [14]. Domain

of Agriculture has huge data and large information which

consists of a lot of terms and relations among them. The

advantages of ontology can be summarized as follows:

Standardization of agricultural terms, Knowledge sharing,

reusing knowledge of agricultural domain.

Fig.11: Matching Window

Fig.12: Part of first ontology (FababeanOntology1)

Fig.13: Part of second ontology (FababeanOntology2)

Fig.14: Threshold Window

Fig.15: Part of Concept Alignment

Fig.16: Part of Property Alignment

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

52

Fig.17: Part of Value Alignment

Fig.18: Final Alignment

Fig.19: Merge Window

Fig.20: Merged ontology and ontologies information

Fig.21: Part of merged ontology in HTML file

Fig.22: Part of merged ontology in XML file

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

53

Fig.23: Part of merged ontology in hierarchical

classification

7. REFERENCES
[1] Borst P, Akkermans H, Top J.1997. Engineering

ontologies, International Journal of Human-Computer

Studies 46:pp.365–406.

[2] N. Noy and M. Musen. 2000. PROMPT: Algorithm and

Tool for Automated Ontology Merging and Alignment,

Proc.of17th National Conference on Artificial

Intelligence,(AAAI,), pp. 450–455, Austin, Texas.

[3] H. Chalupsky. 2000.Ontomorph: A Translation System

for Symbolic Knowledge, Principles of Knowledge

Representation and Reasonin.

[4] R. Ichise, H. Takeda, and S. Honiden. 2001. Rule

Induction for Concept Hierarchy Alignment, Proceedings

of the Workshop on Ontology Learning at the 17th

International Joint Conference on Artificial Intelligence

(IJCAI).

[5] An-Hai Doan, J. Madhavan, Pedro Domingos, and Alon

Halevy. 2003. “Learning to map ontologies on the

semantic web”, In Proceedings of the International

World Wide Web Conference (WWW), pages 662–673.

[6] Marc Ehrig and Steffen Staab. 2004. “QOM: Quick

ontology mapping”, In Proceedings of the 3rd

International Semantic Web Conference (ISWC), pages

683–697.

[7] Peng Wang and Baowen Xu.: Lily: Ontology alignment

results for oaei 2009.In Shvaiko.

[8] Muhammad Fahad, Nejib Moallaa, Abdelaziz

Bouras.2011. Towardsensuring Satisfiability of Merged

Ontology. International Conference on Computational

Science, ICCS. Procedia Computer Science 4 (2011)

2216–2225.

[9] Li, Y., Zhong, Q., Li, J., and Tang, J.2007.Results of

ontology alignment with RiMOM. In Proc. International

workshop on Ontology Matching (OM), Busan, Korea.

Pp. 227-235. November 11.

[10] K. Kotis, G.A. Vouros, K. Stergiou, Towards automatic

merging of domain ontologies: The HCONE-merge

approach, Web Semantics: Science, Services and Agents

on the World Wide Web, 4(1) (2006) 60-79.

[11] Straccia, U. and Troncy, R. oMAP: Combining

classifiers for aligning automatically OWL ontologies. In

Proc. 6th International Conf. on Web Information

Systems Engineering (WISE), pp. 133-147, New York

(NY US) 2005.

[12] Castano, S., Ferrara, A., and Montanelli, S. Matching

ontologies in open networked systems: Techniques and

applications. Journal on Data Semantics, V: 25-63, 2006.

[13] Steffen Staab and Rudi Studer. 2004 . Handbook on

ontologies. International handbooks on information

systems. Springer Verlag, Berlin (DE).

[14] Bon J. Wielinga.1994. Expertise Model Definition

Document, University of Amsterdam.

