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ABSTRACT. To solve the class imbalance problem in the classification 
of pre-miRNAs with the ab initio method, we developed a novel sample 
selection method according to the characteristics of pre-miRNAs. Real/
pseudo pre-miRNAs are clustered based on their stem similarity and 
their distribution in high dimensional sample space, respectively. The 
training samples are selected according to the sample density of each 
cluster. Experimental results are validated by the cross-validation and 
other testing datasets composed of human real/pseudo pre-miRNAs. 
When compared with the previous method, microPred, our classifier 
miRNAPred is nearly 12% more accurate. The selected training samples 
also could be used to train other SVM classifiers, such as triplet-
SVM, MiPred, miPred, and microPred, to improve their classification 
performance. The sample selection algorithm is useful for constructing 
a more efficient classifier for the classification of real pre-miRNAs and 
pseudo hairpin sequences.

Key words: Sample selection; Class imbalance; Pre-miRNA; 
Information gain; Conservation
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INTRODUCTION

MicroRNAs (miRNA) are non-coding RNAs about 21 to 24 nucleotides (nt) in 
length, which can play important roles in gene regulation by targeting mRNAs for cleav-
age or translational repression (Bartel, 2004; Chatterjee and Grosshans, 2009). It has been 
shown that miRNAs usually participate in the important life processes, including growth 
process, hemopoiesis, organ formation, apoptosis, and cell proliferation. Furthermore, 
they are closely related to many kinds of human diseases including cancer (Bushati and 
Cohen, 2007). Due to the difficulty of systematically detecting miRNAs from a genome 
by existing experimental techniques, computational methods play important roles in the 
identification of new miRNAs.

The 60- to 70-nt precursor miRNAs (pre-miRNAs) have the characteristic of stem-
loop hairpin structures, which is an important feature used in the computational identifica-
tion of miRNAs. Recently, the ab initio method based on machine learning was presented to 
distinguish real pre-miRNAs from candidate hairpin sequences. Real/pseudo pre-miRNAs 
are selected as positive/negative training samples to construct the classifiers. These clas-
sifiers include support vector machines (SVM) (Xue et al., 2005; Ng and Mishra, 2007; 
Batuwita and Palade, 2009), probabilistic co-learning model (Nam et al., 2005), naive Bayes 
(Yousef et al., 2006, 2008), random forest (Jiang et al., 2007), and kernel density estimation 
(Chang et al., 2008). A hairpin-like candidate sequence could be classified as a real pre-
miRNA or a pseudo pre-miRNA by the classifiers.

The positive and negative training datasets would greatly affect the classifica-
tion performance. Recently, only several thousands of miRNAs have been identified and 
verified by biological experiments. Obviously, known miRNAs are much less in a single 
species. However, millions of hairpin-like pseudo sequences could be obtained from the 
genome segment of human. Triplet-SVM (Xue et al., 2005) obtained 8494 human pseudo 
hairpin sequences from the protein coding regions, and there were just 193 known real pre-
miRNAs at that time. These 8494 human pseudo hairpin sequences are often used in the 
classification and prediction of pre-miRNAs with the ab initio method. Micropred (Batu-
wita and Palade, 2009) could obtain 691 real pre-miRNAs and 9248 pseudo sequences, 
which include 8494 pseudo hairpins and 754 other non-coding RNAs (ncRNAs). The ratio 
of the positive to negative dataset is 1:13.4. Therefore, when classifying real pre-miRNAs 
and pseudo pre-miRNAs, the main problem encountered in the dataset is its imbalance. The 
current research has shown that training a classifier with such an imbalance positive and 
negative dataset could result in poor classification performance with respect to the minor-
ity class (Weiss, 2004). It is essential to select appropriate representative sample subsets to 
train the classifier, which contributes to improving classification accuracy.

It has been found that SVM classifiers can also be sensitive to the class imbalance 
(Veropoulos et al., 1999; Akbani et al., 2004). Yousef et al. (2008) created a one-class SVM 
(OC-SVM) that depends only on positive samples (real pre-miRNAs). OC-SVM could elimi-
nate the imbalance problem. However, the classification performance of one-class machine 
learning is lower than the one of two-class machine learning. The triplet-SVM, MiPred and 
miPred methods chose real/pseudo pre-miRNAs randomly from the imbalanced dataset as 
the training samples. These samples could not represent positive and negative sample spaces 
completely and decreased the accuracy of the classifiers.
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MicroPred evaluated the methods of processing imbalance, including random over/
under-sampling (Weiss, 2004), SMOTE (Chawla et al., 2002), multi-classifier system training 
(Molinara et al., 2007), different error costs (Veropoulos et al., 1999; Akbani et al., 2004), and 
zSVM (Imam et al., 2006). The classifier trained with the SMOTE method achieved the best 
performance. However, SMOTE assumes that the sample locating between a positive/negative 
sample and its positive/negative neighbor is also positive/negative. The distribution of real and 
pseudo pre-miRNAs could not satisfy this assumption well. Moreover, the SMOTE method 
introduces newly generated pre-miRNAs into the positive sample space, which changes the 
original distribution of positive samples (real pre-miRNAs). 

Wang et al. (2010; our group members) solved the class imbalance problem in mining 
single nucleotide polymorphisms (SNPs) with ensemble classifiers. The pseudo pre-miRNAs 
are extracted through searching hairpin-like sequences from the genome segment of human. It 
is difficult to separate the majority of pseudo pre-miRNAs into several subsets. Therefore, the 
method with ensemble classifiers does not apply to the case about pre-miRNAs.

MATERIAL AND METHODS

Characteristics of pre-miRNAs

Features of pre-miRNAs

Recent research indicates that pre-miRNAs have many features about both primary 
sequence and secondary structure. These features are typically used to construct a classifier to 
classify the real pre-miRNAs and pseudo hairpin sequences.

miPred (Ng and Mishra, 2007) extracted 29 global and intrinsic folding features from hu-
man real/pseudo pre-miRNAs. These features are: 1) Seventeen base composition variables, includ-
ing 16 dinucleotide frequencies, that is XY% where X,Y∈{A,C,G,U}, and (G + C)% content; 2) Six 
folding measures: adjusted base pairing propensity dP (Schultes et al., 1999), adjusted minimum 
free energy of folding (MFE) denoted as dG (Seffens and Digby, 1999; Freyhult et al., 2005), ad-
justed base pair distance dD (Moulton et al., 2000; Freyhult et al., 2005), adjusted Shannon entropy 
dQ (Freyhult et al., 2005), MFE index 1, MFEI1 (Zhang et al., 2006), and MFE index 2, MFEI2; 3) 
One topological descriptor, which is the degree of compactness dF (Fera et al., 2004; Gan et al., 
2004), and 4) Five normalized variants of dP, dG, dQ, dD, and dF: zP, zG, zQ, zD, and zF.

In addition to the above 29 features, microPred extracted 19 new features, totaling 
48 features. These features are: 1) Two minimum free energy-related features: MFE index 3 
(MFEI3) and MFE index 4 (MFEI4); 2) Four RNAfold-related features: normalized ensemble 
free energy (NEFE), frequency of the MFE structure Freq, structural diversity denoted as Di-
versity, and a combined feature Diff; 3) Six thermodynamic features: structure entropy dS and 
dS/L, structure enthalpy dH and dH/L, melting energy of the structure Tm and Tm/L, where L is 
the length of pre-miRNA sequence, and 4) Seven base pair-related features: |A-U|/L, |G-C|/L, 
|G-U|/L, average base pairs per stem Avg_BP_Stem, (A-U)%/n_stems, (G-C)%/n_stems, (G-
U)%/n_stems, where n_stems is the number of stems in the secondary structure.

The above 48 features could fully reflect the distribution of positive/negative samples 
(real/pseudo pre-miRNAs) in sample space (Batuwita and Palade, 2009). Therefore, clustering 
samples should consider the high dimensional characteristic of pre-miRNAs.
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Conservation of pre-miRNAs

Pre-miRNAs are typically about 60 to 70 nt, and contain a ~22-bp double-stranded 
stem and a ~10-nt terminal loop. Recently, computational phylogenetic shadowing showed 
that the stems of pre-miRNAs are highly conserved in whole genome alignments, whereas 
most terminal loop sequences are only loosely conserved (Berezikov et al., 2005). Thus, if 
the stems of two pre-miRNAs are more consistent, these two pre-miRNAs are more similar. 
The similarity is measured through observing the consistent degree of nucleotide sequence in 
stems. Therefore, the pre-miRNAs with similar stems should be gathered into the same cluster.

Sample selection algorithm

According to above the characteristics of pre-miRNAs, we proposed a sample selection 
algorithm as shown in Figure 1. 1) The samples (real/pseudo pre-miRNAs) are clustered accord-
ing to their stem similarity. 2) The discriminative feature subset is selected to better reflect the 
distribution of samples. The feature selection considers the feature difference and information 
gain. 3) The samples are clustered according to their distribution in sample space. 4) The train-
ing samples are selected according to the sample density of each cluster. 5) An SVM classifier 
is trained with our selected samples to validate the performance of sample selection algorithm.

Figure 1. Samole selection process based on two-stage clustering.
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Clustering based on stem similarity

Since the stems of pre-miRNAs are highly conserved, the nucleotide sequences of stems 
among the similar pre-miRNAs are usually consistent. We truncate the conserved stems from pre-
miRNA hairpins and count how many of the same k-mer sequences there are in the stems of two pre-
miRNAs. K-mer restricts special k nucleotides to be adjacent. The pre-miRNAs of human, mouse 
and rat are aligned with ClustalX 2.0. Most of the nucleotides in the stems are consistent in the 3 
species. However, not all the successive nucleotides are consistent. The nucleotides are different at 
irregular intervals. It is found that there are more same 4-mers in the similar pre-miRNAs from the 
3 species. Therefore, 4-mer is selected to measure the stem similarity between two pre-miRNAs.

In the first stage, the pre-miRNA sequences with similar stems are merged into the 
same cluster. Before clustering based on stem similarity, the appearances of 4-mers should 
be counted. As shown in Figure 2, given the primary sequences of pre-miRNAs, such as the 
primary sequence of hsa-mir-192, the secondary structures of the pre-miRNAs are predicted 
by RNAfold (Hofacker et al., 1994). The central loop and the unpaired part between the 5ꞌ 
arm and 3ꞌ arm are then cut off to obtain the conserved stems. Both stems of pre-miRNAs are 
scanned with a sliding window whose length is 4 nt and the step length is 1 nt. The frequencies 
of 4-mers in the stems of the 5ꞌ arm and 3ꞌ arm are counted. For a hairpin with multi-loops, the 
multi-stems are combined to calculate the stem similarity.

Figure 2. Process of counting the appearances of 4-mers.

The cluster algorithm is described as follows, where the threshold ε is determined 
by the experiment. When ε is set to 12, most of the pre-miRNAs with similar stems could be 
gathered into the same cluster.

Algorithm: Clustering algorithm based on stem similarity.
Input: N real/pseudo pre-miRNAs.
Output: M clusters based on stem similarity.
1. Each real/pseudo pre-miRNA is to be as a single cluster, denoted as C1, C2, …, CN.
2. The similarity between each pair of clusters is calculated. 
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Suppose two clusters are Cx and Cy. Cx is composed of m real/pseudo pre-miRNAs and 
Cx = {Sx1, Sx2, …,Sxm}. Cy is composed of n real/pseudo pre-miRNAs and Cy = {Sy1, Sy2, …,Syn}. 
The similarity of Cx and Cy is the number of same 4-mers in all of their stems.

3. While there still exists Cx and Cy whose Sim(Cx,Cy)> ε
4. do
5. Select two clusters (Ci and Cj) with the most similarity and merge them into one 

cluster Ck.
6. Calculate the similarity between the new merged cluster Ck and each of the other 

clusters again. Thus, the similarity between each pair of clusters is obtained.
7. End While.

Feature subset selection

The positive/negative samples have 48 features, which are extracted from the stem 
region and the loop region of pre-miRNAs. These features include some unnecessary features, 
which are useless for classification. Therefore, it is necessary to select discriminative feature 
subset. Since the stems of pre-miRNAs are highly conservative, the result of first stage cluster-
ing reflects the sample distribution based on stem similarity. If a feature could reflect the con-
servation of stems well, a candidate hairpin sequence with value of the feature similar to one 
of real pre-miRNAs more likely is a real pre-miRNA. This kind of features should be selected 
first. The feature difference is defined to measure the average variation of a feature among all 
the clusters. Here, the feature difference is introduced in this study for the first time.

Suppose x is a feature and the real pre-miRNAs have been gathered into M clusters. Ni 
is the size of the ith cluster. vij is the 48-dimensional feature vector of the jth pre-miRNA in the 
ith cluster. vij[k] is the kth dimensional feature value of the jth pre-miRNA. The vector set of the 
ith cluster is Vi = {vi1,vi2,…viNi}. The mean value of the kth feature in the ith cluster is Avgik. The 
root-mean-square value of the kth feature is DAvgik. MDAvgk represents the average difference 
value of the kth feature in M clusters.

(Equation 1)

(Equation 2)

(Equation 3)

(Equation 4)
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In addition, in order to better discriminate the positive sample and the negative sam-
ple, the information gain of each feature should also be considered. Since all the features of 
pre-miRNAs are discrete, the feature discrimination is measured by information gain based 
on Shannon entropy. Suppose a feature of pre-miRNAs is x, and the entropy of x is denoted as 
H(x). When the value of feature y is known, the conditional entropy is H(x|y).

The information gain of feature x and y is IG(x,y) (Quinlan, 1993).

(Equation 5)

(Equation 6)

Classification of real or pseudo pre-miRNAs is a binary class problem. IG(c, x) is the infor-
mation gain of feature x relative to the classification feature c and IG(c, x) = H(c) - H(c|x). IG(c, x) 
are used to measure feature discrimination for the training dataset composed of real pre-miRNAs and 
pseudo pre-miRNAs. The features with greater information gain should be selected first.

However, some features have very small information gain. The features would not 
improve the classification performance and even have a negative effect on the classifier. Thus, 
they are useless features and should be avoided.

Since selected features should be consistent with the sample distribution obtained 
from the first clustering stage, the feature with lower MDAvgk value is better. Furthermore, 
the feature with greater information gain should be selected first. The selection weight (SW) is 
used to represent the weight of each feature to be selected. The SW of the kth feature is denoted 
as SWk. Because the information gain (IGk) is more important than the average feature differ-
ence (MDAvgk), MDAvgk is multiplied by 1/3 to coordinate the proportion between IGk and 
MDAvgk. The weight 1/3 is determined according to prior experience (Ng and Mishra, 2007).

The process of feature selection includes four steps. 1) The feature difference of 48 
features is calculated according to the clustering result of the first stage. 2) All the positive sam-
ples and negative samples are combined to determine the entropy value and information gain 
of each feature. 3) The selection weight of each feature is calculated. All values of each feature 
are normalized to have real values in the interval (0, 1). 4) A threshold is assigned, and only the 
features with SW greater than the threshold are selected. The threshold is 0.01, which is deter-
mined according to prior experience (Sewer et al., 2005; Ng and Mishra, 2007). Table 1 in the 
section of ‘Results and Discussion’ shows the selected 27 features and their selection weight.

Clustering based on sample distribution

The first clustering stage gathers the pre-miRNAs with similar stems together, which 
could be as the initial clusters of second clustering stage. The real/pseudo pre-miRNAs are 
clustered further according to their position in 27-dimensional sample space. Since the 27 
discriminative features are selected, each real/pseudo is represented with a 27-dimensional 
feature vector. The clustering algorithm of second stage is as follows.

Algorithm: Clustering algorithm based on sample distribution.
Input: M clusters based on stem similarity.
Output: M clusters based on sample distribution.
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1.	 M sample clusters obtained from the first stage are as the initial clusters.
2.	 The central points of M clusters are calculated, denoted as m1, m2, …, mM.
3.	 While any of m1, m2, …, and mM is changed........
4.	Calculate the distance between any one of samples v and m1, m2, …, mM, respectively.  

The distance between v and mi is dvmi, where vt means the inverse of v.

(Equation 7)

(Equation 8)

(Equation 9)

5.	 v joins the nearest cluster.
6.	 m1, m2, …, and mN are calculated again.
7.	 End While.

Sample selection based on density

After the second stage clustering, the samples closer to each other in 27-dimensional 
space are gathered into the same cluster. The training samples are selected according to the 
density of each cluster. The sample selection process of the ith cluster is as follows.

1.	 For the central point of the ith cluster, its 27-dimensional feature vector is mi. The number 
of samples in the ith cluster is Ni. vk is the feature vector corresponding to the kth sample.

2.	The distance between the kth sample and the central point mi is calculated, denoted 
as dk. The radius of the ith cluster is ri and ri = max(dk) (1 ≤ k ≤ Ni).

3.	Suppose the selection rate of sample space is 1/n. That is, Ni/n samples in the ith 
cluster would be selected. The number of selected samples is denoted as Pi = Ni/n.

4.	Suppose mi is the center of a circle, draw two circles with radius 0r and (1/Pi)r, re-
spectively. The region between these two circles is A0. The coverage degree of each 
sample s in A0 is calculated, which is denoted as C(s). C(s) represents the number 
of samples whose nearest neighbor sample is s in A0. The sample s with the greatest 
C(s) value is selected as a training sample.

5.	We set (1/Pi)ri as the step length and compute the coverage degree of samples in 
the region Ak between two circles with the radius (1/Pi)kri and (1/Pi)(k + 1)ri (1 ≤ k 
≤ Pi - 1), respectively. The sample in Ak with greatest coverage degree is selected. 
The training dataset is composed of all the selected samples.

Evaluation method

The selected training datasets are used to construct an SVM classifier to evaluate our 
method. The performance of the classifier is measured with three parameters: the sensitivity 
(SE), the specificity (SP), and geometric mean (Gm).
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where TP, FN, TN, and FP denote the number of real/pseudo pre-miRNAs detected/missed, cor-
respondingly. SE is the proportion of the positive samples (real pre-miRNAs) correctly classified, 
and specificity is the proportion of the negative samples (pseudo pre-miRNAs) correctly classified.

Implementation

Our sample selection method is implemented as miRNASampleSelect in Java JDK 1.6. 
miRNASampleSelect can be used in any OS with JVM, including Windows, Linux, Unix, etc. 
After sample selection, the SVM classifier is created with the libSVM2.9 (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/). Discretization of feature value could help to compute the entropy 
and information gain of each feature. We discretize a group of values of each feature with the 
discretization package supported by Weka 3.7.0.

The miRNASampleSelect offers a tool for the high-dimensional pre-miRNAs to select 
representative training dataset. The selected training dataset contributes to improve the clas-
sification performance. The feature vectors corresponding to known real pre-miRNAs and 
pseudo pre-miRNAs are put into the miRNASampleSelect as input. The output of miRNASam-
pleSelect is the positive and negative training datasets.

Complexity analysis

Suppose the size of original sample dataset is m and the average length of real/pseudo 
pre-miRNAs is l. Calculating the appearances of 4-mers takes O(ml). Clustering samples based 
on the stem similarity needs O(m). Further clustering based on the distribution of samples in 
high-dimensional space takes O(m). Given the selection rate of sample space is 1/n, the time 
cost of selecting samples according to the density of each cluster is O(m2/n). The total running 
time for whole algorithm is O(ml+m+m+m2/n). Since l<<m and n<<m, the time complexity 
of the sample selection is O(m2).

RESULTS AND DISCUSSION

Data collection

A classifier of pre-miRNAs should distinguish real human pre-miRNA hairpins from 
both pseudo hairpins and other ncRNAs. Therefore, the positive dataset should be composed 
of known human pre-miRNAs, while the negative dataset should be composed of both pseudo 
hairpins and human other ncRNAs.

Positive dataset 

In order to compare our feature selection method with the microPred’s method, we 
use the same positive dataset with microPred. Therefore, the dataset includes 695 human 
pre-miRNAs published in miRBase12.0 (Griffiths-Jones et al., 2008) instead of the current 
version miRBase15.0. After the redundant sequences have been filtered out, there are 691 
non-redundant sequences. Six hundred and sixty of these sequences are folded into hairpin 
secondary structures and the remaining 31 sequences have multi-branched loops folded with 
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the RNAfold program. In order to identify multiple types of pre-miRNAs, all of these 691 
non-redundant pre-miRNAs are used as positive dataset.

Negative dataset

The 8494 human pseudo hairpin sequences, which are extracted by triple-SVM from the 
protein coding regions, are used as negative dataset. These pseudo pre-miRNAs have been previously 
used in triple-SVM, MiPred, miPred, and microPred. The criteria of selecting the pseudo-miRNAs 
are: minimum of 18 base pairings on the stem of hairpin structure, maximum of -15 kcal/mol free 
energy of secondary structure, and no multiple loops, which ensures that the extracted pseudo pre-
miRNAs are similar to real pre-miRNAs. In addition, the negative dataset also includes 754 other 
ncRNAs collected by microPred, where some ncRNAs have multiple loops, total 9248 sequences.

Positive and negative training dataset

With the sample selection method, 311 pre-miRNAs are selected from 691 known real pre-
miRNAs as the positive training set and 411 pseuso pre-miRNAs are selected from 9248 pseudo pre-
miRNAs as the negative training set. The selected training dataset is referred to as “722 training dataset”.

Positive and negative testing dataset

Two groups of positive and negative testing dataset are created. The first group is com-
posed of 350 real pre-miRNAs and 350 pseudo pre-miRNAs. The 350 real pre-miRNAs are 
randomly selected from the remaining positive dataset excluding the 311 real pre-miRNAs. 
The 350 pseudo pre-miRNAs are selected from 8494 pseudo pre-miRNAs excluding the 411 
pseudo pre-miRNAs. The first group of testing samples is referred to as “700 random test-
ing dataset”. In the second group, the positive testing dataset is composed of 691 known real 
pre-miRNAs and the negative dataset consists of 754 ncRNAs. The second group of testing 
samples is referred to as “1445 real and ncRNA testing dataset”. It is well known that some 
ncRNAs are often wrongly classified as real pre-miRNAs for many classifiers. Therefore, all 
the ncRNAs are added to the second negative testing dataset.

Feature subset selection result

Each real/pseudo pre-miRNA originally has 48 features, which include some useless 
features. Therefore, the most discriminative feature subset is selected, which contributes to the 
better description of the distribution of real/pseudo pre-miRNAs in sample space. The selected 
27 features, the corresponding information gain, the MDAvg, and the selection weight are 
shown in Table 1, which are sorted according to their selection weight.

We found that 16 dinucleotide frequencies (AA%,AC%,AG%,…,UU%) were nearly 
useless and they were not selected by the feature selection method. There is a strong consensus 
result in miPred that indirectly confirms our selected feature subset. It is well studied that 
the stem-loop structures of pre-miRNAs is thermodynamically stable. Most of the selected 
features are related to the thermodynamic stability of the secondary structures. It further 
confirms the effectiveness of the selected features.
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When the real/pseudo pre-miRNAs are represented by different feature subsets, the 
sample selection algorithm would select different training datasets. The classification per-
formances of the classifiers learning from these different training datasets are compared, as 
shown in Table 2. Three feature subsets include 21 features selected by microPred with J-M 
Distance, 20 features with smaller feature difference, and 27 features selected based on selec-
tion weight. For each feature subset, 311 real pre-miRNAs and 411 pseudo pre-miRNAs are 
selected by the sample selection method to train an SVM classifier. Three SVM classifiers 
are tested on the 700 random testing dataset. Obviously, the selected feature subset based on 
selection weight achieves better classification performance compared to the other two feature 
subsets. This further confirms the importance of the feature selection in the sample selection.

Rank	 AttrName	 IG (c, attr)	 MDAvg	 SW	  Rank	 AttrName	 IG (c, attr)	 MDAvg	 SW

  1	 Freq	 1		  0.295	 0.901	 15	 |A-U|/L	 0.317	 0.251	 0.233
  2	 Diversity	 0.779	 0.297	 0.681	 16	 %(A-U)/stems	 0.232	 0.078	 0.206
  3	 MFEI1	 0.647	 0.075	 0.621	 17	 Tm	 0.303	 0.305	 0.202
  4	 ZG	 0.633	 0.181	 0.573	 18	 EAFE	 0.264	 0.251	 0.181
  5	 dP	 0.504	 0.264	 0.415	 19	 ZF	 0.249	 0.315	 0.143
  6	 ZP	 0.471	 0.247	 0.388	 20	 dF	 0.161	 0.103	 0.126
  7	 ZQ	 0.401	 0.117	 0.362	 21	 dH/L	 0.154	 0.102	 0.119
  8	 dQ	 0.376	 0.132	 0.332	 22	 dH	 0.158	 0.207	 0.089
  9	 Avg_Bp_Stem	 0.358	 0.114	 0.320	 23	 MFEI4	 0.131	 0.137	 0.085
10	 ZD	 0.358	 0.130	 0.314	 24	 Diff	 0.136	 0.226	 0.061
11	 MFEI3	 0.316	 0.039	 0.303	 25	 dS/L	 0.097	 0.131	 0.054
12	 MFEI2	 0.301	 0		  0.301	 26	 dS	 0.116	 0.205	 0.047
13	 dG	 0.317	 0.085	 0.288	 27	 %G+C	 0.100	 0.263	 0.012
14	 dD	 0.338	 0.166	 0.283

Table 1. Selected features ranked according to their selection weight.

Training sample selection result

The selected training samples with the miRNASampleSelect are used to create the SVM 
classifier, referred to as miRNAPred. The performances of classifiers trained with different sample 
selection methods, including SMOTE in microPred and the miRNASampleSelect, are compared.

As shown in Table 3, 5-fold cross-validation is performed on the training data to com-
pare the performance of two classifiers. We performed 10 repeated evaluations for each testing 
dataset and averaged the results. The result of 5-fold cross-validation with SMOTE is obtained 
from the publication on microPred. Other testing results of microPred are obtained through 
accessing the web server of microPred (http://web.comlab.ox.ac.uk/people/manohara.rukshan.
batuwita/microPred.htm). The experimental results indicate that the classifier miRNAPred out-
performs microPred significantly. First, SE increased by 9.5% on average. The improvement of 
SE could be of benefit for detecting more new pre-miRNAs. Second, SP increased by 14.82% 

Feature selection method	 Number of selected features 		  Classification results (%)

	 	 SE	 SP	 Gm

J-M (microPred)	 21	 91.69	 93.25	 92.47
Feature with smaller feature difference	 20	 83.95	 97.11	 90.29
Feature selection based on selection weight	 27	 99.74	 99.74	 99.74

Table 2. Classification result with different feature subsets.

SE = sensitivity; SP = specificity; Gm = geometric mean.
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Sample selection method	 Dataset		  Classification results (%)

	 	 SE	 SP	 Gm

SMOTE	 Training dataset generated by microPred	 90.02	 97.28	 93.58
(5-fold cross-validation)
miRNASampleSelect	 722 training dataset	 99.40	 99.34	 99.37
(5-fold cross-validation)
SMOTE	 700 random testing dataset	 90.00	 77.43	 83.48
miRNASampleSelect	 	 99.71	 99.14	 99.42
SMOTE	 1445 real and ncRNA testing dataset	 90.16	 77.59	 83.64
miRNASampleSelect	 	 99.57	 98.28	 98.93

on average. Specificity is helpful to greatly decrease false predictions because of the large size of 
genome sequences. Therefore, the improvement of SP is a very significant increase. miRNAPred 
is nearly 12% greater in total accuracy. Thus, miRNAPred achieves higher and, especially, much 
more reliable classification results than microPred in terms of both sensitivity and specificity.

Almost all the pre-miRNAs with multiple loops in the testing dataset could be classified 
correctly, which indicates that, unlike previously reported methods, our method could be sensitive 
enough to identify pre-miRNAs with multi-loops. There are 4 pre-miRNAs that are easily mis-
judged in the positive testing dataset composed of 691 known pre-miRNAs. There are multiple big 
loops in the precursor of hsa-mir-375. All the precursors of hsa-mir-1308, hsa-mir-1469, and hsa-
mir-1825 only include 15 bp. Thus, their secondary structures are not stable enough. The description 
above might be the reason that our classifier could not classify these 4 pre-miRNAs correctly.

CONCLUSION

We investigated a novel sample selection method (miRNASampleSelect) according to 
the characteristics of pre-miRNAs. miRNASampleSelect effectively solved the class imbal-
ance problem in classification of real pre-miRNAs and pseudo pre-miRNAs. The classifier 
miRNAPred trained with the selected samples achieved higher sensitivity and specificity.

The 27 discriminative features are selected to describe the distribution of real/pseudo 
pre-miRNAs. These features could also be used in the other kinds of classification models, 
such as naive Bayes and random forest, which contribute to improving their classification 
performance. The 311 real pre-miRNAs and 411 pseudo pre-miRNAs are selected as training 
samples. These training samples could be used to train other SVM classifiers, such as triplet-
SVM, MiPred, miPred, and microPred, to increase their classification accuracy.
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