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The Low Frequency Approximation of the Sound Radiation

Power of Two Vibrating Circular Pistons Embedded in Two

Di�erent Rigid Planes of a Three-wall Corner
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The problem of sound radiation by a system consisting of two vibrating circular pistons embedded in two of
three di�erent planes perpendicular to one another forming a three-wall corner is considered. The earlier published
results dealing with the sound radiation by sources vibrating in a three-wall corner are the basis of analysis.
According to the earlier studies, the exact formulae for acoustic power of radiation of two circular pistons are used.
The formulae are expressed as double Fourier integrals. The active and reactive, self and mutual, components
are separated from them as well as the corresponding expressions of the acoustic power of mirror images of the
piston sources. The acoustic power of the two sources are expressed in the form of the Rayleigh formulae whereas,
in the case of the mirror images, it is expressed in the form of the single series expansion containing spherical
Bessel and Neumann functions. In the case of the mutual acoustic power of the sources, approximate formulae are
presented for low frequencies. On the basis of the results obtained, the corresponding formulae valid for a two-wall
corner are presented as the limiting transitions. All the results presented can be useful, e.g. in designing the room
acoustics and outdoor system everywhere the free �eld conditions are disturbed by the acoustic waves re�ected at
rigid vertical walls for the wavelengths being considerably shorter than the geometric sizes of the walls.

DOI: 10.12693/APhysPolA.125.A-135

PACS: 43.20.Bi, 43.20.El, 43.20.Fn, 43.20.Rz

1. Introduction

The problems of sound radiation by vibrating surface
sources embedded in rigid ba�es as well as the problems
of acoustic waves scattering on the obstacles in the vicin-
ity of such rigid ba�es are analyzed by scientists through-
out the world. A number of studies were published so far,
dealing with such phenomena appearing in the regions
partially limited by a single ba�e, most often being �at,
cylindrical, or spherical. Hasheminejad and Alibakhshi
have undertaken the problem of the ultrasound scattering
on compressible cylinders [1]. Leppington has solved the
problem of sound radiation by a convex cylinder in the in-
terval of short waves [2]. Lee and Eom considered the in-
cident acoustic wave transmission through an aperture in
a rigid wall penetrated by electric cable of circular cylin-
drical cross-section. For this purpose, they solved the
system of three coupled wave equations [3]. Levine and
Leppington developed the e�ective acoustic damping fac-
tor of vibrations of the clamped circular plate [4]. They
included the backward e�ect of the �uid on the plate's
vibrations. Hashimoto, Arenas and Crocker applied the
resistance matrix method to obtain the acoustic radiation
e�ciency of vibrating �at circular, annular, and rectan-
gular plates based on their vibration velocity surface dis-
tribution [5�7]. Gorazd et al. examined the acoustic
pressure �eld inside a cylindrical duct [8]. Measurements
of the acoustic pressure were carried out for two types
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of hard-walled cylindrical ducts corresponding to models
known as the in�nite duct and the semi-in�nite duct. The
axisymmetric modes were excited only and good confor-
mity between measurements and theoretical predictions
was achieved in the frequency interval of 0.8�5.5 kHz.
Snakowska has presented the spatial distribution of en-
ergy radiated from the outlet of a cylindrical duct in case
of multimodal excitation [9]. The semi-in�nite un�anged
hard duct was considered together with the Neumann
boundary conditions. The solutions were obtained using
the Wiener-Hopf method. The theoretical results were
proposed and the numerical analysis presented for the
acoustic power radiated outside the duct. Mellow has
proposed an interesting method to obtain a low frequency
approximation of a vibrating resilient disk embedded in
a rigid ba�e [10]. First, he transformed the integration
path in the plane of complex variable for the acoustic
power expression, and then used the King integral and
the Gegenbauer summation theorem together with the
Lommel expansion to obtain a relatively compact ana-
lytic solution for the axisymmetric radiation useful for
numerical calculations. The computations of the sound
power radiated by a plane vibrating structure were based
by Arenas [11] on the surface velocity information only.
For this purpose he used the method of the radiation re-
sistance matrix of the structure. He applied his method
to the sound power of the structural axisymmetric modes
of clamped and simply-supported circular ba�ed plates.

A number of sound and vibration canceling algorithms
were developed achieving a signi�cant decrease in both
vibrations and sound power radiated. Leniowska located
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symmetrically a system of piezoelectric actuators and
applied a linear state model to develop the control al-
gorithm including the e�ects of viscous damping of the
plate as well as the �uid damping [12]. She has obtained
a signi�cant reduction of the amplitude of the plate's vi-
bration velocity. Wiciak performed a similar experiments
using �ve piezoelectric elements attached to a clamped
aluminum plate [13]. One of the elements was applied as
the excitation, two of them as control actuators, and the
remaining two as sensors. The structural noise was mea-
sured and a signi�cant local noise reduction was achieved,
although with an increase in the plate vibrations ampli-
tude distribution. Paweªczyk presented a comprehensive
review of recent noise control techniques [14] addressing
several speci�c aspects. He compared single-channel and
multi-channel systems and formulated some general re-
quirements of an e�cient control system as well as its
limitations providing some fundamental examples. Zaw-
ieska presented some selected results of analyses and sim-
ulations carried out for the development of a system for
active reduction of noise radiated by high power electric
transformers [15]. His analysis covers mathematical de-
scription of the sound radiation by transformer enclosures
modeled as vibrating rectangular plates. Additionally,
the transformers were modeled by the appropriate arrays
of loudspeakers. Bra«ski [16] considered active vibration
control of an asymmetric structure such as a vibrating
triangular plate. He proposed an algorithm focusing only
on the second mode shape of the plate by selecting the
appropriate frequency interval. He obtained considerable
vibration velocity reduction as well as a good agreement
with measurements performed at the experimental setup.
Considerably fewer studies deal with solutions for the

regions partially limited by systems of ba�es. Hashem-
inejad and Azarpeyvand analyzed the sound radiation of
the vibrating spherical surface located in the vicinity of
a two-wall corner [17]. Rdzanek and Rdzanek presented
the Green's function for the problem of sound radiation
by a vibrating circular source embedded in the region
of two-wall corner and three-wall corner [18]. Rdzanek
and Szemela analyzed the acoustic power reduction in
the system of two vibrating circular pistons in a three-
wall corner [19]. They limited their considerations to
presenting the integral formulations. Szemela, Rdzanek,
Rdzanek, and Pieczonka presented the acoustic radiation
power of a vibrating circular membrane or plate embed-
ded in the region of a two-wall corner and a three-wall
corner [20�22]

2. The complex acoustic radiation power

Two circular pistons vibrate harmonically. They are
located on the two di�erent planes in the region of the
three-wall corner formed by three �at rigid ba�es per-
pendicular to each other (Fig. 1). The local polar co-
ordinate systems are assumed: one with the origin at
(x01, y01), and the other with the origin at (x02, z02). The
radii of the pistons are a1 and a2, respectively.
As mentioned in the Introduction, integral formulae for

the complex acoustic power were presented earlier in [19].

Fig. 1. Arrangement of the two sources and their im-
ages: (a) the perspective view; (b) the projection on
the xy plane. The solid lines connect the centers of the
sources and their images, the dashed lines are drawn on
the xz plane, and the dotted lines on the xy plane.

It is obvious, however, that numerical calculations involv-
ing integral formulae are considerably time-consuming.
Therefore, this study focuses on the low frequency ap-
proximation of the self- and mutual acoustic power of
radiation. For this purpose, the total acoustic power is
expressed as

N =

2∑
i,j=1

Nij , Nij =
1

2

∫
Si

pjv
∗
i dS, (1)

where v∗dS ≡ v∗ · dS = (v∗n) · (ndS) for any surface S
enclosing the sources, S1 and S2 are the areas of pistons
of radii a1 and a2, and v∗ is the conjugate value of v.
Since only the surface sources appear that are located at
the boundary of the region under consideration, the sur-
face S is selected so that it abuts closely on the sources'
surfaces.

If i = j = 1, 2, the acoustic self-power of one of the
two considered vibrating pistons is considered. If, on the
other hand, i 6= j, the acoustic mutual power of the two
pistons is regarded. The former is presented in consid-
erable details in [19] and in Appendix. The latter, the
time-averaged acoustic mutual power of radiation of the
second source under the acoustic pressure radiated by the
�rst source, is formulated as follows (cf. [19])

N21 = 8%0ca1a2v1v
∗
2−
∫ ∞
0

e ikz02
√
1−τ2

J1(ka1τ)

×F21(τ)dτ√
1− τ2

, (2a)

where p1 is the acoustic pressure amplitude of the �rst
source exerted at the second source, v1 ≡ v01 = const,



The Low Frequency Approximation of the Sound Radiation Power. . . A-137

v2 = v02 exp(iδ) and v02 = const are the vibration ve-
locity amplitudes of the two sources, −

∫
is the principal

value, and

F21(τ) =

∫ π/2

0

f̄21(cosϕ)ḡ(sinϕ)dϕ

=

∫ π/2

0

f̄21(sinϕ)ḡ(cosϕ)dϕ, (2b)

f̄21(u) =
J1
(
ka2
√

1− τ2u2
)

√
1− τ2u2

cos(ky01τu), (2c)

ḡ(v) = cos(kx01τv) cos(kx02τv). (2d)

Similarly, the time-averaged acoustic mutual power of
radiation of the �rst source under the acoustic pressure
radiated by the second source is formulated as (cf. [19])

N12 = 8%0ca1a2v
∗
1v2−
∫ ∞
0

e iky01
√
1−τ2

J1(ka2τ)

×F12(τ)dτ√
1− τ2

, (3a)

where p2 is the acoustic pressure amplitude of the second
source exerted at the �rst source, and

F12(τ) =

∫ π/2

0

f̄12(cosϕ)ḡ(sinϕ)dϕ =

∫ π/2

0

f̄12(sinϕ)ḡ(cosϕ)dϕ, (3b)

f̄12(u) =
J1(ka1

√
1− τ2u2)√

1− τ2u2
cos(kz02τu), (3c)

and ḡ(v) is de�ned by Eq. (2d).

Further, we focus on Eq. (2a) and rearrange it by using
identity 2 cosα cosβ = cos(α − β) + cos(α + β) and the
Lommel expansion

J1

(
ka2
√

1− τ2 cos2 ϕ
)

√
1− τ2 cos2 ϕ

=

∞∑
m=0

(
ka2
2

)m
Jm+1(ka2)

m!
τ2m(cosϕ)2m. (4)

This expansion is used for the integrand in Eq. (2a),
since the integrals over intervals (0, 1) and (1,∞) are
convergent. The convergence of the integral over in-
terval (1,∞) is improved by the exponential function

exp(−kz02
√
τ2 − 1) (the convergence is assured). Thus

we obtain

n21 =
N21

%0cv1v∗2
= 4a1a2−

∫ ∞
0

e ikz02
√
1−τ2

√
1− τ2

J1(ka1τ)dτ

×
∫ π/2

0

[
cos (k|x01 − x02|τ sinϕ)

+ cos [k(x01 + x02)τ sinϕ]
]

cos(ky01τ cosϕ)

×
J1

(
ka2
√

1− τ2 cos2 ϕ
)

√
1− τ2 cos2 ϕ

dϕ. (5a)

The following denotation is assumed:

n
(−)
21 =n21−n(+)

21 =4a1a2−
∫ ∞
0

e ikz02
√
1−τ2

√
1− τ2

J1(ka1τ)dτ

×
∫ π/2

0

cos (k|x01 − x02|τ sinϕ) cos(ky01τ cosϕ)

×
J1

(
ka2
√

1− τ2 cos2 ϕ
)

√
1− τ2 cos2 ϕ

dϕ. (5b)

The quantity n(+) is obtained if |x01−x02| is replaced by
(x01 + x02) in Eq. (5b). We use the Lommel expansion

(4) in the expression for n
(−)
21 obtaining

n
(−)
21 = 4a1a2

∞∑
m=0

(
ka2
2

)m
Jm+1(ka2)

m!

×−
∫ ∞
0

e ikz02
√
1−τ2

√
1− τ2

J1(ka1τ)τ2mdτ

×
∫ π/2

0

cos (k|x01 − x02|τ sinϕ) cos(ky01τ cosϕ)

×(cosϕ)2mdϕ. (5c)

Now, it is convenient to use the following expan-
sion [23]

cos2m ϕ =
1

22m

×

[(
2m

m

)
+ 2

m−1∑
s=0

(
2m

s

)
cos 2(m− s)ϕ

]
, (5d)

where
(
2m
s

)
= 2m!

s!(2m−s)! , and then take 1/4 of [24]:∫ 2π

0

cos(αr cosϕ) cos(βr sinϕ) cosnϕdϕ =

2π cosnϕ0Jn(Γr), (5e)

where ϕ0 = arcsin(α/γ), γ = (α2 + β2)1/2, to express
Eq. (5c) in the form

n
(−)
21

2π
= J1(ka2)f0,0 +

∞∑
m=1

(
ka2
2

)m
Jm+1(ka2)

22mm!)
(5f)

×

{(
2m

m

)
fm,m + 2

m−1∑
s=0

(
2m

s

)
cos [2(m− s)ϕ0] fm,s

}
,

where

fm,s = −
∫ ∞
0

e ikz02
√
1−τ2

√
1− τ2

J1(ka1τ)J2(m−s)(kr0τ)

×τ2mdτ (5g)

and r0 =
[
(x01 − x02)2 + y201

]1/2
(cf. Fig. 1).

Further, the formula obtained, i.e. Eq. (5f), is used
as the basis for analysis of the active and reactive
acoustic mutual power of radiation generated by the vi-
brating pistons located in a three-wall corner, i.e. of
N21 = N ′21 − iN ′′21 for steady vibrations, for a single
circular frequency ω, for the following time dependencies
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p(r, t) = p(r) exp(−iωt) and v∗(r, t) = v∗(r) exp(−iωt),
where t is time. Obviously, the integral in Eq. (3a) is
rearranged in a similar way.

3. The mutual acoustic power of radiation

Equation (5f) is useful for calculations of the mutual
active acoustic power of radiation if the in�nite interval
of integration in Eq. (5g) is limited to the interval (0, 1).
Additionally, the real component of the exponential func-
tion is to be used only giving

f ′m,s =

∫ 1

0

cos
(
kz02
√

1− τ2
)

√
1− τ2

J1(ka1τ)

×J2(m−s)(kr0τ)τ2mdτ. (6)

Since ka1 < kr0, we use the substitution 1−τ2 = x2 in
Eq. (6) for f ′0,0, and then we use the Lommel expansion

J1
(
ka1
√

1− x2
)

√
1− x2

= J1(ka1)

+

∞∑
n=1

(
ka1
2

)n
Jn+1(ka1)

n!
x2n (7a)

including only the �rst term. Further, we use the for-
mula [23], p. 722, Eq. 6.677.6∫ 1

0

J0

(
kr0
√

1− x2
)

cos(kz02x)dx =
sin(kl12)

kl12
(7b)

where l12 = (r20 +z202)1/2 is the distance between the cen-
ter points of the two pistons (cf. Fig. 1). Now, Eq. (6)
assumes the form

f ′0,0 = J1(ka1)
sin(kl12)

kl12
+

∞∑
n=1

(
ka1
2

)n
Jn+1(ka1)

n!

×
∫ 1

0

J0

(
kr0
√

1− x2
)

cos(kz02x)x2ndx. (7c)

If ka1 � 1, we neglect small terms of the order of (ka1)3

and higher, which yields

f ′0,0 '
1

2
ka1

sin(kl12)

kl12
. (7d)

If, additionally, ka2 � 1, we obtain

n
′(−)
21 ' π

2
k2a1a2

sin kl12
kl12

(7e)

from Eqs. (5f) and (7d) by neglecting all the small terms
of the order of (ka1)3. We obtain also (cf. Fig. 1)

n
′(+)
21 ' π

2
k2a1a2

sin kh12
kh12

(7f)

where h12 is the distance between central points of the
source 1 and the mirror image of source 2.

If ka1, ka2 � 1 and v1v
∗
2 is real, the active mutual

acoustic power (according to Eqs. (5a) and (5b)) assumes
the form

Re
N21

%0cv1v∗2
= n′21 = n

′(−)
21 + n

′(+)
21

' π

2
k2a1a2

(
sin kl12
kl12

+
sin kh12
kh12

)
. (7g)

The active mutual acoustic power of radiation of the
source 1 under the acoustic pressure exerted by the
source 2 (the basis integral formula was presented in [19])
is calculated in a similar way, and assumes the form

Re
N12

%0cv2v∗1
= n′12

' π

2
k2a1a2

(
sin kl12
kl12

+
sin kd12
kd12

)
(7h)

where d12 is the distance between central points of the
source 2 and the mirror image of source 1 (cf. Fig. 1).
If it is assumed additionally that the phase di�erence of
the vibration velocity amplitude on both pistons is equal
to zero, δ = 0, then summing up the results given by
Eqs. (7g) and (7h) yields (d12 = h12)

Re
N21 +N12

%0cv1v2
= πk2a1a2

(
sin kl12
kl12

+
sin kh12
kh12

)
(7i)

which represents the sum of the active mutual acoustic
power of radiation of two vibrating pistons located on
two di�erent walls of a three-wall corner valid for small
values of the interference parameters ka1, ka2 � 1.

4. The reactive mutual acoustic power of

radiation

Eqs. (5a), (5b), and (5f) are used as the basis of analy-
sis of the reactive mutual acoustic power where two kinds
of integrals are considered, one over interval (0, 1) and the
other over interval (1,∞). Now, we consider the imagi-
nary counterpart of the integral in Eq. (5g), represented
by integrals

fFin.m,s =

∫ 1

0

sin
(
kz02
√

1− τ2
)

√
1− τ2

J1(ka1τ)

×J2(m−s)(kr0τ)τ2mdτ (8)

and

f Inf.m,s =

∫ ∞
1

e−kz02
√
τ2−1

√
τ2 − 1

J1(ka1τ)

×J2(m−s)(kr0τ)τ2mdτ. (9)

We substitute τ = sinϑ in Eq. (8) for fFin.0,0 , use
the expansion series of the Bessel function J0(kr0 sinϑ),
whereas in the case when ka1 � 1 we approximate the
function J1(ka1τ) by ka1τ/2 thus obtaining

fFin.0,0 =
ka1
2

∞∑
n=0

(−1)n
(kr0/2)2n

(n!)2

×
∫ π/2

0

sin(kz02 cosϑ) sin2n+1 ϑdϑ. (10a)

After using the formula [23], p. 942, Eq. 8.551.1:

Hν(z) =
2
(z

2

)ν
√
πΓ

(
ν +

1

2

)
×
∫ π/2

0

sin(z cosϕ) sin2ν ϕdϕ (10b)

valid for Reν > −1/2, we have
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fFin.0,0 =
√
π(ka1/4)

∞∑
n=0

(−1)n
(kr0/2)2n

n!

×
(

2

kz02

)n+1/2

Hn+1/2(kz02) (10c)

where Hν(z) is the Struve functions of the order ν. This
formula is useful for numerical calculations when z02 > r0
and kr0 < 1.

We will obtain another representation of fFin.0,0 if we
use the expansion series of the function sin(kz02 cosϑ) in
Eq. (10a). Then

fFin.0,0 =
√
π(ka1/4)

∞∑
s=0

(−1)s
(kz02/2)2s+1

Γ (s+ 3/2)

×
(

2

kr0

)s+1

Js+1(kr0) (10d)

where the following formulae are used∫ π/2

0

(cosϑ)2(s+1)−1(sinϑ)2(n+1)−1dϑ =

1

2

s!n!

(s+ n+ 1)!
, (10e)

s!

(2s+ 1)!
=

√
π

22s+1Γ (s+ 3/2)
. (10f)

In contrast with Eq. (10c), Eq. (10d) is useful for numer-
ical calculations when z02 < r0 and kz02 < 1.

The multiple expansion series, e.g. the Lommel or
Gegenbauer expansions, are more complex in numerical
calculations in the case of the function fFin.m,m, f

Fin.
m,s and

are not presented herein.

Besides the reactive interactions expressed by the in-
tegral over interval (0, 1), it is also necessary to consider
the reactive interactions expressed by the integral over
interval (1,∞). Eqs. (5f) and (5g) are also the basis of
analysis. Referring to Eq. (5f) we obtain

n
(−)Inf.
21 = nInf.21 − n

(+)Inf.
21 = 2πJ1(ka2)f Inf.0,0

+2π

∞∑
m=1

(
ka2
2

)m
Jm+1(ka2)

22mm!

{(
2m

m

)
f Inf.m,m

+2

m−1∑
s=0

(
2m

s

)
cos [2(m− s)ϕ0] f Inf.m,s

}
, (11a)

where functions f Inf.0,0 , f Inf.m,m and f Inf.m,s are de�ned by
Eq. (9). The example of integration is presented for the

function f Inf.m,s , where substitution x =
√
τ2 − 1 is used

giving

f Inf.m,s =

∫ ∞
0

e−kz02xJ2(m−s)(kr0
√
x2 + 1)

×J1(ka1
√
x2 + 1)√

x2 + 1
(x2 + 1)mdx. (11b)

The Bessel function of the �rst order is expressed using
the Lommel expansion (cf. Eq. (4)) whereas the Bessel
function of the order 2(m − s) is expressed using the

Gegenbauer expansion [23]

Jν
(
a
√
x2 + 1

)
(
√
x2 + 1)ν

=

(
2

ax

)ν ∞∑
r=0

(−1)r
(2r + ν)Γ (r + ν)

r!

×J2r+ν(a)J2r+ν(ax) (11c)

where ν 6= 0,−1,−2, . . .. Assuming that m = 1, 2, . . ., it
is obtained that

f Inf.m,s =

∞∑
q=0

(
ka1
2

)q
Jq+1(ka1)

q!

∞∑
n=0

m−s∑
w=0

(−1)n+q

×
(
m− s
w

)(
2

kr0

)2m−2s
(2n+ 2m− 2s)

n!

×Γ (n+ 2m− 2s)J2n+2m−2s(kr0)

∫ ∞
0

e−kz02x

×J2n+2m−2s(kr0x)x2q+2w−2m+2sdx, (11d)

where the Newton binomial theorem is used,

(x2 + 1)m−s =

m−s∑
w=0

(
m− s
w

)
x2w. (11e)

The following integral formula is further used [23]∫ ∞
0

e−αxJν(βx)xµ−1dx = Γ (ν + µ)
(
α2 + β2

)−µ/2
×P−νµ−1

(
α
/√

α2 + β2
)
, (11f)

if α > 0, β > 0, Re(ν + µ) > 0. Assuming in Eq. (11d)
that ν = 2n+2m−2s > 0, and µ = 2q+2w+2s−2m+1,
ν + µ = 2n+ 2q + 2w + 1 > 0, leads to

f Inf.m,s =

(
2

kr0

)2m−2s ∞∑
q=0

(
ka1
2

)q
Jq+1(ka1)

×
∞∑
n=0

(−1)n+q(2n+ 2m− 2s)
Γ (n+ 2m− 2s)

n!

×Γ (2n+ 2q + 2w + 1)

q!

m−s∑
w=0

(
m− s
w

)

×
P
−2(n+m−s)
2(q+w+s−m)

(
z02

/√
z202 + r20

)
[(kz02)2 + (kr0)2]

q+w+s−m+1/2

×J2n+2m−2s(kr0), (11g)

where Pmn (x) are the associated Legendre polynomials,
and Pmn (x) = 0 for m > n. The expression in Eq. (11g)
can also be presented in another form if the following for-
mula ([23], p. 700, Eq. 6.621.4) is used∫ ∞

0

xm+1 e−αxJν(βx)dx = (−1)m+1β−ν
dm+1

dαm+1

×


(√

α2 + β2 − α
)ν

√
α2 + β2

 (11h)

instead of Eq. (11f), where β > 0, Reν > −m − 2 and
2n > −2q − 2w − 1.
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While calculating the integral in Eq. (9) for f Inf.m,m, the

substitution x =
√
τ2 − 1 is used, the Bessel function of

the zero order is expressed using the Lommel expansion
whereas the Bessel function of the �rst order is replaced
with its Gegenbauer expansion, and the Newton binomial
theorem is used (x2 + 1)m =

∑m
w=0

(
m
w

)
x2m. This leads

to

f Inf.m,m =
2

ka1

∞∑
q=0

(kr0/2)qJq+1(kr0)

q!

∞∑
n=0

(−1)n+q

×(2n+ 1)J2n+1(ka1)

m∑
w=0

(
m

w

)∫ ∞
0

e−kz02x

×J2n+1(ka1x)x2q+2w−1dx (12)

and after using Eq. (11f), to

f Inf.m,m =
2

ka1

∞∑
q=0

(kr0/2)q

q!
Jq+1(kr0)

∞∑
n=0

(−1)n+q

×(2n+ 1)J2n+1(ka1)

m∑
w=0

(
m

w

)
(2n+ 2q + 2w)!

×
P−2n−12q+2w−1

(
z02

/√
z202 + a21

)
[(kz02)2 + (ka1)2]

q+w . (13)

In the case of function f Inf.0,0 in Eq. (9), it is su�cient to
assume that m = 0 in Eq. (13).

The corresponding contributions to the reactive mu-
tual acoustic power of radiation ImN21 and ImN12 can
be obtained using expressions f Inf.0 , f Inf.m , and f Inf.m,s (cf.
ReN21 and ReN12).

5. The calculations of the reactive

mutual acoustic power of radiation

using the Hilbert transform

In the case when the interference parameters are small,
the sum of the active mutual acoustic powers radiated
by the two vibrating pistons (cf. Fig. 1) can be used
to calculate the reactive mutual power of the considered
sound sources. First, the active mutual acoustic power
given by Eq. (7i) is formulated as

P ′(k) = Re
N21 +N12

π
2 a1a2%0cv1v2

= 2k2
(

sin kl12
kl12

+
sin kh12
kh12

)
(14)

and then the Hilbert transform [25]

P ′′(k) =
1

π
−
∫ +∞

−∞

P ′(x)dx

x− k
(15)

is used, where P ′′(x) is the imaginary component of the
complex function P = P ′ − iP ′′.

The normalized active mutual acoustic power of ra-
diation (14) is the even function with respect to the
wavenumber k. Therefore, the Hilbert transform in
Eq. (15) can be expressed as

P ′′(k) =
2k

π
−
∫ ∞
0

P ′(x)dx

x2 − k2
. (16)

Now, Eq. (16) is applied to the right hand side of Eq. (14)
and the following formula is used [23]

−
∫ ∞
0

y sin(by)

y2 − a2
dy =

π

2
cos(ab) (17)

for b > 0, giving

P ′′(k) = Im
N21 +N12

π
2 a1a2%0cv1v2

=

2k2
(

cos kl12
kl12

+
cos kh12
kh12

)
. (18)

Finally, the complex acoustic power of radiation can be
approximated by

P = P ′ − iP ′′ = 2k2
(

e ikl12

ikl12
+

e ikh12

ikh12

)
. (19)

6. The acoustic power of radiation

in a two-wall corner
There are no real vibrating sound sources embedded

only on the plane x = 0 in the considered problem.
Therefore, it is possible to obtain results valid for the
two-wall corner directly from results presented herein for
the three-wall corner by shifting the plane x = 0 virtu-
ally to in�nity (cf. Fig. 1). This can be achieved by the
limiting transition h12 →∞, maintaining simultaneously
the distribution of piston sources invariant with respect
to one another, i.e. maintaining the distance l12 invari-
ant. Consequently, the distances |x01 − x02|, y01, and
z02 should also remain invariant. The limiting transition
d12 = h12 → ∞ is equivalent to x01 + x02 → ∞, since
y01, z02 = const. Therefore, virtual shifting of the ba�e
at x = 0 to the in�nity is equivalent to increasing the
distance between the two real sources (the �rst piston
and the second piston) and their two images to in�nity.
In the case of small interference parameter values ka1

and ka2, i.e. when the linear sizes of the surface sources
are small compared with the radiated wavelength λ, we
obtain

lim
h12→∞

P ′(k) = 2k2
sin kl12
kl12

, (20)

lim
h12→∞

P ′′(k) = 2k2
cos kl12
kl12

, (21)

and (cf. Eq. (19))

lim
h12→∞

P = 2k2
e ikl12

ikl12
. (22)

It is su�cient to neglect all the terms where cylindri-
cal functions contain arguments depending on distances
x01 + x02 and h12.

7. The numerical analysis
The total acoustic self-power of radiation of two vibrat-

ing circular pistons can be calculated numerically on the
basis of Eqs. (1), (2a), (3a), and (A.1). For convenience,
this quantity is formulated as the normalized total acous-
tic impedance of radiation

ζ = θ − iχ (23)

where
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θ =
ReN

NRef.
; χ =

−ImN
NRef.

(24)

are the normalized acoustic resistance and reactance of
radiation, respectively. The following norm is used

NRef. =

2∑
i=1

Ni,Ref.; Ni,Ref. =
1

2
%0c

∫
Si

|vi|2dSi (25)

which, in the case of a vibrating piston with a uniform
distribution of the normal component of vibration veloc-
ity, simpli�es to the form Ni,Ref. = 1

2%0c|vi|
2Si.

Since both sources are located on two di�erent walls of
the three-wall corner (cf. Fig. 1), the e�ect of their acous-
tical mutual interactions on the total acoustic power of
radiation is especially interesting. To analyze this e�ect
it is assumed additionally that the square velocities over
both sources are equal to one another, i.e. N1,Ref. =
N2,Ref.. This leads to the expression NRef. = %0c|v1|2S1

for the total reference power and allows focusing on the
e�ect of such factors as the phase di�erence between the
pistons' vibration amplitudes and their relative positions
on the total acoustic power of radiation. The numer-
ical analysis is performed assuming the following arbi-
trary values of the physical quantities: c = 340.0 m/s,
a1 = 0.10 m, a2 = 0.15 m, x01 = 0.40 m, y01 = 0.35 m,
and z02 = 0.30 m. The values assumed for the remaining
quantities are presented in Figs. 2 and 3. Three curves

Fig. 2. Normalized active (a) and reactive (b) total
acoustic power ζ = θ − iχ for x02 = 0.25 and di�erent
values of the phase di�erence δ: 0 (solid), π/2 (dashed),
and π (dotted line).

Fig. 3. Normalized active (a) and reactive (b) total
acoustic power ζ = θ − iχ for δ = 0 and di�erent val-
ues of the distance x02: 0.25 (solid), 0.40 (dashed), and
0.55 (dotted line).

presented in Fig. 2 are plotted for di�erent values of the
phase di�erence δ between the vibration amplitudes of
the two pistons, namely 0, π/2, and π, for �xed locations

of the pistons. The total acoustic power of radiation de-
pends strongly on the phase di�erence δ within the fre-
quency interval of about 0.0�2.0 kHz which applies to the
active acoustic power as well as to the reactive acoustic
power. The acoustic power achieves its maximum value
for the phase di�erence δ = 0 and the frequency f ∼ 1.0
kHz. The strongest attenuation of the acoustic power
occurs for the same frequency and the phase di�erence
δ = π. The situation described above is reversed by in-
creasing the frequency to about 1.2 kHz. With further
increase in frequency, the active acoustic power tends to
unity and the reactive acoustic power tends to zero which
means that the acoustic mutual interactions of the pis-
tons cease to a�ect the total acoustic power of radiation.
The e�ect of the re�ected acoustic waves also vanishes
due to the elongation of distances related to the acoustic
wavelengths.
The e�ect of the location change of one of the pistons

on the total acoustic power of radiation, for a �xed value
of the phase di�erence δ = 0, is presented in Fig. 3. The
three curves are shown for di�erent values of the distance
x02 between the center of the �rst source and the axis on
which the second source's center is located. The e�ect
is clearly visible within the frequency interval of about
0.0�2.0 kHz, although it is not as strong as this observed
in Fig. 2.
The total active acoustic power of radiation achieves

its maximum whereas the total reactive acoustic power
achieves its minimum for the smallest value of x02 and
the frequency of about 1.0 kHz. Any change in frequency
results in a signi�cant change in the described situation.
The e�ect vanishes completely with an increase in fre-
quency over about 2.0 kHz.

8. Concluding remarks

The total acoustic power of radiation generated by two
vibrating surface sources such as circular pistons located
in the three-wall corner consists of such components as
the acoustic self-power of the �rst source together with
the acoustic power of radiation generated by three im-
ages of the �rst source representing the re�ected acoustic
waves, the acoustic self-power of the second source to-
gether with the acoustic power of the three corresponding
images of the second source, the acoustic mutual power
of radiation by the second source under the e�ect of the
acoustic pressure exerted by the �rst source, and the
acoustic mutual power of radiation by the �rst source un-
der the e�ect of the acoustic pressure exerted by the sec-
ond source (cf. the integral in Eq. (5a)). The normalized

acoustic mutual power n
(−)
21 presented in Eq. (5b) char-

acterizes mutual interactions of the two sources, where

|x01−x02| and r0 =
[
(x01 − x02)2 + y201

]1/2
are the char-

acteristic distances (cf. Fig. 1). The normalized mu-

tual acoustic power n
(+)
21 characterizes the e�ect of the

acoustic pressure radiated by the �rst source on the sec-
ond source in such a spatial con�guration as the sec-
ond source is located in the location of its image, so in
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the plane y = 0. In the case of the normalized mu-
tual acoustic power of radiation of the �rst source under
the e�ect of the acoustic pressure exerted by the second
source, the corresponding interactions are described by

n12 = n
(−)
12 + n

(+)
12 where r0 =

[
(x01 − x02)2 + y201

]1/2
and h0 =

[
(x01 + x02)2 + y201

]1/2
are the characteristic

distances.
The expansion series used for the reactive mutual

acoustic power (Eqs. (10c), (10d) and (9)) are useful
for numerical calculations. Eqs. (11g) and (13) are also
worth noticing. They represent the expansion series con-
taining the Bessel functions of the integer order and the
associated Legendre polynomials.
In the case when the linear sizes of the piston

sources are small compared with the radiated wavelength
(ka1, ka2 � 1), their mutual interactions via the normal-
ized mutual acoustic power are presented in their elemen-
tary forms. In the case of the active components, these
are Eq. (7g) for n′21, Eq. (7h) for n

′
12, and Eq. (7i) for

n′21 + n′12. In the case of reactive components, this is
Eq. (18) and Eq. (19) for the complex form.
The limiting transition is performed consisting in shift-

ing the ba�e with no real sources to in�nity. As the
result, a description of the acoustic power of radiation
of the two pistons in the two-wall corner is obtained.
Some of the re�ected waves are removed and, as the con-
sequence, the total acoustic power of radiation assumes
smaller values in the two-wall corner compared with the
values obtained in the three-wall corner. In the case of
the two-wall corner, there is only one real source in the
plane z = 0. It has its central point at O1 and one im-
age with the center at O′′1 . Signi�cant di�erences of the
acoustic mutual power of radiation in the two-wall cor-
ner and in the three-wall corner can be deduced from
Eqs. (19) and (22).
The formulae presented herein are useful for low fre-

quencies for the following two practical reasons. Firstly,
the linear solutions presented provide a satisfactorily ac-
curate approximation for small amplitudes of vibration
velocities. Secondly, the most signi�cant e�ect of the
acoustic mutual interactions of the two vibrating pistons
are observed for low frequencies.

Appendix� The acoustic self-power of radiation

The time-averaged acoustic self-power of radiation of
the 1st source can be obtained from Eq. (1) assuming
that i = j = 1. It can be formulated as a single inte-
gral [19]

N1

%0cv1v∗1S1
= −
∫ ∞
0

J2
1 (ka1τ)

τ
√

1− τ2
[
1 + J0(2kx01τ)

+J0(2ky01τ) + J0

(
2k
√
x201 + y201τ

)]
dτ (A.1)

after using the corresponding Green's function in its
Fourier representation [18], where the quantities 2x01,
2y01, and 2(x201 + y201)1/2 are the distances between the
center of the 1st piston source and the centers of its three
images which was discussed earlier in detail in [19].

The �rst component separated from Eq. (A.1) repre-
sents the self-power of radiation by the 1st source [26]

N
(1)
1

%0cv1v∗1S1
= −
∫ ∞
0

J2
1 (ka1τ)

τ
√

1− τ2
dτ

=
1

2

[
1− J1(2ka1)

ka1
+ i

H1(2ka1)

ka1

]
. (A.2)

The remaining three components represents the acoustic
power of radiation generated by the corresponding three
images which can be expressed as [19]

N
(µ)
1

%0cv1v∗1S1
= −
∫ ∞
0

J2
1 (ka1τ)

τ
√

1− τ2
J0(2klµ,1τ)dτ, (A.3)

where µ = 2, 3, and 4; l2,1 = x01, l3,1 = y01, and

l4,1 = (x201 + y201)1/2. Further, the integral in Eq. (A.3)
is expressed using the single expansion series [26]

2−
∫ ∞
0

J2
1 (ka1τ)

τ
√

1− τ2
J0(2klµ,1τ)dτ =

∞∑
s=0

(
a1

2lµ,1

)s
×σs(ka1)h(1)s (2klµ,1) (A.4)

for lµ,1 ≥ a1, where h(1)s (x) = js(x)+ iys(x) is the spheri-
cal Hankel function of the �rst kind and order s [27], and
the following coe�cients are used [26]:

σ0(ka1) = 2J2
1 (ka1)

σ1(ka1) = 2J1(ka1)J2(ka1)
...

σs(ka1) =
2√
π
Γ (s+ 1/2)

×
s∑

m=0

Jm+1(ka1)Js−m+1(ka1)

m!(s−m)!
. (A.5)

Therefore, the total acoustic power of radiation of ith
source is expressed as the sum of four components N1 =

N
(1)
1 +

∑4
µ=2N

(µ)
1 in the case of acoustic radiation of

only the 1st piston source in the three-wall corner. The
acoustic self-power of the second source can obtained in
a similar way.
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