

Enhancing FP-Growth Performance Using Multi-threading based on

Comparative Study

Yousef K. Abu Samra, Ashraf Y. A. Maghari

Faculty of Information Technology

Islamic University of Gaza, Palestine

Abstract

The time required for generating frequent

patterns plays an important role in mining

association rules, especially when there exist a large

number of patterns and/or long patterns. Association

rule mining has been focused as a major challenge

within the field of data mining in research for over a

decade. Although tremendous progress has been

made, algorithms still need improvements since

databases are growing larger and larger. In this

research we present a performance comparison

between two frequent pattern extraction algorithms

implemented in Java, they are the Recursive

Elimination (RElim) and FP-Growth, these

algorithms are used in finding frequent itemsets in

the transaction database. We found that FP-growth

outperformed RElim in term of execution time. In this

context, multithreading is used to enhance the time

efficiency of FP-growth algorithm. The results

showed that multithreaded FP-growth is more

efficient compared to single threaded FP-growth.

1. Introduction

The problem of mining frequent itemsets arose

first as a sub-problem of mining association rules.

While Apriori algorithm is quite successful for

market based analysis in which transactions are large

but frequent items generated is small in number [1].

Frequent itemsets play an essential role in many data

mining tasks that try to find interesting patterns from

databases such as association rules, correlations,

sequences, classifiers, clusters and many more of

which the mining of association rules is one of the

most popular problems [2]. Also Sequential

association rule mining is one of the possible

methods to analysis of data used by frequent

itemsets[3]. The original motivation for searching

association rules came from the need to analyze so

called supermarket transaction data, that is, to

examine customer behavior in terms of the purchased

products. Association rules describe how often items

are purchased together. For example, an association

rule “Bread, Cheese (60%)” states that four out of

five customers that bought Bread also bought

Cheese. Such rules can be useful for

decisions concerning product pricing, promotions,

store layout and many others.

Studies of Frequent Pattern Mining is

acknowledged in the data mining field because of its

importance. Hence, efficient algorithms for mining

frequent patterns are crucial for mining association

rules as well as for many other data mining tasks [1].

The major challenge found in frequent pattern

mining is a large number of result patterns. As the

minimum threshold becomes lower, an exponentially

large number of patterns are generated. Therefore,

pruning unimportant patterns can be done effectively

in mining process and that becomes one of the main

topics in frequent pattern mining. Consequently, the

main aim is to optimize the process of finding

patterns which should be efficient, scalable and can

detect the important patterns which can be used in

various ways.

The FP-growth algorithm transforms the problem

of finding long frequent patterns to searching for

shorter ones recursively and then concatenating the

suffix [4]. It uses the least frequent items as a suffix,

offering good selectivity. It is widely applied and

performance studies demonstrate that the method

substantially reduces search time.

There are many alternatives and extensions to the

FP-growth approach, including depth-first generation

of frequent itemsets [5], H-Mine [6], explores a

hyper-structure mining of frequent patterns; building

alternative trees; exploring top-down and bottom-

uptraversal of such trees in pattern-growth mining

[7], and an array-based implementation of prefix-

tree-structure for efficient pattern growth mining [8].

Recursive elimination [4] is one algorithm that does

its work without prefix trees or any other

complicated data structures, all the work is done in

one simple recursive function.

DepthProject [5] mines only maximal frequent

itemsets. It performs a mixed depth-first and breadth-

first traversal of the itemset lattice. Also GenMax [9]

is a backtrack search based algorithm for mining

maximal frequent itemsets that uses a number of

optimizations to prune the search space. H-Mine [6]

is an algorithm for discovering frequent itemsets by a

simple and novel data structure using hyper-links, H-

struct, and a new mining algorithm, Hmine, which

takes advantage of this data structure and

dynamically adjusts links in the mining process. The

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 613

Pincer-search algorithm [10], proposes a new

approach for mining maximal frequent itemset which

combines both bottom-up and top-down searches to

identify frequent itemsets effectively. It classifies the

data source into three classes as frequent, infrequent,

and unclassified data.

FP-growth is one of the algorithms which is

based upon the recursively divide and conquer

strategy. FP-growth is proofed to be efficient and is

widely used and applied. RElim, however, is

proposed to be the algorithm of choice if

implemented properly [4].Moreover, RElim was

inspired by H-Mine which is similar to FP-growth.

In this paper we compare FP-growth with RElim

algorithm in term of time efficiency. We also use

multithreading technique to enhance the time

efficiency of FP-Growth algorithm. A comparison in

terms of execution time were carried out between

FP-growth and the enhanced FP-growth.

The rest of this paper is organized as follows:

Section 2 discusses state of the art and reviews some

related works. Section 3 explains the theoretical

background needed. Section 4 describes our

proposed multithreaded FP-growth. Section 5 shows

experimental setup. Section 6 presents results and

discussion. Finally Section 7 concludes the paper.

2. Related Work

Vina et al [1] provided a comparison between H-

mine, Fp-Growth and SaM. A framework has

developed to allow the flexible comparison of the

algorithms. They measured time complexity and

came to that the execution time of all the discussed

algorithms is nearby but it can also be noticed that

the execution time of SaM is comparatively less for

higher support threshold.

Christian [4] presented a paper on Recursive

Elimination algorithm. He proposed that if a quick

and straightforward implementation is desired, it

could be the method of choice. Even though its

underlying scheme which is based on deleting items,

recursive processing, and reassigning transactions is

very simple and works without complicated data

structures, recursive elimination performs

surprisingly well.

Jochen Hipp et al. [11] provided several efficient

algorithms that convoy with the popular and

computationally expensive task of association rule

mining with a comparison of these algorithms

concerning efficiency. He proposed that the

algorithms show quite similar runtime behavior in

their experiments.

Aggarwal and Srikant [12] presented two new

versions of Apriori, AprioriT and AprioriTID, for

discovering all significant association rules between

items in a large database of transactions and

compared these algorithms to the previously known

algorithms, the AIS and SETM algorithms. They

proposed that these algorithms always outperform

AIS and SETM.

Borgelt [13] provided efficient implementation of

the more sophisticated approaches known under the

names of Apriori and Eclat. Both rely on a top down

search in the subset lattice of the items. He proposed

for free item sets Eclat wins the competition with

respect to execution time and it always wins with

respect to memory usage. The data set in which it

takes lead is for the lowest minimum support value

tested, indicating that for lower minimum support

values it is the method of choice, while for higher

minimum support values its disadvantage is almost

negligible. For closed item sets the more efficient

filtering gives Apriori a clear edge with respect to

execution time. For maximal item sets the picture is

less clear. If the number of maximal item sets is

high, Apriori wins due to its more efficient filtering,

while Eclatwins for a lower number of maximal item

sets due to itsmore efficient search.

Győrödi and Holban [14] had performed an

experimental comparison between Apriori, DynFP-

Growth, FP-growth, the algorithms were

implemented in Javaand tested on several data sets.

They stated that FP-growth version out performed

Apriori in all cases, and Apriori has the most

memory consumption. On the other hand, the

frequent database scans gave Apriori the maximum

number of generated itemsets.

Shankar and Purusothaman [15] presented a

comparative study of various methods in existence

for frequent itemset mining, association rule mining

with utility considerations. THUI (Temporal High

Utility Itemsets)-Mine, heap mine (H-mine), and

DSM-FI (Data Stream Mining for Frequent Itemsets)

algorithms have been evaluated based on their

memory usage for mining the frequent itemsets and

association rules from large databases.

Vani [16] has conducted a Comparative Analysis

of Association Rule Mining Algorithms Based on

performance Survey between FP-growth and Eclat,

as the fastest algorithms on the survey, and he

concluded that their performance varies according to

the data set used. In this paper, we compare a java

implementation of Recursive Elimination and FP-

Growth in term of execution time. We use two

different datasets with different numbers of records

and attributes, comparing their performance at low

and high minimum supports.

High-performance parallel and distributed

computing is becoming increasingly important as

data keep growing in size and becoming

complicated. Works have been done to parallelize

the mining process such as shared memory systems.

Rathi et al. [17] proposed a model that implements a

parallel FP Growth algorithm that makes use of

multiple Graphic processing (GPU) system, the

proposed algorithm improves performance of the

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 614

algorithm. Wang and Wang [18] designed a parallel

algorithm that works on distributed data framework,

their algorithm does not need to create the whole FP

tree, so it can handle huge data.

Frontier Expansion [19] is a new parallel

Frequent Itemset Mining algorithm, its

implementation can achieve good performance in

heterogeneous platforms with shared memory

multiprocessor and multiple Graphic Processing

units and speedup 6-30 times sequential Eclat.

Accelerating Parallel Frequent Itemset Mining on

Graphic Processors with Sorting APFMS [20], is an

algorithm that utilizes new generation GPUs to

accelerate the mining process on openCL platform,

results showed reduction in computation time.

Our work, however, is different in a way that it

does not require any special prepared platforms nor

hardware equipment such as GPUs. It can work on

any computer that supports threading, and all

computers do these days. By this we can accelerate

the process of mining frequent patterns multiple

times regardless of the hardware it runs on.

3. Theoretical Background

3.1. FP-growth

FP-tree algorithm is based upon the recursively

divide and conquers strategy; first the set of frequent

1-itemset and their counts is discovered. With start

from each frequent pattern, construct the conditional

pattern base, then its conditional FP-tree is

constructed (which is a prefix tree.). Until the

resulting FP-tree is empty, or contains only one

single path. (Single path will generate all the

combinations of its sub-paths, each of which is a

frequent pattern). The items in each transaction are

processed in L order (i.e. items in the set were sorted

based on their frequencies in the descending order to

form a list) [3]. the detail step is as follows:

FP-Growth Method: Construction of FP-tree. Create

root of the tree as a “null”. After scanning the

database D for finding the 1-itemset then process the

each transaction in decreasing order of their

frequency. A new branch is created for each

transaction with the corresponding support. If same

node is encountered in another transaction, just

increment the support count by 1 of the common

node. Each item points to the occurrence in the tree

using the chain of node-link by maintaining the

header table.

After the above process mining of the FP-tree

will be done by Creating Conditional (sub) pattern

bases: Start from node constructs its conditional

pattern base. Then, Construct its conditional FP-tree

and perform mining on such a tree. Join the suffix

patterns with a frequent pattern generated from a

conditional FP-tree for achieving FP-growth. The

union of all frequent patterns found by above step

gives the required frequent itemset. In this way

frequent patterns are mined from the database using

FP-tree.

Algorithm 1 (FP-tree construction)

Input: A transaction database DB and a minimum

support threshold.

Output: Its frequent pattern tree, FP-tree Method:

The FP-tree is constructed in the following steps.

1. Scan the transaction database DB once. Collect the

set of frequent items F and their supports. Sort F in

support descending order as L, the list of frequent

items.

2. Create a root of an FP-tree, T, and label it as

\null". For each transaction Trans in DB do the

following.

Select and sort the frequent items in Trans according

to the order of L. Let the sorted frequent item list in

Trans be [p│P], where p is the first element and P is

the remaining list. Call insert tree([p│P]; T).

The function insert tree([p│P]; T) is performed as

follows. If T has a child N such that:

N.item-name = p.item-name, then increment N's

count by 1; else create a new node N, and let its

count be 1, its parent link be linked to T, and its

node-link be linked to the nodes with the same item-

name via the node-link structure. If P is nonempty,

call insert tree(P;N) recursively.

Algorithm2 (FP-growth: Mining frequent patterns

with FP-tree and by pattern fragment growth)

Input: FP-tree constructed based on Algorithm 1,

using DB and a minimum support threshold.

Output: The complete set of frequent patterns.

Method: Call FP-growth (FP-tree; null), which is

implemented as follows.

Procedure FP-growth (Tree; α)

{

(1) IF Tree contains a single path P

(2) THEN FOR EACH combination (denoted as β)

of the nodes in the path P DO

(3) generate pattern βUα with support =minimum

support of nodes in β;

(4) ELSE FOR EACH ai in header of Tree DO {

(5) generate pattern β = aiUα with support

=ai.support;

(6) Construct β's conditional pattern base and then

β's conditional FP-tree Treeβ;

(7)IF Treeβ≠ᴓ

(8)THEN Call FP-growth (Treeβ; β) }

}

3.2. Recursion elimination

In a pre-processing step delete all items from the

transactions that are not frequent individually, i.e., do

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 615

not appear in a user-specified minimum number of

transactions. This pre-processing is demonstrated in

Figure 1, which shows an example transaction

database on the left. The frequencies of the items in

this database, sorted in an ascending order, are

shown in the middle. If we are given a user specified

minimal support of 3 transactions, items f and g can

be discarded. After doing so and sorting the items in

each transaction in an ascending order by their

frequencies we obtain the reduced database shown

on the right of Figure 1.

Then select all transactions that contain the least

frequent item (least frequent among those that are

frequent), delete this item from them, and recurse to

process the obtained reduced database, remembering

that the item sets found in the recursion share the

item as a prefix.

On return, remove the processed item also from the

database of all transactions and start over, i.e.,

process the second frequent item etc.

Figure 1. Transaction database (left), item frequencies

(middle), and reduced transaction database with items in

transactions sorted in an ascending order by their frequency

(right) [21]

This process is illustrated for the root level of the

recursion, which shows the transaction list

representation of the initial database at the very top,

see Figure 2.

In the first step all item sets containing the item e

are found by processing the leftmost list. The

elements of this list are reassigned to the lists to the

right (grey list elements) and copies are inserted into

a second list array (shown on the right). This second

list array is then processed recursively, before

proceeding to the next list, i.e., the one for item a.

In these processing steps the prefix tree (or the H-

struct), which is enhanced by links between the

branches, is exploited to quickly find the transactions

containing a given item and also to remove this item

from the transactions after it has been processed.

Figure 2. Procedure of the recursive elimination with the

modification of the transaction lists (left) as well as the

construction of the transaction lists for the recursion (right) [21].

4. Proposed Multi-threaded FP-growth

Every path in the FP-tree keeps track of an

itemset along with its support [4]. And it's known

that each starting node generate it's related itemsets;

for example consider the FP-growth tree in Figure3.,

taking item 4 and 3 as an example it exists in three

branches, below is a list of its related items along it's

tree branch path.

1. Item 4

o Branch1: {3,2,1}, supp 5

o Branch2: {3, 1} , supp 1

o Branch3: {1} , supp 3

2. Item 3

o Branch1: {2,1}, supp 5

o Branch2: {1}, supp 2

So the candidate item sets of 4 are as follows:

- {3,2,1} Sup 5, {3,1} Sup 6, {1} Sup 9

and the candidate item sets of 3 are as follows:

- {2,1} Supp 5, {1} Supp 7

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 616

Figure 3. FP-tree

The generated itemsets are concatenated with its

support using (:) are

 Itemsets of 4 are as follows:

(4):9, (4,1):9, (4,2):5, (4,3):6, (4,1,2):5,

(4,1,3):6, (4,2,3):5, (4,1,2,3):5.

 Itemsets of 3 are as follows:

 (3):7,(3,1):7,(3,2):5, (3,2,1):5.

As we see from the previous example each item

generates its own frequent itemsets, for example we

can generate the itemset for item 4 and item 3

concurrently and then aggregate the results generated

by both items in one file. So our contribution is to

create a thread to gather the frequent itemsets of an

item and after that combine the result of the finished

thread in one single file.

The abstract code of our proposed threaded FP-

growth can be found in the appendix.

5. Experiment

A. System Information:

1) Operating System: windows server 2008, 64 bit

2) Memory: 8192 MB Ram

3) Processor: Intel® xeon® CPU ES-26200,

2.00GHz (4 CPUs).

B. Implementation:

All the algorithms to be tested have been

implemented in Java using eclipse 2015, with jdk8.0

C. Datasets:

Two integer datasets were used in the comparison

operation between Relim, FP-growth, and the

proposed multithreaded FP-growth algorithms, we

used integer data sets to be simple to deal with.

These datasets contain different number of

transactions and attributes.

1) Mushroom Dataset [22]: it contains 8124

instances, this data set includes descriptions of

hypothetical samples corresponding to 22

species of gilled mushrooms in the Agaricus and

Lepiota Family.

2) Connect Dataset [23]: it contains 67557

instance, 42 attributes. This database contains all

legal 8-ply positions in the game of connect-4 in

which neither player has won yet, and in which

the next move is not forced.

D. Optimization Issues:

Finding all frequent itemsets in a database is

difficult since it involves searching all possible

itemsets (item combinations). The set of possible

itemsets is the power set over Iand has size 2n-1

(excluding the empty set which is not a valid

itemset).

In this paper we assume that by using the

multithreading technique we may enhance the

execution time of finding the frequent item set in test

datasets.

Multithreading [24] is a programming technique

for implementing applicationconcurrency and,

therefore, also a way to exploit the parallelism of

shared memory multi-processors. A traditional

“single threaded” process could be seen as a single

flow of control (thread) associated one to one with a

program counter, a stack to keep track of local

variables, an address space and a set of resources.

Multithreading programming allows one program to

execute multiple tasks concurrently, by dividing it

into multiple threads, so we will divide the operation

on finding the frequent item sets to multiple threads,

4 threads precisely, one for each CPU, to benefit

from the concurrency execution to minimize the

time.

E. Experiment:

1. The first experiment has been performed to

compare performance of FP-growth with RElim

using two different datasets.

2. The second experiment is has been performed

to see how much enhancement does multithreading

add to FP-growth compared to single threaded

version. Multithreaded FP-growth has been

discussed in section V.

6. Results and Discussion

1. Results of the first experiment show the

superiority of FP-growth over RElim on

mushroom dataset especially when the minimum

support (minsupp) is low as shown in Figure 4.

FP-growth outperformed RElim in all cases but

the difference is dramatically reduced by the

increase of the minimum support. We believe that

depends on the nature of the dataset transactions,

noticing that the number of frequent itemsets has

reduced from hundreds of thousands to a few

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 617

http://en.wikipedia.org/wiki/Power_set

thousands with a slight increase in the minsupp.

This could be justified mentioning that RElim

may perform better if a programming language

that supports pointer handling is considered for

implementation.

Figure 4. FP-Growth & RElim on Mushroom dataset

Also the superiority of FP-growth is clear in the

larger dataset especially when the min support is

low, see Figure 5.

These results are consistent with the suggestion of

Cristian [21] that if a quick and straightforward

implementation is applied it may improve the

performance of the algorithm. We believe that the

huge difference of execution time between the two

algorithms refer to the mechanism of java code

optimization, and especially the garbage collection

mechanism.

Figure 5. FP-Growth & RElim on connect dataset

2. The second experiment proofs that the

multithreaded FP-growth is much faster than FP-

growth itself. Multithreaded FP-growth

consumed around quarter the time consumed by

FP-growth on both data sets, see Figure 6.and

Figure 7. We believe that the result is

proportional to the number of threads, as we used

4 threads, one for each CPU. These results came

consistent to other findings in [17], [19], [20].

Despite using GPUs as special hardware, they all

parallelized the work as we did, but we used

multithreading instead. And all the results

showed improvements in the time execution of

the algorithms.

Figure 6. FP-growth & Multithread FP-growth on mushroom

dataset

Figure 7. FP-growth & Multithread FP-growth on connect dataset

7. Conclusion and future work

This paper presented a performance comparison

between two frequent pattern extraction algorithms

RElim and FP-Growth which implemented in Java.

These two algorithms are used in finding frequent

itemsets in the transaction database. We found out by

experiment that FP-growth outperformed RElim in

term of execution time. In this context,

multithreading technique is used to enhance the time

efficiency of FP-Growth algorithm in the part of

generating frequent itemsets. The results showed that

multithreaded FP-growth is more efficient compared

to single thread FP-growth, this result comes clear at

low minimum support thresholds

In our experiment, it was difficult to accurately

measure the space required by the algorithms

because Java garbage collection mechanism make

results about space unexplainable. So, in future work

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 618

we will try the two algorithms on another platform

and compare the space complexity.

8. Appendix

1. The abstract code of our proposed FP-growth

threading approach

/**************************

-transactionCount is the total number of

transactions

-mapSupport is hashmap of support of each

item

-relativeMinsupp is the relative minimum

support

-freqItemSet is ConcurrentHashMap

which is a centralized container of the

generated frequent itemsets

-item is the item which we need to generate

its related itemsets.

-threads is a container of the running

threads

***************************/

int j=0; //counter of started threads

intThreadNum=4; // number of threads

FPGrowthTree tree =

Constructs_FP_growth_tree();

for(inti=0;i<itemListSize;i++){

if(j<ThreadNum){

item = tree.headerList.get(i);

CandidateGenerator c = new

CandidateGenerator(tree,transactionCount,

mapSupport, relativeMinsupp,

freqItemSet,item);

threads.add(c);

c.start();

j++;

}

if(j==ThreadNum || i==itemListSize){

boolean exit=false;

while(!exit){

 // sleep just 10 millisecond

 //to check the finished threads

Thread.sleep(10);

 Iterator Itr = threads.iterator();

while (Itr.hasNext()) {

CandidateGenerator c = Itr.next();

if(c.finished){

 // a thread is finished, remove it

from

 // the threads list

Itr.remove();

 //change exit flag to exit while

loop

 // to start a new thread.

exit=true;

 // decrease the number of running

threads

 // to start a new one

j--;

 } //if condition for check finished

thread

 } // loop over the threads list

 } // loop to monitor the finished thread

} // if condition to start threads

monitoring

} // main item loop

9. Acknowledgment

I would like to express my deep sense of

gratitude and sincere thanks to my friend and

colleague Ramzi A. Matar. His constructive and

insightful comments, suggestions and help have

improved the quality of this work.

10. References

[1] Soni, V., Shah, N., Prajapati, S., Damor, N., Chaudhari,

N., Patel, U., Patel, A., Chaudhari V., &Prajapati, A.

(2013, March) A Study of Various Projected Data based

Pattern Mining Algorithms. Research Journal of Material

Sciences. Vol. 1(2), (PP. 1-5).

[2] Goethals, B. (2003). Survey on frequent pattern

mining. Univ. of Helsinki.

[3] Han, J., Pei, J., & Yin, Y. (2000, May). Mining

frequent patterns without candidate generation. In ACM

SIGMOD Record (Vol. 29, No. 2, pp. 1-12). ACM.

[4] Borgelt, C. (2005, August). An Implementation of the

FP-growth Algorithm. In Proceedings of the 1st

international workshop on open source data mining:

frequent pattern mining implementations (pp. 1-5). ACM.

[5] Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V.

(2000, August). Depth first generation of long patterns. In

Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining (pp.

108-118). ACM.

[6] Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., & Yang, D.

(2001). H-mine: Hyper-structure mining of frequent

patterns in large databases. In Data Mining, 2001. ICDM

2001, Proceedings IEEE International Conference on (pp.

441-448). IEEE.

[7] Liu, G., Lu, H., Yu, J. X., Wang, W., & Xiao, X.

(2003, November). AFOPT: An Efficient Implementation

of Pattern Growth Approach. In FIMI.

[8] Grahne, G., & Zhu, J. (2003, November). Efficiently

Using Prefix-trees in Mining Frequent Itemsets. In FIMI

(Vol. 90).

[9] Gouda, K., &Zaki, M. J. (2005). Genmax: An efficient

algorithm for mining maximal frequent itemsets. Data

Mining and Knowledge Discovery, 11(3), 223-242.

[10] Lin, D. I., &Kedem, Z. M. (1998). Pincer-search: A

new algorithm for discovering the maximum frequent set.

In Advances in Database Technology—EDBT'98 (pp. 103-

119). Springer Berlin Heidelberg.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 619

[11] Hipp, J., Güntzer, U., &Nakhaeizadeh, G. (2000).

Algorithms for association rule mining—a general survey

and comparison. ACM sigkdd explorations newsletter,

2(1), 58-64.

[12] Aggarwal, S., & Kaur, R. (2013). Comparative Study

of Various Improved Versions of Apriori Algorithm.

International Journal of Engineering Trends and

Technology (IJETT)-Volume4Issue4-April.

[13] Borgelt, C. (2003, November). Efficient

implementations of apriori and eclat. In FIMI’03:

Proceedings of the IEEE ICDM workshop on frequent

itemset mining implementations.

[14] Győrödi, C., Győrödi, R., &Holban, S. (2004). A

comparative study of association rules mining algorithms.

In SACI 2004, 1st Romanian-Hungarian Joint Symposium

on Applied Computational Intelligence (pp. 213-222).

[15] Shankar, S., &Purusothaman, T. (2009). Utility

sentient frequent itemset mining and association rule

mining: a literature survey and comparative study.

International Journal of Soft Computing Applications, 4,

81-95.

[16] Vani, k., (2015). Comparative Analysis of Association

Rule Mining Algorithms Based on Performance

Survey.International Journal of Computer Science and

Information Technologies6 (4).

[17] Rathi, S., &Dhote, C. A. (2015). Parallel

Implementation of FP Growth Algorithm on XML Data

Using Multiple GPU. In Information Systems Design and

Intelligent Applications (pp. 581-589). Springer India.

[18] Wang, Z., Wang, C.: A parallel association-rule

mining algorithm. In: WISM’12 Proceedings of the 2012

International Conference on Web Information Systems and

Mining, pp. 125–129. Springer, Berlin (2012)

[19] Zhang, F., Zhang, Y., &Bakos, J. D. (2013).

Accelerating frequent itemset mining on graphics

processing units. The Journal of Supercomputing, 66(1),

94-117.

[20] Huang, Y. S., Yu, K. M., Zhou, L. W., Hsu, C. H., &

Liu, S. H. (2013). Accelerating Parallel Frequent Itemset

Mining on Graphics Processors with Sorting. In Network

and Parallel Computing (pp. 245-256). Springer Berlin

Heidelberg.

[21] Borgelt, C. (2005, August). Keeping things simple:

Finding frequent item sets by recursive elimination. In

Proceedings of the 1st international workshop on open

source data mining: frequent pattern mining

implementations (pp. 66-70). ACM.

[22] Mushroom dataset: Frequent Itemset Mining

Implementations Repository. Site: http://fimi.ua.ac.be.

Found at: http://fimi.ua.ac.be/data/mushroom.dat

(Accessed 17 December 2015).

[23] Connect dataset: Frequent Itemset Mining

Implementations Repository. Site: http://fimi.ua.ac.be.

Found at: http://fimi.ua.ac.be/data/connect.dat. (Accessed

17 December 2015).

[24] Negri, A., Scannicchio, D. A., Touchard, F.,

&Vercesi, V. (2001). Multi thread programming.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 3, September 2015

Copyright © 2015, Infonomics Society 620

