
International Journal of Database Theory and Application

Vol.9, No.10 (2016), pp.337-348

http://dx.doi.org/10.14257/ijdta.2016.9.10.29

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

REMB: Recoverable External Memory Bitmap of Software RAID

Wang Wei 1 and Yu Li-hua2

1Hangzhou Medical College, Computer Lab, Hangzhou 310053, China
2Hangzhou R&D Center, Netease Corporation, Hangzhou 310052, China

1weiw81@163.com, 2peterylh@163.com

Abstract

Distributed block storage system is one of the fundamental components of cloud

computing, and many important services, including cloud database, cloud queue, are built

upon it. It is common practice to build block storage system based on reliable and

efficient Linux open source software, i.e. software RAID, to meet the I/O requirements of

cloud database. Bitmap is a critical data structure of software RAID, and hence is

important to reliability and performance of this kind of storage system. We describe

several existing software RAID bitmap management solution, and propose REMB

(Recoverable External Memory Bitmap), which is reliable and efficient. Experimental

results show that REMB improve cloud database performance by 30%~60%.

Keywords: Software RAID, Bitmap, Cloud, Distributed System

1. Introduction

The vigorous development of cloud computing has accelerated the changes of IT

industry. Since 2011, the major Chinese internet companies such as Alibaba, Tencent and

Netease, plus dozens of startups are in a mad rush to launch their cloud computing

services. The booming cloud products promote industrial applications. The data form

chinairn [1] shows that 76% companies have a plan to migrate local applications to cloud

in future.

The virtualization of computing, block storage and network is the foundation of cloud

computing. Block storage system provides block devices for virtual machine, which is

compatible with local disks. Compared with Amazon EBS (Elastic Block Store), which is

the most famous block storage device in industry, there are some corresponding open

source software products such as Sheepdog [2] and Ceph [3]. Block storage is the

foundation of Cloud Database System, for example, Amazon RDS (Relational Database

Service) is built on EBS. The database transaction throughput depends on the speed of

write-ahead log, and further the speed of write-ahead log depends on the response time of

block devices. So, we can conclude that the response time of block storage has direct

effect on the performance of the cloud database.

RAID with cache and SSD(Solid State Drive) have been used to reduce I/O response

time in single computer environment. But in cloud, it is still a big challenge to build a

distributed block storage system to satisfy the database’s I/O need. Firstly, I/O always

needs to transfer data across the network because the block device replicas locate in more

than one remote server. Secondly, due to the large scale of the cloud, failure happens

almost every day, and then fault recovery will also affect the I/O response time. The open

source software, including Sheepdog and Ceph, is more or less inappropriate for cloud

database. They run in user mode and thus the overhead is too large. Also, when a fault

occurs, the system’s response time usually became even worse. Sheepdog repair data

during reading, hence user I/O is likely to be blocked by repairing workload Ceph allows

data repair in parallel with user I/O, but when a user access the recovering data, the I/O

write will be blocked until data recovery finished. Although the storage objects accessed

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

338 Copyright ⓒ 2016 SERSC

by user have high recovery priority, Ceph’s I/O response time will still be severely

affected.

Open source software, such as iSCSI, MD(Software RAID), DM(DeviceMapper), have

implemented core distributed storage functionality, such as remote block device,

replication, data slice and combination. They are mature and stable, and run in kernel

mode with high I/O efficiency. There are lots of block storage systems [4,9-12] based on

those open source software. The distributed block storage of NTES(www.163.com) is

also implemented based on those open source software, it has been running stably and

reliably since putting into use. In this paper, we propose REMB(Recoverable External

Memory Bitmap) to improve MD(Software RAID) performance, and implement it in

distributed block storage of NTES. Experimental results show that the new schema can

improve cloud database’s performance by 30%~60%.

This paper is structured as follows: Section 2 gives an overview of open source storage

software. Section 3 presents three distributed block storage mechanisms based on RAID:

internal bitmap, reliable external bitmap, and Recoverable External Memory Bitmap, and

discusses their advantages and disadvantages. Section 4 presents experimental setup and

numerical analysis results. Section 5 introduces related works. Section 6 summarizes the

results and discusses future directions.

2. Open Source Software

In this section, we introduce three open source software used in this paper: MD, open-

iscsi/iet, and DM.

2.1. MD (MultipleDisk)

Multiple Disk(MD) is a software RAID in Linux, which consists of a kernel driver and

a user mode administrative tool. MD support many types of RAID such as RAID0/1/5/6,

and in this paper we will focus on RAID-1, which implements disk mirror.

RAID-1 makes up of several disks which are mirror images of each other. When a

power off, a network error or other failure occurs, a write request may success in some

disks, while fail in other disks. Therefore, these disks may have different data, and the

RAID device is inconsistent. When inconsistency detected, MD starts data recovery to

make sure all the disks in same state. Data recovery runs in background, hence won’t

block user IO requests. The default data recovery strategy is full copy, that is, copying the

data of selected disk to all other disks. Obviously, this method is costly and time

consuming. To solve the problem, MD designs in_sync flag and WriteIntentionLog.

There is an in_sync flag in MD’s super block, in_sync=1 means that the disks are in a

consistent state, while in_sync=0 means that the disks may be inconsistent. When RAID

device restarted, it checks in_sync flag, and skips data recovery when in_sync = 1.

Therefore, in_sync flag can reduce the chance of data recovery. In_sync is initialize to

zero at the creation of RAID device. Before MD serves a write request, it must ensure

in_sync=0, because any write requests may cause inconsistency. If there is no write

operation in a period of time, MD will set in_sync flag to 1, because the device is

consistent now. in_sync flag of a heavy write RAID deivce usually equals 0, so it is only

helpful to devices with low write workload.

PaulClaments et al. [7] implement write intention bitmap in MD to accelerate data

recovery. There are two types of write intention bitmaps, i.e. internal bitmap and external

bitmap. Internal bitmap is stored redundantly on each member disk of RAID, while

external bitmap is a file in external file systems. The RAID is divided into equal-size data

blocks, each bit of the bitmap corresponds to a data block, and 1 means dirty, 0 means not

dirty. The write intention bitmap helps to reduce the amount of data to be recovered, as

we just need to deal with the blocks tagged 1. However, the disadvantage of the write

intention bitmap is also obvious: Each write request has to set and reset the corresponding

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

Copyright ⓒ 2016 SERSC 339

bits, so the write performance drops down to 1/3. Several optimization methods are

proposed to improve write performance: 1) Batch submissions of bitmap write requests.

When concurrent write requests set several bits dirty, MD writes these dirty bits to disk in

a batch to reduce bitmap writes. 2) Asynchronous reset. When a dirty bit is reset, MD

doesn’t write bitmap to disk immediately. It waits until other write operations modify the

bitmap again, and piggy-back reset operations to disk. This optimization may cause reset

bits not persistent in failure, but it is safe because the only result is that some unnecessary

data blocks are recovered during RAID recovery. Although the above optimization is

obviously effective, however, the experimental results show that MD bitmap still doubles

the I/O access. Thus, the behavior of the bitmap plays a key role in software RAID

performance.

2.2. iSCSI

iSCSI is a standard protocol published by IETF(Internet Engineering Task Force) in

February 2003. It can literally be interpreted as SCSI over TCP/IP, or Ethernet SCSI. The

SCSI commands are encapsulated into TCP/IP package, and transported by IP network.

The iSCSI consists of iSCSIinitiator and iSCSITarget. When application sends an I/O

request, the operating system generates a corresponding SCSI command, and sends the

command to iSCSIinitiator driver. The iSCSIinitiator encapsulates SCSI commands and

sends the package to remote equipment. The remote iSCSItarget receives the message and

fetches SCSI command according to iSCSI protocol. Then the command is executed by

the real SCSI storage device. The I/O response process is just reverse.

iet(iSCSI Enterprise Target) is the most famous open source implementation of iSCSI

target, which runs in kernel mode. Open-iscsi is the only open source iscsi initiator under

Linux.

2.3. DM

Device Mapper(DM) is a block device mapping mechanism used in Linux for mapping

physical block devices onto higher-level virtual block devices. It runs in kernel mode and

implements IO requests filtering, routing, replication and load balance by modularized

targetdrive plug-in. It also provides dmsetup command as administrator tool for kernel

driver.

The Linux kernel provides a lot of target driver plug-ins, such as linear, mirror,

snapshot. The linear target maps a linear range of the device onto a linear range of another

device. In this paper we use linear target concatenate chunks as a single volume.

3. Distributed Block Storage System

3.1. System Architecture

Storage 1

chunk

Disk

Disk

Chunk

Storage 2

Disk

Disk

Storage 3

Disk

Disk

Figure 1. The Distributed Block Storage System Architecture

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

340 Copyright ⓒ 2016 SERSC

Netease, Inc. is a leading China-based internet technology company, the company

starts to build its own private cloud system since 2012. Most of its internet application has

deployed on cloud now. Netease Block System (NBS) provides block devices for the

private cloud, its architecture is shown in Figure 1. There are two important concepts:

Volume and Chunk. Volume is a block device provided by the system in host computer,

and is mapped to user’s KVM virtual machine by QEMU. From the user's perspective,

there is no difference between a volume and a local disk, users can create file systems on

a volume and read/write the files.

Chunk, normally 10G in size, is the unit of storage allocation and load balance.

Allocation bitmaps are used to manage disk space. Each disk on host machine is divided

into many chunks and has a corresponding allocation bitmap, 1 means the chunk is

allocated and 0 means free. A volume is concatenated by multiple RAID-1 devices based

on DM linear. Each RAID-1 devices consist of two chunks which is mirror to each other.

A RAID-1 device is the same size as a chunk, which is also 10G. To ensure reliability,

chunks from single RAID-1 device are located on different servers.

The system is made of storage servers, host machines and metadata server. The storage

server manages dozens of physical disks and is responsible for chunk allocation and

release. When the volume is mounted, the storage server exports chunks as LUN(Logical

Unit Number) of iet. The host machine then mounts these chunks remotely to compose

RAID device, and multiple groups of RAID-1 devices are concatenated to form a volume

for users. Storage server and host machine are just two kinds of process, they usually

collocate in a same physical server which provides both storage space and remote data

access at the same time. The metadata server manages all kinds of metadata, including the

mapping relationships between chunks and physical disks and mapping between volumes

and chunks, et al. The metadata server is also responsible for global scheduling, failure

detection and recovery, and providing APIs for up-level applications.

NBS has been online for several years in the Netease private cloud, and thousands of

cloud database instances have been deployed on top of NBS volumes. NBS is very stable

with reasonable performance, we have migrated most of our database to cloud, but there

are still some write heavy database can’t run on top of NBS. In Section 2.1 we have

concluded that write intention bitmap has a great influence on software RAID

performance. Now we will analyze bitmap management solutions in NBS, and propose

our new bitmap management solution to improve NBS write performance.

3.2. Internal Bitmap

1 12
2

Chunk 2Chunk 1

Virtual Device

RAID-1device

Bitmap

Figure 2. Internal Bitmap

The default MD bitmap mechanism is internal bitmap. As Figure 2 shows, MD stores a

replica of the internal bitmap in the header of each Chunk. All of the bitmap is updated

synchronously to maintain consistency. MD’s write flow is shown in Figure 2: (1) if the

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

Copyright ⓒ 2016 SERSC 341

bit of the bitmap corresponding to write request is not dirty, it is set to 1. Then MD sends

two write requests simultaneously and writes the bitmap to the header of each Chunk; (2)

After the bitmap modification, MD writes data in parallel to each Chunk; (3) MD resets

the bit of each replica bitmap to 0 asynchronously.

The advantage of this mechanism is that the bitmap solution is mature and reliable, and

no code changes are required. The disadvantage is that bitmap update is expensive

because two cross-network disk I/O accesses are needed. Due to its poor performance,

internal bitmap is not adopted by NBS.

3.3. Reliable External Bitmap

Because internal bitmap’s poor performance, NBS employs a reliable external bitmap

method. It uses MD external bitmap and stores external bitmap on reliable RAM disk.

Each server creates several 64M sized RAM disks. Some of these RAM disks are used

locally, and others are used by remote hosts through iSCSI protocol. As Figure 3 shows, a

local RAM disk on the host machine and another RAM disk on the remote server make up

a memory RAID-1 device which doesn’t have write intention bitmap. A file system is

created on memory RAID-1 device to store volumes’ external bitmap files.

33

Chunk 2Chunk 1

RAID-1device

1

RAID-1device

Local RAM disk

Remote RAM disk

Bitmap file

2

2

Figure 3. Reliable External Bitmap

The write flow is as follows: (1) If the corresponding bit of the write request is not

dirty, it is set to 1, then MD flushes bitmap file.(2) The file system submits I/O to memory

RAID device, and then MD updates local RAM disk and remote RAM disk

concurrently.(3)MD writes data to the two Chunks after the bitmap modification.(4)MD

set the bitmap to 0 asynchronously.

The most distinguishing feature of this approach is local RAM disk and remote RAM

disk form a RAID-1 device to store the volumes’ external bitmap. This approach

outperforms internal bitmap, achieves 50% cost reduction of bitmap modification from 2

cross-network I/O accesses to 1 cross-network memory access. In compare with using two

remote memory devices, it also has advantages: it reduces network communication cost,

and has better reliability, because half remote device means half failure rate.

The disadvantage of this approach is that bitmap may be lost if the host machine and

the remote machine where remote RAM disk locates go down in the meanwhile. Luckily,

losing bitmap will not result in the volume becoming inaccessible or the data being lost. It

may only lead to full copy data recovery. But full copy data recovery will happen only

when the following three conditions apply simultaneously: the bitmap has lost; the MD

device composed by the two Chunks is not in a consistent state; at least one Chunk is

inaccessible. Thus full copy data recovery is a rare event.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

342 Copyright ⓒ 2016 SERSC

3.4. REMB: Recoverable External Memory Bitmap

2

Chunk 1

1

2

RAID-1device

Memory bitmap

3

LOG bitmap

2

Chunk 1

2 3

LOG bitmap

Figure 4. REMB: Recoverable External Memory Bitmap

We design REMB(Recoverable External Memory Bitmap), a new bitmap management

mechanism for NBS which is more efficient without sacrificing durability. As Figure 4

shows, bitmap is stored on local RAM disks. Because memory access is fast, bitmap will

no longer affect the write performance and minimize I/O response time in theory.

Obviously, this approach obtains high performance at the expense of sacrificing bitmap

reliability, so we have to figure out ways to ensure that the bitmap is recoverable. A new

data structure LOG bitmap is allocated for each Chunk, and each bit of the LOG bitmap

corresponds to a data block with 64MB size. Just like write intention bitmap, 1 means

dirty, 0 means not dirty. A LOG bitmap keeps a record of write operations on a Chunk.

the LOG bitmaps on the Chunk replicas together record all write operations on software

RAID. Therefore, LOG bitmaps can be used to reconstruct the write intention bitmap and

perform data increment replication.

Like write intention bitmap, the corresponding bit in LOG bitmap must be set to 1

before writing data. The difference is that, LOG bit must wait till the write request

completed on all Chunk replicas, and then it is set to 0. Take this scenario: the host sends

a write request to a certain Chunk, and then the host machine goes down too suddenly to

send a write request to another mirror Chunk. In this case, the block should be dirtied in

write intention bitmap, because the Chunk replicas are not consistent. If Log bitmap was

set to 0 just after write operation, then all the LOG bitmap should be not dirty, and we

can’t reconstruct write intention bitmap using LOG bitmaps.

Chunk replicas in software RAID don’t communicate with each other, and further, they

don’t even know each other's existence. Storage servers can’t determine when a write

request is finished at all replicas, and when to reset the corresponding bits in LOG bitmap.

The solution to this problem is to delay the reset operation until the storage server makes

sure that all the Chunk copies are written completely. LOG bitmap is divided into two

parts: the current LOG bitmap which records data blocks modified most recently, and the

history LOG bitmap which records blocks modified some time ago. Every T seconds, the

current LOG bitmap overwrites the history LOG, and then all bits of current LOG bitmap

reset to zero overall. The current LOG bitmap bitwise or the history LOG bitmap results

LOG bitmap. Write intention bitmap can be reconstructed by bitwise or of LOG bitmaps

at all replicas. We can prove that as the interval time T is much longer than iSCSI

timeout, the recovered write intention bitmap must be right. That means all inconsistent

data blocks have been marked in write intention bitmap.

Let T be the LOG bitmap interval time, and t be iSCSI timeout, T >> t. C1 and C2

indicate two Chunk repicas. Chunk Ci has the current LOG bitmap Ci1 and the history

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

Copyright ⓒ 2016 SERSC 343

LOG bitmap Ci2. Let CTi1 be the time to reset Ci1. Algorithm 1 describes the bitmap

update algorithm.

Algorithm1 update_bitmap

Require:

I/O offset;

I/O size;

Ensure:
blocksize←64M

now←gettimeofday()

for index = offset/blocksize→ (offset + size)/blocksize

do
bitmap_setbit(Ci1, index)

if CTi1 + T < now then

Ci2 ← Ci1

Ci1 ← 0

CTi1← now

end if

end for

Theorem 1: Ci1 | Ci2 records all write operations for Chunk Ci in the period of T.

According to the bitmap update algorithm, Ci1 records all write operation in the period

of [CTi1, now], and Ci2 in the period of [CTi1-T, CTi1]. So Ci1 | Ci2 keeps a record of write

operations in [CTi1-T, now). And because of CTi1<now, Ci1 | Ci2 contains all write

operation in [now-T; now). In other words, Ci1 | Ci2 records all write operation for Chunk

Ci in the period of T.

Theorem 2: C11 | C12 | C21 | C22 keeps a record of all possible inconsistent data blocks.

Only the data blocks being modified may be inconsistent. According to the bitmap

update algorithm, the corresponding bit of the LOG bitmap must be set to 1 before the

data is modified. Thus all modification operation must be recorded on some bitmap

replica before modification.

In addition, we can prove that the bit will not be set to 0 if the data block is possible

inconsistent. Because iSCSI timeout is t and t << T, a write request must be terminated in

T seconds whether it fails or succeeds. We reset history LOG bitmap every T seconds, so

a dirty bit of current LOG bitmap will remain dirty for at least T seconds. Therefore, when

we reset history LOG bitmap, all corresponding write requests are finished, that is the bits

will not be set to 0 if the data blocks are possible inconsistent.

As a conclusion, C11 | C12 | C21 | C22 keeps a record of all possible inconsistent data

blocks.

According to the theorem 2, we can also conclude that there will not be data

inconsistency when recovering write intention bitmap from LOG bitmap. Now let’s look

at failure handling in distributed block storage devices.

Scene 1: temporary failure occurs on a storage server. When a storage server failure

happens due to network disconnection or server restart, the soft RAID will degrade and

I/O will not be affected. By the time the storage server recovered, the software RAID will

perform increment data recovery based on write intention bitmap, that is, copying dirty

data blocks from a valid replica to an invalid one. If the LOG bitmaps on failed storage

server is not lost, data recovery will bring LOG bitmap up-to-date, because recovery write

requests will update LOG bitmap just like user write requests. If the LOG bitmaps have

been lost, new LOG bitmaps must first be created from a valid replica before data

recovery.

Scene 2: the host machine fails. When failure occurs on a host machine, the VMs

running on it would have been terminated, and the software RAID write intention bitmap

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

344 Copyright ⓒ 2016 SERSC

would have lost. The reasonable approach to deal with this situation is mounting the

volume to another host machine and restarting the VMs. The bitmap recover method is to

copy LOG bitmap from the storage machine, and set the write intention bitmap to C11 |

C12 | C21 | C22. After recovering bitmap, incremental replication will be performed for the

software RAID.

Scene 3: the host machine and the storage server are in trouble at the same time. In this

case, the write intention bitmap and LOG bitmap are both missing. We have to create a

new LOG bitmap and perform full copy data recovery for the software RAID.

4. Experiments

4.1. Experiment Environment

As Figure 5 shows, the experiment environment includes two servers, one as storage

server, and another as host machine. We create 12 double replica volumes each with a

size of 600G to simulate the cloud environment. Each volume is divided into 120 Chunks

(size of 10G), and is deployed to 24 physical disks on storage servers randomly. The two

Chunk replicas will be placed on two different physical disks. We start 4 virtual machines

each with 3 volumes mounted. All the VMs are used to run test programs.

physical disk physical disk physical disk physical disk

Storges

Chunk

Hosts

VM VM VM VM

Chunk Chunk Chunk

Figure 5. Experiment Environment to Simulate a Cloud

Table 1. Server Configuration

Server Dell R720XD

CPU E5-2650v2×2

Memory 16GB DDR3-1600Mhz×16，256GB

SAS 2.5 inch, 900G×24 (10k RPM)

RAID H710P(1G)

Network 2 × 10Gbps

4.2. I/O Response Time

I/O write response time is the most important factor for database transaction

throughput. As internal bitmap has the worst response time, it is rarely used in real-world

application. Therefore our experiments mainly focus on REMB and reliable external

bitmap.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

Copyright ⓒ 2016 SERSC 345

The experiments follow two principles: 1. simulating a real-world load environment.

We start 3 fios on each VM, a total of 4 VMs and 12 fios involved to test 12 volumes. 2.

testing the relationship between response time and system workload.

The results about I/O response time are shown in Figure 6(a). REMB has a better

performance than reliable external bitmap in each I/O pressure scenarios, and reduces

average I/O response time by 0.5~0.8ms.

4.3. Database Performance

The mostly common cloud databases are based on MySQL in industry. In our

experiments, the MySQL database is running on distributed block device, and the

database performance of REMB and external bitmap is studied. We use MySQL

benchmark sysbench [6] and OLTP as test program.

Figure 6(b) shows the database throughput of REMB and reliable external bitmap with

a different number of threads. It can be seen that the database throughput of REMB

increases by 30%~60% than reliable external bitmap.

(a) I/O Response Time

(b) Cloud Databases’ Throughput

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

346 Copyright ⓒ 2016 SERSC

(c) Cloud Databases’ Response Time

Figure 6. Experiment Results

Figure 6(c) shows the response time with a different number of threads. We can also

conclude that the database response time of REMB reduces 20%~40% than reliable

external bitmap.

5. Related Works

Distributed block storage systems require high reliability, high availability and high

performance. Therefore, these systems are difficult to implement and there are few

published research papers about the system implementation. The main open source

distributed block storages we can find in cloud industry are Ceph [3], Sheepdog [2] and

HLFS [8].

Ceph is an open source PB-scale storage system. It was born as a research project at the

University of California, and later acquired by Redhat and used for Openstack as its

standard block storage. Ceph uses CRUSH algorithm to map storage objects to

PG(placement group), and PG to storage servers. It is an excellent scalable system,

Sheepdog is a distributed storage system for QEMU, iSCSI clients and RESTful

services. It provides highly available block level storage volumes that can be attached to

QEMU-based virtual machines. Sheepdog scales to several hundreds of nodes, and

supports advanced volume management features such as snapshot, cloning, and thin

provisioning. Sheepdog is a decentralized and scalable system in a peer-to-peer

architecture.

However, neither Ceph or Sheepdog is suitable for high-performance cloud database.

The basic shortcoming is that response time is uncontrolled and uncertain. Firstly, both

Ceph and Sheepdog are running in user mode, and interaction between the kernel mode

and the user mode is frequent and inefficient. Secondly, the IO path is long. Ceph’s write

requests are forward by primary replica to secondary replica. Similarly, a Sheepdog IO

request must go through the gateway server. Thirdly, when a fault occurs, Sheepdog

recovers data during reading, hence leading to long read response time. If a write request

accesses data chunk to be recovered, it must wait until chunk recovery finished, hence the

write response time is intolerable. Analogously, Ceph’s write request must wait until

replica recovery finished, and also brings unbearable response latency.

HLFS(Hadoop Log Structured File system) is another example of distributed block

system. It is built on top of HDFS and implemented based on LFS. It inherits the features

of Hadoop, such as high reliability, availability and scalability. However, Hadoop is an

offline batch processing system with poor real-time performance, and the garbage

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

javascript:void(0);

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

Copyright ⓒ 2016 SERSC 347

collection mechanism of LFS causes further deterioration of response time. Therefore,

HLFS is not fit for critical database applications.

Blizzard [12] is a high-performance block store proposed by Microsoft. By using a

novel striping scheme, an out-of-order write committing mechanism, and CLOS network,

Blizzard exposes high disk parallelism to workloads and provides high performance and

crash consistency to applications. Blizzard is suitable for big data service but not OLTP

database service.

There are also some distributed storage cases based on open source software in

research area. Gao [4,11] implements a storage system based on IET and CLVM. Han [9]

integrates iSCSI and RAID to implement a system. ORTHRUS [10] is based on IET and

CLVM, and uses a load balance algorithm to improve storage throughput. Compared to

these systems, this paper focus on response time and system stability, and proposes

REMB to improve software RAID performance. Compared to

DependableNetworkedRAID [13], which designs a memory bitmap for database

incremental replica and implements the system based on software RAID, the bitmap in

this paper is recoverable and more reliable.

6. Conclusion

Distributed block storage system is the core infrastructure of cloud computing, and the

foundation of cloud database. The system must have rapid I/O response and proper fault

handling to avoid an unbearable I/O response time when fault occurs. However, there are

few open source distributed block systems that meet all of these requirements. The

Software RAID is usually used to implement distributed block storage system because of

its stability, high efficiency and mature fault handling. In these systems, the key factor of

I/O delay is software RAID bitmap. This paper discusses software RAID bitmap methods

in cloud environment, and then proposes REMB to improve software RAID performance.

Experimental results show that the new approach is reliable and efficient, and achieves

the least I/O delay in theory and improves cloud database performance by 30%~60%.

Acknowledgments

This paper is supported by CHB No. 2011ZX01039-001-002, and Hangzhou Medical

College No. 2013XZA03.

References

[1] Chinese Industry Research Network, http://www.chinairn.com/

[2] Sheepdog, https://github.com/sheepdog/

[3] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long and C. Maltzahn, “Ceph: A Scalable, High-

Performance Distributed File System”, Proceedings of OSDI, Seattle, (2006), pp. 307-320.

[4] X. Gao, M. Lowe, Y. Ma and M. Pierce, “Supporting Cloud Computing with the Virtual Block Store

System”, Proceedings of Proceedings of e-Science 2009, Oxford, UK, (2009), pp. 71-78.

[5] Fio, http://freecode.com/projects/fio/

[6] sysbench, https://launchpad.net/sysbench

[7] P. Clements and J. E. J. Bottomley, “High availability data replication”, Proceedings of the 2003 Linux

Symposium, Ottawa, Canada, (2003), pp. 109-116.

[8] HLFS, http://code.google.com/p/cloudxy/

[9] H. D. Zhi, X. C. Sheng, F. X. Lin and Y. F. Ling, “Design and Implementation of an iSCSI-Based

Network Attached Storage Server”, Journal of Computer Research and Development, vol. 41, no. 1,

(2004), pp. 207-213.

[10] J. Wan, J. Zhang, L. Zhou, Y. Wang, C. Jiang, Y. J. Ren and J. Wang, “ORTHRUS: a lightweighted

block-level cloud storage system”, Cluster computing, vol. 16, no. 4, (2013), pp. 625-638.

[11] X. Gao, Y. Ma, M. Pierce, M. Lowe and G. Fox, “Building a distributed block storage system for cloud

infrastructure”, Proceedings of Cloud Computing Technology and Science (CloudCom), Indianapolis,

USA, (2010), pp. 312-318.

[12] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy, D. Gehring, B. Fan, A. Kadav, V. Chidambaram

and O. Khan, “Blizzard: fast, cloud-scale block storage for cloud-oblivious applications”, Proceedings of

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

http://xueshu.baidu.com/s?wd=author%3A%28P.%20Clements%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28J.%20Bottomley%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

International Journal of Database Theory and Application

Vol.9, No.10 (2016)

348 Copyright ⓒ 2016 SERSC

the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle,

(2014), pp. 257-273.

[13] T. B. Peter and A. Wiebalck, “Dependable networked RAID for the open source community”,

Proceeding of 11th Parallel and Distributed Systems, Fukuoka, Japan, (2005), pp. 627-633.

Authors

Wei Wang, Computer Labs of Hangzhou Medical College,

Research Interests are distributed system, cloud computing.

Lihua Yu, technical director of Netease Inc., Research Interests

are distributed storage system, cloud computing.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

