International Journal of Database Theory and Application
Vol.9, No.10 (2016), pp.337-348
http://dx.doi.org/10.14257/ijdta.2016.9.10.29

REMB: Recoverable External Memory Bitmap of Software RAID

Wang Wei * and Yu Li-hua?

'Hangzhou Medical College, Computer Lab, Hangzhou 310053, China
2Hangzhou R&D Center, Netease Corporation, Hangzhou 310052, China
lweiw81@163.com, 2peteryln@163.com

Abstract

Distributed block storage system is one of the fundamental components of cloud
computing, and many important services, including cloud database, cloud queue, are built
upon it. It is common practice to build block storage system based on reliab
efficient Linux open source software, i.e. software RAID, to meet the I/O requir of
cloud database. Bitmap is a critical data structure of software RAID, f&an nce is

important to reliability and performance of this kind of s rage sys describe
several existing software RAID bitmap management on antygpropose REMB
(Recoverable External Memory Bitmap), which is r ¢ Experimental
results show that REMB improve cloud database nce b@ %.

Keywords: Software RAID, Bitmap, Cloud, Pistributed S%\

1. Introduction %
The vigorous development of c %omp \ accelerated the changes of IT

industry. Since 2011, the majo mternet anies such as Alibaba, Tencent and
Netease, plus dozens of s tu ma rush to launch their cloud computing
services. The booming cloud duc e industrial applications. The data form

chinairn [1] shows that 7 ompanla\'v a plan to migrate local applications to cloud
in future.

The V|rtuaI|zat omputipg=tlock storage and network is the foundation of cloud
computmg BI rage sys ravides block devices for virtual machine, which is
compatlbl aI disks=Compared with Amazon EBS (Elastic Block Store), which is
the most f S bloc e device in industry, there are some corresponding open

uch as Sheepdog [2] and Ceph [3]. Block storage is the
abase System, for example, Amazon RDS (Relational Database
S. The database transaction throughput depends on the speed of
write-ahead Jog, further the speed of write-ahead log depends on the response time of
block de\%So, we can conclude that the response time of block storage has direct
effect o@ erformance of the cloud database.
th cache and SSD(Solid State Drive) have been used to reduce I/O response
single computer environment. But in cloud, it is still a big challenge to build a
uted block storage system to satisfy the database’s I/O need. Firstly, I/O always
needs to transfer data across the network because the block device replicas locate in more
than one remote server. Secondly, due to the large scale of the cloud, failure happens
almost every day, and then fault recovery will also affect the 1/O response time. The open
source software, including Sheepdog and Ceph, is more or less inappropriate for cloud
database. They run in user mode and thus the overhead is too large. Also, when a fault
occurs, the system’s response time usually became even worse. Sheepdog repair data
during reading, hence user 1/O is likely to be blocked by repairing workload Ceph allows
data repair in parallel with user 1/0, but when a user access the recovering data, the 1/0
write will be blocked until data recovery finished. Although the storage objects accessed

source software pro
foundation of Clo
Service) is buil

ISSN: 2005-4270 |JDTA
Copyright © 2016 SERSC



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

by user have high recovery priority, Ceph’s I/O response time will still be severely
affected.

Open source software, such as iSCSI, MD(Software RAID), DM(DeviceMapper), have
implemented core distributed storage functionality, such as remote block device,
replication, data slice and combination. They are mature and stable, and run in kernel
mode with high 1/O efficiency. There are lots of block storage systems [4,9-12] based on
those open source software. The distributed block storage of NTES(www.163.com) is
also implemented based on those open source software, it has been running stably and
reliably since putting into use. In this paper, we propose REMB(Recoverable External
Memory Bitmap) to improve MD(Software RAID) performance, and implement it in
distributed block storage of NTES. Experimental results show that the new schema can
improve cloud database’s performance by 30%~60%.

This paper is structured as follows: Section 2 gives an overview of open source storage
software. Section 3 presents three distributed block storage mechanisms based on AIDo

internal bitmap, reliable external bitmap, and Recoverable External Memory Bi
discusses their advantages and disadvantages. Section 4 presents experlm setup and
numerical analysis results. Section 5 introduces related works. Section 6 s zes the
results and discusses future directions. &
2. Open Source Software @

In this section, we introduce three open source are use s paper: MD, open-
iscsi/iet, and DM. Q 6
2.1. MD (MultipleDisk) O \

Multiple Disk(MD) is a software |n Li \@h consists of a kernel driver and
a user mode administrative to pport manWtypes of RAID such as RAID0/1/5/6,
and in this paper we will fo ID- 19\/\%1 implements disk mirror.

RAID-1 makes up of severai®disk N re mirror images of each other. When a

power off, a network er @r other fai ccurs, a write request may success in some
disks, while fail m,oﬁ\ ks. Therefore, these disks may have different data, and the
RAID device is tent. inconsistency detected, MD starts data recovery to
. Data recovery runs in background, hence won’t

make sure all

block user sts. Thesdefault data recovery strategy is full copy, that is, copying the
data of se other disks. Obviously, this method is costly and time
consuming. To solve blem, MD designs in_sync flag and WritelntentionLog.

There is an in g in MD’s super block, in_sync=1 means that the disks are in a

consistent state in_sync=0 means that the disks may be inconsistent. When RAID
device restartedN\it checks in_sync flag, and skips data recovery when in_sync = 1.
Therefore,\%ync flag can reduce the chance of data recovery. In_sync is initialize to
zero at eation of RAID device. Before MD serves a write request, it must ensure
in s 70, because any write requests may cause inconsistency. If there is no write
n in a period of time, MD will set in_sync flag to 1, because the device is

stent now. in_sync flag of a heavy write RAID deivce usually equals 0, so it is only
helpful to devices with low write workload.

PaulClaments et al. [7] implement write intention bitmap in MD to accelerate data
recovery. There are two types of write intention bitmaps, i.e. internal bitmap and external
bitmap. Internal bitmap is stored redundantly on each member disk of RAID, while
external bitmap is a file in external file systems. The RAID is divided into equal-size data
blocks, each bit of the bitmap corresponds to a data block, and 1 means dirty, 0 means not
dirty. The write intention bitmap helps to reduce the amount of data to be recovered, as
we just need to deal with the blocks tagged 1. However, the disadvantage of the write
intention bitmap is also obvious: Each write request has to set and reset the corresponding

338 Copyright © 2016 SERSC



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

bits, so the write performance drops down to 1/3. Several optimization methods are
proposed to improve write performance: 1) Batch submissions of bitmap write requests.
When concurrent write requests set several bits dirty, MD writes these dirty bits to disk in
a batch to reduce bitmap writes. 2) Asynchronous reset. When a dirty bit is reset, MD
doesn’t write bitmap to disk immediately. It waits until other write operations modify the
bitmap again, and piggy-back reset operations to disk. This optimization may cause reset
bits not persistent in failure, but it is safe because the only result is that some unnecessary
data blocks are recovered during RAID recovery. Although the above optimization is
obviously effective, however, the experimental results show that MD bitmap still doubles
the 1/0 access. Thus, the behavior of the bitmap plays a key role in software RAID
performance.

2.2.1SCSI

iSCSI is a standard protocol published by IETF(Internet Engineering Task OW’

February 2003. It can literally be interpreted as SCSI over TCP/IP, or Ethernet %& he

SCSI commands are encapsulated into TCP/IP package, and transported by ork.
The iSCSI consists of iSCSlinitiator and iSCSITarget. When applicatio

request, the operating system generates a correspondin comm d sends the
command to iSCSlinitiator driver. The iSCSlinitiator tesNSCS[*ommands and

sends the package to remote equipment. The remo@ target ive$ the message and
fetches SCSI command according to iSCSI proto hen the Mand is executed by
the real SCSI storage device. The 1/O responsexocess isju%ve e.

iet(iSCSI Enterprise Target) is the most&u% open sx implementation of iSCSI
target, which runs in kernel mode. Open\ s the o% pen source iscsi initiator under

Linux. é s\\

2.3.DM :

Device Mapper(DM) is a devi e g mechanism used in Linux for mapping
physical block devices omlgher le irtual block devices. It runs in kernel mode and
implements 10 re que \*hg replication and load balance by modularized

ring,
targetdrive plug- |l\\ provid&msetup command as administrator tool for kernel

driver

The Li %I pro ot of target driver plug-ins, such as linear, mirror,
snapshot. Th ear tar s a linear range of the device onto a linear range of another
device. In this paper % linear target concatenate chunks as a single volume.

3. Distribute@mck Storage System

3.1. Sysa%.;chitecture

chunk

Disk I 4 Disk I NI Disk I >
Storage 1 Storage 2 Storage 3

Figure 1. The Distributed Block Storage System Architecture

Copyright © 2016 SERSC 339



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

Netease, Inc. is a leading China-based internet technology company, the company
starts to build its own private cloud system since 2012. Most of its internet application has
deployed on cloud now. Netease Block System (NBS) provides block devices for the
private cloud, its architecture is shown in Figure 1. There are two important concepts:
Volume and Chunk. Volume is a block device provided by the system in host computer,
and is mapped to user’s KVM virtual machine by QEMU. From the user's perspective,
there is no difference between a volume and a local disk, users can create file systems on
a volume and read/write the files.

Chunk, normally 10G in size, is the unit of storage allocation and load balance.
Allocation bitmaps are used to manage disk space. Each disk on host machine is divided
into many chunks and has a corresponding allocation bitmap, 1 means the chunk is
allocated and 0 means free. A volume is concatenated by multiple RAID-1 devices based
on DM linear. Each RAID-1 devices consist of two chunks which is mirror to each other.
A RAID-1 device is the same size as a chunk, which is also 10G. To ensure reliw,o
chunks from single RAID-1 device are located on different servers.

The system is made of storage servers, host machines and metadata serv orage
server manages dozens of physical disks and is responsible for chun on and
release. When the volume is mounted, the storage server ts’chun (Logrcal
Unit Number) of iet. The host machine then mounts nks,rem to compose
RAID device, and multiple groups of RAID-1 devi %onc tena form a volume
for users. Storage server and host machine are j 0 krn cess, they usually
collocate in a same physical server which pro |d oth sto ace and remote data
access at the same time. The metadata server r%ﬁ?hges alkki%of metadata, including the
mapping relationships between chunks an cal disks mapping between volumes
and chunks, et al. The metadata serve ore @e for global scheduling, failure
detection and recovery, and providr for % pplications.

NBS has been online for se er rs in the%g ase private cloud, and thousands of
cloud database instances ha\{% ploye op of NBS volumes. NBS is very stable
with reasonable performance, have most of our database to cloud, but there

are still some write hea atabase n on top of NBS. In Section 2.1 we have
concluded that ert ifitention bjtmap” has a great influence on software RAID
performance. No il anal itmap management solutions in NBS, and propose
our new bitmap ment s ndo improve NBS write performance.

3.2. Internmap 6@
& Virtual Device ‘

RAID-1device

Chunk 1 Chunk 2

Figure 2. Internal Bitmap
The default MD bitmap mechanism is internal bitmap. As Figure 2 shows, MD stores a

replica of the internal bitmap in the header of each Chunk. All of the bitmap is updated
synchronously to maintain consistency. MD’s write flow is shown in Figure 2: (1) if the

340 Copyright © 2016 SERSC



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

bit of the bitmap corresponding to write request is not dirty, it is set to 1. Then MD sends
two write requests simultaneously and writes the bitmap to the header of each Chunk; (2)
After the bitmap modification, MD writes data in parallel to each Chunk; (3) MD resets
the bit of each replica bitmap to 0 asynchronously.

The advantage of this mechanism is that the bitmap solution is mature and reliable, and
no code changes are required. The disadvantage is that bitmap update is expensive
because two cross-network disk 1/O accesses are needed. Due to its poor performance,
internal bitmap is not adopted by NBS.

3.3. Reliable External Bitmap

Because internal bitmap’s poor performance, NBS employs a reliable external bitmap
method. It uses MD external bitmap and stores external bitmap on reliable RAM disk.
Each server creates several 64M sized RAM disks. Some of these RAM disks are used
locally, and others are used by remote hosts through iSCSI protocol. As Figure
local RAM disk on the host machine and another RAM disk on the remote serve

created on memory RAID-1 device to store volumes’ externalyitmap fil

RAID-1device

E Bitmap file — \

Local RAM disk -

Remote RAM disk -

0\9
Q Chunk 1 Chunk 2
\ng \%Ilable External Bitmap

S: (1) If the corresponding bit of the write request is not

The wri@ as, fi
dirty, itis s , then shes bitmap file.(2) The file system submits I/O to memory
RAID device, an MD updates local RAM disk and remote RAM disk

concurrently.(3) es data to the two Chunks after the bitmap modification.(4)MD
set the bitmap nchronously

The most, distimguishing feature of this approach is local RAM disk and remote RAM
disk for %RAID-l device to store the volumes’ external bitmap. This approach
outperf nternal bitmap, achieves 50% cost reduction of bitmap modification from 2
CLOS work 1/0 accesses to 1 cross-network memory access. In compare with using two
memory devices, it also has advantages: it reduces network communication cost,

al as better reliability, because half remote device means half failure rate.

The disadvantage of this approach is that bitmap may be lost if the host machine and
the remote machine where remote RAM disk locates go down in the meanwhile. Luckily,
losing bitmap will not result in the volume becoming inaccessible or the data being lost. It
may only lead to full copy data recovery. But full copy data recovery will happen only
when the following three conditions apply simultaneously: the bitmap has lost; the MD
device composed by the two Chunks is not in a consistent state; at least one Chunk is
inaccessible. Thus full copy data recovery is a rare event.

Copyright © 2016 SERSC 341



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

3.4. REMB: Recoverable External Memory Bitmap

RAID-1device I
Memory bitmap - @

liT——‘ Chunk 1 Chunk 1 liT——‘
LOG bitmap LOG bitmap v
Figure 4. REMB: Recoverable External l\%gry B%p
We design REMB(Recoverable External Memor ne management
mechanism for NBS which is more efficient W|t aerificing, durawility. As Figure 4
shows, bitmap is stored on local RAM disks. Bec emoryx is fast, bitmap will

no longer affect the write performance an inimize response time in theory.
Obviously, this approach obtains high per ce at th nse of sacrificing bitmap

reliability, so we have to figure out wa sure th itmap is recoverable. A new
data structure LOG bitmap is aIIocat ach C@nd each bit of the LOG bitmap
corresponds to a data block with 5|ze write intention bitmap, 1 means
dirty, 0 means not dirty. A L ap kee a récord of write operations on a Chunk.

the LOG bitmaps on the C epllcas t record all write operations on software
RAID. Therefore, LOG Wps can ts\' reconstruct the write intention bitmap and

perform data i incremen ation.
Like write int map, the\corresponding bit in LOG bitmap must be set to 1
before writing d e d| is that, LOG bit must wait till the write request

completed op-al\Chunk replicasi\and then it is set to 0. Take this scenario: the host sends
a write req n certai nk, and then the host machine goes down too suddenly to
send a write“request to r mirror Chunk. In this case, the block should be dirtied in
write intention bitm ause the Chunk replicas are not consistent. If Log bitmap was
set to 0 just after operation, then all the LOG bitmap should be not dirty, and we
can’t reconstru&ite intention bitmap using LOG bitmaps.
Chunkyeplicas’in software RAID don’t communicate with each other, and further, they
%’wa each other's existence. Storage servers can’t determine when a write

don’t e
requ \@ﬂshed at all replicas, and when to reset the corresponding bits in LOG bitmap.
ion to this problem is to delay the reset operation until the storage server makes

hat all the Chunk copies are written completely. LOG bitmap is divided into two
pars: the current LOG bitmap which records data blocks modified most recently, and the
history LOG bitmap which records blocks modified some time ago. Every T seconds, the
current LOG bitmap overwrites the history LOG, and then all bits of current LOG bitmap
reset to zero overall. The current LOG bitmap bitwise or the history LOG bitmap results
LOG bitmap. Write intention bitmap can be reconstructed by bitwise or of LOG bitmaps
at all replicas. We can prove that as the interval time T is much longer than iSCSI
timeout, the recovered write intention bitmap must be right. That means all inconsistent
data blocks have been marked in write intention bitmap.
Let T be the LOG bitmap interval time, and t be iSCSI timeout, T >> t. C;and C;
indicate two Chunk repicas. Chunk C; has the current LOG bitmap Ci; and the history

342 Copyright © 2016 SERSC



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

LOG bitmap Ci. Let CTi: be the time to reset Cii. Algorithm 1 describes the bitmap
update algorithm.

Algorithml update bitmap
Require:
I/O offset;
1/0 size;
Ensure:
blocksize«—64M
now<—gettimeofday()
for index = offset/blocksize— (offset + size)/blocksize
do

bitmap_setbit(Cii, index)
if CTi1 + T < now then

*
Ciz < Ci V
Ci—0
CTir<— now . 0
end if
end for \* @
Theorem 1: Ciy | Ciz records all write operationscj SEunk C\\Oﬁlperiod of T.
According to the bitmap update algorithm, @w records allawrite®operation in the period
of [CTi1, now], and Cizin the period of [Cbﬁn]. Sé@:m keeps a record of write
operations in [CTi-T, now). And becé CTi<pow, Ci1 | Ci2 contains all write
operation in [now-T; now). In other @\I é&is all write operation for Chunk
Ciin the period of T. {

it | Cix
Theorem 2: C11 | C12 | Ca | s arecq ﬁ possible inconsistent data blocks.
Only the data blocks bei odified

inconsistent. According to the bitmap
LOG bitmap must be set to 1 before the
peration must be recorded on some bitmap

update algorithm, the corresponding bi
data is modified. Thus odificaﬂ%
replica before modifiaéti

In addition, we ove it will not be set to O if the data block is possible
inconsistent. Bedause®iSCSI ti tiStandt << T, awrite request must be terminated in
T seconds e it fails cceeds. We reset history LOG bitmap every T seconds, so
a dirty bito ent L ap will remain dirty for at least T seconds. Therefore, when

we reset history LO

will not be set to Q=i
As a concl

blocks.
Acc the theorem 2, we can also conclude that there will not be data

p, all corresponding write requests are finished, that is the bits
data blocks are possible inconsistent.
11 | C12 | Ca1 | C22 keeps a record of all possible inconsistent data

inconsi y when recovering write intention bitmap from LOG bitmap. Now let’s look
a andling in distributed block storage devices.
%e e 1: temporary failure occurs on a storage server. When a storage server failure
happens due to network disconnection or server restart, the soft RAID will degrade and
1/0 will not be affected. By the time the storage server recovered, the software RAID will
perform increment data recovery based on write intention bitmap, that is, copying dirty
data blocks from a valid replica to an invalid one. If the LOG bitmaps on failed storage
server is not lost, data recovery will bring LOG bitmap up-to-date, because recovery write
requests will update LOG bitmap just like user write requests. If the LOG bitmaps have
been lost, new LOG bitmaps must first be created from a valid replica before data
recovery.
Scene 2: the host machine fails. When failure occurs on a host machine, the VMs
running on it would have been terminated, and the software RAID write intention bitmap

Copyright © 2016 SERSC 343



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

would have lost. The reasonable approach to deal with this situation is mounting the
volume to another host machine and restarting the VMSs. The bitmap recover method is to
copy LOG bitmap from the storage machine, and set the write intention bitmap to Cyy |
C12 | Co1 | Coo. After recovering bitmap, incremental replication will be performed for the
software RAID.

Scene 3: the host machine and the storage server are in trouble at the same time. In this
case, the write intention bitmap and LOG bitmap are both missing. We have to create a
new LOG bitmap and perform full copy data recovery for the software RAID.

4. Experiments

4.1. Experiment Environment

As Figure 5 shows, the experiment environment includes two servers, one as storage,
server, and another as host machine. We create 12 double replica volumes e i
size of 600G to simulate the cloud environment. Each volume is divided into_12 nks
(size of 10G), and is deployed to 24 physical disks on storage servers randgm he two
Chunk replicas will be placed on two different physical disks\We start 4vi achines
each with 3 volumes mounted. All the VMs are used to ru ?*rogra

VM VM VM 4 VM
v
N L
Chunk Chunk Ch , Chunk
2\ ’
A A
K \
\ 1}
= o

v
@ isk @ pﬁéical disk physical disk physical disk
6 Storges

Figure@xperiment Environment to Simulate a Cloud

\)

% Table 1. Server Configuration
OO Dell R720XD

E5-2650v2x2

16GB DDR3-1600Mhzx16, 256GB
2.5 inch, 900Gx24 (10k RPM)
H710P(1G)

2 x 10Gbps

4.2. 1/0 Response Time

I/O write response time is the most important factor for database transaction
throughput. As internal bitmap has the worst response time, it is rarely used in real-world
application. Therefore our experiments mainly focus on REMB and reliable external
bitmap.

344 Copyright © 2016 SERSC



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

The experiments follow two principles: 1. simulating a real-world load environment.
We start 3 fios on each VM, a total of 4 VMs and 12 fios involved to test 12 volumes. 2.
testing the relationship between response time and system workload.

The results about 1/0 response time are shown in Figure 6(a). REMB has a better
performance than reliable external bitmap in each I/O pressure scenarios, and reduces
average 1/O response time by 0.5~0.8ms.

4.3. Database Performance

The mostly common cloud databases are based on MySQL in industry. In our
experiments, the MySQL database is running on distributed block device, and the
database performance of REMB and external bitmap is studied. We use MySQL
benchmark sysbench [6] and OLTP as test program.

Figure 6(b) shows the database throughput of REMB and reliable external bitmap with
a different number of threads. It can be seen that the database throughput f@’
increases by 30%~60% than reliable external bitmap. v

25 7 0
*

- N
*
) : O \
0.5
%Ie external hlt& ~i—REMB

\ ‘
0 —_— : ‘
\ 1800 2300 2800

PS (numbers/s)

\Q @O Response Time
1:00 .

Reaponse
Time(ms)

=4 REMB

@ 200 + == reliable external bitmap
U T T T T T 1

numbers of threads

(b) Cloud Databases’ Throughput

Copyright © 2016 SERSC 345



International Journal of Database Theory and Application
Vol.9, No.10 (2016)

1200

1000 -

800 -+

Response
Time 600 -
(ms)

400 -

200 -
—4—REMB ——reliable external bitmap

0 T T T T T 1
0 10 20 30 40

50 6 .
numbers of threads V
(c) Cloud Databases’ Response Time QE

Figure 6. Experiment Re US .
Figure 6(c) shows the response time with a diff nwmber of taregds. We can also
conclude that the database response time of R@r duc \% 0% than reliable
external bitmap. e\

N
5. Related Works . O N\

Distributed block storage systems @ e hi lity, high availability and high
performance. Therefore, these sy, re di% to implement and there are few
published research papers ab system, implementation. The main open source
distributed block storages Ind in t@ndustry are Ceph [3], Sheepdog [2] and
HLFS [8].

Ceph is an open sourc -scale st@&mtem. It was born as a research project at the
University of Caliio@and laterNacquired by Redhat and used for Openstack as its
standard block s ﬁg . Ce CRUSH algorithm to map storage objects to
PG(placeme yand PG t rage servers. It is an excellent scalable system,

Sheepd avdistri storage system for QEMU, iSCSI clients and RESTful
services. It des hi ailable block level storage volumes that can be attached to
QEMU-based virtu ines. Sheepdog scales to several hundreds of nodes, and
supports advanc me management features such as shapshot, cloning, and thin
provisioning. @og is a decentralized and scalable system in a peer-to-peer
architecture

Howeye ither Ceph or Sheepdog is suitable for high-performance cloud database.
The Q. ortcoming is that response time is uncontrolled and uncertain. Firstly, both

Sheepdog are running in user mode, and interaction between the kernel mode
%\e user mode is frequent and inefficient. Secondly, the 10 path is long. Ceph’s write
regdests are forward by primary replica to secondary replica. Similarly, a Sheepdog 10
request must go through the gateway server. Thirdly, when a fault occurs, Sheepdog
recovers data during reading, hence leading to long read response time. If a write request
accesses data chunk to be recovered, it must wait until chunk recovery finished, hence the
write response time is intolerable. Analogously, Ceph’s write request must wait until
replica recovery finished, and also brings unbearable response latency.

HLFS(Hadoop Log Structured File system) is another example of distributed block

system. It is built on top of HDFS and implemented based on LFS. It inherits the features

of Hadoop, such as high reliability, availability and scalability. However, Hadoop is an
offline batch processing system with poor real-time performance, and the garbage

346 Copyright © 2016 SERSC


javascript:void(0);

International Journal of Database Theory and Application
Vol.9, No.10 (2016)

collection mechanism of LFS causes further deterioration of response time. Therefore,
HLFS is not fit for critical database applications.

Blizzard [12] is a high-performance block store proposed by Microsoft. By using a
novel striping scheme, an out-of-order write committing mechanism, and CLOS network,
Blizzard exposes high disk parallelism to workloads and provides high performance and
crash consistency to applications. Blizzard is suitable for big data service but not OLTP
database service.

There are also some distributed storage cases based on open source software in
research area. Gao [4,11] implements a storage system based on IET and CLVM. Han [9]
integrates iSCSI and RAID to implement a system. ORTHRUS [10] is based on IET and
CLVM, and uses a load balance algorithm to improve storage throughput. Compared to
these systems, this paper focus on response time and system stability, and proposes
REMB to improve software RAID performance. Compared to
DependableNetworkedRAID [13], which designs a memory bitmap for databases
incremental replica and implements the system based on software RAID, the &&Of
this paper is recoverable and more reliable. %

O
6. Conclusion \* @

Distributed block storage system is the core infrastsUsture of g(lou puting, and the

foundation of cloud database. The system must h pid I/% se and proper fault
handling to avoid an unbearable 1/O response hen fault rs. However, there are
few open source distributed block syst @meet* ‘L? these requirements. The
Software RAID is usually used to imp @I tributed b storage system because of
its stability, high efficiency and matur%& andh these systems, the key factor of
I/0 delay is software RAID bitmap aper %@ software RAID bitmap methods
in cloud environment, and the s REMB prove software RAID performance.
Experimental results show m%ﬁ h is reliable and efficient, and achieves
an pro

the least 1/0 delay in theory database performance by 30%~60%.

Q

Acknowledgmen

This paper is \ted by@ . 2011ZX01039-001-002, and Hangzhou Medical
College No A03
Reference

[1] Chinese Industr h Network, http://www.chinairn.com/

[2] Sheepdog, ht github.com/sheepdog/

[3] S. A. Weil, A? Brandt, E. L. Miller, D. D. E. Long and C. Maltzahn, “Ceph: A Scalable, High-
Perfo ce Distributed File System”, Proceedings of OSDI, Seattle, (2006), pp. 307-320.

[4 X owe, Y. Ma and M. Pierce, “Supporting Cloud Computing with the Virtual Block Store

S s@ roceedings of Proceedings of e-Science 2009, Oxford, UK, (2009), pp. 71-78.

:/[freecode.com/projects/fio/

psiench, https://launchpad.net/syshench

. Clements and J. E. J. Bottomley, “High availability data replication”, Proceedings of the 2003 Linux

Symposium, Ottawa, Canada, (2003), pp. 109-116.

[8] HLFS, http://code.google.com/p/cloudxy/

[91 H. D. zhi, X. C. Sheng, F. X. Lin and Y. F. Ling, “Design and Implementation of an iSCSI-Based
Network Attached Storage Server”, Journal of Computer Research and Development, vol. 41, no. 1,
(2004), pp. 207-213.

[10] J. Wan, J. Zhang, L. Zhou, Y. Wang, C. Jiang, Y. J. Ren and J. Wang, “ORTHRUS: a lightweighted
block-level cloud storage system”, Cluster computing, vol. 16, no. 4, (2013), pp. 625-638.

[11] X. Gao, Y. Ma, M. Pierce, M. Lowe and G. Fox, “Building a distributed block storage system for cloud
infrastructure”, Proceedings of Cloud Computing Technology and Science (CloudCom), Indianapolis,
USA, (2010), pp. 312-318.

[12] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy, D. Gehring, B. Fan, A. Kadav, V. Chidambaram
and O. Khan, “Blizzard: fast, cloud-scale block storage for cloud-oblivious applications”, Proceedings of

Copyright © 2016 SERSC 347


http://xueshu.baidu.com/s?wd=author%3A%28P.%20Clements%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28J.%20Bottomley%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

International Journal of Database Theory and Application
Vol.9, No.10 (2016)

the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle,
(2014), pp. 257-273.

[13] T. B. Peter and A. Wiebalck, “Dependable networked RAID for the open source community”,
Proceeding of 11th Parallel and Distributed Systems, Fukuoka, Japan, (2005), pp. 627-633.

Authors

Wei Wang, Computer Labs of Hangzhou Medical College,
Research Interests are distributed system, cloud computing.

\ 2
Lihua Yu, technical director of Netease Inc., Res Eterests
are distributed storage system, cloud co uthg. @

AN
O°

348 Copyright © 2016 SERSC





