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Automated theorem provers (ATPs) are a key component that many software
verification and program analysis tools rely on. However, the basic interface
provided by ATPs (validity/satisfiability checking of formulas) has changed little
over the years. We believe that program analysis clients would benefit greatly
if theorem provers were to provide a richer set of operations. We describe our
desiderata for such an interface to an ATP, the logics (theories) that an ATP for
program analysis should support, and present how we have incorporated many
of these ideas in Zap, an ATP built at Microsoft Research.

1 Introduction

To make statements about programs in the absence of concrete inputs requires
some form of symbolic reasoning. For example, suppose we want to prove that
the execution of the assignment statement x:=x+1 from a state in which the
formula (x < 5) holds yields a state in which the formula (x < 10) holds. To
do so, we need machinery for manipulating and reasoning about formulas that
represent sets of program states.

Automated theorem provers (ATPs) provide the machinery that enables such
reasoning. Many questions about program behavior can be reduced to questions
of the validity or satisfiability of a first-order formula, such as ∀x : (x < 6) =⇒
(x < 10). For example, given a program P and a specification S, a verification
condition V C(P, S) is a formula that is valid if and only if program P satisfies
specification S. The validity of V C(P, S) can be determined using an ATP. The
basic interface an ATP provides takes as input a formula and returns a Boolean
(“Valid”, “Invalid”) answer. Of course, since the validity problem is undecidable
for many logics, an ATP may return “Invalid” for a valid formula.

In addition to this basic interface, ATPs may generate proofs witnessing the
validity of input formulas. This basic capability is essential to techniques such as
proof-carrying code [Nec97], where the ATP is an untrusted and potentially com-
plicated program and the proof generated by the ATP can be checked efficiently
by a simple program.

Through our experience with the use of ATPs in program analysis clients, we
often want ATPs to provide a richer interface so as to better support program
analysis tasks. We group these tasks into four categories:

– Symbolic Fixpoint Computation. For propositional (Boolean) formulas,
binary decision diagrams (BDDs) [Bry86] enable the computation of fix-



points necessary for symbolic reachability and symbolic CTL model check-
ing [BCM+92] of finite state systems. The transition relation of a finite state
system can be represented using a BDD, as well as the initial and reachable
states of the system. A main advantage of BDDs is that every Boolean func-
tion has a normal form, which makes various operations efficient. The basic
operations necessary for fixpoint computation are a subsumption test (to
test for convergence), quantifier elimination (to eliminate temporary vari-
ables used in image computation) and a join operation (to combine formulas
representing different sets of states; this is simply disjunction in the case of
Boolean logic). We would like to lift these operations to logics that are more
expressive than propositional logic, so as to enable the computation of sym-
bolic fixpoints over structures that more closely correspond to the types in
programming languages (integers, enumerations, pointers, etc.). While nor-
mal forms may not be achievable, simplification of formula is highly desirable
to keep formulas small and increase the efficiency of the fixpoint computa-
tion.

– Abstract Transformers. A fundamental concept in analyzing infinite-state
systems (such as programs) is that of abstraction. Often, a system may be
converted to a simpler abstract form where certain questions are decidable,
such that proofs in the abstract system carry over to proofs in the original
system. Abstract interpretation is a framework for mathematically describing
program abstractions and their meaning [CC77]. A basic step in the process is
the creation of abstract transformers: each statement in the original program
must be translated to a corresponding abstract statement. This step often
is manual. Predicate abstraction is a means for automating the construc-
tion of finite-state abstract transformers from infinite-state systems using an
ATP [GS97]. ATPs can also be used to create symbolic best transformers
for other abstract domains [YRS04]. Unfortunately, these approaches suffer
from having to make an exponential number of calls to the ATP. If an ATP
provides an interface to find all the consequences of a set of facts, the process
of predicate abstraction and creation of symbolic best transformers can be
made more efficient [LBC05]. Consequence finding [Mar99] is a basic oper-
ation for the automated creation of abstract transformers that ATPs could
support.

– Property-guided Abstraction Refinement. If an abstraction is not pre-
cise enough to establish the correctness of a program with respect to some
property, we wish to find a way to make the abstraction more precise with
respect to the property of interest [Kur94,CGJ+00,BR01]. Recently, McMil-
lan showed how interpolants naturally describe how to refine (predicate)
abstractions with respect to a property of interest [McM03,HJMM04]. An
interpolating ATP [McM04a] can support the automated refinement of ab-
stractions.

– Test Generation. Finally, we would like to use ATPs to prove the presence
of a bug to the user through the automated generation of failure-inducing



inputs [Cla76]. In general, we wish to generate a test input to a program to
meet some coverage criteria (such as executing a certain statement or cover-
ing a certain control path in the program). To do this, one can create from
the program a formula that is satisfiable if and only if there is a test input
that achieves the desired coverage criteria. We wish not only to determine
the satisfiability of the input formula but also to generate a satisfying assign-
ment that can be transformed into a test input. Model finding/generation is
an important capability for ATPs in order to support test generation [ZZ96].

The paper is organized as follows. Section 2 presents more detail about the needs
of (symbolic) program clients of ATPs. Section 3 describes the theories/logics
that naturally arise from the analysis of programs. We have created an ATP
called Zap to meet some of the needs described above. Section 4 gives back-
ground material necessary to understand Zap’s architecture, which is based on
the Nelson-Oppen combination procedure [NO79a,TH96]. We have found that
the Nelson-Oppen method can be extended in a variety of ways to support the de-
mands of program analysis clients mentioned above. Section 5 gives an overview
of Zap’s architecture and describes some of our initial results on efficient decision
procedures for fragments of linear arithmetic that occur commonly in program
analysis queries. Section 6 describes how we have extended Zap and the Nelson-
Oppen combination framework to support richer operations such as interpolation
and predicate abstraction. Finally, Section 7 discusses related work.

2 Symbolic Program Analysis Clients of ATPs

This section formalizes the requirements of symbolic program analysis clients of
ATPs.

2.1 Notation

A program is a set C of guarded commands, which are logical formulas c of the
form

c ≡ g(X) ∧ x′1 = e1(X) ∧ . . . ∧ x′m = em(X)

where X = {x1, x2, . . . , xm} are all the program variables. The variable x′i stands
for the value of xi after the execution of the command. We write g(X) to em-
phasize that g’s free variables come only from X. A program state is a valuation
of X. We have a transition of one state into another one if the corresponding val-
uation of primed and unprimed variables satisfies one of the guarded commands
c ∈ C.

In symbolic evaluation, a formula φ represents a set of states, namely, those
states in which the formula φ evaluates true. Formulas are ordered by implica-
tion. We write φ ≤ φ′ to denote that φ logically implies φ′.

The application of the operator postc on a formula φ is defined as usual; its
computation requires a quantifier elimination procedure.

postc(ϕ) ≡ (∃X. ϕ ∧ g(X) ∧ x′1 = e1(X) ∧ . . . ∧ x′m = em(X))[X/X ′]
post(ϕ) ≡ ∨

c∈C postc(ϕ)



φ, old := init, false

loop
if (φ ≤ old) then

if (φ ≤ safe) then
return “Correct”

else
return “Potential error”

else
old := φ
φ := φ ∨ post(φ)

endloop

Fig. 1. Basic fixpoint algorithm.

In order to specify correctness, we fix formulas init and safe denoting the set
of initial and safe states, respectively. A program is correct if no unsafe state is
reachable from an initial state. The basic goal of a fixpoint analysis is to find a
safe inductive invariant, which is a formula ψ such that

(init ≤ ψ) ∧ (post(ψ) ≤ ψ) ∧ (ψ ≤ safe)

The correctness can be proven by showing that lfp(post, init) ≤ safe, where
lfp(F , φ) stands for the least fixpoint of the operator F above φ.

2.2 Fixpoint Computation

Figure 1 gives a very basic algorithm for (least) fixpoint computation using the
post operator. Here we abuse notation somewhat and let φ and old be variables
ranging over formulas. Initially, φ is the formula init and old is the formula false.
The variable old represents the value of φ on the previous iteration of the fixpoint
computation. As long as φ is not inductive (the test φ ≤ old fails) then old gets
the value of φ and φ is updated to be the disjunction of current value of φ and the
value of post applied to the current value of φ. If φ is inductive (the test φ ≤ old
succeeds) then the algorithm tests if φ is inside the safe set of states. If so, then
the algorithm returns “Correct”. Otherwise, it returns “Potential error”.

So, in order to implement a symbolic algorithm using an ATP, we require
support for: (1) a subsumption test to test if φ is inductive under post (≤); (2)
quantifier elimination (to implement post); (3) disjunction of formulas (to collect
the set of states represented by φ and post(φ)).

There are a number of interesting issues raised by the symbolic fixpoint client.
First, it is well known that certain logics (for example, equality with uninter-
preted functions) do not entail quantifier elimination. In these cases, we desire
the ATP to provide a “cover” operation, cover(φ), that produces the strongest
quantifier-free formula implied by φ.



Second, because the lattice of formulas may be infinite, to achieve termination
it may be necessary to use an operator other than disjunction to combine the
formulas φ and post(φ). As in abstract interpretation, we desire that logics are
equipped with “widening” operators. Given formulas φi and φi+1 such that φi ≤
φi+1, a widening operator widen produces a formula ψ = widen(φi, φi+1) such
that: (1) φi+1 ≤ ψ; (2) the iterated application of widening eventually converges
(reaches a fixpoint) [CC77].

The fixpoint algorithm computes a sequence of formulas as follows: φ0 = init
and φi+1 = φi ∨ post(φi). Widening typically is applied to consecutive formulas
in this sequence: φi+1 = widen(φi, φi ∨ post(φi)). The type of widening operator
applied may depend on the underlying logic as well as the evolving structure
of formulas in the fixpoint sequence. An example of widening over the integer
domains would be to identify a variable with an increasing value and widen to
an open interval: widen(i = 1, i = 1 ∨ i = 2) = i ≥ 1.

2.3 Finitary Abstract Transformers

As we have seen in the previous section, the symbolic fixpoint computation
can diverge because the lattice of formulas may have infinite ascending chains.
Widening is one approach to deal with the problem. Another approach is to
a priori restrict the class of formulas under consideration so as to guarantee
termination of the fixpoint computation.

For example, suppose we restrict the class of formulas we can assign to the
variables φ and old in the fixpoint computation to be propositional formulas over
a set P of finite atomic predicates. Let us denote this class of formulas by FP .
In this case, the number of semantically distinct formulas is finite.

However, there is a problem: this class of formulas is not closed under post
(nor under pre, the backwards symbolic transformer, for that matter). Suppose
that we have φ ∈ FP and that post(φ) 6∈ FP . We again require a cover operation
coverP (φ) of the ATP, that produces the strongest formula in FP implied by φ.
Then, we modify the fixpoint computation by changing the assignment statement
to variable φ to:

φ := φ ∨ coverP (post(φ))

Note that coverP is not the same operation as the cover operation from the
previous section. coverP is parameterized by a set of predicates P while the cover
operation has no such restriction. The coverP operation is the basic operation
required for predicate abstraction [GS97].

The coverP operation is related to the problem of consequence finding [Mar99].
Given a set of predicates P , the goal of consequence finding is to find all con-
sequences of P . The coverP (φ) operation expresses all consequences of P that
are implied by φ. As described later, we have shown that is possible to compute
coverP efficiently for suitably restricted theories [LBC05].



2.4 Abstraction Refinement

In the presence of abstraction, it often will be the case that the fixpoint compu-
tation will return “Potential error”, even for correct programs. In such cases, we
would like to refine the abstraction to eliminate the “potential errors” and guide
the fixpoint computation towards a proof. In the case of predicate abstraction,
this means adding predicates to the set P that defines the finite state space.
Where should these new predicates come from?

Let us again consider the sequence of formulas computed by the abstract
symbolic fixpoint: φ0 = init; φi+1 = φi ∨ coverP (post(φi)). Suppose that φk

is inductive (with respect to post) but does not imply safe. Now, consider the
following sequence of formulas: ψ0 = init; ψi+1 = post(ψi). If the program is
correct then the formula ψk ∧ ¬safe is unsatisfiable. The problem is that the
set of predicates P is not sufficient for the abstract symbolic fixpoint to prove
this. One approach to address this problem would be to take the set of (atomic)
predicates in all the ψj (0 ≤ j ≤ k) and add them to P . However, this set
may contain many predicates that are not useful to proving that ψk ∧ ¬safe is
unsatisfiable.

Henzinger et al. [HJMM04] showed how Craig interpolants can be used to
discover a more precise set of predicates that “explains” the unsatisfiability.
Given formulas A and B such that A ∧ B = false, an interpolant Θ(A, B)
satisfies the three following points:

– A ⇒ Θ(A,B),
– Θ(A,B) ∧B = false,
– V (Θ(A,B)) ⊆ V (A) ∩ V (B)

That is, Θ(A,B) is weaker than A, the conjunction of Θ(A,B) and B is unsat-
isfiable (Θ(A,B) is not too weak), and all the variables in Θ(A,B) are common
to both A and B.

Let us divide the formula ψk ∧¬safe into two parts: a prefix Aj = postj(init)
and a suffix Bj = postk−j ∧ ¬safe, where 0 ≤ j ≤ k and posti denotes the i-fold
composition of the post operator (recall that post is itself a formula).1

An interpolant Qj = Θ(Aj , Bj) yields a set of predicates p(Qj) such that
coverp(Qj)(Aj) ∧ Bj is unsatisfiable. This is because Aj ⇒ Qj and Qj ∧ Bj =
false (by the definition of interpolant) and because Aj ⇒ coverp(Qj)(Aj) and
coverp(Qj)(Aj) is at least as strong as Qj (by the definition of cover).

Thus, the union Q =
⋃

j∈{1,···k} p(Qj) is sufficient for the abstract symbolic
fixpoint to prove that it is not possible to reach an unsafe state (a state satisfying
¬safe) in k steps.

2.5 Test Generation

We also would like to use ATPs to prove the presence of errors as well as their
absence. Thus, it makes sense for ATPs to return three-valued results for va-
lidity/satisfiability queries: “yes”, “no” and “don’t know”. Of course, because
1 Note that ψk = postk(init).



of undecidability, we cannot always hope for only “yes” or “no” answers. How-
ever, even for undecidable questions, it is more useful to separate out “no” from
“don’t know” when possible, rather than lumping the two together (as is usu-
ally done in program analysis as well as automated theorem proving). Much
research has been done in using three-valued logics in program analysis model
checking [SRW99,SG04].

The ultimate “proof” to a user of a program analysis tool that the tool has
found a real error in their program is for the tool to produce a concrete input on
which the user can run their program to check that the tool has indeed found an
error. Thus, just as proof-carrying code tools produce proofs that are relatively
simple to check, we would like defect-detection tools to produce concrete inputs
that can be checked simply by running the target program on them. Thus, we
desire ATPs to produce models when they find that a formula is satisfiable, as
SAT solvers do. We will talk about the difficulty of model production later.

2.6 Microsoft Tools

At Microsoft Research, there are three main clients of the Zap ATP: Boogie, a
static program verifier for the C# language [BLS05]; MUTT, a set of testing
tools for generating test inputs for MSIL, the bytecode language of Microsoft’s
.Net framework [TS05]; and Zing, a model checker for concurrent object-oriented
programs (written in the Zing modeling language) [AQRX04]. In the following
sections, we describe each of the clients and their requirements on the Zap ATP.

Boogie The Boogie static program verifier takes as input a program written in
the Spec# language, a superset of C# that provides support for method spec-
ifications like pre- and postconditions as well as object invariants. The Boogie
verifier then infers loop invariants using interprocedural abstract interpretation.
The loop invariants are used to summarize the effects of loops. In the end, Boogie
produces a verification condition that is fed to an ATP.

MUTT MUTT uses a basic approach [Cla76] to white-box test generation for
programs: it chooses a control-flow path p through a program P and creates a
formula F (P, p) that is satisfiable if and only if there is an input I such that
execution of program P on input I traverses path p. A symbolic interpreter for
MSIL traverses the bytecode representation of a program, creating a symbolic
representation of the program’s state along a control-flow path. At each (bi-
nary) decision point in the program, the interpreter uses the ATP to determine
whether the current symbolic state constrains the direction of the decision. If it
does not, both decision directions are tried (using backtracking) and appropriate
constraints added to the symbolic state for each decision. This client generates
formulas with few disjuncts. Furthermore, the series of formulas presented to
the ATP are very similar. Thus, an ATP that accepts the incremental addi-
tion/deletion of constraints is desired. Finally, when a formula is satisfiable, the
ATP should produce a satisfying model.



Zing Zing is an explicit state model checker for concurrent programs written
in an objected-oriented language that is similar to C#. Zing implements var-
ious optimizations such as partial-order reduction, heap canonicalization and
procedure-level summarization. Recently, researchers at Microsoft have started
to experiment with hybrid state representations, where some parts of the state
(the heap) are represented explicitly and other parts (integers) are represented
symbolically with constraints. Zing uses the Zap ATP to represent integer con-
straints and to perform the quantifier elimination required for fixpoint compu-
tation.

3 Theories for Program Analysis

Various program analyses involve reasoning about formulas whose structure is
determined both by the syntax of the programs and the various invariants that
the analyses require. This section identifies those logics that naturally arise when
analyzing programs and thus should be supported by the ATP. We provide
an informal description of these logics and emphasize those aspects that are
particularly important for the clients of Zap. The reader should read [DNS03a]
for a more detailed description.

We restrict the discussion to specific fragments of first-order logic with equal-
ity. While we have not explored the effective support for higher order logics
in Zap, such logics can be very useful in specifying certain properties of pro-
grams [GM93,ORS92,MS01,IRR+04]. For instance, extending first-order logic
with transitive closure [IRR+04] enables one to specify interesting properties
about the heap.

The control and data flow in most programs involve operations on integer
values. Accordingly, formulas generated by program analysis tools have a pre-
ponderance of integer arithmetic operations. This makes it imperative for the
ATP to have effective support for integers. In practice, these formulas are mostly
linear with many difference constraints of the form x ≤ y + c. While multipli-
cation between variables is rarely used in programs, it is quite common for loop
invariants to involve non-linear terms. Thus, some reasonably complete support
for multiplication is desirable.

As integer variables in programs are implemented using finite-length bit vec-
tors in the underlying hardware, the semantics of the operations on these vari-
ables differs slightly from the semantics of (unbounded) integers. These differ-
ences can result in integer-overflow related behavior that is very hard to reason
about manually. An ATP that allows reasoning about these bounded integers,
either by treating them as bit-vectors or by performing modular arithmetic,
can enable analysis tools that detect overflow errors. In addition, the finite-
implementation of integers in programs becomes apparent when the program
performs bit operations. It is a challenging problem for the ATP to treat a vari-
able as a bit-vector in such rare cases but still treat it as an integer in the
common case.



term ::= variable | function-symbol(term, . . . , term)

formula ::= true | false | atomic-formula

| formula ∧ formula | formula ∨ formula | ¬formula

atomic-formula ::= term = term | predicate-symbol(term, . . . , term)

Fig. 2. Syntax of a quantifier-free fragment of first-order logic.

Apart from integer variables, programs define and use derived types such as
structures and arrays. Also, programs use various collection classes which can
be abstractly considered as maps or sets. It is desirable for the ATP to have
support for theories that model these derived types and data structures.

Another very useful theory for program analysis is the theory of partial or-
ders. The inheritance hierarchy in an object oriented program can be modeled
using partial orders. The relevant queries involve determining if a particular type
is a minimum element (base type) or a maximal element (final type), if one type
is an ancestor (derived class) of another, and if two types are not ordered by the
partial-order.

While the formulas generated during program analysis are mostly quantifier-
free, invariants on arrays and collection data structures typically involve quan-
tified statements. For instance, a tool might want to prove that all elements in
an array are initialized to zero. Accordingly, the underlying ATP should be able
to reason about quantified facts. In addition, supporting quantifiers in an ATP
provides the flexibility for a client to encode domain-specific theories as axioms.

4 Background

In this section, we briefly describe the notations, the syntax and semantics of
the logic, and a high-level description of the Nelson-Oppen combination algo-
rithm for decision procedures. Our presentation of theories and the details of the
algorithm is a little informal; interested readers are referred to excellent survey
works [NO79a,TH96] for rigorous treatment.

4.1 Preliminaries

Figure 2 defines the syntax of a quantifier-free fragment of first-order logic. An
expression in the logic can either be a term or a formula. A term can either be a
variable or an application of a function symbol to a list of terms. A formula can
be the constants true or false or an atomic formula or Boolean combination
of other formulas. Atomic formulas can be formed by an equality between terms
or by an application of a predicate symbol to a list of terms. A literal is either
an atomic formula or its negation. A monome m is a conjunction of literals. We
will often identify a conjunction of literals l1 ∧ l2 . . . lk with the set {l1, . . . , lk}.



The function and predicate symbols can either be uninterpreted or can be
defined by a particular theory. For instance, the theory of integer linear arith-
metic defines the function-symbol “+” to be the addition function over integers
and “<” to be the comparison predicate over integers. For a theory T , the sig-
nature Σ denotes the set of function and predicate symbols in the theory. If an
expression E involves function or predicate symbols from two (or more) theories
T1 and T2, then E is said to be an expression over a combination of theories
T1 ∪ T2.

An interpretation M = 〈D,J 〉 consists of (i) a domain D and a (ii) mapping
J from each function (or predicate) symbol in the theory to a function (or
relation) over the domain D. A formula φ is said to be satisfiable if there exists
an interpretation M and an assignment ρ to the variables such that φ evaluates
to true under (M, ρ). Such an interpretation is called a model of φ. A formula
is valid if ¬φ is not satisfiable (or unsatisfiable). A satisfiability (or decision)
procedure for Σ-theory T checks if a formula φ (over Σ) is satisfiable in T .

A theory T is convex if a quantifier-free formula φ in the T implies a disjunc-
tion of equalities over variables x1 = y1 ∨ x2 = y2 . . . xk = yk if and only if φ
implies at least one of the equalities xi = yi. A theory T is stably-infinite if a
quantifier-free formula φ has a model if and only if φ has an infinite model, i.e.,
the domain of the model is infinite. Example of both convex and stably-infinite
theories include the logic of Equality with Uninterpreted Functions (EUF) and
rational linear arithmetic [NO79a]. Example of non-convex theories include the
theory of arrays and the theory of integer linear arithmetic.

4.2 Nelson Oppen Combination

Given two stably infinite theories T1 and T2 with disjoint-signatures Σ1 and Σ2

respectively (i.e. Σ1 ∩ Σ2 = {}), and a conjunction of literals φ over Σ1 ∪ Σ2,
we want to decide if φ is satisfiable under T1 ∪ T2. Nelson and Oppen [NO79a]
provided a method for modularly combining the satisfiability procedures for T1

and T2 to produce a satisfiability procedure for T1 ∪ T2.
We describe the Nelson-Oppen procedure for convex theories. 2 The input

φ is split into the formulas φ1 and φ2 such that φi only contains symbols from
Σi and φ1 ∧φ2 is equisatisfiable with φ. Each theory Ti decides the satisfiability
of φi and returns unsatisfiable if φi is unsatisfiable in Ti. Otherwise, the set of
equalities implied by φi over the variables common to φ1 and φ2 are propagated
to the other theory Tj . The theory Tj adds these equalities to φj and the process
repeats until the set of equalities saturate.

Therefore, in addition to checking the satisfiability of a set of literals, each
theory also has to derive all the equalities over variables that are implied by the
set of literals. The satisfiability procedure is called equality generating if it can
generate all such equalities.

2 For the description of the algorithm for non-convex case, refer to the [NO79a].



5 Zap

In this section, we start by describing the basic theorem proving architecture in
Zap in Section 5.1. In Section 5.2, we present improvements to decision proce-
dures for a restricted fragment of linear arithmetic that constitute most program
analysis queries. In Section 5.3, we describe the handling of quantifiers in first-
order formulas.

5.1 Basic Architecture

In this section, let us assume that we are checking the satisfiability of a quantifier-
free first-order formula φ over theories T1, . . . , Tk. The basic architecture of Zap
is based on a lazy proof-explicating architecture for deciding first-order formu-
las [ABC+02,BDS02,FJOS03].

First, a Boolean abstraction of φ is generated by treating each atomic formula
e in φ as an uninterpreted Boolean variable. The abstract formula is checked us-
ing a Boolean SAT solver. If the SAT solver determines that the formula is
unsatisfiable, then the procedure returns unsatisfiable. Otherwise, the satisfying
assignment from SAT (a monome m over the literals in φ) is checked for sat-
isfiability using the Nelson-Oppen decision procedure for the combined theory
T1 ∪ . . . ∪ Tk, as described in the last section. If φ is satisfiable over the first-
order theories, the formula ψ is satisfiable and the procedure returns satisfiable.
Otherwise, a “conflict clause” is derived from the theories that will prevent the
same assignment being produced by the SAT solver. The process repeats until
the Boolean SAT solver returns unsatisfiable or the Nelson-Oppen procedure
returns satisfiable.

To generate a conflict clause, the decision procedure for the combined theories
generates a proof of unsatisfiability when the monome m is unsatisfiable over
T1 ∪ . . . ∪ Tk. The literals that appear in the proof constitute a conflict clause.
In this framework, each theory generates the proof of (i) unsatisfiability of a
monome in the theory and (ii) proof of every equality x = y over the shared
variables that are implied by the literals in the theory.

We use SharpSAT, a variant of the ZChaff [MMZ+01] Boolean SAT solver
developed at Microsoft by Lintao Zhang, as the underlying Boolean solver. In
addition to checking satisfiability of a Boolean formula, SharpSAT also gener-
ates proof of unsatisfiability for unsatisfiable formulas. The theories present in
Zap are the logic of equality with uninterpreted functions (EUF) and linear
arithmetic. The decision procedure for EUF is based on the congruence closure
algorithm [NO80]. For linear arithmetic, we have an implementation of proof-
generating variant of the Simplex algorithm described in the Simplify technical
report [DNS03b]. We also have a decision procedure for Unit Two Variable Per
Inequality (UTVPI) subset of linear arithmetic.

5.2 Restricted Linear Arithmetic Decision Procedures

Pratt [Pra77] observed that the arithmetic component in most program verifi-
cation queries is mostly restricted to the difference logic (x ≤ y + c) fragment.



Recent studies by Seshia and Bryant [SB04] also indicate that more than 90%
of the arithmetic constraints in some program analysis benchmarks are in differ-
ence logic fragment. We have also observed that structure of the constraints is
sparse, i.e., if n is the number of variables in the queries, and m is the number of
arithmetic constraints, then m is typically O(n). In this section, we present our
first step to obtain efficient decision procedure that exploit these observations.

The Unit Two Variable Per Inequality (UTVPI) logic is the fragment of
integer linear arithmetic, where constraints are of the form a.x + b.y ≤ c, where
a and b are restricted to {−1, 0, 1} and c is an integer constant. This fragment
(a generalization of difference constraints) is attractive because this is the most
general class (currently known) of integer linear arithmetic for which the decision
procedure enjoys a polynomial complexity [JMSY94]. Extending this fragment
to contain three variables (with just unit coefficients) per inequality or adding
non-unit coefficients for two variable inequalities make the decision problem
NP-complete [Lag85]. Having an integer solver is often useful when dealing with
variables for which rational solutions are unacceptable. Such examples often arise
when modeling indices of an array or queues [FLL+02].

In [LM05b], we present an efficient decision procedure for UTVPI constraints.
Our algorithm works by reducing the UTVPI constraints to a set of difference
constraints, and then using negative cycle detection algorithms [CG96] to solve
the resultant problem. Given m such constraints over n variables, the procedure
checks the satisfiability of the constraints in O(n.m) time and O(n + m) space.
This improves upon the previously known O(n2.m) time and O(n2) space algo-
rithm provided by Jaffar et al. [JMSY94] based on transitive closure. The space
improvement of our algorithm is particularly evident when m is O(n), which
occurs very frequently in practice, as the number of constraints that arise in
typical verification queries have a sparse structure.

In addition to checking satisfiability of a set of UTVPI constraints, the de-
cision procedure is also equality generating and proof producing. These require-
ments are in place because the decision procedure participates in the proof-
explicating ATP described earlier. The decision procedure generates equalities
between variables implied by a set of UTVPI constraints in O(n.m) time. The al-
gorithm can generate a proof of unsatisfiability and equalities implied in O(n.m)
time. Both these algorithms use linear O(n+m) space. The algorithm for UTVPI
generalizes our earlier results for difference logic fragment [LM05a].

We also provide a model generation algorithm for rational difference logic
constraints (i.e. the variables are interpreted over rationals) in [LM05a]. The
highlight of the algorithm is that the complexity of generating the model places a
linear time and space overhead over the satisfiability checking algorithm. We also
provide a model generation algorithm for integer UTVPI constraints in [LM05b].
The algorithm is currently based on transitive closure and runs in O(n.m +
n2.logn) time and O(n2) space.

For many program analysis queries, having a UTVPI decision procedure suf-
fice — more complex linear constraints often simplify to UTVPI constraints
after propagating equalities and constants. We are also working on integrating



the decision procedure UTVPI constraints within a general linear arithmetic de-
cision procedure. This will enable us to exploit the efficient decision procedures
for UTVPI even in the presence of (hopefully a few) general linear arithmetic
constraints.

5.3 Quantifiers

Quantified statements naturally arise when analyzing invariants over arrays and
data structures such as maps. To handle such quantified formulas, Zap uses an
approach very similar to Simplify based on heuristic instantiations. When the
theories (that reason on quantifier-free literals in the formula) are not able to
detect unsatisfiability, Zap uses various heuristics to instantiate quantified for-
mulas with relevant terms from the input formula. Zap propagates the resulting
quantifier-free formulas to the theories, which in turn try to detect unsatisfi-
ability. This instantiation process continues for a few iterations (if necessary)
after which Zap returns stating its inability to prove the unsatisfiability of the
formula.

One challenge in supporting this instantiation based approach in a lazy proof
explication setting is the following. Quantified formulas typically involve propo-
sitional connectives. As a result, quantifier instantiations performed during the-
ory reasoning can dynamically introduce Boolean structure in the formula. This
directly conflicts with the requirement that the Boolean structure be exposed
statically to the SAT solver in a lazy proof explication setting. Moreover, most
quantifier instantiations are not useful in proving the validity of the formula.
Blindly exposing such redundant instantiations to the SAT solver could drasti-
cally reduce the performance of the propositional search.

To alleviate these problems, Zap implements a two-tier technique [LMO05]
for supporting quantifiers. This technique involves two instances of a SAT solver,
a main solver that performs the propositional reasoning of the input formula,
and a little solver that reasons over the quantifier instantiations. When the main
SAT solver produces a propositionally satisfying instance that is consistent with
the decision procedures, the heuristic instantiation process generates a set of
new facts that The little SAT solver, along with the decision procedures, tries
to falsify the satisfying instance with the instantiations produced. If success-
ful, the little SAT solver generates a blocking clause that only contains literals
from the input formula. By thus separating the propositional reasoning of the
input formula from that of the instantiated formulas, this technique reduces the
propositional search space, with an eye toward improving performance.

In practice, we have found that our implementation is limited by the heuris-
tics we use to instantiate quantifiers. These heuristics rely heavily on the “pat-
terns” that the user specifies with each quantified statement. The performance of
the theorem prover changes significantly even for slight changes to these patterns
requiring several iterations to get them right. Moreover, we have found that it
takes considerable effort to automate the process of generating these patterns.
Ideally, we could use general purpose resolution-based theorem provers (such
as Vampire [RV01]) that are optimized to reason about quantified statements.



However, these provers do not effectively support arithmetic reasoning, an im-
portant requirement for Zap. Combining a decision procedure for integers with
a resolution based theorem prover is a challenging open problem. Such a prover
would be very useful in our setting.

6 Richer operations and their combinations

As described in Section 2, the main goal of Zap is to support a rich set of
symbolic operations, apart from validity checking. These operations, such as
quantifier elimination and model generation are essential to support symbolic
computation in Zap’s clients. On the other hand, Zap needs to support a variety
of theories (Section 3) that are useful for program analysis. Supporting these
symbolic operations in the presence of multiple theories leads to an interesting
challenge of combining these operations across theories.

Specifically, we seek a generalization of the Nelson-Oppen combination for
decision procedures as follows. For a particular symbolic operation, assume that
there exists a theory-specific procedure that performs the operation for formulas
in that theory. Now, given such procedures for two different theories, the com-
bination problem is to devise a procedure that performs the symbolic operation
on formulas in the combination of the two theories, using the two theory-specific
procedures as black boxes. When the symbolic operation in question is that of
determining the satisfiability of a set of formulas then the general combination
problem reduces to the well studied combination of decision procedures.

Such a combination procedure for supporting symbolic operations has several
advantages over a monolithic procedure for a specific combination of theories.
First, the combination approach provides the flexibility of adding more theories
in the future. This is very important for Zap as enabling new applications might
require supporting new theories. Second, the combination approach allows each
theory-specific decision procedure to be independently designed, implemented
and proven correct. The combination method itself needs to be proven once. The
correctness of a particular combination directly follows from the correctness of
each individual theory-specific procedure and the correctness of the combination
method. Finally, the combination approach leads to a modular implementation
of Zap that greatly simplifies the correctness of the implementation.

In the following sections, we describe how we extended the equality propaga-
tion framework of Nelson-Oppen combination to modularly combine procedures
for interpolant-generation (in Section 6.1), and predicate abstraction (in Sec-
tion 6.2). In Section 6.3, we present difficulties in modularly combining model
generation procedures. The combination methods for other symbolic operations
still remains open.

6.1 Interpolants

In [YM05], we presented a novel combination method for generating interpolants
for a class of first-order theories. Using interpolant-generation procedures for



component theories as black-boxes, this method generates interpolants for for-
mulas in the combined theory. Provided the individual procedures for the compo-
nent theories can generate interpolants in polynomial time, our method generates
interpolants for the combined theory in polynomial time.

The combination method uses the fact that the proof of unsatisfiability pro-
duced in a Nelson-Oppen combination has a particular structure. In the Nelson-
Oppen framework, the decision procedures for component theories communi-
cate by propagating entailed equalities. Accordingly, the proof can be split into
theory-specific portions that only involve inference rules from that theory. These
theory-specific portions use literals from the input or equalities generated by
other theories. The crucial idea behind the combination method is to associate a
partial interpolant with each propagated equality. Whenever a component theory
propagates an equality, the combination method uses the interpolant-generation
procedure for that theory to generate the partial interpolant for the equality.
When a theory detects a contradiction, the combination method uses the partial
interpolants of all propagated equalities to compute the interpolant for the input
formulas.

The combination method places some restrictions on the theories that can be
combined. The Nelson-Oppen combination requires that the component theories
have disjoint signatures and be stably-infinite [NO79b,Opp80]. Our method nat-
urally inherits these restrictions. Additionally, our combination method restricts
the form of equalities that can be shared by the component theories. Specifi-
cally, the method requires that each propagated equality only involve symbols
common to both input formulas A and B. We show that this restricted form of
equality propagation is sufficient for a class of theories, which we characterize
as equality-interpolating theories. Many useful theories including the quantifier-
free theories of uninterpreted functions, linear arithmetic, and Lisp structures
are equality-interpolating, and thus can be combined with our method.

While the restriction to equality-interpolating theories provides us a way to
extend the existing Nelson-Oppen combination framework, the problem of gen-
eralizing the combination result to other theories remains open. Moreover, while
our method generates an interpolant between two formulas, it is not clear if the
interpolant generated is useful for the program analysis in question. Accordingly,
we need to formalize the notion of usefulness of an interpolant to a particular
analysis and design an algorithm that finds such interpolants.

6.2 Predicate Abstraction

Given a formula φ and a set of predicates P , the fundamental operation in
predicate abstraction is to find the best approximation of φ using P . Let FP (φ)
be the weakest expression obtained by a Boolean combination of the predicates
that implies φ.3

3 Note that FP (φ) is the dual of coverP (φ) introduced earlier. It is easy to see that
coverP (φ) = ¬FP (¬φ).



In [LBC05], we describe a new technique for computing FP (φ) without us-
ing decision procedures, and provide a framework for computing FP (φ) for a
combination of theories. We present a brief description of the approach in this
section.

For simplicity, let us assume that φ is an atomic expression (for more general
treatment, refer to [LBC05]). To compute FP (φ), we define a symbolic decision
procedure (SDP) for a theory to be a procedure that takes as input a set of
atomic expressions G and an atomic expression e and returns a symbolic repre-
sentation of all the subsets G′ ⊆ G such that G′∧¬e is unsatisfiable. SDP(G , e)
symbolically simulates the execution of a decision procedure on every subset
G′ ⊆ G. Let P̃ be the set of negated predicates in P . If the formula φ and the
predicates P belong to a theory T , then SDP(P ∪ P̃ , φ) represents FP (φ).

We present an algorithm for constructing SDP for a class of theories called
saturating theories. For a theory T , consider the following procedure that repeat-
edly derives new facts from existing facts by applying the inference rules of the
theory on the existing set of facts — Given a set of atomic expressions H0

.= H,
let H0,H1, . . . , Hi, . . . denote a sequence of sets of atomic expressions in T such
that Hi+1 is the set of atomic expressions either present in Hi or derived from
Hi using inference rules in the theory. A theory is saturating, if (i) each of the
sets Hi is finite and, (ii) if H is inconsistent, then false is present in HkH , where
kH is a finite value that is a function of the expressions in H alone. For such a
saturating theory one can construct SDP(G , e) by additionally maintaining the
derivation history for each expression in any Hi. The derivation history can be
maintained as a directed acyclic graph, with leaves corresponding to the facts
in H. Finally, the expression for SDP(G , e) can be obtained by performing the
above procedure for H

.= G ∪ {¬e} and returning (all) the derivations of false
after kH steps.

For two saturating theories T1 and T2 with disjoint signatures that also are
convex and stably-infinite, we present a procedure for constructing SDP for
the combined theory T1 ∪ T2, by extending the Nelson-Oppen framework. In-
tuitively, we symbolically encode the operation of the Nelson-Oppen equality
sharing framework for any possible input for the two theories. The SDP for the
combined theory incurs a polynomial blowup over the SDP for either theory. For
many theories that are relevant to program analysis, SDP can be computed in
polynomial or pseudo-polynomial time and space complexity. Examples of such
theories include EUF and difference logic (DIF). The combination procedure
allows us to construct an SDP from these theories’ SDPs.

We have implemented and benchmarked our technique on a set of program
analysis queries derived from device driver verification [BMMR01]. Preliminary
results are encouraging and the new predicate abstraction procedure outper-
formed decision procedure based predicate abstraction methods by orders of
magnitude [LBC05]. It remains open how to extend this approach in the pres-
ence of more complex (non-convex) theories or quantifiers.



6.3 Model Generation

When Zap reports that a first-order formula φ is satisfiable, it is desirable to
find a model for φ. Apart from serving as a witness to the satisfiability of φ, the
model generated is very useful for generating test cases from symbolic execution
of software. In this section, we present some of the issues in combining model
generation for different theories.

To generate an assignment for the variables that are shared across two theo-
ries, each theory Ti needs to ensure that the variable assignment ρ for Ti assigns
two shared variables x and y equal values if and only if the equality x = y is im-
plied by the constraints in theory Ti. Such a model where ρ(x) = ρ(y) if and only
if Ti ∪ φi implies x = y, is called a diverse model. We have shown that for even
(integer) difference logic, producing diverse models is NP-complete [LM05b].

The following example shows why diverse model generation is required in
the Nelson-Oppen framework. Let φ = (f(x) 6= f(y) ∧ x ≤ y) be a formula in
the combined theory of EUF and UTVPI. An ATP based on the Nelson-Oppen
framework will add φ1

.= f(x) 6= f(y) to the EUF theory (T1) and φ2
.= x ≤ y to

the UTVPI theory (T2). Since there are no equalities implied by either theory,
and each theory Ti is consistent with φi, the formula φ is satisfiable. Now, the
UTVPI theory could generate the model ρ

.= 〈x 7→ 0, y 7→ 0〉 for φ2. However,
this is not a model for φ, as it is not diverse.

Presently, Zap uses various heuristics for generating a model consistent with
all the theories. As a last resort, we perform an equisatisfiable translation of φ to
a Boolean formula using an eager encoding of first-order formulas [LS04,SB04]
and use the SAT solver to search for a model4.

7 Related Work

In this section, we describe some prior work on theorem proving and symbolic
reasoning for program analysis.

Simplify [DNS03b] is an ATP that was built to discharge verification condi-
tions (VCs) in various program analysis projects including ESC/JAVA [FLL+02].
It supports many of the theories discussed in this paper along with quantifiers.
It is based on the Nelson-Oppen framework for combining decision procedures.
Apart from validity checking, Simplify allows for error localization by allowing
the verification conditions to contain labels from the program. These labels help
to localize the source locations and the type of errors when the validity check of
a VC fails.

McMillan [McM04b] presents an interpolating ATP for the theories of EUF
and linear inequalities (and their combination). This ATP has been used in ab-
straction refinement for the BLAST [HJMM04] software model checker. Our
work on combining interpolants for various equality-interpolating theories gen-
eralizes McMillan’s work, and extends it to other theories. Lahiri et al. [LBC03]

4 Krishna K. Mehra implemented part of the model generation algorithm in Zap when
he spent the summer in Microsoft.



present an algorithm for performing predicate abstraction for a combination of
various first-order theories by performing Boolean quantifier elimination. Unlike
their approach, the use of symbolic decision procedures in our case allows us to
perform predicate abstraction in a modular fashion.

Gulwani et al. [GTN04] present join algorithms for subclasses of EUF using
abstract congruence closure [BTV03]. They show the completeness of he algo-
rithm for several subclasses including the cases when the functions are injective.
Chang and Leino [CL05] provide an algorithm for performing abstract opera-
tions (e.g. join, widen etc.) for a given base domain (e.g. the polyhedra domain
for linear inequalities [CH78]) in the presence of symbols that do not belong to
the theory. Their framework introduces names for each alien expression in the
theory. A congruence closure abstract domain equipped with the abstract oper-
ations (join, widen etc.) is used to reason about the mapping of the names to
the alien expressions. They instantiate the framework for the polyhedra domain
and a domain for reasoning about heap updates.

There has also been a renewed interest in constructing decision procedures
for first-order theories by exploiting SAT solver’s backtracking search. Decision
procedures based on lazy proof explicating framework (e.g. CVC [BDS02], Ver-
ifun [FJOS03], Mathsat [ABC+02]), eager approaches (e.g. UCLID [BLS02]),
extending DPLL search to incorporate theory reasoning [GHN+04] have been
proposed to exploit rapid advances in SAT solvers. Although Zap is closest to
the lazy approaches in its architectures, we are also investigating the best match
of these approaches for the nature of queries generated by the various clients of
program analysis.
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