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Memory Analysis Challenges

• Creating new plugins can take a lot of work

• Generally needs access to symbols or 
source code

• Reverse engineering required for closed 
source systems

• OS updates break our plugins!
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Contrast: Live Analysis

• Live analysis tools typically easier to write

• Can call existing APIs in the OS rather than 
reverse engineering

• But we lose the benefits of offline memory 
analysis

• Idea: can we convert live analysis tools into 
Volatility plugins?
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Virtuoso

• Supports x86-based operating systems

• Runs live analysis “training program” and 
records all code executed

• Converts x86 code to Volatility plugin
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Training
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#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
  );
  
  
  
  EnumProcesses(pids, 256, &outcb);
  
  return 0;
}

• Write training program using 
system APIs
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Training
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#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
  DWORD *pids = (DWORD *) malloc(256);
  DWORD outcb;
  
  
  EnumProcesses(pids, 256, &outcb);
  
  return 0;
}

• Write training program using 
system APIs
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Training
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#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
  DWORD *pids = (DWORD *) malloc(256);
  DWORD outcb;
  
  vm_mark_buf_in(&pids, 4);
  EnumProcesses(pids, 256, &outcb);
  vm_mark_buf_out(pids, 256);
  return 0;
}

• Annotate program with start/end 
markers
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Training

• Run program in QEMU to generate 
instruction trace

• Traces are in QEMU µOp format
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INTERRUPT(0xfb,0x200a94,0x0)
TB_HEAD_EIP(0x80108028)
MOVL_T0_IM(0x0)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe8,0x8103cfe8,
                  0xffffffff,0x215d810,0x920f0,0x0)
OPREG_TEMPL_MOVL_R_A0(0x4)
MOVL_T0_IM(0xfb)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe4,0x8103cfe4,
                  0xffffffff,0x215d810,0x920f0,0xfb)
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Trace Analysis

• What subset of this trace is relevant?

• System may have been doing other things in 
addition to just the operation we wanted

• Traces are processed to remove unwanted 
code:

• Remove interrupts

• Use program analysis (dynamic slicing) to 
determine exactly which instructions are 
necessary
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Program Translation

• Goal: convert x86 ➔ Volatility

• Changes:

• Memory reads come from memory image

• Memory writes are copy-on-write

• CPU registers become program variables
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Original x86 QEMU µOps

Translation Example
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QEMU µOps Python

Translation Example
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Demo: Haiku Memory Analysis

• Haiku: open-source BeOS clone

• Let’s create a process lister for it
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Training Program
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Limitations

• Relies on old version of QEMU (0.9.1) – 
doesn’t support many new OSes

• Execution must stay within one process 
while tracing

• More complex programs require multiple 
traces to cover multiple paths through prog

• Self-modifying code, synchronization not 
supported
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Conclusions

• Can currently automate many simple kinds 
of memory analysis

• Not a full replacement for manually created 
plugins

• Provides a great shortcut for new OSes
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