
Automatic Generation of
Memory Analysis Plugins

Brendan Dolan-Gavitt
OMFW 2011

Automatic Generation of Memory Analysis Plugins

Memory Analysis Challenges

• Creating new plugins can take a lot of work

• Generally needs access to symbols or
source code

• Reverse engineering required for closed
source systems

• OS updates break our plugins!

2

Automatic Generation of Memory Analysis Plugins

Contrast: Live Analysis

• Live analysis tools typically easier to write

• Can call existing APIs in the OS rather than
reverse engineering

• But we lose the benefits of offline memory
analysis

• Idea: can we convert live analysis tools into
Volatility plugins?

3

Automatic Generation of Memory Analysis Plugins

Virtuoso

• Supports x86-based operating systems

• Runs live analysis “training program” and
records all code executed

• Converts x86 code to Volatility plugin

4

Automatic Generation of Memory Analysis Plugins 5

Training Environment

Trace Logger

Training Phase

Instruction
Traces

Instruction
TracesInstruction

Traces

Automatic Generation of Memory Analysis Plugins 6

Preprocessing

Dynamic Slicing

Merging

Translation

Introspection
Program

Analysis Phase

Instruction
Traces

Instruction
TracesInstruction

Traces

Automatic Generation of Memory Analysis Plugins

Training

7

#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
);

 EnumProcesses(pids, 256, &outcb);

 return 0;
}

• Write training program using
system APIs

Automatic Generation of Memory Analysis Plugins

Training

8

#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
 DWORD *pids = (DWORD *) malloc(256);
 DWORD outcb;

 EnumProcesses(pids, 256, &outcb);

 return 0;
}

• Write training program using
system APIs

Automatic Generation of Memory Analysis Plugins

Training

9

#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
 DWORD *pids = (DWORD *) malloc(256);
 DWORD outcb;

 vm_mark_buf_in(&pids, 4);
 EnumProcesses(pids, 256, &outcb);
 vm_mark_buf_out(pids, 256);
 return 0;
}

• Annotate program with start/end
markers

Automatic Generation of Memory Analysis Plugins

Training

• Run program in QEMU to generate
instruction trace

• Traces are in QEMU µOp format

10

INTERRUPT(0xfb,0x200a94,0x0)
TB_HEAD_EIP(0x80108028)
MOVL_T0_IM(0x0)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe8,0x8103cfe8,
 0xffffffff,0x215d810,0x920f0,0x0)
OPREG_TEMPL_MOVL_R_A0(0x4)
MOVL_T0_IM(0xfb)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe4,0x8103cfe4,
 0xffffffff,0x215d810,0x920f0,0xfb)

Automatic Generation of Memory Analysis Plugins

Trace Analysis

• What subset of this trace is relevant?

• System may have been doing other things in
addition to just the operation we wanted

• Traces are processed to remove unwanted
code:

• Remove interrupts

• Use program analysis (dynamic slicing) to
determine exactly which instructions are
necessary

11

Automatic Generation of Memory Analysis Plugins

Program Translation

• Goal: convert x86 ➔ Volatility

• Changes:

• Memory reads come from memory image

• Memory writes are copy-on-write

• CPU registers become program variables

12

Automatic Generation of Memory Analysis Plugins 13

Original x86 QEMU µOps

Translation Example

Automatic Generation of Memory Analysis Plugins 14

QEMU µOps Python

Translation Example

Automatic Generation of Memory Analysis Plugins 15

Demo: Haiku Memory Analysis

• Haiku: open-source BeOS clone

• Let’s create a process lister for it

Automatic Generation of Memory Analysis Plugins

Training Program

16

Automatic Generation of Memory Analysis Plugins

Limitations

• Relies on old version of QEMU (0.9.1) –
doesn’t support many new OSes

• Execution must stay within one process
while tracing

• More complex programs require multiple
traces to cover multiple paths through prog

• Self-modifying code, synchronization not
supported

17

Automatic Generation of Memory Analysis Plugins

Conclusions

• Can currently automate many simple kinds
of memory analysis

• Not a full replacement for manually created
plugins

• Provides a great shortcut for new OSes

18

