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LECTURE 12: Loop Antennas 
(Radiation parameters of a small loop. Circular loop of constant current. 
Equivalent circuit of the loop antenna. The small loop as a receiving antenna. 
Ferrite loops.) 
Equation Section 12 
1. Introduction 

Loop antennas feature simplicity, low cost and versatility. They may have 
various shapes: circular, triangular, square, elliptical, etc. They are widely used 
in communication links up to the microwave bands (up to ≈ 3 GHz). They are 
also used as electromagnetic (EM) field probes in the microwave bands. 
Electrically small loops are widely used as compact transmitting and receiving 
antennas in the low MHz range (3 MHz to 30 MHz, or wavelengths of about 10 
m to 100 m). 

Loop antennas are usually classified as electrically small ( / 3C λ< ) and 
electrically large (C λ ). Here, C denotes the loop’s circumference.  

The small loops of a single turn have small radiation resistance (< 1 Ω) usually 
comparable to their loss resistance. Their radiation resistance, however, can be 
improved by adding more turns. Also, the small loops are narrowband. Typical 
bandwidths are less than 1%. However, clever impedance matching can provide 
low-reflection transition from a coaxial cable to a loop antenna with a tuning 
frequency range as high as 1:10.1 Moreover, in the HF and VHF bands where the 
loop diameters are on the order of a half a meter to several meters, the loop can 
be made of large-diameter tubing or coaxial cable, or wide copper tape, which 
can drastically reduce the loss.  

 
Fig. 1: Shielded Faraday loops used to inductively feed electrically small loop antennas. [©2012, Frank Dörenberg, used 
with permission; see https://www.nonstopsystems.com/radio/frank_radio_antenna_magloop.htm. Additional resource: L. 
Turner VK5KLT, “An overview of the underestimated magnetic loop HF antenna,”] 

                                      
1 John H. Dunlavy Jr., US Patent 13,588,905: “Wide range tunable transmitting loop antenna”, 1967. 

https://www.nonstopsystems.com/radio/frank_radio_antenna_magloop.htm
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The small loops, regardless of their shape, have a far-field pattern very similar 
to that of a small electric dipole normal to the plane of the loop. This is expected 
because they are equivalent to a magnetic dipole. Note, however, that the field 
polarization is orthogonal to that of the electric dipole. 

As the circumference of the loop increases, the pattern maximum shifts 
towards the loop’s normal, and when C λ≈ , the maximum of the pattern is along 
the loop’s normal. 
 
2. Radiation Characteristics of a Small Loop 

A small loop is by definition a loop of constant current. Its radius satisfies 

 
6

a λ
π

< , (12.1) 

or, equivalently, / 3C λ< . The limit (12.1) is mathematically derived later in this 
Lecture from the first-order approximation of the Bessel function of the first 
order 1( )J x  in the general solution for a loop of constant current. Actually, to 
make sure that the current has near-constant distribution along the loop, a tighter 
limit must be imposed: 
 0.03a λ< , (12.2) 
or, / 5C λ< . A good approximate model of a small loop is provided by the 
infinitesimal loop (or the infinitesimal magnetic dipole). 

The expressions for the field components of an infinitesimal loop of electric 
current of area A were already derived in Lecture 3. Here, we give only the far-
field components of the loop, the axis of which is along z: 
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It is obvious that the far-field pattern, 
 ( ) sinEϕ θ θ= , (12.5) 

is identical to that of a z-directed infinitesimal electric dipole although the 
polarization is orthogonal. The power pattern is identical to that of the 
infinitesimal electric dipole: 
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 2( ) sinF θ θ= . (12.6) 

Radiated power: 
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Radiation resistance: 
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In free space, 120η π=  Ω, and 
 2 231171( / )rR A λ≈ . (12.9) 

Equation (12.9) gives the radiation resistance of a single loop. If the loop antenna 
has N turns, then the radiation resistance increases with a factor of 2N  (because 
the radiated power increases as I2): 
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The relation in (12.10) provides a handy mechanism to increase rR  and the 
radiated power Π . Unfortunately, the losses of the loop antenna also increase 
(although only as N ) and this may result in low efficiency. 

The directivity is the same as that of an infinitesimal dipole: 

 max
0 4 1.5

rad

UD π= =
Π

. (12.11) 

 
3. Circular Loop of Constant Current – General Solution 

So far, we have assumed that the loop is of infinitesimal radius a, which 
allows the use of the expressions for the infinitesimal magnetic dipole. Now, we 
derive the far field of a circular loop, which might not be necessarily very small, 
but still has constant current distribution. This derivation illustrates the general 
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loop-antenna analysis as the approach is used in the solutions to circular loop 
problems of nonuniform distributions, too. 

The circular loop can be divided into an infinite number of infinitesimal 
current elements. With reference to the figure below, the position of a current 
element in the xy plane is characterized by 0 360ϕ′≤ <   and 90θ ′ =  . The 
position of the observation point P is defined by ( , )θ ϕ . 

The far-field approximations are 

 
cos ,  for the phase term,

1 1 ,  for the amplitude term.
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In general, the solution for A does not depend on ϕ  because of the cylindrical 
symmetry of the problem. Here, we set 0ϕ = . The angle between the position 
vector of the source point Q and that of the observation point P is determined as 
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Now the vector potential integral can be solved for the far zone: 
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where ˆd adϕ′ ′=l φ  is the linear element of the loop contour. The current element 
changes its direction along the loop and its contribution depends on the angle 
between its direction and the respective A component. Since all current elements 
are directed along φ̂ , we conclude that the vector potential has only Aϕ  
component, i.e., ˆAϕ=A φ , where 
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the vector potential is 

 
2

sin cos
0

0

( ,0) ( ) cos
4

j r
j aeA I a e d

r

πβ
β θ ϕ

ϕ
µθ ϕ ϕ
π

−
′′ ′= ⋅∫ , (12.17) 

 
2

sin cos sin cos
0

0

( ) ( ) cos cos
4

j r
j a j aeA I a e d e d

r

π πβ
β θ ϕ β θ ϕ

ϕ
π

µθ ϕ ϕ ϕ ϕ
π

−
′ ′

 
′ ′ ′ ′= ⋅ + ⋅ 

  
∫ ∫ . 

We apply the following substitution in the second integral: ϕ ϕ π′ ′′= + . Then, 
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The integrals in (12.18) can be expressed in terms of Bessel functions, which are 
defined as 
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Here, ( )nJ z  is the Bessel function of the first kind of order n. From (12.18) and 
(12.19), it follows that 
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Since 
 ( ) ( 1) ( )n

n nJ z J z− = − , (12.21) 

equation (12.20) reduces to 
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The far-zone fields are derived as 
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The patterns of constant-current loops obtained from (12.23) are shown below: 
 

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 5 10 15 20 25 30 35 40 45 50

J1
(x

)

x



Nikolova 2018 7 

 
[Balanis] 

 
The small-loop field solution in (12.3)-(12.4) is actually a first-order 

approximation of the solution in (12.23). This becomes obvious when the Bessel 
function is expanded in series as 

 3
1

1 1( sin ) ( sin ) ( sin )
2 16

J a a aβ θ β θ β θ= − +. (12.24) 
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For small values of the argument ( 1 / 3aβ < ), the first-order approximation is 
acceptable, i.e., 

 1
1( sin ) ( sin )
2

J a aβ θ β θ≈ . (12.25) 

The substitution of (12.25) in (12.23) yields (12.3)-(12.4). 
It can be shown that the maximum of the pattern given by (12.23) is in the 

direction 90θ =   for all loops, which have circumference 1.84C λ< . 
 

Radiated power and radiation resistance 
We substitute the Eϕ  expression (12.23) in 

2 21 | | sin
2

ds

E r d dϕ θ θ ϕ
η

Π = ⋅∫∫




, 

which yields 

 
2

2 2
0 1

0

( ) ( ) ( sin )sin
4

I A J a d
πωµ β θ θ θ

η
Π = ⋅ ∫ . (12.26) 

Here, 2A aπ=  is the loop’s area. The integral in (12.26) does not have a closed 
form solution. Often, the following transformation is applied: 
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The second integral in (12.27) does not have a closed form solution either but it 
can be approximated with a highly convergent series: 
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The radiation resistance is obtained as 
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The radiation resistance of small loops is very small. For example, for 
/100 / 30aλ λ< <  the radiation resistance varies from 33 10−≈ ×  Ω to 0.5≈  Ω. 
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This is often less than the loss resistance of the loop. That is why small loop 
antennas are constructed with multiple turns and on ferromagnetic cores. Such 
loop antennas have large inductive reactance, which is compensated by a 
capacitor. This is convenient in narrowband receivers, where the antenna itself is 
a very efficient filter (together with the tuning capacitor), which can be tuned for 
different frequency bands. Low-loss capacitors must be used to prevent further 
increase in the loss. 
 
4. Circular Loop of Nonuniform Current 

When the loop radius becomes larger than 0.2λ , the constant-current 
assumption does not hold. A common assumption is the cosine distribution.2,3 
Lindsay, Jr.,4 considers the circular loop to be a deformation of a shorted parallel-
wire line. If sI  is the current magnitude at the “shorted” end, i.e., the point 
opposite to the feed point where ϕ π′ = , then 
 ( ) cosh( )sI I aα γ α=  (12.30) 

where α π ϕ′= −  is the angle with respect to the shorted end, γ  is the line 
propagation constant and a is the loop radius. If we assume loss-free 
transmission-line model, then jγ β=  and cosh( ) cos( )a aγ α β α= . For a loop in 
open space, β  is assumed to be the free-space wave number ( 0 0β ω µ ε= ). 

The cosine distribution is not very accurate, especially close to the terminals, 
and this has a negative impact on the accuracy of the computed input impedance. 
That is why the current is often represented by a Fourier series:5,6 

 0
1

( ) 2 cos( )
N

n
n

I I I nϕ ϕ
=

′ ′= + ∑ . (12.31) 

Here, ϕ′  is measured from the feed point. This way, the derivative of the current 
distribution with respect to ϕ′  at ϕ π′ =  (the point diametrically opposite to the 
feed point) is always zero. This imposes the requirement for a symmetrical 
current distribution on both sides of the diameter from 0ϕ′ =  to ϕ π′ = . The 

                                      
2 E.A. Wolff, Antenna Analysis, Wiley, New York, 1966. 
3 A. Richtscheid, “Calculation of the radiation resistance of loop antennas with sinusoidal current distribution,” IEEE Trans. 
Antennas Propagat., Nov. 1976, pp. 889-891. 
4 J. E. Lindsay, Jr., “A circular loop antenna with non-uniform current distribution,” IRE Trans. Antennas Propagat., vol. AP-8, 
No. 4, July 1960, pp. 439-441. 
5 H. C. Pocklington, “Electrical oscillations in wire,” in Cambridge Phil. Soc. Proc., vol. 9, 1897, pp. 324–332. 
6 J. E. Storer, “Input impedance of circular loop antennas,” Am. Inst. Electr. Eng. Trans., vol. 75, Nov. 1956. 
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complete analysis of this general case will be left out, and only some important 
results will be given. When the circumference of the loop approaches λ , the 
maximum of the radiation pattern shifts exactly along the loop’s normal. Then, 
the input resistance of the antenna is also good (about 50 to 70 Ω). The maximum 
directivity occurs when 1.4C λ≈  but then the input impedance is too large. The 
input resistance and reactance of the large circular loop are given below. 
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(Note: typo in author’s name, read as J. E. Storer) 
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The large circular loop is very similar in its performance to the large square 
loop. An approximate solution of very good accuracy for the square-loop antenna 
can be found in 
W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, 2nd Ed., John 
Wiley & Sons, New York, 1998. 
There, it is assumed that the total antenna loop is exactly one wavelength and has 
a cosine current distribution along the loop’s wire. 
 

4
λ

x

y

 
 
The principal plane patterns obtained through the cosine-current assumption 
(solid line) and using numerical methods (dash line) are shown below: 
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5. Equivalent Circuit of a Loop Antenna 

inZinZ ′

rC

rR

lR

AL

iL

 
rC  - resonance capacitor 

lR  - loss resistance of the loop antenna 

rR  - radiation resistance 

AL  - inductance of the loop 

iL  - inductance of the loop conductor (wire) 
 
(a) Loss resistance 
Usually, it is assumed that the loss resistance of loosely wound loop equals 

the high-frequency loss resistance of a straight wire of the same length as the 
loop and of the same current distribution. In the case of a uniform current 
distribution, the high-frequency resistance is calculated as 

 , ,hf s s
l fR R R
p

π µ
σ

= = Ω  (12.32) 

where l is the length of the wire, and p is the perimeter of the wire’s cross-section. 
We are not concerned with the current distribution now because it can be always 
taken into account in the same way as it is done for the dipole/monopole 
antennas. However, another important phenomenon has to be taken into account, 
namely the proximity effect. 
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⊗1J 2J ⊗

 
 
When the spacing between the turns of the wound wire is very small, the loss 
resistance due to the proximity effect is larger than that due to the skin effect. 
The following formula is used to calculate exactly the loss resistance of a loop 
with N turns, wire radius b, and turn separation 2c: 
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where 
, ,sR Ω  is the surface resistance (see (12.32)), 

, / m,pR Ω  is the ohmic resistance per unit length due to the proximity 
effect, 

0 , / m
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effect. 
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The ratio 0/pR R  has been calculated for different relative spacings /c b , for 
loops with 2 8N≤ ≤  in: 

G.N. Smith, “The proximity effect in systems of parallel conductors,” J. Appl. 
Phys., vol. 43, No. 5, May 1972, pp. 2196-2203. 

The results are shown below: 
 

 
 

(b) Loop inductance 
The inductance of a single circular loop of radius a made of wire of radius b 

is 

 circ
1

8ln 2A
aL a
b

µ  = −    
 H. (12.34) 
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The inductance of a square loop with sides a  and wire radius b  is calculated as 

 sq
1 2 ln 0.774A

a aL
b

µ
π
 = −    

 H. (12.35) 

The inductance of a multi-turn coil is obtained from the inductance of a single-
turn loop multiplied by 2N , where N is the number of turns. 

The inductance of the wire itself (internal inductance) is very small and is 
often neglected. It can be shown that the HF self-inductance per unit length of a 
straight wire of cylindrical cross-section is 

 
4 2 2 4 4
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4 3 4 ln( / )
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a a c c c a cL
a c

µ
π
 − + +′ =  − 

 H/m, (12.36) 

where c a δ= −  and δ  is the skin depth. To obtain the total internal inductance 
of the wire, simply multiply intL′  by the overall length of the wire used to 
construct the multi-turn loop antenna. 

 
(c) Tuning capacitor 
The susceptance of the capacitor Br must be chosen to eliminate the 

susceptance of the loop. Assume that the equivalent admittance of the loop is 

 1 1
in

in in in
Y

Z R jX
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+
 (12.37) 

where 

in r lR R R= + , 

int( )in AX j L Lω= + . 

The following transformation holds: 
 in in inY G jB= +  (12.38) 

where 
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The susceptance of the capacitor is 
 r rB Cω= . (12.40) 
For resonance to occur at 0 0 / (2 )f ω π=  when the capacitor is in parallel with 
the loop, the condition 
 r inB B= −  (12.41) 
must be fulfilled. Therefore, 
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Under resonance, the input impedance inZ ′  becomes 
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5. The Small Loop as a Receiving Antenna 

The small loop antennas have the following features: 
1) high radiation resistance provided multi-turn ferrite-core constructions 

are used; 
2) high losses, therefore, low radiation efficiency; 
3) simple construction, small size and weight. 
Small loops are usually not used as transmitting antennas due to their low 

efficiency cde . However, they are much preferred as receiving antennas in AM 
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radio-receivers because of their high signal-to-noise ratio (they can be easily 
tuned to form a very high-Q resonant circuit), their small size and low cost. 

Loops are constructed as magnetic field probes to measure magnetic flux 
densities. At higher frequencies (UHF and microwave), loops are used to 
measure the EM field intensity. In this case, ferrite rods are not used. 

Since the loop is a typical linearly polarized antenna, it has to be oriented 
properly to optimize reception. The optimal case is a linearly polarized wave with 
the H-field aligned with the loop’s axis. 

x

z

y

ocV

a iθ

iϕ
0

iE

iHψ

optimal

incidence

 
 

The open-circuit voltage at the loop terminals is induced by the time-varying 
magnetic flux through the loop: 
 2

oc m zV j j j H aω ω ωµ π= Ψ = ⋅ = ⋅B s , (12.46) 

 cos sini
z iH H ψ θ= . (12.47) 

Here, 

mΨ  is the magnetic flux, Wb; 
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( ),i iθ ϕ  are the angles specifying the direction of incidence; 
ψ  is the angle between the iH  vector and the plane of incidence. 

Finally, the open-circuit voltage can be expressed as 
 oc cos sin cos sini i

i iV j SH j SEωµ ψ θ β ψ θ= = . (12.48) 

Here, 2S aπ=  denotes the area of the loop, and β ω µε=  is the phase constant. 
ocV  is maximum for 90iθ =   and 0ψ =  . 

6. Ferrite Loops 
The radiation resistance and radiation efficiency can be raised by inserting a 

ferrite core, which has high magnetic permeability in the operating frequency 
band. Large magnetic permeability 0 rµ µ µ=  means large magnetic flux mΨ , and 
therefore large induced voltage ocV . The radiation resistance of a small loop was 
already derived in (12.10) to include the number of turns, and it was shown that 
it increases as 2N . Now the magnetic properties of the loop will be included in 
the expression for rR . 

The magnetic properties of a ferrite core depend not only on the relative 
magnetic permeability rµ  of the material it is made of but also on its geometry. 
The increase in the magnetic flux is then more realistically represented by the 
effective relative permeability (effective magnetic constant) effrµ . We show next 
that the radiation resistance of a ferrite-core loop is 2( )effrµ  times larger than the 
radiation resistance of the air-core loop of the same geometry. When we 
calculated the far fields of a small loop, we used the equivalence between an 
electric current loop and a magnetic current element: 
 ( ) mj IA I lωµ = . (12.49) 

From (12.49) it is obvious that the equivalent magnetic current is proportional to 
µ . The field magnitudes are proportional to mI , and therefore they are 
proportional to µ  as well. This means that the radiated power radΠ  is 
proportional to 2µ , and therefore the radiation resistance increases as 2( )effrµ . 

Finally, we can express the radiation resistance as 
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Here, 2A aπ=  is the loop area, and 0 0 0/η µ ε=  is the intrinsic impedance of 
vacuum. An equivalent form of (12.50) is 

 
4

2 220 ( )effr r
CR Nπ µ
λ
≈  

 
 (12.51) 

where we have used the approximate expression 0 120η π≈  and C is the 
circumference of the loop, 2C aπ= . 

Some notes are made below with regard to the properties of ferrite cores: 
• The effective magnetic constant of a ferrite core is always less than the 

magnetic constant of the ferromagnetic material it is made of, i.e., effr rµ µ<
. Toroidal cores have the highest effrµ , and ferrite-stick cores have the 
lowest effrµ . 

• The effective magnetic constant is frequency dependent. One has to be 
careful when picking the right core for the application at hand. 

• The magnetic losses of ferromagnetic materials increase with frequency. 
At very high (microwave) frequencies, the magnetic losses are very high. 
They have to be calculated and represented in the equivalent circuit of the 
antenna as a shunt conductance mG . 
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