# GRAPH THEORY BASIC TERMINOLOGY

CS 441

### **Basic Graph Definitions**

- A data structure that consists of a set of nodes (*vertices*) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices. Some Examples,
  - Car navigation system
  - Efficient database
  - Build a bot to retrieve info off WWW
  - Representing computational models

### Applications



#### Formal Definition:

- A graph, G=(V, E), consists of two sets:
  - a finite non empty set of *vertices(V)*, and



- V(G) and E(G) represent the sets of vertices and edges of G, respectively.
- Vertex: In <u>graph theory</u>, a vertex (plural vertices) or node or points is the fundamental unit out of which graphs are formed.
- Edge or Arcs or Links: Gives the relationship between the Two vertices.

Vertex

### **Examples for Graph**



 $V(G_1) = \{0, 1, 2, 3\}$ V(G\_2) =  $\{0, 1, 2, 3, 4, 5, 6\}$ V(G\_3) =  $\{0, 1, 2\}$   $E(G_1) = \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$   $E(G_2) = \{(0,1), (0,2), (1,3), (1,4), (2,5), (2,6)\}$  $E(G_3) = \{<0,1>,<1,0>,<1,2>\}$ 

- Two vertices joined by an edge are called the end vertices or endpoints of the edge.
- If an edge is directed its first endpoint is called the origin and the other is called the destination.
- Two vertices are said to be adjacent if they are endpoints of the same edge.











- An edge is said to be incident on a vertex if the vertex is one of the edges endpoints.
- The outgoing edges of a vertex are the directed edges whose origin is that vertex.
- The incoming edges of a vertex are the directed edges whose destination is that vertex.







#### Adjacent, neighbors

- Two vertices are *adjacent* and are *neighbors* if they are the endpoints of an edge
- Example:
  - A and B are adjacent
  - A and D are not adjacent





#### Degree: Number of edges incident on a node



### Degree (Directed Graphs)

- In degree: Number of edges entering a node
- Out degree: Number of edges leaving a node
- Degree = Indegree + Outdegree



#### Path

- A *path* is a sequence of vertices such that there is an edge from each vertex to its successor.
- A path is *simple* if each vertex is distinct.
- A *circuit* is a path in which the terminal vertex coincides with the initial vertex



Simple path: [ 1, 2, 4, 5 ] Path: [ 1, 2, 4, 5, 4] Circuit: [ 1, 2, 4, 5, 4, 1]

#### Cycle

- A path from a vertex to itself is called a *cycle*.
- A graph is called *cyclic* if it contains a cycle;
  - otherwise it is called *acyclic*



# Types of Graph

#### Null graph, Trivial Graph

• A graph G=(V,E) where E=0 is said to be Null or Empty graph

 A graph with One vertex and no edge is called as a trivial graph.





#### Connected and Disconnected

- Connected : There exists at least one path between two vertices
- Disconnected : Otherwise
- Example:
  - $H_1$  and  $H_2$  are connected
  - *H*<sub>3</sub> is disconnected



#### Undirected Graph

- In an undirected graph, there is no distinction between (u, v) and (v, u).
- An edge (u, v) is said to be directed from u to v if the pair (u, v) is ordered with u preceding v.

E.g. A Flight Route

 An edge (u, v) is said to be undirected if the pair (u, v) is not ordered

E.g. Road Map

#### Undirected Graph



Here (u,v) and (v,u) both are possible.

#### Undirected Graph

- A graph whose definition makes reference to Unordered pairs of vertices as Edges is known as undirected graph.
- Thus an undirected edge (u,v) is equivalent to (v,u) where u and v are distinct vertices.
- In the case of undirected edge(u,v) in a graph, the vertices u,v are said to be adjacent or the edge(u,v) is said to be incident on vertices u,v.

#### Complete Graph

- Complete Graph: A simple graph in which every pair of vertices are adjacent
- If no of vertices = n, then there are n(n-1) edges



#### Complete Graph

- In a complete graph: Every node should be connected to all other nodes.
- The above means " Every node is adjacent to all other nodes in that graph".
- The degree of all the vertices must be same.
- $K_n =$  Denotes a complete with n number of vertices.



#### Complete Undirected Graph

An undirected graph with 'n' number of vertices is said to be complete ,iff each vertex



#### Complete Undirected Graph

 An n vertex undirected graph with exactly (n.(n-1))/2 edges is said to be complete.



#### Directed Graph

- A directed graph is one in which every edge (u, v) has a direction, so that (u, v) is different from (v, u)
- There are two possible situations that can arise in a directed graph between vertices u and v.
- i) only one of (u, v) and (v, u) is present.
- ii) both (u, v) and (v, u) are present.

#### Directed Graph



Here (u,v) is possible where as (v,u) is not possible

In a directed edge, u is said to be adjacent to v and v is said to be adjacent from u.

<sup>4/10/2017</sup>The edge  $\langle u, v \rangle$  is incident to both u and v.

#### Directed Graph

- Directed Graphs are also called as **Digraph**.
- Directed graph or the digraph make reference to edges which are directed (i.e) edges which are Ordered pairs of vertices.
- The edge(uv) is referred to as <u,v> which is distinct from <v,u> where u,v are distinct vertices.



#### Weighted Graph

Weighted graph is a graph for which each edge has an associated *weight*, usually given by a *weight function w*:  $E \rightarrow R$ .



#### Planar Graph



#### • Can be drawn on a plane such that no two edges intersect

#### Sub Graph

- A graph whose vertices and edges are subsets of another graph.
- A subgraph G'=(V',E') of a graph G = (V,E) such that  $V' \subseteq V$  and  $E' \subseteq E$ , Then G is a supergraph for G'.



#### ..Sub Graph



#### Spanning Subgraph

• A *spanning subgraph* is a subgraph that contains all the vertices of the original graph.



#### Induced-Subgraph

- Vertex-Induced Subgraph:
  - A *vertex-induced subgraph* is one that consists of some of the vertices of the original graph and all of the edges that connect them in the original.



#### Induced-Subgraph

- Edge-Induced Subgraph:
  - An *edge-induced subgraph* consists of some of the edges of the original graph and the vertices that are at their endpoints.



### **Minimum Spanning Tree**

# Minimum Spanning Tree

- What is MST?
- Kruskal's Algorithm
- Prim's Algorithm

#### **Spanning Trees**

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.







### **Minimum Spanning Trees**

The Minimum Spanning Tree for a given graph is the Spanning Tree of minimum cost for that graph.



### **GRAPH REPRESENTATION**

- Adjacency Matrix
- Incidence Matrix
- Adjacency List

# Adjacency, Incidence, and Degree

- Assume  $e_i$  is an edge whose endpoints are  $(v_i, v_k)$
- The vertices  $v_i$  and  $v_k$  are said to be *adjacent*
- The edge  $e_i$  is said to be *incident upon*  $v_i$
- **Degree** of a vertex  $v_k$  is the number of edges incident upon  $v_k$ . It is denoted as  $d(v_k)$



### **Adjacency Matrix**

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of *G* written *A*(*G*), is the |*V*| x |*V*| matrix in which entry *a<sub>i,j</sub>* is the number of edges in *G* with endpoints {*v<sub>i</sub>*, *v<sub>j</sub>*}.



# **Adjacency Matrix**

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of G written A(G), is the |V| x |V| matrix in which entry a<sub>i,j</sub> is 1 if an edge exists otherwise it is 0



# Adjacency Matrix (Weighted Graph)

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of G written A(G), is the |V| x |V| matrix in which entry a<sub>i,j</sub> is weight of the edge if it exists otherwise it is 0



### **Incidence** Matrix

- Let G = (V, E), |V| = n and |E| = m
- The *incidence matrix* M(G) is the |V| x |E| matrix in which entry m<sub>i,j</sub> is 1 if v<sub>i</sub> is an endpoint of e<sub>i</sub> and otherwise is 0.





## **Adjacency List Representation**

- Adjacency-list representation
  - an array of |V | elements, one for each vertex in V
  - For each  $u \in V$ , ADJ [ u ] points to all its adjacent vertices.

### Adjacency List Representation for a Digraph



# **Adjacency lists**

- Advantage:
  - Saves space for sparse graphs. Most graphs are sparse.
  - Traverse all the edges that start at v, in θ(degree(v))
- Disadvantage:
  - Check for existence of an edge (v, u) in worst case time θ(degree(v))

# Adjacency List

- Storage
  - For a directed graph the number of items are

$$\sum_{v \in V} (\text{out-degree } (v)) = | E |$$
  
So we need  $\Theta(V + E)$ 

- For undirected graph the number of items are

$$\sum_{v \in V} (\text{degree } (v)) = 2 | E |$$
  
Also  $\Theta(V + E)$ 

• Easy to modify to handle weighted graphs. How?

# Adjacency Matrix Representation

- Advantage:
  - Saves space for:
    - Dense graphs.
    - Small unweighted graphs using 1 bit per edge.
  - Check for existence of an edge in  $\theta(1)$
- Disadvantage:

– Traverse all the edges that start at v, in  $\theta(|V|)$ 

# **Adjacency Matrix Representation**

- Storage
  - $-\Theta(|V|^2)$  (We usually just write,  $\Theta(V^2)$ )
  - For undirected graphs you can save storage (only 1/2(V<sup>2</sup>)) by noticing the adjacency matrix of an undirected graph is symmetric. How?
- Easy to handle weighted graphs. How?