# GRAPH THEORY BASIC TERMINOLOGY 

CS 441

## Basic Graph Definitions

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices. Some Examples,
- Car navigation system
- Efficient database
- Build a bot to retrieve info off WWW
- Representing computational models


## Applications

- electronic circuits



## Formal Definition:

- A graph, $G=(V, E)$, consists of two sets:
- a finite non empty set of vertices(V), and
- a finite set (E) of unordered pairs of distinct vertices called edges.
- $V(G)$ and $E(G)$ represent the sets of vertices and edges of $G$, respectively.
- Vertex: In graph theory, a vertex (plural vertices) or node or points is the fundamental unit out of which graphs are formed.
- Edge or Arcs or Links: Gives the relationship between the Two vertices.


## Examples for Graph



G2

$\mathrm{V}\left(\mathrm{G}_{1}\right)=\{0,1,2,3\}$
$\mathrm{E}\left(\mathrm{G}_{1}\right)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$
$\mathrm{V}(\mathrm{G} 2)=\{0,1,2,3,4,5,6\}$
$\mathrm{V}(\mathrm{G} 3)=\{0,1,2\}$
$\mathrm{E}(\mathrm{G} 3)=\{<0,1\rangle,<1,0\rangle,<1,2\rangle\}$

## Graph Terminology

- Two vertices joined by an edge are called the end vertices or endpoints of the edge.
- If an edge is directed its first endpoint is called the origin and the other is called the destination.
- Two vertices are said to be adjacent if they are endpoints of the same edge.


## Graph Terminology



## Graph Terminology

## Vertices A and B

 are endpoints of edge a

## Graph Terminology

Vertex A is the origin of edge a


## Graph Terminology

Vertex B is the destination of edge a


## Graph Terminology

Vertices A and B are adjacent as they are endpoints of edge a


## Graph Terminology

- An edge is said to be incident on a vertex if the vertex is one of the edges endpoints.
- The outgoing edges of a vertex are the directed edges whose origin is that vertex.
- The incoming edges of a vertex are the directed edges whose destination is that vertex.


## Graph Terminology



## Graph Terminology



## Graph Terminology



## Adjacent, neighbors

- Two vertices are adjacent and are neighbors if they are the endpoints of an edge
- Example:
- $A$ and $B$ are adjacent
- $A$ and $D$ are not adjacent



## Degree

## Degree: Number of edges incident on a node



## Degree (Directed Graphs)

- In degree: Number of edges entering a node
- Out degree: Number of edges leaving a node
- Degree = Indegree + Outdegree



## Path

- A path is a sequence of vertices such that there is an edge from each vertex to its successor.
- A path is simple if each vertex is distinct.
- A circuit is a path in which the terminal vertex coincides with the initial vertex


Simple path: [ 1, 2, 4, 5 ]
Path: [ 1, 2, 4, 5, 4]
Circuit: [ 1, 2, 4, 5, 4, 1]

## Cycle

- A path from a vertex to itself is called a cycle.
- A graph is called cyclic if it contains a cycle;
- otherwise it is called acyclic



## Types of Graph

## Null graph, Trivial Graph

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where $\mathrm{E}=0$ is said to be Null or Empty graph
- A graph with One vertex and no edge is called as a trivial graph.
v3


## Connected and Disconnected

- Connected: There exists at least one path between two vertices
- Disconnected: Otherwise
- Example:
- $H_{1}$ and $H_{2}$ are connected
- $\mathrm{H}_{3}$ is disconnected



## Undirected Graph

- In an undirected graph, there is no distinction between $(u, v)$ and $(v, u)$.
- An edge $(u, v)$ is said to be directed from $u$ to $v$ if the pair $(u, v)$ is ordered with u preceding v .
E.g. A Flight Route
- An edge $(u, v)$ is said to be undirected if the pair $(u, v)$ is not ordered

E.g. Road Map

## Undirected Graph



Here ( $u, v$ ) and $(v, u)$ both are possible.

## Undirected Graph

- A graph whose definition makes reference to Unordered pairs of vertices as Edges is known as undirected graph.
- Thus an undirected edge ( $u, v$ ) is equivalent to $(v, u)$ where $u$ and $v$ are distinct vertices.
- In the case of undirected edge( $u, v$ ) in a graph, the vertices $u, v$ are said to be adjacent or the edge( $u, v$ ) is said to be incident on vertices $u, v$.


## Complete Graph

- Complete Graph: A simple graph in which every pair of vertices are adjacent
- If no of vertices $=n$, then there are $n(n-1)$ edges



## Complete Graph

- In a complete graph: Every node should be connected to all other nodes.
- The above means " Every node is adjacent to all other nodes in that graph".
- The degree of all the vertices must be same.
- $K_{n}=$ Denotes a complete with $n$ number of vertices.

> ○

$K_{3}$
$K_{4}$

$K_{5}$

## Complete Undirected Graph

An undirected graph with ' $n$ ' number of vertices is said to be complete, iff each vertex

Number of vertices=3
Degree of Each vertices
$=(n-1)$
$=(3-1)$
$=2$

## Complete Undirected Graph

- An $n$ vertex undirected graph with exactly ( $\mathrm{n} .(\mathrm{n}-1)$ )/2 edges is said to be complete.


Hence the graph has 6 number of edges and it is a Complete Undirected graph.

## Directed Graph

- A directed graph is one in which every edge ( $u, v$ ) has a direction, so that ( $u, v$ ) is different from ( $\mathrm{v}, \mathrm{u}$ )
There are two possible situations that can arise in a directed graph between vertices $u$ and $v$.
- i) only one of $(u, v)$ and $(v, u)$ is present.
- ii) both ( $u, v$ ) and $(v, u)$ are present.


## Directed Graph



Here ( $u, v$ ) is possible where as ( $v, u$ ) is not possible In a directed edge, $u$ is said to be adjacent to $v$ and $v$ is said to be adjacent from u.
${ }^{4 / 1002021}$ The edge $\langle u, v\rangle$ is incident to both $u$ and $v$.

## Directed Graph

- Directed Graphs are also called as Digraph.
- Directed graph or the digraph make reference to edges which are directed (i.e) edges which are Ordered pairs of vertices.
- The edge(uv) is referred to as <u,v> which is distinct from <v,u> where $u, v$ are distinct vertices.



## Weighted Graph

Weighted graph is a graph for which each edge has an associated weight, usually given by a weight function $w: E \rightarrow \mathrm{R}$.


## Planar Graph



- Can be drawn on a plane such that no two edges intersect


## Sub Graph

- A graph whose vertices and edges are subsets of another graph.
- A subgraph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ such that $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$, Then G is a supergraph for $\mathrm{G}^{\prime}$.



## ..Sub Graph


(G)
(G1)

## Spanning Subgraph

- A spanning subgraph is a subgraph that contains all the vertices of the original graph.



## Induced-Subgraph

- Vertex-Induced Subgraph:
- A vertex-induced subgraph is one that consists of some of the vertices of the original graph and all of the edges that connect them in the original.



## Induced-Subgraph

- Edge-Induced Subgraph:
- An edge-induced subgraph consists of some of the edges of the original graph and the vertices that are at their endpoints.



## Minimum Spanning Tree

## Minimum Spanning Tree

- What is MST?
- Kruskal's Algorithm
- Prim's Algorithm


## Spanning Trees

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.

Graph A
Some Spanning Trees from Graph A


0
$r$


Complete Graph


All 16 of its Spanning Trees



## Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the Spanning Tree of minimum cost for that graph.

Complete Graph


Minimum Spanning Tree


## GRAPH REPRESENTATION

- Adjacency Matrix
- Incidence Matrix
- Adjacency List


## Adjacency, Incidence, and Degree

- Assume $e_{i}$ is an edge whose endpoints are $\left(v_{j}, v_{k}\right)$
- The vertices $v_{j}$ and $v_{k}$ are said to be adjacent
- The edge $e_{i}$ is said to be incident upon $v_{j}$
- Degree of a vertex $v_{k}$ is the number of edges incident upon $v_{k}$. It is denoted as $d\left(v_{k}\right)$



## Adjacency Matrix

- Let $G=(V, E),|V|=n$ and $|E|=m$
- The adjacency matrix of $G$ written $A(G)$, is the $|V| \times|V|$ matrix in which entry $a_{i, j}$ is the number of edges in $G$ with endpoints $\left\{v_{i}, v_{j}\right\}$.


$$
\begin{aligned}
& w \\
& x \\
& y \\
& z
\end{aligned}\left(\begin{array}{cccc}
w & x & y & z \\
0 & 1 & 1 & 0 \\
1 & 0 & 2 & 0 \\
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

## Adjacency Matrix

- Let $G=(V, E),|V|=n$ and $|E|=m$
- The adjacency matrix of $G$ written $A(G)$, is the $|V| \times|V|$ matrix in which entry $a_{i, j}$ is 1 if an edge exists otherwise it is 0



## Adjacency Matrix (Weighted Graph)

- Let $G=(V, E),|V|=n$ and $|E|=m$
- The adjacency matrix of $G$ written $A(G)$, is the $|V| \times|V|$ matrix in which entry $a_{i, j}$ is weight of the edge if it exists otherwise it is 0



## Incidence Matrix

- Let $G=(V, E),|V|=n$ and $|E|=m$
- The incidence matrix $M(G)$ is the $|V| \times|E|$ matrix in which entry $m_{i, j}$ is 1 if $v_{i}$ is an endpoint of $e_{i}$ and otherwise is 0 .




## Adjacency List Representation

- Adjacency-list representation
- an array of |V| elements, one for each vertex in $V$
- For each $u \in V, A D J[u$ ] points to all its adjacent vertices.


## Adjacency List Representation for a Digraph



## Adjacency lists

- Advantage:
- Saves space for sparse graphs. Most graphs are sparse.
- Traverse all the edges that start at v , in $\theta($ degree(v))
- Disadvantage:
- Check for existence of an edge ( $\mathrm{v}, \mathrm{u}$ ) in worst case time $\theta$ (degree(v))


## Adjacency List

- Storage
- For a directed graph the number of items are
$\sum_{v \in V}($ out-degree $(v))=|E|$
So we need $\Theta(V+E)$
- For undirected graph the number of items are

$$
\begin{array}{r}
\sum_{v \in V}(\text { degree }(v))=2|E| \\
\text { Also } \Theta(V+E)
\end{array}
$$

- Easy to modify to handle weighted graphs. How?


## Adjacency Matrix Representation

- Advantage:
- Saves space for:
- Dense graphs.
- Small unweighted graphs using 1 bit per edge.
- Check for existence of an edge in $\theta(1)$
- Disadvantage:
- Traverse all the edges that start at v , in $\theta(|\mathrm{V}|)$


## Adjacency Matrix Representation

- Storage
$-\Theta\left(|V|^{2}\right) \quad\left(\right.$ We usually just write, $\Theta\left(V^{2}\right)$ )
- For undirected graphs you can save storage (only $1 / 2\left(\mathrm{~V}^{2}\right)$ ) by noticing the adjacency matrix of an undirected graph is symmetric. How?
- Easy to handle weighted graphs. How?

