
FR
E

E
C

O
P

Y
12

Generic Approaches to Optimization

A smuggler in the mountainous region of Profitania has n itemsin his cellar. If he
sells an item i across the border, he makes a profit pi . However, the smuggler’s trade
union only allows him to carry knapsacks with a maximum weight of M. If item i has
weight wi , what items should he pack into the knapsack to maximize the profit from
his next trip?

This problem, usually called theknapsack problem, has many other applications.
The books [122, 109] describe many of them. For example, an investment bank might
have an amountM of capital to invest and a set of possible investments. Each invest-
ment i has an expected profitpi for an investment of costwi . In this chapter, we
use the knapsack problem as an example to illustrate severalgeneric approaches to
optimization. These approaches are quite flexible and can beadapted to complicated
situations that are ubiquitous in practical applications.

In the previous chapters we have considered very efficient specific solutions for
frequently occurring simple problems such as finding shortest paths or minimum
spanning trees. Now we look at generic solution methods thatwork for a much larger
range of applications. Of course, the generic methods do notusually achieve the same
efficiency as specific solutions. However, they save development time.

Formally, an optimization problem can be described by a setU of potentialso-
lutions, a setL of feasiblesolutions, and anobjective function f: L → R. In a
maximizationproblem, we are looking for a feasible solutionx∗ ∈L that maximizes
the value of the objective function over all feasible solutions. In aminimizationprob-
lem, we look for a solution that minimizes the value of the objective. In anexistence
problem, f is arbitrary and the question is whether the set of feasible solutions is
nonempty.

For example, in the case of the knapsack problem withn items, a potential so-
lution is simply a vectorx = (x1, . . . ,xn) with xi ∈ {0,1}. Herexi = 1 indicates that
“elementi is put into the knapsack” andxi = 0 indicates that “elementi is left out”.
ThusU = {0,1}n. The profits and weights are specified by vectorsp = (p1, . . . , pn)
andw = (w1, . . . ,wn). A potential solutionx is feasible if its weight does not exceed

FR
E

E
C

O
P

Y
234 12 Generic Approaches to Optimization

1

2
2

3

1

2

1 2 3 410
20

42

30

Instance

5 5 5

3

fractionaloptimalgreedy

Solutions:

p

w
M =

Fig. 12.1.The left part shows a knapsack instance withp = (10,20,15,20), w = (1,3,2,4),
andM = 5. The items are indicated as rectangles whose width and height correspond to weight
and profit, respectively. Theright part shows three solutions: the one computed by the greedy
algorithm from Sect. 12.2, an optimal solution computed by the dynamic programming al-
gorithm from Sect. 12.3, and the solution of the linear relaxation (Sect. 12.1.1). The optimal
solution has weight 5 and profit 35

the capacity of the knapsack, i.e.,∑1≤i≤nwixi ≤ M. The dot productw · x is a con-
venient shorthand for∑1≤i≤nwixi . We can then say thatL = {x∈ U : w ·x≤ M} is
the set of feasible solutions andf (x) = p ·x is the objective function.

The distinction between minimization and maximization problems is not essen-
tial because settingf :=− f converts a maximization problem into a minimization
problem and vice versa. We shall use maximization as our default simply because
our example problem is more naturally viewed as a maximization problem.1

We shall present seven generic approaches. We start out withblack-box solvers
that can be applied to any problem that can be formulated in the problem specification
language of the solver. In this case, the only task of the useris to formulate the
given problem in the language of the black-box solver. Section 12.1 introduces this
approach usinglinear programmingand integer linear programmingas examples.
Thegreedy approachthat we have already seen in Chap. 11 is reviewed in Sect. 12.2.
The approach ofdynamic programmingdiscussed in Sect. 12.3 is a more flexible way
to construct solutions. We can also systematically explorethe entire set of potential
solutions, as described in Sect. 12.4.Constraint programming, SAT solvers, andILP
solversare special cases ofsystematic search. Finally, we discuss two very flexible
approaches to exploring only a subset of the solution space.Local search, discussed
in Sect. 12.5, modifies a single solution until it has the desired quality.Evolutionary
algorithms, described in Sect. 12.6, simulate a population of candidate solutions.

12.1 Linear Programming – a Black-Box Solver

The easiest way to solve an optimization problem is to write down a specification of
the space of feasible solutions and of the objective function and then use an existing
software package to find an optimal solution. Of course, the question is, for what

1 Be aware that most of the literature uses minimization as thedefault.

FR
E

E
C

O
P

Y
12.1 Linear Programming – a Black-Box Solver 235

kinds of specification are general solvers available? Here,we introduce a particularly
large class of problems for which efficient black-box solvers are available.

Definition 12.1.A linear program(LP)2 with nvariablesand mconstraintsis a max-
imization problem defined on a vector x= (x1, . . . ,xn) of real-valued variables. The
objective function is a linear function f of x, i.e., f: Rn → R with f(x) = c·x, where
c = (c1, . . . ,cn) is calledcostor profit3 vector. The variables are constrained by m
linear constraints of the form ai ·x ⊲⊳i bi , where⊲⊳i∈ {≤,≥,=}, ai = (ai1, . . . ,ain) ∈Rn, and bi ∈ R for i ∈ 1..m. The set of feasible solutions is given by

L =
{

x∈ Rn : ∀i ∈ 1..m and j∈ 1..n : x j ≥ 0∧ai ·x ⊲⊳i bi
}

.

feasible solutions

better
solutions

x

y

y≤ 6

x+y≤ 8
2x−y≤ 8

x+4y≤ 26

(2,6)

Fig. 12.2.A simple two-dimensional linear program in variablesx andy, with three constraints
and the objective “maximizex+4y”. The feasible region is shaded, and(x,y) = (2,6) is the
optimal solution. Its objective value is 26. The vertex(2,6) is optimal because the half-plane
x+4y≤ 26 contains the entire feasible region and has(2,6) in its boundary

Figure 12.2 shows a simple example. A classical applicationof linear program-
ming is thediet problem. A farmer wants to mix food for his cows. There aren dif-
ferent kinds of food on the market, say, corn, soya, fish meal,. . . . One kilogram of
a food j costsc j euros. There arem requirements for healthy nutrition; for example
the cows should get enough calories, protein, vitamin C, andso on. One kilogram of
food j containsai j percent of a cow’s daily requirement with respect to requirement
i. A solution to the following linear program gives a cost-optimal diet that satisfies
the health constraints. Letx j denote the amount (in kilogram) of foodj used by the

2 The term “linear program” stems from the 1940s [45] and has nothing to do with the mod-
ern meaning of “program” as in “computer program”.

3 It is common to use the term “profit” in maximization problemsand “cost” in minimization
problems.

FR
E

E
C

O
P

Y
236 12 Generic Approaches to Optimization

farmer. Thei-th nutritional requirement is modeled by the inequality∑ j ai j x j ≥ 100.
The cost of the diet is given by∑ j c jx j . The goal is to minimize the cost of the diet.

Exercise 12.1.How do you model supplies that are available only in limited amounts,
for example food produced by the farmer himself? Also, explain how to specify ad-
ditional constraints such as “no more than 0.01mg cadmium contamination per cow
per day”.

Can the knapsack problem be formulated as a linear program? Probably not. Each
item either goes into the knapsack or it does not. There is no possibility of adding an
item partially. In contrast, it is assumed in the diet problem that any arbitrary amount
of any food can be purchased, for example 3.7245kg and not just 3 kg or 4 kg. Integer
linear programs (see Sect. 12.1.1) are the right tool for theknapsack problem.

We next connect linear programming to the problems that we have studied in
previous chapters of the book. We shall show how to formulatethe single-source
shortest-path problem with nonnegative edge weights as a linear program. LetG =
(V,E) be a directed graph, lets∈V be the source node, and letc : E → R≥0 be the
cost function on the edges ofG. In our linear program, we have a variabledv for
every vertex of the graph. The intention is thatdv denotes the cost of the shortest
path froms to v. Consider

maximize ∑
v∈V

dv

subject to ds = 0

dw ≤ dv +c(e) for all e= (v,w) ∈ E .

Theorem 12.2.Let G= (V,E) be a directed graph, s∈ V a designated vertex, and
c : E → R≥0 a nonnegative cost function. If all vertices of G are reachable from s, the
shortest-path distances in G are the unique optimal solution to the linear program
above.

Proof. Let µ(v) be the length of the shortest path froms to v. Thenµ(v)∈R≥0, since
all nodes are reachable froms, and hence no vertex can have a distance+∞ from s.
We observe first thatdv := µ(v) for all v satisfies the constraints of the LP. Indeed,
µ(s) = 0 andµ(w) ≤ µ(v)+c(e) for any edgee= (v,w).

We next show that if(dv)v∈V satisfies all constraints of the LP above, thendv ≤
µ(v) for all v. Consider anyv, and lets= v0,v1, . . . ,vk = v be a shortest path froms
to v. Thenµ(v) = ∑0≤i<k c(vi ,vi+1). We shall show thatdvj ≤ ∑0≤i< j c(vi ,vi+1) by
induction onj. For j = 0, this follows fromds = 0 by the first constraint. Forj > 0,
we have

dvj ≤ dvj−1 +c(v j−1,v j) ≤ ∑
0≤i< j−1

c(vi ,vi+1)+c(v j−1,v j) = ∑
0≤i< j

c(vi ,vi+1) ,

where the first inequality follows from the second set of constraints of the LP and
the second inequality comes from the induction hypothesis.

FR
E

E
C

O
P

Y
12.1 Linear Programming – a Black-Box Solver 237

We have now shown that(µ(v))v∈V is a feasible solution, and thatdv ≤ µ(v) for
all v for any feasible solution(dv)v∈V . Since the objective of the LP is to maximize
the sum of thedv’s, we must havedv = µ(v) for all v in the optimal solution to the
LP. ⊓⊔

Exercise 12.2.Where does the proof above fail when not all nodes are reachable
from s or when there are negative weights? Does it still work in the absence of neg-
ative cycles?

The proof that the LP above actually captures the shortest-path problem is non-
trivial. When you formulate a problem as an LP, you should always prove that the
LP is indeed a correct description of the problem that you aretrying to solve.

Exercise 12.3.Let G = (V,E) be a directed graph and lets andt be two nodes. Let
cap: E → R≥0 andc : E → R≥0 be nonnegative functions on the edges ofG. For an
edgee, we callcap(e) andc(e) the capacity and cost, respectively, ofe. A flow is a
function f : E → R≥0 with 0≤ f (e) ≤ cap(e) for all e and flow conservation at all
nodes exceptsandt, i.e., for allv 6= s,t, we have

flow into v = ∑
e=(u,v)

f (e) = ∑
e=(v,w)

f (e) = flow out ofv .

The value of the flow is the net flow out ofs, i.e.,∑e=(s,v) f (e)−∑e=(u,s) f (e). The
maximum-flow problemasks for a flow of maximum value. Show that this problem
can be formulated as an LP.

The cost of a flow is∑e f (e)c(e). Theminimum-cost maximum-flow problemasks
for a maximum flow of minimum cost. Show how to formulate this problem as an
LP.

Linear programs are so important because they combine expressive power with
efficient solution algorithms.

Theorem 12.3.Linear programs can be solved in polynomial time [110, 106].

The worst-case running time of the best algorithm known is O
(

max(m,n)7/2L
)

.
In this bound, it is assumed that all coefficientsc j , ai j , andbi are integers with ab-
solute value bounded by 2L; n andm are the numbers of variables and constraints,
respectively. Fortunately, the worst case rarely arises. Most linear programs can be
solved relatively quickly by several procedures. One, the simplex algorithm, is briefly
outlined in Sect. 12.5.1. For now, we should remember two facts: first, many prob-
lems can be formulated as linear programs, and second, thereare efficient linear-
program solvers that can be used as black boxes. In fact, although LP solvers are
used on a routine basis, very few people in the world know exactly how to imple-
ment a highly efficient LP solver.

FR
E

E
C

O
P

Y
238 12 Generic Approaches to Optimization

12.1.1 Integer Linear Programming

The expressive power of linear programming grows when some or all of the vari-
ables can be designated to be integral. Such variables can then take on only integer
values, and not arbitrary real values. If all variables are constrained to be integral,
the formulation of the problem is called aninteger linear program(ILP). If some
but not all variables are constrained to be integral, the formulation is called amixed
integer linear program(MILP). For example, our knapsack problem is tantamount
to the following 0 –1 integer linear program:

maximizep ·x

subject to
w ·x≤ M, and xi ∈ {0,1} for i ∈ 1..n .

In a 0 –1 integer linear program, the variables are constrained to the values 0 and 1.

Exercise 12.4.Explain how to replace any ILP by a 0 –1 ILP, assuming that you
know an upper boundU on the value of any variable in the optimal solution. Hint:
replace any variable of the original ILP by a set of O(logU) 0 –1 variables.

Unfortunately, solving ILPs and MILPs isNP-hard. Indeed, even the knapsack
problem isNP-hard. Nevertheless, ILPs can often be solved in practice using linear-
programming packages. In Sect. 12.4, we shall outline how this is done. When an
exact solution would be too time-consuming, linear programming can help to find
approximate solutions. Thelinear-program relaxationof an ILP is the LP obtained
by omitting the integrality constraints on the variables. For example, in the knapsack
problem we would replace the constraintxi ∈ {0,1} by the constraintxi ∈ [0,1].

An LP relaxation can be solved by an LP solver. In many cases, the solution
to the relaxation teaches us something about the underlyingILP. One observation
always holds true (for maximization problems): the objective value of the relaxation
is at least as large as the objective value of the underlying ILP. This claim is trivial,
because any feasible solution to the ILP is also a feasible solution to the relaxation.
The optimal solution to the LP relaxation will in general befractional, i.e., variables
will take on rational values that are not integral. However,it might be the case that
only a few variables have nonintegral values. By appropriate rounding of fractional
variables to integer values, we can often obtain good integer feasible solutions.

We shall give an example. The linear relaxation of the knapsack problem is given
by

maximizep ·x

subject to
w ·x≤ M, and xi ∈ [0,1] for i ∈ 1..n .

This has a natural interpretation. It is no longer required to add items completely to
the knapsack; one can now take any fraction of an item. In our smuggling scenario,
thefractional knapsack problemcorresponds to a situation involving divisible goods
such as liquids or powders.

FR
E

E
C

O
P

Y
12.2 Greedy Algorithms – Never Look Back 239

The fractional knapsack problem is easy to solve in time O(nlogn); there is no
need to use a general-purpose LP solver. We renumber (sort) the items byprofit
densitysuch that

p1

w1
≥

p2

w2
≥ ·· · ≥

pn

wn
.

We find the smallest indexj such that∑ j
i=1wi > M (if there is no such index, we can

take all knapsack items). Now we set

x1 = · · · = x j−1 = 1,x j =

(

M−
j−1

∑
i=1

wi

)

/wj , andx j+1 = · · · = xn = 0 .

Figure 12.1 gives an example. The fractional solution aboveis the starting point for
many good algorithms for the knapsack problem. We shall see more of this later.

Exercise 12.5 (linear relaxation of the knapsack problem).

(a) Prove that the above routine computes an optimal solution. Hint: you might want
to use anexchange argumentsimilar to the one used to prove the cut property of
minimum spanning trees in Sect. 11.1.

(b) Outline an algorithm that computes an optimal solution in linear expected time.
Hint: use a variant ofquickSelect, described in Sect. 5.5.

A solution to the fractional knapsack problem is easily converted to a feasible
solution to the knapsack problem. We simply take the fractional solution and round
the sole fractional variablex j to zero. We call this algorithmroundDown.

Exercise 12.6.Formulate the followingset-coveringproblem as an ILP. Given a set
M, subsetsMi ⊆ M for i ∈ 1..n with

⋃n
i=1Mi = M, and a costci for eachMi , select

F ⊆ 1..n such that
⋃

i∈F Mi = M and∑i∈F ci is minimized.

12.2 Greedy Algorithms – Never Look Back

The termgreedy algorithmis used for a problem-solving strategy where the items
under consideration are inspected in some order, usually some carefully chosen or-
der, and a decision about an item, for example, whether to include it in the solution
or not, is made when the item is considered. Decisions are never reversed. The algo-
rithm for the fractional knapsack problem given in the preceding section follows the
greedy strategy; we consider the items in decreasing order of profit density. The al-
gorithms for shortest paths in Chap. 10 and for minimum spanning trees in Chap. 11
also follow the greedy strategy. For the single-source shortest-path problem with
nonnegative weights, we considered the edges in order of thetentative distance of
their source nodes. For these problems, the greedy approachled to an optimal solu-
tion.

Usually, greedy algorithms yield only suboptimal solutions. Let us consider the
knapsack problem again. A typical greedy approach would be to scan the items in

FR
E

E
C

O
P

Y
240 12 Generic Approaches to Optimization

1

42

2 2

M

3
3

1 2 1

3 3

4
2

1

M

1

1 M

1

Instance Solutions:

ro
un

dD
ow

n

gr
ee

dy

Instance Solutions: optimal

roundDown,
greedy

ww

p
p

M =

Fig. 12.3.Two instances of the knapsack problem.Left: for p = (4,4,1), w = (2,2,1), and
M = 3, greedyperforms better thanroundDown. Right: for p = (1,M − 1) andw = (1,M),
bothgreedyandroundDownare far from optimal

order of decreasing profit density and to include items that still fit into the knap-
sack. We shall give this algorithm the namegreedy. Figures 12.1 and 12.3 give ex-
amples. Observe thatgreedyalways gives solutions at least as good asroundDown
gives. OnceroundDownencounters an item that it cannot include, it stops. How-
ever, greedykeeps on looking and often succeeds in including additionalitems
of less weight. Although the example in Fig. 12.1 gives the same result for both
greedyandroundDown, the results generallyaredifferent. For example, with profits
p = (4,4,1), weightsw = (2,2,1), andM = 3, greedyincludes the first and third
items yielding a profit of 5, whereasroundDownincludes just the first item and ob-
tains only a profit of 4. Both algorithms may produce solutions that are far from op-
timum. For example, for any capacityM, consider the two-item instance with profits
p = (1,M−1) and weightsw = (1,M). Both greedyandroundDowninclude only
the first item, which has a high profit density but a very small absolute profit. In this
case it would be much better to include just the second item.

We can turn this observation into an algorithm, which we callround. This com-
putes two solutions: the solutionxd proposed byroundDownand the solutionxc

obtained by choosing exactly the critical itemx j of the fractional solution.4 It then
returns the better of the two.

We can give an interesting performance guarantee. The algorithm roundalways
achieves at least 50% of the profit of the optimal solution. More generally, we say
that an algorithm achieves anapproximation ratioof α if for all inputs, its solution
is at most a factorα worse than the optimal solution.

Theorem 12.4.The algorithm round achieves an approximation ratio of 2.

Proof. Let x∗ denote any optimal solution, and letxf be the optimal solution to the
fractional knapsack problem. Thenp·x∗ ≤ p·xf . The value of the objective function
is increased further by settingx j = 1 in the fractional solution. We obtain

p ·x∗ ≤ p ·xf ≤ p ·xd + p ·xc ≤ 2max
{

p ·xd, p ·xc
}

.

⊓⊔

4 We assume here that “unreasonably large” items withwi > M have been removed from the
problem in a preprocessing step.

FR
E

E
C

O
P

Y
12.2 Greedy Algorithms – Never Look Back 241

There are many ways to refine the algorithmround without sacrificing this ap-
proximation guarantee. We can replacexd by the greedy solution. We can similarly
augmentxc with any greedy solution for a smaller instance where itemj is removed
and the capacity is reduced bywj .

We now come to another important class of optimization problems, called
scheduling problems. Consider the following scenario, known as thescheduling
problem for independent weighted jobs on identical machines. We are givenm iden-
tical machines on which we want to processn jobs; the execution of jobj takest j

time units. An assignmentx : 1..n→ 1..m of jobs to machines is called aschedule.
Thus theload ℓ j assigned to machinej is ∑{i:x(i)= j} ti . The goal is to minimize the
makespan Lmax = max1≤ j≤mℓ j of the schedule.

One application scenario is as follows. We have a video game processor with
several identical processor cores. The jobs would be the tasks executed in a video
game such as audio processing, preparing graphics objects for the image processing
unit, simulating physical effects, and simulating the intelligence of the game.

We give next a simple greedy algorithm for the problem above [80] that has the
additional property that it does not need to know the sizes ofthe jobs in advance.
We assign jobs in the order they arrive. Algorithms with thisproperty (“unknown
future”) are calledonline algorithms. When jobi arrives, we assign it to the ma-
chine with the smallest load. Formally, we compute the loadsℓ j = ∑h<i∧x(h)= j th of
all machinesj, and assign the new job to the least loaded machine, i.e.,x(i) := j i ,
where j i is such thatℓ j i = min1≤ j≤mℓ j . This algorithm is frequently referred to as
the shortest-queue algorithm. It does not guarantee optimal solutions, but always
computes nearly optimal solutions.

Theorem 12.5.The shortest-queue algorithm ensures that

Lmax≤
1
m

n

∑
i=1

ti +
m−1

m
max
1≤i≤n

ti .

Proof. In the schedule generated by the shortest-queue algorithm,some machine has
a loadLmax. We focus on the job ˆı that is the last job that has been assigned to the
machine with the maximum load. When job ˆı is scheduled, allm machines have a
load of at leastLmax− tı̂, i.e.,

∑
i 6=ı̂

ti ≥ (Lmax− tı̂) ·m .

Solving this forLmax yields

Lmax≤
1
m∑

i 6=ı̂

ti + tı̂ =
1
m∑

i

ti +
m−1

m
tı̂ ≤

1
m

n

∑
i=1

ti +
m−1

m
max
1≤i≤n

ti .

⊓⊔

We are almost finished. We now observe that∑i ti/mand maxi ti are lower bounds
on the makespan of any schedule and hence also the optimal schedule. We obtain the
following corollary.

FR
E

E
C

O
P

Y
242 12 Generic Approaches to Optimization

Corollary 12.6. The approximation ratio of the shortest-queue algorithm is2−1/m.

Proof. Let L1 = ∑i ti/mandL2 = maxi ti . The makespan of the optimal solution is at
least max(L1,L2). The makespan of the shortest-queue solution is bounded by

L1 +
m−1

m
L2 ≤

mL1 +(m−1)L2

m
≤

(2m−1)max(L1,L2)

m

= (2−
1
m

) ·max(L1,L2) .

⊓⊔

The shortest-queue algorithm is no better than claimed above. Consider an in-
stance withn= m(m−1)+1, tn = m, andti = 1 for i < n. The optimal solution has a
makespanLopt

max = m, whereas the shortest-queue algorithm produces a solutionwith
a makespanLmax = 2m−1. The shortest-queue algorithm is an online algorithm. It
produces a solution which is at most a factor 2−1/m worse than the solution pro-
duced by an algorithm that knows the entire input. In such a situation, we say that
the online algorithm has acompetitive ratioof α = 2−1/m.

*Exercise 12.7.Show that the shortest-queue algorithm achieves an approximation
ratio of 4/3 if the jobs are sorted by decreasing size.

*Exercise 12.8 (bin packing). Suppose a smuggler boss has perishable goods in
her cellar. She has to hire enough porters to ship all items tonight. Develop a greedy
algorithm that tries to minimize the number of people she needs to hire, assuming
that they can all carry a weightM. Try to obtain an approximation ratio for your
bin-packingalgorithm.

Boolean formulaeprovide another powerful description language. Here, vari-
ables range over the Boolean values1 and0, and the connectors∧, ∨, and¬ are
used to build formulae. A Boolean formula issatisfiableif there is an assignment of
Boolean values to the variables such that the formula evaluates to1. As an example,
we now formulate thepigeonhole principleas a satisfiability problem: it is impos-
sible to packn+ 1 items inton bins such that every bin contains one item at most.
We have variablesxi j for 1≤ i ≤ n+1 and 1≤ j ≤ n. So i ranges over items andj
ranges over bins. Every item must be put into (at least) one bin, i.e.,xi1∨ . . .∨xin for
1≤ i ≤ n+ 1. No bin should receive more than one item, i.e.,¬(∨1≤i<h≤n+1xi j xh j)
for 1 ≤ j ≤ n. The conjunction of these formulae is unsatisfiable. SAT solvers de-
cide the satisfiability of Boolean formulae. Although the satisfiability problem is
NP-complete, there are now solvers that can solve real-world problems that involve
hundreds of thousands of variables.5

Exercise 12.9.Formulate the pigeonhole principle as an integer linear program.

5 Seehttp://www.satcompetition.org/.

FR
E

E
C

O
P

Y
12.3 Dynamic Programming – Building It Piece by Piece 243

12.3 Dynamic Programming – Building It Piece by Piece

For many optimization problems, the followingprinciple of optimalityholds:an op-
timal solution is composed of optimal solutions to subproblems. If a subproblem has
several optimal solutions, it does not matter which one is used.

The idea behind dynamic programming is to build an exhaustive table of optimal
solutions. We start with trivial subproblems. We build optimal solutions for increas-
ingly larger problems by constructing them from the tabulated solutions to smaller
problems.

Again, we shall use the knapsack problem as an example. We defineP(i,C) as
the maximum profit possible when only items 1 toi can be put in the knapsack and
the total weight is at mostC. Our goal is to computeP(n,M). We start with trivial
cases and work our way up. The trivial cases are “no items” and“total weight zero”.
In both of these cases, the maximum profit is zero. So

P(0,C) = 0 for all C and P(i,0) = 0 .

Consider next the casei > 0 andC > 0. In the solution that maximizes the profit, we
either use itemi or do not use it. In the latter case, the maximum achievable profit is
P(i−1,C). In the former case, the maximum achievable profit isP(i−1,C−wi)+ pi,
since we obtain a profit ofpi for item i and must use a solution of total weight at most
C−wi for the first i − 1 items. Of course, the former alternative is only feasible if
C≥ wi . We summarize this discussion in the following recurrence for P(i,C):

P(i,C) =

{

max(P(i −1,C),P(i −1,C−wi)+ pi) if wi ≤C

P(i −1,C) if wi > C

Exercise 12.10.Show that the case distinction in the definition ofP(i,C) can be
avoided by definingP(i,C) = −∞ for C < 0.

Using the above recurrence, we can computeP(n,M) by filling a tableP(i,C)
with one column for each possible capacityC and one row for each itemi. Table 12.1
gives an example. There are many ways to fill this table, for example row by row. In
order to reconstruct a solution from this table, we work our way backwards, starting
at the bottom right-hand corner of the table. We seti = n andC = M. If P(i,C) =
P(i−1,C), we setxi = 0 and continue to rowi−1 and columnC. Otherwise, we set
xi = 1. We haveP(i,C) = P(i −1,C−wi)+ pi, and therefore continue to rowi −1
and columnC−wi . We continue with this procedure until we arrive at row 0, by
which time the solution(x1, . . . ,xn) has been completed.

Exercise 12.11.Dynamic programming, as described above, needs to store a table
containingΘ(nM) integers. Give a more space-efficient solution that stores only a
single bit in each table entry except for two rows ofP(i,C) values at any given time.
What information is stored in this bit? How is it used to reconstruct a solution? How
can you get down toone row of stored values? Hint: exploit your freedom in the
order of filling in table values.

FR
E

E
C

O
P

Y
244 12 Generic Approaches to Optimization

Table 12.1.A dynamic-programming table for the knapsack instance withp= (10,20,15,20),
w = (1,3,2,4), andM = 5. Bold-faceentries contribute to the optimal solution

i \C 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 10 10 10 10 10
2 0 10 1020 30 30
3 0 10 15 25 3035
4 0 10 15 25 3035

P(i−1,C)

P(i−1,C−wi)+ pi

Fig. 12.4. The solid step function showsC 7→ P(i−1,C), and the dashed step function shows
C 7→ P(i −1,C−wi)+ pi . P(i,C) is the pointwise maximum of the two functions. The solid
step function is stored as the sequence of solid points. The representation of the dashed step
function is obtained by adding(wi , pi) to every solid point. The representation ofC 7→ P(i,C)
is obtained by merging the two representations and deletingall dominated elements

We shall next describe an important improvement with respect to space con-
sumption and speed. Instead of computingP(i,C) for all i and allC, theNemhauser–
Ullmann algorithm[146, 17] computes onlyPareto-optimalsolutions. A solutionx
is Pareto-optimal if there is no solution thatdominatesit, i.e., has a greater profit
and no greater cost or the same profit and less cost. In other words, sinceP(i,C) is
an increasing function ofC, only the pairs(C,P(i,C)) with P(i,C) > P(i,C−1) are
needed for an optimal solution. We store these pairs in a listLi sorted byC value. So
L0 = 〈(0,0)〉, indicating thatP(0,C) = 0 for all C ≥ 0, andL1 = 〈(0,0),(w1, p1)〉,
indicating thatP(1,C) = 0 for 0≤C < w1 andP(i,C) = p1 for C≥ w1.

How can we go fromLi−1 to Li? The recurrence forP(i,C) paves the way; see
Fig. 12.4. We have the list representationLi−1 for the functionC 7→ P(i −1,C). We
obtain the representationL′

i−1 for C 7→ P(i −1,C−wi)+ pi by shifting every point
in Li−1 by (wi , pi). We mergeLi−1 andL′

i−1 into a single list by order of first compo-
nent and delete all elements that are dominated by another value, i.e., we delete all
elements that are preceded by an element with a higher secondcomponent, and, for
each fixed value ofC, we keep only the element with the largest second component.

Exercise 12.12.Give pseudocode for the above merge. Show that the merge can be
carried out in time|Li−1|. Conclude that the running time of the algorithm is propor-
tional to the number of Pareto-optimal solutions.

FR
E

E
C

O
P

Y
12.3 Dynamic Programming – Building It Piece by Piece 245

The basic dynamic-programmingalgorithm for the knapsack problem and also its
optimization requireΘ(nM) worst-case time. This is quite good ifM is not too large.
Since the running time is polynomial inn andM, the algorithm is calledpseudo-
polynomial. The “pseudo” means that it is not necessarily polynomial inthe input
sizemeasured in bits; however, it is polynomial in the natural parametersn andM.
There is, however, an important difference between the basic and the refined ap-
proach. The basic approach has best-case running timeΘ(nM). The best case for the
refined approach isO(n). Theaverage-casecomplexity of the refined algorithm is
polynomial inn, independent ofM. This holds even if the averaging is done only
over perturbations of an arbitrary instance by a small amount of random noise. We
refer the reader to [17] for details.

Exercise 12.13 (dynamic programming by profit).DefineW(i,P) to be the small-
est weight needed to achieve a profit of at leastP using knapsack items 1..i.

(a) Show thatW(i,P) = min{W(i −1,P),W(i −1,P− pi)+wi}.
(b) Develop a table-based dynamic-programming algorithm using the above recur-

rence that computes optimal solutions to the knapsack problem in time O(np∗),
wherep∗ is the profit of the optimal solution. Hint: assume first thatp∗, or at
least a good upper bound for it, is known. Then remove this assumption.

Exercise 12.14 (making change).Suppose you have to program a vending machine
that should give exact change using a minimum number of coins.

(a) Develop an optimal greedy algorithm that works in the euro zone with coins
worth 1, 2, 5, 10, 20, 50, 100, and 200 cents and in the dollar zone with coins
worth 1, 5, 10, 25, 50, and 100 cents.

(b) Show that this algorithm would not be optimal if there were also a 4 cent coin.
(c) Develop a dynamic-programming algorithm that gives optimal change for any

currency system.

Exercise 12.15 (chained matrix products).We want to compute the matrix product
M1M2 · · ·Mn, whereMi is aki−1×ki matrix. Assume that a pairwise matrix product
is computed in the straightforward way usingmkselement multiplications to ob-
tain the product of anm× k matrix with a k× s matrix. Exploit the associativity
of matrix products to minimize the number of element multiplications needed. Use
dynamic programming to find an optimal evaluation order in time O

(

n3
)

. For ex-
ample, the product of a 4×5 matrixM1, a 5×2 matrixM2, and a 2×8 matrixM3

can be computed in two ways. ComputingM1(M2M3) takes 5·2 ·8+ 4 ·5 ·8= 240
multiplications, whereas computing(M1M2)M3 takes only 4· 5 · 2+ 4 · 2 · 8 = 104
multiplications.

Exercise 12.16 (minimum edit distance).The minimum edit distance(or Leven-
shtein distance) L(s,t) between two stringss andt is the minimum number of char-
acter deletions, insertions, and replacements applied tos that produces the stringt.
For example,L(graph,group) = 3 (deleteh, replacea by o, insertu beforep).
Defined(i, j) = L(〈s1, . . . ,si〉,〈t1, . . . ,t j〉). Show that

FR
E

E
C

O
P

Y
246 12 Generic Approaches to Optimization

d(i, j) = min
{

d(i −1, j)+1,d(i, j −1)+1,d(i −1, j −1)+ [si 6= t j]
}

where[si 6= t j] is one ifsi andt j are different and is zero otherwise.

Exercise 12.17.Does the principle of optimality hold for minimum spanning trees?
Check the following three possibilities for definitions of subproblems: subsets of
nodes, arbitrary subsets of edges, and prefixes of the sortedsequence of edges.

Exercise 12.18 (constrained shortest path).Consider a directed graphG = (V,E)
where edgese∈ E have alengthℓ(e) and acost c(e). We want to find a path from
nodes to nodet that minimizes the total length subject to the constraint that the total
cost of the path is at mostC. Show that subpaths〈s′,t ′〉 of optimal solutions arenot
necessarily shortest paths froms′ to t ′.

12.4 Systematic Search – When in Doubt, Use Brute Force

In many optimization problems, the universeU of possible solutions is finite, so that
we can in principle solve the optimization problem by tryingall possibilities. Naive
application of this idea does not lead very far, however, butwe can frequently restrict
the search topromisingcandidates, and then the concept carries a lot further.

We shall explain the concept of systematic search using the knapsack problem
and a specific approach to systematic search known asbranch-and-bound. In Exer-
cises 12.20 and 12.21, we outline systematic-search routines following a somewhat
different pattern.

Figure 12.5 gives pseudocode for a systematic-search routine bbKnapsackfor
the knapsack problem and Figure 12.6 shows a sample run.Branchingis the most
fundamental ingredient of systematic-search routines. All sensible values for some
piece of the solution are tried. For each of these values, theresulting problem is
solved recursively. Within the recursive call, the chosen value is fixed. The routine
bbKnapsackfirst tries including an item by settingxi :=1, and then excluding it by
settingxi :=0. The variables are fixed one after another in order of decreasing profit
density. The assignmentxi :=1 is not tried if this would exceed the remaining knap-
sack capacityM′. With these definitions, after all variables have been set, in then-th
level of recursion,bbKnapsackwill have found a feasible solution. Indeed, without
the bounding rule below, the algorithm would systematically exploreall possible so-
lutions and thefirst feasible solution encountered would be the solution found by
the algorithmgreedy. The (partial) solutions explored by the algorithm form a tree.
Branching happens at internal nodes of this tree.

Boundingis a method for pruning subtrees that cannot contain optimalsolutions.
A branch-and-bound algorithm keeps the best feasible solution found in a global
variablex̂; this solution is often called theincumbentsolution. It is initialized to a
solution determined by a heuristic routine and, at all times, provides a lower bound
p · x̂ on the value of the objective function that can be obtained. This lower bound is
complemented by an upper boundu for the value of the objective function obtainable
by extending the current partial solutionx to a full feasible solution. In our example,

FR
E

E
C

O
P

Y
12.4 Systematic Search – When in Doubt, Use Brute Force 247

Function bbKnapsack((p1, . . . , pn),(w1, . . . ,wn),M) : L

assertp1/w1 ≥ p2/w2 ≥ ·· · ≥ pn/wn // assume input sorted by profit density
x̂ = heuristicKnapsack((p1, . . . , pn),(w1, . . . ,wn),M) : L // best solution so far
x : L // current partial solution
recurse(1,M,0)
return x̂

// Find solutions assumingx1, . . . ,xi−1 are fixed,M′ = M−∑
k<i

xiwi , P = ∑
k<i

xi pi .

Procedurerecurse(i,M′,P : N)
u:=P+upperBound((pi , . . . , pn),(wi , . . . ,wn),M′)
if u > p· x̂ then // not bounded

if i > n then x̂:=x
else // branch on variablexi

if wi ≤ M′ then xi :=1; recurse(i +1,M′ −wi ,P+ pi)
if u > p· x̂ then xi :=0; recurse(i +1,M′,P)

Fig. 12.5.A branch-and-bound algorithm for the knapsack problem. An initial feasible so-
lution is constructed by the functionheuristicKnapsackusing some heuristic algorithm. The
functionupperBoundcomputes an upper bound for the possible profit

110? 35

1100 30

 no capacity leftC
boundedB

10??

100?

1010 25

30

35

101? 35

37

01??

011?

0110

0???

35

35

35

35

11?? 37

improved solution

37

B C

B

B

C

C

C

????

1???

Fig. 12.6. The search space explored byknapsackBBfor a knapsack instance withp =
(10,20,15,20), w = (1,3,2,4), andM = 5, and an empty initial solution ˆx = (0,0,0,0). The
functionupperBoundis computed by rounding down the optimal value of the objective func-
tion for the fractional knapsack problem. The nodes of the search tree containx1 · · ·xi−1 and
the upper boundu. Left children are explored first and correspond to settingxi := 1. There
are two reasons for not exploring a child: either there is notenough capacity left to include
an element (indicated by C), or a feasible solution with a profit equal to the upper bound is
already known (indicated by B)

the upper bound could be the profit for the fractional knapsack problem with items
i..n and capacityM′ = M−∑ j<i xiwi .

Branch-and-bound stops expanding the current branch of thesearch tree when
u≤ p · x̂, i.e., when there is no hope of an improved solution in the current subtree
of the search space. We testu > p · x̂ again before exploring the casexi = 0 because
x̂ might change when the casexi = 1 is explored.

FR
E

E
C

O
P

Y
248 12 Generic Approaches to Optimization

Exercise 12.19.Explain how to implement the functionupperBoundin Fig. 12.5 so
that it runs in time O(logn). Hint: precompute the prefix sums∑k≤i wi and∑k≤i pi

and use binary search.

Exercise 12.20 (the 15-puzzle).The 15-puzzle is a popular sliding-block puzzle.
You have to move 15 square tiles in a 4×4 frame into the right order. Define a move
as the action of interchanging a square and the hole in the array of tiles.

Design an algorithm that finds a shortest-move sequence

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3

6 7

8 10 11

12 13 14 15

4

5 9

1 2 3

from a given starting configuration to the ordered configu-
ration shown at the bottom of the figure on the left. Useit-
erative deepening depth-first search[114]: try all one-move
sequences first, then all two-move sequences, and so on. This
should work for the simpler 8-puzzle. For the 15-puzzle, use
the following optimizations. Never undo the immediately
preceding move. Use the number of moves that would be
needed if all pieces could be moved freely as a lower bound
and stop exploring a subtree if this bound proves that the cur-
rent search depth is too small. Decide beforehand whether
the number of moves is odd or even. Implement your algo-
rithm to run in constant time per move tried.

Exercise 12.21 (constraint programming and the eight-queens problem). Con-
sider a chessboard. The task is to place eight queens on the board so that they do
not attack each other, i.e., no two queens should be placed inthe same row, column,
diagonal, or antidiagonal. So each row contains exactly onequeen. Letxi be the po-
sition of the queen in rowi. Thenxi ∈ 1..8. The solution must satisfy the following
constraints:xi 6= x j , i + xi 6= j + x j , andxi − i 6= x j − j for 1 ≤ i < j ≤ 8. What do
these conditions express? Show that they are sufficient. A systematic search can use
the following optimization. When a variablexi is fixed at some value, this excludes
some values for variables that are still free. Modify the systematic search so that it
keeps track of the values that are still available for free variables. Stop exploration
as soon as there is a free variable that has no value availableto it anymore. This
technique of eliminating values is basic toconstraint programming.

12.4.1 Solving Integer Linear Programs

In Sect. 12.1.1, we have seen how to formulate the knapsack problem as a 0 –1 in-
teger linear program. We shall now indicate how the branch-and-bound procedure
developed for the knapsack problem can be applied to any 0 –1 integer linear pro-
gram. Recall that in a 0 –1 integer linear program the values of the variables are
constrained to 0 and 1. Our discussion will be brief, and we refer the reader to a
textbook on integer linear programming [147, 172] for more information.

The main change is that the functionupperBoundnow solves a general linear
program that has variablesxi ,. . . ,xn with range[0,1]. The constraints for this LP

FR
E

E
C

O
P

Y
12.5 Local Search – Think Globally, Act Locally 249

come from the input ILP, with the variablesx1 to xi−1 replaced by their values. In the
remainder of this section, we shall simply refer to this linear program as “the LP”.

If the LP has a feasible solution,upperBoundreturns the optimal value for the
LP. If the LP has no feasible solution,upperBoundreturns−∞ so that the ILP solver
will stop exploring this branch of the search space. We shalldescribe next several
generalizations of the basic branch-and-boundprocedure that sometimes lead to con-
siderable improvements.

Branch Selection: We may pick any unfixed variablex j for branching. In particular,
we can make the choice depend on the solution of the LP. A commonly used rule is
to branch on a variable whose fractional value in the LP is closest to 1/2.

Order of Search Tree Traversal: In the knapsack example, the search tree was
traversed depth-first, and the 1-branch was tried first. In general, we are free to
choose any order of tree traversal. There are at least two considerations influenc-
ing the choice of strategy. If no good feasible solution is known, it is good to use a
depth-first strategy so that complete solutions are explored quickly. Otherwise, it is
better to use abest-firststrategy that explores those search tree nodes that are most
likely to contain good solutions. Search tree nodes are keptin a priority queue, and
the next node to be explored is the most promising node in the queue. The priority
could be the upper bound returned by the LP. However, since the LP is expensive to
evaluate, one sometimes settles for an approximation.

Finding Solutions: We may be lucky in that the solution of the LP turns out to assign
integer values to all variables. In this case there is no needfor further branching.
Application-specific heuristics can additionally help to find good solutions quickly.

Branch-and-Cut: When an ILP solver branches too often, the size of the search
tree explodes and it becomes too expensive to find an optimal solution. One way to
avoid branching is to add constraints to the linear program thatcut away solutions
with fractional values for the variables without changing the solutions with integer
values.

12.5 Local Search – Think Globally, Act Locally

The optimization algorithms we have seen so far are applicable only in special cir-
cumstances. Dynamic programming needs a special structureof the problem and
may require a lot of space and time. Systematic search is usually too slow for large
inputs. Greedy algorithms are fast but often yield only low-quality solutions.Local
searchis a widely applicable iterative procedure. It starts with some feasible solution
and then moves from feasible solution to feasible solution by local modifications.
Figure 12.7 gives the basic framework. We shall refine it later.

Local search maintains a current feasible solutionx and the best solution ˆx seen
so far. In each step, local search moves from the current solution to a neighboring
solution. What are neighboring solutions? Any solution that can be obtained from
the current solution by making small changes to it. For example, in the case of the

FR
E

E
C

O
P

Y
250 12 Generic Approaches to Optimization

knapsack problem, we might remove up to two items from the knapsack and replace
them by up to two other items. The precise definition of the neighborhooddepends on
the application and the algorithm designer. We useN (x) to denote theneighborhood
of x. The second important design decision is which solution from the neighborhood
is chosen. Finally, some heuristic decides when to stop.

In the rest of this section, we shall tell you more about localsearch.

12.5.1 Hill Climbing

Hill climbing is the greedy version of local search. It moves only to neighbors that
are better than the currently best solution. This restriction further simplifies the local
search. The variables ˆx andx are the same, and we stop when there are no improved
solutions in the neighborhoodN . The only nontrivial aspect of hill climbing is the
choice of the neighborhood. We shall give two examples wherehill climbing works
quite well, followed by an example where it fails badly.

Our first example is the traveling salesman problem described in Sect. 11.6.2.
Given an undirected graph and a distance function on the edges satisfying the triangle
inequality, the goal is to find a shortest tour that visits allnodes of the graph. We
define the neighbors of a tour as follows. Let(u,v) and(w,y) be two edges of the
tour, i.e., the tour has the form(u,v), p,(w,y),q, wherep is a path fromv to w andq
is a path fromy to u. We remove these two edges from the tour, and replace them by
the edges(u,w) and(v,y). The new tour first traverses(u,w), then uses the reversal
of p back tov, then uses(v,y), and finally traversesq back tou. This move is known
as a 2-exchange, and a tour that cannot be improved by a 2-exchange is said to be 2-
optimal. In many instances of the traveling salesman problem, 2-optimal tours come
quite close to optimal tours.

Exercise 12.22.Describe a scheme where three edges are removed and replacedby
new edges.

An interesting example of hill climbing with a clever choiceof the neighborhood
function is thesimplex algorithmfor linear programming (see Sect. 12.1). This is
the most widely used algorithm for linear programming. The set of feasible solu-
tionsL of a linear program is defined by a set of linear equalities andinequalities
ai ·x ⊲⊳ bi, 1≤ i ≤ m. The points satisfying a linear equalityai ·x = bi form ahyper-
planein Rn, and the points satisfying a linear inequalityai ·x≤ bi or ai ·x≥ bi form a

find some feasible solutionx∈ L

x̂ :=x // x̂ is best solution found so far
while not satisfied with ˆx do

x:=some heuristically chosen element fromN (x)∩L

if f (x) > f (x̂) then x̂ :=x

Fig. 12.7.Local search

FR
E

E
C

O
P

Y
12.5 Local Search – Think Globally, Act Locally 251

half-space. Hyperplanes are then-dimensional analogues of planes and half-spaces
are the analogues of half-planes. The set of feasible solutions is an intersection of
m half-spaces and hyperplanes and forms aconvex polytope. We have already seen
an example in two-dimensional space in Fig. 12.2. Figure 12.8 shows an example
in three-dimensional space. Convex polytopes are then-dimensional analogues of
convex polygons. In the interior of the polytope, all inequalities are strict (= satisfied
with inequality); on the boundary some inequalities are tight (= satisfied with equal-
ity). The vertices and edges of the polytope are particularly important parts of the
boundary. We shall now sketch how the simplex algorithm works. We assume that
there are no equality constraints. Observe that an equalityconstraintc can be solved
for any one of its variables; this variable can then be removed by substituting into the
other equalities and inequalities. Afterwards, the constraint c is redundant and can
be dropped.

The simplex algorithm starts at an arbitrary vertex of the feasible region. In each
step, it moves to a neighboring vertex, i.e., a vertex reachable via an edge, with a
larger objective value. If there is more than one such neighbor, a common strategy is
to move to the neighbor with the largest objective value. If there is no neighbor with
a larger objective value, the algorithm stops.At this point, the algorithm has found
the vertex with the maximal objective value.In the examples in Figs. 12.2 and 12.8,
the captions argue why this is true. The general argument is as follows. Letx∗ be
the vertex at which the simplex algorithm stops. The feasible region is contained in
a cone with apexx∗ and spanned by the edges incident onx∗. All these edges go
to vertices with smaller objective values and hence the entire cone is contained in
the half-space{x : c ·x≤ c ·x∗}. Thus no feasible point can have an objective value

(0,0,0) (1,0,0)

(1,0,1)

(1,1,1)

Fig. 12.8. The three-dimensional unit cube is defined by the inequalitiesx≥ 0, x≤ 1, y≥ 0,
y≤ 1, z≥ 0, andz≤ 1. At the vertices(1,1,1) and(1,0,1), three inequalities are tight, and on
the edge connecting these vertices, the inequalitiesx≤ 1 andz≤ 1 are tight. For the objective
“maximize x+ y+ z”, the simplex algorithm starting at(0,0,0) may move along the path
indicated by arrows. The vertex(1,1,1) is optimal, since the half-spacex+y+z≤ 3 contains
the entire feasible region and has(1,1,1) in its boundary

FR
E

E
C

O
P

Y
252 12 Generic Approaches to Optimization

larger thanx∗. We have described the simplex algorithm as a walk on the boundary
of a convex polytope, i.e., in geometric language. It can be described equivalently
using the language of linear algebra. Actual implementations use the linear-algebra
description.

In the case of linear programming, hill climbing leads to an optimal solution. In
general, however, hill climbing will not find an optimal solution. In fact, it will not
even find a near-optimal solution. Consider the following example. Our task is to
find the highest point on earth, i.e., Mount Everest. A feasible solution is any point
on earth. The local neighborhood of a point is any point within a distance of 10 km.
So the algorithm would start at some point on earth, then go tothe highest point
within a distance of 10 km, then go again to the highest point within a distance of 10
km, and so on. If one were to start from the first author’s home (altitude 206 meters),
the first step would lead to an altitude of 350 m, and there the algorithm would stop,
because there is no higher hill within 10 km of that point. There are very few places
in the world where the algorithm would continue for long, andeven fewer places
where it would find Mount Everest.

Why does hill climbing work so nicely for linear programming, but fail to find
Mount Everest? The reason is that the earth has many local optima, hills that are the
highest point within a range of 10 km. In contrast, a linear program has only one local
optimum (which then, of course, is also a global optimum). For a problem with many
local optima, we should expectanygeneric method to have difficulties. Observe that
increasing the size of the neighborhoods in the search for Mount Everest does not
really solve the problem, except if the neighborhoods are made to cover the entire
earth. But finding the optimum in a neighborhood is then as hard as the full problem.

12.5.2 Simulated Annealing – Learning from Nature

If we want to ban the bane of local optima in local search, we must find a way to es-
cape from them. This means that we sometimes have to accept moves that decrease
the objective value. What could “sometimes” mean in this context? We have contra-
dictory goals. On the one hand, we must be willing to make manydownhill steps
so that we can escape from wide local optima. On the other hand, we must be suffi-
ciently target-oriented so that we find a global optimum at the end of a long narrow
ridge. A very popular and successful approach for reconciling these contradictory
goals issimulated annealing; see Fig. 12.9. This works in phases that are controlled
by a parameterT, called thetemperatureof the process. We shall explain below why
the language of physics is used in the description of simulated annealing. In each
phase, a number of moves are made. In each move, a neighborx′ ∈ N (x)∩L is
chosen uniformly at random, and the move fromx to x′ is made with a certain prob-
ability. This probability is one ifx′ improves uponx. It is less than one if the move
is to an inferior solution. The trick is to make the probability depend onT. If T is
large, we make the move to an inferior solution relatively likely; if T is close to zero,
we make such a move relatively unlikely. The hope is that, in this way, the process
zeros in on a region containing a good local optimum in phasesof high tempera-
ture and then actually finds a near-optimal solution in the phases of low temperature.

FR
E

E
C

O
P

Y
12.5 Local Search – Think Globally, Act Locally 253

find some feasible solutionx∈ L

T:=some positive value // initial temperature of the system
while T is still sufficiently largedo

perform a number of steps of the following form
pick x′ from N (x)∩L uniformly at random

with probability min(1,exp(f (x′)− f (x)
T) do x := x′

decreaseT // make moves to inferior solutions less likely

Fig. 12.9.Simulated annealing

liquid
shock cool anneal

glass crystal

Fig. 12.10.Annealing versus shock cooling

The exact choice of the transition probability in the case wherex′ is an inferior so-
lution is given by exp((f (x′)− f (x))/T). Observe thatT is in the denominator and
that f (x′)− f (x) is negative. So the probability decreases withT and also with the
absolute loss in objective value.

Why is the language of physics used, and why this apparently strange choice of
transition probabilities? Simulated annealing is inspired by the physical process of
annealing, which can be used to minimize6 the global energy of a physical system.
For example, consider a pot of molten silica (SiO2); see Fig. 12.10. If we cool it very
quickly, we obtain a glass – an amorphous substance in which every molecule is in
a local minimum of energy. This process of shock cooling has acertain similarity to
hill climbing. Every molecule simply drops into a state of locally minimal energy;
in hill climbing, we accept a local modification of the state if it leads to a smaller
value of the objective function. However, a glass is not a state of global minimum
energy. A state of much lower energy is reached by a quartz crystal, in which all
molecules are arranged in a regular way. This state can be reached (or approximated)
by cooling the melt very slowly. This process is calledannealing. How can it be
that molecules arrange themselves into a perfect shape overa distance of billions
of molecular diameters although they feel only local forcesextending over a few
molecular diameters?

Qualitatively, the explanation is that local energy minimahave enough time to
dissolve in favor of globally more efficient structures. Forexample, assume that a
cluster of a dozen molecules approaches a small perfect crystal that already consists
of thousands of molecules. Then, with enough time, the cluster will dissolve and

6 Note that we are talking aboutminimizationnow.

FR
E

E
C

O
P

Y
254 12 Generic Approaches to Optimization

its molecules can attach to the crystal. Here is a more formaldescription of this
process, which can be shown to hold for a reasonable model of the system: if cooling
is sufficiently slow, the system reachesthermal equilibriumat every temperature.
Equilibrium at temperatureT means that a statex of the system with energyEx is
assumed with probability

exp(−Ex/T)

∑y∈L exp(−Ey/T)

whereT is the temperature of the system andL is the set of states of the system.
This energy distribution is called theBoltzmann distribution. WhenT decreases, the
probability of states with a minimal energy grows. Actually, in the limit T → 0, the
probability of states with a minimal energy approaches one.

The same mathematics works for abstract systems corresponding to a maximiza-
tion problem. We identify the cost functionf with the energy of the system, and a
feasible solution with the state of the system. It can be shown that the system ap-
proaches a Boltzmann distribution for a quite general classof neighborhoods and the
following rules for choosing the next state:

pick x′ from N (x)∩L uniformly at random
with probability min(1,exp((f (x′)− f (x))/T)) do x := x′ .

The physical analogy gives some idea of why simulated annealing might work,7

but it does not provide an implementable algorithm. We have to get rid of two in-
finities: for every temperature, we wait infinitely long to reach equilibrium, and do
that for infinitely many temperatures. Simulated-annealing algorithms therefore have
to decide on acooling schedule, i.e., how the temperatureT should be varied over
time. A simple schedule chooses a starting temperatureT0 that is supposed to be just
large enough so that all neighbors are accepted. Furthermore, for a given problem
instance, there is a fixed numberN of iterations to be used at each temperature. The
idea is thatN should be as small as possible but still allow the system to get close
to equilibrium. After everyN iterations,T is decreased by multiplying it by a con-
stantα less than one. Typically,α is between 0.8 and 0.99. WhenT has become so
small that moves to inferior solutions have become highly unlikely (this is the case
whenT is comparable to the smallest difference in objective valuebetween any two
feasible solutions),T is finally set to 0, i.e., the annealing process concludes with a
hill-climbing search.

Better performance can be obtained withdynamic schedules. For example, the
initial temperature can be determined by starting with a lowtemperature and in-
creasing it quickly until the fraction of transitions accepted approaches one. Dy-
namic schedules base their decision about how muchT should be lowered on the
actually observed variation inf (x) during the local search. If the temperature change
is tiny compared with the variation, it has too little effect. If the change is too close
to or even larger than the variation observed, there is a danger that the system will
be prematurely forced into a local optimum. The number of steps to be made until
the temperature is lowered can be made dependent on the actual number of moves

7 Note that we have written “might work” and not “works”.

FR
E

E
C

O
P

Y
12.5 Local Search – Think Globally, Act Locally 255

5

6

8

4

7

3

9

6

8

1 9 5

7

6

3

2

8

4 1

6

3

1

6

82

5

7

1

1

1 11

1

2

22

2

3 3 44

v

H

K

Fig. 12.11. The figure on theleft shows a partial coloring of the graph underlying sudoku
puzzles. Thebold straight-line segments indicate cliques consisting of allnodes touched by
the line. The figure on theright shows a step of Kempe chain annealing using colors 1 and 2
and a nodev

accepted. Furthermore, one can use a simplified statisticalmodel of the process to
estimate when the system is approaching equilibrium. The details of dynamic sched-
ules are beyond the scope of this exposition. Readers are referred to [1] for more
details on simulated annealing.

Exercise 12.23.Design a simulated-annealing algorithm for the knapsack problem.
The local neighborhood of a feasible solution is all solutions that can be obtained by
removing up to two elements and then adding up to two elements.

Graph Coloring

We shall now exemplify simulated annealing on thegraph-coloring problemalready
mentioned in Sect. 2.10. Recall that we are given an undirected graphG = (V,E)
and are looking for an assignmentc : V → 1..k such that no two adjacent nodes are
given the same color, i.e.,c(u) 6= c(v) for all edges{u,v} ∈ E. There is always a
solution withk = |V| colors; we simply give each node its own color. The goal is
to minimizek. There are many applications of graph coloring and related problems.
The most “classical” one is map coloring – the nodes are countries and edges indicate
that these countries have a common border, and thus these countries should not be
rendered in the same color. A famous theorem of graph theory states that all maps
(i.e. planar graphs) can be colored with at most four colors [162]. Sudoku puzzles
are a well-known instance of the graph-coloring problem, where the player is asked
to complete a partial coloring of the graph shown in Fig. 12.11 with the digits 1..9.
We shall present two simulated-annealing approaches to graph coloring; many more
have been tried.

Kempe Chain Annealing

Of course, the obvious objective function for graph coloring is the number of colors
used. However, this choice of objective function is too simplistic in a local-search

FR
E

E
C

O
P

Y
256 12 Generic Approaches to Optimization

framework, since a typical local move will not change the number of colors used.
We need an objective function that rewards local changes that are “on a good way”
towards using fewer colors. One such function is the sum of the squared sizes of
the color classes. Formally, letCi = {v∈V : c(v) = i} be the set of nodes that are
coloredi. Then

f (c) = ∑
i

|Ci |
2 .

This objective function is to be maximized. Observe that theobjective function in-
creases when a large color class is enlarged further at the cost of a small color class.
Thus local improvements will eventually empty some color classes, i.e., the number
of colors decreases.

Having settled the objective function, we come to the definition of a local change
or a neighborhood. A trivial definition is as follows: a localchange consists in re-
coloring a single vertex; it can be given any color not used onone of its neighbors.
Kempe chain annealing uses a more liberal definition of “local recoloring”. Alfred
Bray Kempe (1849–1922) was one of the early investigators ofthe four-color prob-
lem; he invented Kempe chains in his futile attempts at a proof. Suppose that we
want to change the colorc(v) of nodev from i to j. In order to maintain feasibil-
ity, we have to change some other node colors too: nodev might be connected to
nodes currently coloredj. So we color these nodes with colori. These nodes might,
in turn, be connected to other nodes of colorj, and so on. More formally, consider
the node-induced subgraphH of G which contains all nodes with colorsi and j. The
connected component ofH that containsv is theKempe chain Kwe are interested
in. We maintain feasibility by swapping colorsi and j in K. Figure 12.11 gives an
example. Kempe chain annealing starts with any feasible coloring.

*Exercise 12.24.Use Kempe chains to prove that any planar graphG can be colored
with five colors. Hint: use the fact that a planar graph is guaranteed to have a node
of degree five or less. Letv be any such node. Remove it fromG, and colorG− v
recursively. Putv back in. If at most four different colors are used on the neighbors of
v, there is a free color forv. So assume otherwise. Assume, without loss of generality,
that the neighbors ofv are colored with colors 1 to 5 in clockwise order. Consider
the subgraph of nodes colored 1 and 3. If the neighbors ofv with colors 1 and 3 are
in distinct connected components of this subgraph, a Kempe chain can be used to
recolor the node colored 1 with color 3. If they are in the samecomponent, consider
the subgraph of nodes colored 2 and 4. Argue that the neighbors of v with colors 2
and 4 must be in distinct components of this subgraph.

The Penalty Function Approach

A generally useful idea for local search is to relax some of the constraints on feasible
solutions in order to make the search more flexible and to easethe discovery of a
starting solution. Observe that we have assumed so far that we somehow have a
feasible solution available to us. However, in some situations, finding any feasible
solution is already a hard problem; the eight-queens problem of Exercise 12.21 is an
example. In order to obtain a feasible solution at the end of the process, the objective

FR
E

E
C

O
P

Y
12.5 Local Search – Think Globally, Act Locally 257

function is modified to penalize infeasible solutions. The constraints are effectively
moved into the objective function.

In the graph-coloring example, we now also allow illegal colorings, i.e., colorings
in which neighboring nodes may have the same color. An initial solution is generated
by guessing the number of colors needed and coloring the nodes randomly. A neigh-
bor of the current coloringc is generated by picking a random colorj and a random
nodev colored j, i.e.,x(v) = j. Then, a random new color for nodev is chosen from
all the colors already in use plus one fresh, previously unused color.

As above, letCi be the set of nodes coloredi and letEi = E∩Ci ×Ci be the set
of edges connecting two nodes inCi . The objective is to minimize

f (c) = 2∑
i
|Ci | · |Ei|−∑

i
|Ci |

2 .

The first term penalizes illegal edges; each illegal edge connecting two nodes of
color i contributes the size of thei-th color class. The second term favors large color
classes, as we have already seen above. The objective function does not necessarily
have its global minimum at an optimal coloring, however, local minima are legal
colorings. Hence, the penalty version of simulated annealing is guaranteed to find a
legal coloring even if it starts with an illegal coloring.

Exercise 12.25.Show that the objective function above has its local minima at legal
colorings. Hint: consider the change inf (c) if one end of a legally colored edge is
recolored with a fresh color. Prove that the objective function above does not neces-
sarily have its global optimum at a solution using the minimal number of colors.

Experimental Results

Johnson et al. [101] performed a detailed study of algorithms for graph coloring,
with particular emphasis on simulated annealing. We shall briefly report on their
findings and then draw some conclusions. Most of their experiments were performed
on random graphs in theGn,p-model or on random geometric graphs.

In theGn,p-model, wherep is a parameter in[0,1], an undirected random graph
with n nodes is built by adding each of then(n− 1)/2 candidate edges with prob-
ability p. The random choices for distinct edges are independent. In this way, the
expected degree of every node isp(n− 1) and the expected number of edges is
pn(n−1)/2. For random graphs with 1 000 nodes and edge probability 0.5, Kempe
chain annealing produced very good colorings, given enoughtime. However, a so-
phisticated and expensive greedy algorithm, XRLF, produced even better solutions
in less time. For very dense random graphs withp = 0.9, Kempe chain annealing
performed better than XRLF. For sparser random graphs with edge probability 0.1,
penalty function annealing outperformed Kempe chain annealing and could some-
times compete with XRLF.

Another interesting class of random inputs israndom geometric graphs. Here,
we choosen random, uniformly distributed points in the unit square[0,1]× [0,1].
These points represent the nodes of the graph. We connect twopoints by an edge
if their Euclidean distance is less than or equal to some given ranger. Figure 12.12

FR
E

E
C

O
P

Y
258 12 Generic Approaches to Optimization

0
0 1

1
r

Fig. 12.12.Left: a random graph with 10
nodes andp = 0.5. The edges chosen are
drawn solid, and the edges rejected are
drawn dashed.Right: a random geometric
graph with 10 nodes and ranger = 0.27

gives an example. Such instances are frequently used to model situations where the
nodes represent radio transmitters and colors represent frequency bands. Nodes that
lie within a distancer from one another must not use the same frequency, to avoid
interference. For this model, Kempe chain annealing performed well, but was out-
performed by a third annealing strategy, calledfixed-K annealing.

What should we learn from this? The relative performance of the simulated-
annealing approaches depends strongly on the class of inputs and the available com-
puting time. Moreover, it is impossible to make predictionsabout their performance
on any given instance class on the basis of experience from other instance classes.
So be warned. Simulated annealing is a heuristic and, as for any other heuristic, you
should not make claims about its performance on an instance class before you have
tested it extensively on that class.

12.5.3 More on Local Search

We close our treatment of local search with a discussion of three refinements that can
be used to modify or replace the approaches presented so far.

Threshold Acceptance

There seems to be nothing magic about the particular form of the acceptance rule
used in simulated annealing. For example, a simpler yet alsosuccessful rule uses the
parameterT as a threshold. New states with a valuef (x) below the threshold are
accepted, whereas others are not.

Tabu Lists

Local-search algorithms sometimes return to the same suboptimal solution again and
again – they cycle. For example, simulated annealing might have reached the top of
a steep hill. Randomization will steer the search away from the optimum, but the
state may remain on the hill for a long time.Tabu searchsteers the search away from
local optima by keeping atabu listof “solution elements” that should be “avoided” in
new solutions for the time being. For example, in graph coloring, a search step could
change the color of a nodev from i to j and then store the tuple(v, i) in the tabu list to
indicate that colori is forbidden forv as long as(v, i) is in the tabu list. Usually, this
tabu condition is not applied if an improved solution is obtained by coloring nodev

FR
E

E
C

O
P

Y
12.6 Evolutionary Algorithms 259

with color i. Tabu lists are so successful that they can be used as the coretechnique
of an independent variant of local search calledtabu search.

Restarts

The typical behavior of a well-tuned local-search algorithm is that it moves to an
area with good feasible solutions and then explores this area, trying to find better
and better local optima. However, it might be that there are other, far away areas
with much better solutions. The search for Mount Everest illustrates this point. If
we start in Australia, the best we can hope for is to end up at Mount Kosciusko
(altitude 2229 m), a solution far from optimum. It thereforemakes sense to run the
algorithm multiple times with different random starting solutions because it is likely
that different starting points will explore different areas of good solutions. Starting
the search for Mount Everest at multiple locations and in allcontinents will certainly
lead to a better solution than just starting in Australia. Even if these restarts do not
improve the average performance of the algorithm, they may make it more robust in
the sense that it will be less likely to produce grossly suboptimal solutions. Several
independent runs are also an easy source of parallelism: just run the program on
several different workstations concurrently.

12.6 Evolutionary Algorithms

Living beings are ingeniously adaptive to their environment, and master the problems
encountered in daily life with great ease. Can we somehow usethe principles of life
for developing good algorithms? The theory of evolution tells us that the mechanisms
leading to this performance aremutation, recombination, andsurvival of the fittest.
What could an evolutionary approach mean for optimization problems?

The genome describing an individual corresponds to the description of a feasible
solution. We can also interpret infeasible solutions as dead or ill individuals. In na-
ture, it is important that there is a sufficiently largepopulationof genomes; otherwise,
recombination deteriorates to incest, and survival of the fittest cannot demonstrate its
benefits. So, instead of one solution as in local search, we now work with a pool of
feasible solutions.

The individuals in a population produce offspring. Becauseresources are lim-
ited, individuals better adapted to the environment are more likely to survive and to
produce more offspring. In analogy, feasible solutions areevaluated using a fitness
function f , and fitter solutions are more likely to survive and to produce offspring.
Evolutionary algorithms usually work with a solution pool of limited size, sayN.
Survival of the fittest can then be implemented as keeping only theN best solutions.

Even in bacteria, which reproduce by cell division, no offspring is identical to
its parent. The reason ismutation. When a genome is copied, small errors happen.
Although mutations usually have an adverse effect on fitness, some also improve
fitness. Local changes in a solution are the analogy of mutations.

FR
E

E
C

O
P

Y
260 12 Generic Approaches to Optimization

Create an initial populationpopulation=
{

x1, . . . ,xN
}

while not finisheddo
if matingStepthen

select individualsx1, x2 with high fitness and producex′ :=mate(x1,x2)

elseselect an individualx1 with high fitness and producex′ = mutate(x1)

population:=population∪{x′}
population:={x∈ population: x is sufficiently fit}

Fig. 12.13.A generic evolutionary algorithm

An even more important ingredient in evolution isrecombination. Offspring con-
tain genetic information from both parents. The importanceof recombination is easy
to understand if one considers how rare useful mutations are. Therefore it takes much
longer to obtain an individual with two new useful mutationsthan it takes to combine
two individuals with two different useful mutations.

We now have all the ingredients needed for a generic evolutionary algorithm; see
Fig. 12.13. As with the other approaches presented in this chapter, many details need
to be filled in before one can obtain an algorithm for a specificproblem. The algo-
rithm starts by creating an initial population of sizeN. This process should involve
randomness, but it is also useful to use heuristics that produce good initial solutions.

In the loop, it is first decided whether an offspring should beproduced by mu-
tation or by recombination. This is a probabilistic decision. Then, one or two indi-
viduals are chosen for reproduction. To put selection pressure on the population, it is
important to base reproductive success on the fitness of the individuals. However, it is
usually not desirable to draw a hard line and use only the fittest individuals, because
this might lead to too uniform a population and incest. For example, one can instead
choose reproduction candidates randomly, giving a higher selection probability to
fitter individuals. An important design decision is how to fixthese probabilities. One
choice is to sort the individuals by fitness and then to define the reproduction proba-
bility as some decreasing function of rank. This indirect approach has the advantage
that it is independent of the objective functionf and the absolute fitness differences
between individuals, which are likely to decrease during the course of evolution.

The most critical operation ismate, which produces new offspring from two an-
cestors. The “canonical” mating operation is calledcrossover. Here, individuals are
assumed to be represented by a string ofn bits. An integerk is chosen. The new
individual takes its firstk bits from one parent and its lastn− k bits from the other
parent. Figure 12.14 shows this procedure. Alternatively,one may choosek random
positions from the first parent and the remaining bits from the other parent. For our
knapsack example, crossover is a quite natural choice. Eachbit decides whether the
corresponding item is in the knapsack or not. In other cases,crossover is less natural
or would require a very careful encoding. For example, for graph coloring, it would
seem more natural to cut the graph into two pieces such that only a few edges are cut.
Now one piece inherits its colors from the first parent, and the other piece inherits its
colors from the other parent. Some of the edges running between the pieces might

FR
E

E
C

O
P

Y
12.7 Implementation Notes 261

(3)

2 1 3

2

12

2

2 3

3

2

12
1

42

2 3

3

2

12
1

4

2

2

3

1 1

4

1

32
2

2

3

1 1

4

1

32

42 3

x1

x2

x′
k

Fig. 12.14.Mating using crossover (left) and by stitching together pieces of a graph coloring
(right)

now connect nodes with the same color. This could be repairedusing some heuris-
tics, for example choosing the smallest legal color for miscolored nodes in the part
corresponding to the first parent. Figure 12.14 gives an example.

Mutations are realized as in local search. In fact, local search is nothing but an
evolutionary algorithm with population size one.

The simplest way to limit the size of the population is to keepit fixed by remov-
ing the least fit individual in each iteration. Other approaches that provide room for
different “ecological niches” can also be used. For example, for the knapsack prob-
lem, one could keep all Pareto-optimal solutions. The evolutionary algorithm would
then resemble the optimized dynamic-programming algorithm.

12.7 Implementation Notes

We have seen several generic approaches to optimization that are applicable to a
wide variety of problems. When you face a new application, you are therefore likely
to have a choice from among more approaches than you can realistically implement.
In a commercial environment, you may even have to home in on a single approach
quickly. Here are some rules of thumb that may help.

• Study the problem, relate it to problems you are familiar with, and search for it
on the Web.

• Look for approaches that have worked on related problems.
• Consider blackbox solvers.
• If the problem instances are small, systematic search or dynamic programming

may allow you to find optimal solutions.
• If none of the above looks promising, implement a simple prototype solver using

a greedy approach or some other simple, fast heuristic; the prototype will help
you to understand the problem and might be useful as a component of a more
sophisticated algorithm.

FR
E

E
C

O
P

Y
262 12 Generic Approaches to Optimization

• Develop a local-search algorithm. Focus on a good representation of solutions
and how to incorporate application-specific knowledge intothe searcher. If you
have a promising idea for a mating operator, you can also consider evolutionary
algorithms. Use randomization and restarts to make the results more robust.

There are many implementations of linear-programming solvers. Since a good
implementation isverycomplicated, you should definitely use one of these packages
except in very special circumstances. The Wikipedia page on“linear programming”
is a good starting point. Some systems for linear programming also support integer
linear programming.

There are also many frameworks that simplify the implementation of local-search
or evolutionary algorithms. Since these algorithms are fairly simple, the use of these
frameworks is not as widespread as for linear programming. Nevertheless, the imple-
mentations available might have nontrivial built-in algorithms for dynamic setting of
search parameters, and they might support parallel processing. The Wikipedia page
on “evolutionary algorithm” contains pointers.

12.8 Historical Notes and Further Findings

We have only scratched the surface of (integer) linear programming. Implementing
solvers, clever modeling of problems, and handling huge input instances have led to
thousands of scientific papers. In the late 1940s, Dantzig invented the simplex algo-
rithm [45]. Although this algorithm works well in practice,some of its variants take
exponential time in the worst case. It is a famous open problem whether some vari-
ant runs in polynomial time in the worst case. It is known, though, that even slightly
perturbing the coefficients of the constraints leads to polynomial expected execu-
tion time [184]. Sometimes, even problem instances with an exponential number of
constraints or variables can be solved efficiently. The trick is to handle explicitly
only those constraints that may be violated and those variables that may be nonzero
in an optimal solution. This works if we can efficiently find violated constraints or
possibly nonzero variables and if the total number of constraints and variables gen-
erated remains small. Khachiyan [110] and Karmakar [106] found polynomial-time
algorithms for linear programming. There are many good textbooks on linear pro-
gramming (e.g. [23, 58, 73, 147, 172, 199]).

Another interesting blackbox solver isconstraint programming[90, 121]. We
hinted at the technique in Exercise 12.21. Here, we are againdealing with vari-
ables and constraints. However, now the variables come fromdiscrete sets (usu-
ally small finite sets). Constraints come in a much wider variety. There are equali-
ties and inequalities, possibly involving arithmetic expressions, but also higher-level
constraints. For example,allDifferent(x1, . . . ,xk) requires thatx1, . . . ,xk all receive
different values. Constraint programs are solved using a cleverly pruned systematic
search. Constraint programming is more flexible than linearprogramming, but re-
stricted to smaller problem instances. Wikipedia is a good starting point for learning
more about constraint programming.

