GenericAppraaches to Optimization

A smuggler in the
sells an item i acros he makes a profiHpwever, the smuggler’s trade
union only allows him with a maximum wedgM. If item i has
weight w, what items s he knapsack to maximizerttii fioom
his next trip?

sible investments. Backsi-
cost;. In this chapter, we

e seyematic approaches to
d canlapted to complicated

menti has an expected profft; for a
use the knapsack problem as an exi
optimization. These approaches are
situations that are ubiquitous in practi

frequently occurring simple problems such indi sopp@ths or minimum
spanning trees. Now we look at generic solution methodsthgk for a much larger
range of applications. Of course, the generic U

Formally, an optimization problem can be des
lutions, a set? of feasiblesolutions, and ambjective fun

lem, we look for a solution that minimizes the value of theaatiye.
problem f is arbitrary and the question is whether the set of feasibligtions is
nonempty.

For example, in the case of the knapsack problem wittems, a
lution is simply a vectox = (Xy,...,X)) with x; € {0,1}. Herex;
“elementi is put into the knapsack” and = 0 indicates that “elements left out”.
Thus# = {0,1}". The profits and weights are specified by veciors (py, ..., pn)
andw = (wy,...,Wy). A potential solutiorx is feasible if its weight does not exceed

234 12 Generic Approaches to Optimization
Instance Solutions:
optimal fractional
3

greedy

4 il fl
M= 5 5 5
Fig. 12.1.The : napsack instance with= (10,20,15,20), w = (1,3,2,4),
andM =5. i ed as rectangles whose width andt@igespond to weight
and profit, respective part shows three solutions: the one computed by the greedy
algorithm from Seg . imal solution computed lxy dynamic programming al-
gorithm from Sec ion of the linear rateon (Sect. 12.1.1). The optimal

the set of feasible soluti

The distinction betwe
tial because setting:= —f
problem and vice versa. We
our example problem is more

maximizationkpems is not essen-
ation problem into a minimization
aximization as ouwnttefemply because
urally vi a maxinongtroblemt

that can be applied to any problem th teckipithblem specification
language of the solver. In this cas f the iss&y formulate the
given problem in the language of theiblack-box solver. $ecti2.1 introduces this
approach usindinear programmingan programmin@s examples.

(is reviewed in Sect. 12.2
a more flexible way
ire set of potential
solversandILP
z no very flexible
approaches to exploring only a subset of the solutio
in Sect. 12.5, modifies a single solution until it has the g
algorithms described in Sect. 12.6, simulate a pop

12.1 Linear Programming — a Black-Box Solver

The easiest way to solve an optimization problem is to writerda s
the space of feasible solutions and of the objective fundiud t e an existing
software package to find an optimal solution. Of course, thestion is, for what

1 Be aware that most of the literature uses minimization asiéfault.

12.1 Linear Programming — a Black-Box Solver 235

kinds of specification are general solvers available? Hegantroduce a particularly
large class of problems for which efficient black-box sodvare available.

inear function f of x, i.e.; R" — R with f(x) = c-x, where
calledeostor profit® vector. The variables are constrained by m
miax o< by, wheresie {<,>,=}, & = (ai1,...,an) €
R", and h € e set of feasible solutions is given by

Fig. 12.2.A simple two-dimensional linear progre
and the objective “maximizg+ 4y”. The feasible regi

gy, with three constraints
ody) = (2,6) is the
ecause the half-plane
ary

the cows should get enough calories, protein, vitamin C,sanah.
food j containsajj percent of a cow’s daily requirement with respect to
i. A solution to the following linear program gives a costioml diet th
the health constraints. L&j denote the amount (in kilogram) of fog

2 The term “linear program” stems from the 1940s [45] and haking with the mod-
ern meaning of “program” as in “computer program”.
3 Itis common to use the term “profit” in maximization problearsd “cost” in minimization

problems.

236 12 Generic Approaches to Optimization

farmer. The-th nutritional requirement is modeled by the inequajityej x; > 100.
The cost of the diet is given by; ¢jx;. The goal is to minimize the cost of the diet.

o you model supplies that are available only in limitetbants,
uced by the farmer himself? Also, expteaw to specify ad-
h as “no more than 0.01mg cadmiumernination per cow

psack or it does not. There isossipility of adding an
tIS assumed in the diet probtbat any arbitrary amount

are the right tool fokttegsack problem.

ming to the problems that we Istudied in
hall show how to formulag¢esingle-source
shortest-path probl e edge weights aseariprogram. LeG =
(V,E) be a directed be the source node, and [etE — R>g be the

path fromsto v. Consider

maximize

subject to
e=(vw)cE.

Theorem 12.2.Let G= (V,E) be a di
c: E — R>p a nonnegative cost functio

a designated vertex, and
of G are readbdiom s, the

We observe first thad, := p(v) for all v satisfies the i e LP. Indeed,
p(s) =0 andu(w) < p(v)+c(e) for any edgee = (v,w).
We next show that ifdy)vey satisfies all constrai
u(v) for all v. Consider any, and lets=vo, vs,...,
tov. Thenp(v) = 3 o<j<kC(Vi,Vi+1). We shall show thatly,, < 5o
induction onj. For j = 0, this follows fromds = 0 by the first constraint.
we have

dVJ' S de,]_ + C(ijlavj) S Z C(Vi ,Vi+1) + C(ijlvvj) =
0<i<j—1 0<

where the first inequality follows from the second set of ¢aists of the LP and
the second inequality comes from the induction hypothesis.

12.1 Linear Programming — a Black-Box Solver 237

We have now shown thdp(v))vey is a feasible solution, and thdf < p(v) for
all v for any feasible solutioridy)vcv . Since the objective of the LP is to maximize
the sum of we must havel, = p(v) for all v in the optimal solution to the
LP. O

Exercise 1
from s or wh
ative cycles?

oes the proof above fail when not all nodes are reéehab
here are negative weights? Does it still work in th&eace of neg-

The pr ove actually captures the shorgtstqroblem is non-
trivial. When you fg a problem as an LP, you shouldagisvprove that the
LP isindeed a coy scription of the problem that yourgieg to solve.

cap: E — R>p andc;
edgee, we callcap(
functionf : E — R>g

negative functions on the edge&of-or an
city and cost, respectively,eofA flow is a
e) for all e and flow conservation at all

The value of the flow is the n
maximum-flow problerasks for
can be formulated as an LP.

The costofaflowig e f(e)c(e). Th
for a maximum flow of minimum co
LP.

aximum-flow problersks
formulate thisigem as an

The worst-case running time of the best algo
In this bound, it is assumed that all coefficienfsa;j, andb; tegers with ab-
solute value bounded by-2n andm are the number
respectively. Fortunately, the worst case rarely arises
solved relatively quickly by several procedures. One, impkex alg
outlined in Sect. 12.5.1. For now, we should remember twisfdirst, m
lems can be formulated as linear programs, and second, dnereffici
program solvers that can be used as black boxes. In facougthLP
used on a routine basis, very few people in the world know
ment a highly efficient LP solver.

238 12 Generic Approaches to Optimization

12.1.1 Integer Linear Programming

ables c ated to be integral. Such variables eartake on only integer
val ary real values. If all variables amestrained to be integral,
the formulal problem is called @mteger linear program(ILP). If some

but not all vai onstrained to be integral, thentdation is called anixed
integer linear prog P). For example, our knapsack problem is tantamount

Exercise 12.4Explai y ILP by a 0—1 ILP, assuming that you
know an upper bound variable in the optimal solution. Hint:
replace any variable of the origi set diayU) 0-1 variables.

Unfortunately, solving |
problem isNP-hard. Neverth can often be solved in practicgylimear-
programming packages. In S Il outline hasvishdone. When an
exact solution would be too time=con
approximate solutions. THaear-prog
by omitting the integrality constraint
problem we would replace the const

An LP relaxation can be solved
to the relaxation teaches us something
always holds true (for maximization problem e of the relaxation
is at least as large as the objective value of is claim is trivial,
because any feasible solution to the ILP is also a feasill&ign to the relaxation

an ILP is the LP obtained
r &xample, in the knapsack
e constraink € [0, 1].

P solver. In many casessolution

will take on rational values that are not integral. , he case that
only a few varlables have nonintegral values. By appr i [

by
maximizep - X

subject to
w-x<M, and x €][0,1]foriel.n.

This has a natural interpretation. It is no longer requireddd items completely to
the knapsack; one can now take any fraction of an item. In mwggling scenario,
thefractional knapsack problerorresponds to a situation involving divisible goods
such as liquids or powders.

12.2 Greedy Algorithms — Never Look Back 239

The fractional knapsack problem is easy to solve in tinfal@gn); there is no
need to use a general-purpose LP solver. We renumber (berijems byprofit

(b) Outline an algorithm t
Hint: use a variant ofui

timal solutiofiriear expected time.
in Sect. 5.5.

A solution to the fractiona m is easily aoted to a feasible
solution to the knapsack problem.
the sole fractional variabbg to zero.

Exercise 12.6 Formulate the followin
M, subsetv; C M for i € 1..n with (Ji

rithm for the fractional knapsack problem given in the pring sec s the
greedy strategy; we consider the items in decreasing offd@oéit density,
gorithms for shortest paths in Chap. 10 and for minimum sipayinees i
also follow the greedy strategy. For the single- sourcetebbpath p
nonnegative weights, we considered the edges in order d&
their source nodes. For these problems, the greedy appledotan optimal solu-
tion.

Usually, greedy algorithms yield only suboptimal solusohet us consider the
knapsack problem again. A typical greedy approach wouldlszan the items in

240 12 Generic Approaches to Optimization

- Instance Solutions: c v 4 P Instance Solutions: gptimal
4 2 3 roundDown,
[a) 1 2 greedy 2
g 1o 01
oYy Y vt w T
Fig. 12.3.Two i he knapsack probleeft for p = (4,4,1), w= (2,2,1), and
M= tharoundDown Right for p= (1,M — 1) andw = (1,M),
bothgreedyan r ar from optimal

order of decreas density and to include items tkilitfis into the knap-
sack. We shall g the nagreedy Figures 12.1 and 12.3 give ex-
amples. Observ ives solutions at least as good@smdDown

gives. Onceround
ever, greedy keeps
of less weight. Altho
greedyandroundDown

item that it cannot include, it stops. How-
ten succeeds in including additidteahs
ampleqn Fig. 12.1 gives theeaesult for both
edifferent. For example, with profits

, greedyincludes the first and third
items yielding a profit of 5, includes just the first item and ob-
tains only a profit of 4. Both i may produce solusitimat are far from op-
timum. For example, for any acity, consider the two-item instance with profits
p=(1,M—1) and weightsv =
the first item, which has a high profit ry smadiadute profit. In this
case it would be much better to incl ditem.

We can turn this observation intojan algorithm /which we galhd. This com-
putes two solutions: the solutiod! proposed byroundDownand the solution¢
obtained by choosing exactly the critic : jonal solutiod. It then
returns the better of the two.

We can give an interesting performance ¢
achieves at least 50% of the profit of the op
that an algorithm achieves approximation rat

igoound always
generally, we say
puts, its solution

fractional knapsack problem. Thenx* < p-xf. The value of the Objective function
is increased further by setting = 1 in the fractional solution. We obtain

p-x <p-xf < p-xd+p-xC§2maX{p-xd,p-xC} :

O

4We assume here that “unreasonably large” items witls M have been removed from the
problem in a preprocessing step.

12.2 Greedy Algorithms — Never Look Back 241

There are many ways to refine the algorithoand without sacrificing this ap-
proximation guarantee. We can repla€eby the greedy solution. We can similarly
augment® wi greedy solution for a smaller instance where ifeisiremoved

scheduling blemsConsider the following scenario, known as tbeheduling

problem for i weighted jobs on identical machi& are givermiden-
tical machines on e want to procesfbs; the execution of jolj takest;
time units. A ..n— 1..m of jobs to machines is calledschedule

Thus theload ¢; as
makespan fax =

machingis 3 jixi)—j ti- The goal is to minimize the
j of the schedule.

ispas follows. We have a video garmeegsor with
The jobs would be thes Eeecuted in a video
game such as audio i paring graphics obgedteefimage processing

unit, simulating ph imulating the lildence of the game.

We give nexta s y algorithm for the problem ab®@} fhat has the
additional property th to know the sizethefjobs in advance
We assign jobs in the Igorithms with thisperty (“unknown

chine with the smallest load.Form pute the 103As 3 pjxx(h)—jth Of
to the least loaded machinexiig.= ji,
where j; is such that/j, = min; & his algorithm is frequently referred to as
the shortest-queue algorithmt

computes nearly optimal solutions.

1 n
Lnax< = $
max < mi;r"

Proof. In the schedule generated by the shortest-queue algogtime machine has
a loadLmax. We focus on the job that is the | peen assigned to the
machine with the maximum load. When jolis machines have a

load of at least max—tj, i.€.,
;ti > (Lmax—t;)-m
1£1

Solving this forLnax yields

Lmax < — ;h +t| - Ztl + tA < — Zt| + T 1n<’l|a<)l§|t|

We are almost finished. We now observe thigt/mand maxt; are lower bounds
on the makespan of any schedule and hence also the optinealideh\We obtain the
following corollary.

242 12 Generic Approaches to Optimization

Corollary 12.6. The approximation ratio of the shortest-queue algorith-isl/m.

- mby + (m—1)L, - (2m—1)maxLy,L>)
m - m

1
2——)- Lqi,Lo).
m) max(Ly,L2)

O

is no better than claimede@b@ensider an in-

stance witn = andt; = 1 fori < n. The optimal solution has a
makespam?n%tx = rtest-queue algorithm produces a soluiibn

a makespahmax = . st-queue algorithm is an online algorithm. It
produces a solutionwhich i most a facter 2/m worse than the solution pro-

duced by an algorith
the online algorithm ha iti a=2-1/m.

*Exercise 12.7.Show that
ratio of 4/3 if the jobs are s

*Exercise 12.8 (bin packing). ler boss has perishable goods in
her cellar. She has to hire enou | itemigho. Develop a greedy
algorithm that tries to minimize the
that they can all carry a weighdl. Tr
bin-packingalgorithm.

Boolean formulaeprovide another po
ables range over the Boolean valueand0, an

sible to packn+ 1 items inton bins such that eve
We have variablegj for 1 <i<n+1and 1< j <n. Soi rag

for 1 < j < n. The conjunction of these formulae is unsatisfiak
cide the satisfiability of Boolean formulae. Although theis@bility pr
NP-complete, there are now solvers that can solve real-wadbdlpms t
hundreds of thousands of variabfes.

Exercise 12.9 Formulate the pigeonhole principle as an integ

5Seeht tp: // www. sat conpetition.org/.

12.3 Dynamic Programming — Building It Piece by Piece 243

12.3 Dynamic Programming — Building It Piece by Piece

ns, it does not matter which one exlus
namic programming is to build an exhaessilale of optimal

problems.
Again, W napsack problem as an example. WeedfiC) as
the maximum profit > when only items 1i ttan be put in the knapsack and
the total weight is'a . oal is to comput@(n,M). We start with trivial
cases and work ivial cases are “no items™entdl weight zero”.

and P(i,0)=0.

Consider next the ca$ solution that maximizes the profit, we
either use itenh or do not'use | case, the maximum achievallfit|is

P(i—1,C). Inthe former ca i
since we obtain a profit gf; f
C —w; for the firsti — 1 items.
C > w;. We summarize this dis

. JmaxP(i—1,C),
PO = {P(i ~1,0)

must'use a solution of total weight at most
, the former alternative is only feasible i
ing recurreredi,C):

pi) ifw<C
if wi >C

Exercise 12.10Show that the case dis
avoided by defining(i,C) = —o for C < 0.

initionR(fi,C) can be

Using the above recurrence, we can co
with one column for each possible capacitand o
gives an example. There are many ways to fill

and columnC — w;. We continue with this procedure until we a
which time the solutiorixy, ..., X,) has been completed.

Exercise 12.11Dynamic programming, as described above, need stollden ta
containing®(nM) integers. Give a more space-efficient soluti
single bit in each table entry except for two rowsRgf,C) values at any given time.
What information is stored in this bit? How is it used to resiuact a solution? How
can you get down t@nerow of stored values? Hint: exploit your freedom in the
order of filling in table values.

244 12 Generic Approaches to Optimization

Table 12.1.A dynamic-programming table for the knapsack instance with(10, 20, 15, 20),
w=(1,3,2,4), andM = 5. Bold-faceentries contribute to the optimal solution

i\C01 2 3 45
00 00O0O
010 10 10 10 10
0 10 1020 30 30
010 15 25 3®5
0 10 15 25 3®5

A wWNEFEO

------- P(i—1,C—wi)+pi
P(i—1,C)

Fig. 12.4. The solid step functi
C— P(i—1,C—w)+ p. P(i,
step function is stored as the s
function is obtained by addingv;, o0 every solid point. The representation®f- P(i,C)

C), and the dashed step function shows
ximum of the two functions. The solid

We shall next describe an imp
sumption and speed. Instead of com

nt with respespace con-
gC) for all1 and allC, theNemhauser—
reto-optimalkolutions. A solutiorx

is Pareto-optimal if there is no solution thadmi
and no greater cost or the same profit and le

pisyainceP(i,C) is
>P(i,C—1) are

)) with P(i,
needed for an optimal solution. We store thesg\pairs in &;lk
Lo = ((0,0)), indicating that?(0,C) = 0 for all
indicating thatP(1,C) = 0 for 0< C < wy andP(i,C) =

How can we go froni;_; to L;? The recurrence fdP e way; see

in Li_1 by (W, pi). We merge.i_; andL{_; into a single list by ordée
nent and delete all elements that are dominated by another,\ize., we
elements that are preceded by an element with a higher secomgone,
each fixed value oF, we keep only the element with the largest se

Exercise 12.12Give pseudocode for the above merge. Show that the mergeecan b
carried out in timédL;_1|. Conclude that the running time of the algorithm is propor-
tional to the number of Pareto-optimal solutions.

12.3 Dynamic Programming — Building It Piece by Piece 245

The basic dynamic-programming algorithm for the knapsaoklem and also its
optimization requir® (nM) worst-case time. This is quite goodvfis not too large.

udo” means that it is not necessarily polynomiahminput
however, it is polynomial in the naturabpzetersh andM.
There is, h important difference between thechasil the refined ap-
proach. The
refined approa ? e average-caseomplexity of the refined algorithm is

nt oM. This holds even if the averaging is done only
over pertu i

refer the reader to

Exercise 12.13 i ming by profit). DefineW(i, P) to be the small-

est weight need it of at ldassing knapsack items.1

(a) Show thaw(i, [i W(i—1,P—pi)+wi}.

(b) Develop a table- mic-programming algoritsmgithe above recur-
rence that comput [to the knapsack enobi time Qnp*),
wherep* is the prof ution. Hint: assume first tipéf or at

worth 1, 2, 5, 10, 20, 50, 100, a
worth 1, 5, 10, 25, 50, and 100 ¢
(b) Show that this algorithm would n
(c) Develop a dynamic-programming
currency system.

here watso a 4 cent coin.
givedropt change for any

Exercise 12.15 (chained matrix products) We
M1M; - - - Mp, whereM,; is akj_1 x ki matrix. Ass

> the matrix product
ise matrix product

is computed in the straightforward way usint ultlpll ations to ob-
tain the product of am x k matrix with ak x s ma associativity
of matrix products to minimize the number of eIement m ceded. Use
dynamic programming to find an optimal evaluatio For ex-

ample, the product of a 45 matrixM1, a 5x 2 matrix M, and atrix M
can be computed in two ways. Computikig(M,M3) takes 5 2- “5.84 240
multiplications, whereas computiri®;M,)M3 takes only 45-2+4.2.
multiplications.

Exercise 12.16 (minimum edit distance).The minimum edit dis
shtein distanceL(s,t) between two strings andt is the minimun¥number of char-
acter deletions, insertions, and replacements applisdhat produces the string
For exampleL(graph,group) = 3 (deleteh, replacea by o, insertu beforep).
Defined(i, j) = L({s1,...,S), (t1,...,tj)). Show that

246 12 Generic Approaches to Optimization
d(i,j) = min{d(i -Lj)+1d@i,j-1)+1di—1,j-1)+]s ;étj]}

where[s # tjLislone ifs andt; are different and is zero otherwise.

in Doubt, Use Brute Force

of possible solutions is finite, so that
roblem by tryadfpossibilities. Naive
howevernritan frequently restrict
concept carries a lot further.

we can in principle solv
application of this idea do
the search tpromisingcan

cises 12.20 and 12.21, we outli
different pattern.

Figure 12.5 gives pseudocode f
the knapsack problem and Figure 1

searchedbitiKnapsackor
pleBramchingis the most
routinekssédsible values for some
piece of the solution are tried. For eac
solved recursively. Within the recursive call,
bbKnapsacKirst tries including an item by se
settingx; :=0. The variables are fixed one afte
density. The assignmert:= 1 is not tried if this
sack capacity’. With these definitions, after all
level of recursionbbKnapsachkvill have found a feasible

the algorithmgreedy The (partial) solutions explored by the alge
Branching happens at internal nodes of this tree.

Boundings a method for pruning subtrees that cannot contain op#
A branch-and-bound algorithm keeps the best feasible isaldbund j
variablex; this solution is often called themcumbentsolution. It isgi
solution determined by a heuristic routine and, at all tinpeevides a lower bound
p- X on the value of the objective function that can be obtainéds Twer bound is
complemented by an upper bountbr the value of the objective function obtainable
by extending the current partial solutiaro a full feasible solution. In our example,

12.4 Systematic Search — When in Doubt, Use Brute Force 247

Function bbKnapsacl p1, ..., pn), (W1, ...,Wn),M) : £

assert PL /wl >dP2/Wp > -+ > Pn/Wn /I assume input sorted by profit density
sacl(p1,...,pPn), (Wi,...,Wn),M) :.Z /I best solution so far
/I current partial solution

L Xi—p arefixedM' =M -5 xwi, P=S xpi.
<> Pn); (Wi, ..., Wn), M)
/I not bounded

/I branch on variable;

ursei+1,M —wi, P+ pi)

Fig. 12.5. A branch-an
lution is constructed by

for the knapsack problem. witial feasible so-
apsackising some heurlstlc algorithm. The

C no capaci P2R7? 37

B bounded 0729 35
11’?’? 37 01?? SSB
110'7 35 101 11? 35
110\0-‘\
Fig. 12.6. The search space explored kypapsackBB ' ack instance with =
(10,20,15,20), w= (1,3,2,4), andM = 5, and an ey initi =(0,0,0,0). The

functionupperBounds computed by rounding do
tion for the fractional knapsack problem. The nod

e of the obyechiinc-
e contaimy ---xj_1 and
d to setiing-1. There
left to include
yper bound is

are two reasons for not exploring a child: either there
an element (indicated by C), or a feasible solution with dipem
already known (indicated by B)

the upper bound could be the profit for the fractional knalkgaoble
i..nand capacit’ =M — 3 ;i XiW;.

Branch-and-bound stops expanding the current branch cdebec e when
u< p-X i.e., when there is no hope of an improved solution in t
of the search space. We test- p- X again before exploring the 0 because
X might change when the case= 1 is explored.

248 12 Generic Approaches to Optimization

Exercise 12.19Explain how to implement the functiampperBoundn Fig. 12.5 so
that it runs in time Qlogn). Hint: precompute the prefix sunj)<w andy < pi

ging a square and the hole in thg aftiles.
Design an algorithm that finds a shortest-move sequence

> deepening depth-first seafdi4]: try all one-move
first, then all two-move sequences, and so on. This
for the simpler 8-puzzle. For the 15-puzzle, use

too small. Decide beforehand whether
is odd or even. Implement your algo-
time per move tried.

Exercise 12.21 (constraint pro
sider a chessboard. The task i
not attack each other, i.e., no two qu
diagonal, or antidiagonal. So each r
sition of the queen in row. Thenx; €
constraintsx; # xj, i +x # j +x;, and
these conditions express? Show that the
the following optimization. When a variable i
some values for variables that are still free.
keeps track of the values that are still availa
as soon as there is a free variable that has

ens on #nd bo that they do
plaabeé isame row, column,
thyoueen. Lek; be the po-

must satisfy the following
1<i<j<8.Whatdo

12.4.1 Solving Integer Linear Programs

In Sect. 12.1.1, we have seen how to formulate the knaps
teger linear program. We shall now indicate how the branmuaound
developed for the knapsack problem can be applied to any Gtedjer
gram. Recall that in a 0—1 integer linear program the valdetbe
constrained to 0 and 1. Our discussion will be brief, and i
textbook on integer linear programming [147, 172] for marf@imation.

The main change is that the functiopperBoundnow solves a general linear
program that has variables,. .. x, with range[0,1]. The constraints for this LP

12.5 Local Search — Think Globally, Act Locally 249

come from the input ILP, with the variablagto x;_; replaced by their values. In the
remainder of this section, we shall simply refer to thiséinprogram as “the LP”.

If the LP@s a feasible solutionpperBoundeturns the optimal value for the
LP. If thedtP"has noyfeasible solutiompperBoundeturns—oo so that the ILP solver
willgtop exploring this branch of the search space. We stedkribe next several
generalizatigns of the'basic branch-and-bound procetatsdmetimes lead to con-
siderable improvements.

Branch Selection: We mayipick any unfixed variablg for branching. In particular,
we can make'the ¢hoice depend on the solution of the LP. A caryused rule is
to branch on a variable whose fractional value in the LP isedbto 2.

Order of Search lree Traversak In the knapsack example, the search tree was
traversed depthsfirst, andqthe 1-branch was tried first. imega, we are free to
choose any order of g&rée traversal There are at least twsidenations influenc-

ing the choice of strategy. If no good,feasible solution iswn, it is good to use a
depth-first strategy s@jthat complete solutions are exglqreckly. Otherwise, it is
better to use best-firststrategy that explores those search tree nodes that are most
likely to contain good salutions. Séarch'tree nodes are ikeptpriority queue, and

the next node to be exploredgis'the,mostpromising node in tieeie} The priority
could be the upper bound returnedBy the P, However, sire&Rhis expensive to
evaluate, one sometimes settles for an,approximation.

Finding Solutions: We may be lueky in thattheysolution of the LP turns out to assig
integer values to all variables. [n thisase therelis no rieeturther branching.
Application-specific heuristics can additionally help todfigood solutions quickly.

Branch-and-Cut: When an ILP solver branches 100 often, the size of the search
tree explodes and it becomes too expensive to find an optohaien. One way to
avoid branching is to add constraints to the! lineamprogieendut away solutions
with fractional values for the variables withoutféhangihg Bolutions with integer
values.

12.5 Local Search — Think Globally, Act'Cacally

The optimization algorithms we have seen so far atefapp@eadiy in ‘Special cir-
cumstances. Dynamic programming needs a special struofittee problem and
may require a lot of space and time. Systematic search idlyso@slow fonlarge
inputs. Greedy algorithms are fast but often yield only lguality solutionsLocal
searchis a widely applicable iterative procedure. It starts witine feasible'solution
and then moves from feasible solution to feasible solutiprideal madifications.
Figure 12.7 gives the basic framework. We shall refine irlate

Local search maintains a current feasible soluii@md the best solutiox Seen
so far. In each step, local search moves from the currentisonlto a neighboring
solution. What are neighboring solutions? Any solutiort tten be obtained from
the current solution by making small changes to it. For eXaip the case of the

250 12 Generic Approaches to Optimization

knapsack problem, we might remove up to two items from thgpkaek and replace
them by up to two other items. The precise definition of thghleorhood depends on
the applicati the algorithm designer. We.u§éx) to denote thaeighborhood
ortant design decision is which solutiomftiee neighborhood
e heuristic decides when to stop.

search. The vari (¥ same, and we stop when there are no improved
S e only nontrivial aspect of hill climbing is the

choice of the neig

quite well, followe
Our first exampl eling salesman problem destribeSect. 11.6.2.

Given an undirected g function on thesesddisfying the triangle

inequality, the goal is t ur that visitsralties of the graph. We

define the neighbors of a tv) and(w,y) be two edges of the

tour, i.e., the tour has the f herep is a path fromv to w andq

is a path frony to u. We remo o edges from the tour, and replace them by

the edgegu,w) and(v,y). The rsési, w), then uses the reversal

of p back tov, then usesv,y), an ck tou. This move is known

as a 2-exchange, and a tour that ca by a 2#egelis said to be 2-

optimal. In many instances of the tr probZoptimal tours come

quite close to optimal tours.

Exercise 12.22Describe a scheme whe , e removed and replaced
new edges.

the neighborhood
function is thesimplex algorithifor linear proc mmlng 2 Sect. 12.1). This is
the most widely used algorithm for linear programn Hafeasible solu-
tions.Z of a I|near program is defmed by a set of I|near eg esiandualities

find some feasible solutione .#

X=X

while not satisfied withx tdo
x:=some heuristically chosen element fromi(x) N.¥
if f(x)> f(X)thenX:=x

Fig. 12.7.Local search

12.5 Local Search — Think Globally, Act Locally 251

half-space Hyperplanes are the-dimensional analogues of planes and half-spaces
are the analogues of half-planes. The set of feasible sokliis an intersection of
m half-spac hyperplanes and forntoavex polytopa/le have already seen
an ex imensional space in Fig. 12.2. Figur8 $Bows an example

in t pace. Convex polytopes arentldenensional analogues of
convex pol . e interior of the polytope, all inelifiess are strict (= satisfied
with inequalit oundary some inequalities arbttig satisfied with equal-
ity). The vertice es of the polytope are particplanportant parts of the

ints. Observe that an equalitgtraintc can be solved
is variable can then be rerddnyesubstituting into the
ies. Afterwards, the caistrc is redundant and can

there are no equal
for any one of its vz
other equalities g

be dropped.

The simplex alg n arbitrary vertex of trestele region. In each
step, it moves to g vertex, i.e., a vertex relalehaa an edge, with a
larger objective valu more than one such negldbbcommon strategy is
to move to the neighb [bjective valuehédire is no neighbor with
a larger objective value i this point, the algorithm has found
the vertex with the maxim he examples in Figs. 12.2 and 12.8,
the captions argue why th he general argumers fsllows. Letx* be
the vertex at which the simp m stops. The feagibyion is contained in

a cone with apex* and span by the edges incidenbénAll these edges go
to vertices with smaller objecti
the half-spacgx: c-x<c-x*}. Thus

(0,0,0) (1,0,0)

Fig. 12.8. The three-dimensional unit cube is defined by the ineqeabti> 0, x
y<1,z>0,andz< 1. Atthe verticeg1,1,1) and(1,0,1), three inequalities i
the edge connecting these vertices, the inequalitied andz < 1 are tig
“maximize X+ y+ Z', the simplex algorithm starting g0,0,0) may move along the path
indicated by arrows. The vertég, 1, 1) is optimal, since the half-spaser-y+ z < 3 contains
the entire feasible region and h@ds1,1) in its boundary

252 12 Generic Approaches to Optimization

larger tharnx*. We have described the simplex algorithm as a walk on the dyn

of a convex polytope, i.e., in geometric language. It can éscdbed equivalently
using the language of linear algebra. Actual implementatisse the linear-algebra
description.

In‘the case of linear programming, hill climbing leads to @timal solution. In
general, however, hill'climbing will not find an optimal stn. In fact, it will not
even find a near-optim@l solution. Consider the followingrmple. Our task is to
find the highest pg@int'oniearth, i.e., Mount Everest. A fdassiolution is any point
on earth. Theflocal neighborhood of a point is any point withidistance of 10 km.
So the algerithm would start at some point on earth, then giechighest point
within a distance of 10ykim, then go again to the highest poititiwva distance of 10
km, and so on. If gne were to start from the first author’s hoaltéde 206 meters),
the first step would lead to@n‘altitude of 350 m, and there lgp@rithm would stop,
because there is no_higherhill within 10 km of that point. fehare very few places
in the world wheretthe algarithm would continue for long, awkn fewer places
where it would find Meunt Evelest.

Why does hill climBing work so nieély for linear programmirtgut fail to find
Mount Everest? The reason is thatithe earth has many lodelaptills that are the
highest point within a range of0’km. In contrast, a lineagoam has only one local
optimum (which then, of course, is also a glabal optimumj.dproblem with many
local optima, we should expeghygeneric method to have difficulties. Observe that
increasing the size of the neighborhoods in the search farr¥lBverest does not
really solve the problem, exceptiif the neighborhoods ardera cover the entire
earth. But finding the optimum in a neighborhood isithen ad harthe full problem.

12.5.2 Simulated Annealing — Learning from Nature

If we want to ban the bane of local optima’in‘localfSearchjwstrfind a way to es-
cape from them. This means that we sometimes have to accepstitat decrease
the objective value. What could “sometimes’imean in thistegt? We have contra-
dictory goals. On the one hand, we must be willing to make ndownhill steps
so that we can escape from wide local optima: @n the other, vemdhust be suffi-
ciently target-oriented so that we find a global optimum atehdd®f a long narrow
ridge. A very popular and successful approach for recan@ilhese ‘contradictory
goals issimulated annealingsee Fig. 12.9. This workgfin‘phases thatare controlled
by a parametefF, called theemperaturef the process. We shallexplain below why
the language of physics is used in the description of siradlainnealing. An each
phase, a number of moves are made. In each move, a neighbor (X)f).Z is
chosen uniformly at random, and the move framo X' is made with a ceftain prob-
ability. This probability is one i improves uporx. It is less than onefif the move
is to an inferior solution. The trick is to make the probabilepead on . 1f*T-is
large, we make the move to an inferior solution relativebgly; if T"is close to zero,
we make such a move relatively unlikely. The hope is thathis Way, the process
Zeros in on a region containing a good local optimum in phasdsgh tempera-
ture and then actually finds a near-optimal solution in theesgls of low temperature.

12.5 Local Search — Think Globally, Act Locally 253

find some feasible solutione .
i /I initial temperature of the system

N.Z uniformly at random
M) dox :=x
decreasd /I make moves to inferior solutions less likely

. 12.9.Simulated annealing

liquid crystal
| Q. O anneal

ek % o o o0]
o0 o]

The exact choice of the tran bility in the caserely is an inferior so-
lution is given by exp(f(X') —
that f (xX') — f(x) is negative. So the pr
absolute loss in objective value.
Why is the language of physics
transition probabilities? Simulated a ibg the physical process of

energy of a physical system.

a local minimum of energy. This process of shock cooling hesrtain similarity to
hill climbing. Every molecule simply drops i minimal energy;
in hill climbing, we accept a local modificatio 5 to a smaller
value of the objective function. However, a glass
energy. A state of much lower energy is reached by
molecules are arranged in a regular way. This state € gedor approximated)
by cooling the melt very slowly. This process is call@dneal
that molecules arrange themselves into a perfect shapeaodi e of,
of molecular diameters although they feel only local foreggending o
molecular diameters?

Qualitatively, the explanation is that local energy miniheve e
dissolve in favor of globally more efficient structures. fexam ssume that a
cluster of a dozen molecules approaches a small perfedattlat already consists
of thousands of molecules. Then, with enough time, the etustll dissolve and

6 Note that we are talking abouotinimizationnow.

254 12 Generic Approaches to Optimization

its molecules can attach to the crystal. Here is a more fodwuatription of this
process, which can be shown to hold for a reasonable modeafstem: if cooling
is sufficient the system reachtermal equilibriumat every temperature.
Equilibri raturé means that a stateof the system with energly is

as ility
exp(—Ex/T)
Yyez €XP(—Ey/T)

whereT is the 2 of the system aftlis the set of states of the system.
This energ ibution i lled thigoltzmann distributionWhenT decreases, the
probability of states Wi inimal energy grows. Actuailythe limit T — 0, the
probability of state inimal energy approaches one.

The same m i for abstract systems corresand maximiza-

tion problem. We'i i unctiohwith the energy of the system, and a
feasible solution wi system. It can be shthat the system ap-
proaches a Boltzm qwte general athseighborhoods and the
following rules for ch

pick X' from .4 (x)

that for infinitely many temperatures.
to decide on @ooling schedulgi.e.,
time. A simple schedule chooses a
large enough so that all neighbors are, accepted. Furtherrfwra given problem

at each temperature. The

stanta less than one. Typically is between
small that moves to inferior solutions have bé

feasible solutions)T is finally set to 0, i.e., the annea
hill-climbing search.
Better performance can be obtained witynamic

creasing it quickly until the fraction of transitions acteg approaches
namic schedules base their decision about how niushould be lowe
actually observed variation if(x) during the local search. If the tempeyature change
is tiny compared with the variation, it has too little effelétthe chan
to or even larger than the variation observed, there is aatah system wi
be prematurely forced into a local optimum. The number giste be made until
the temperature is lowered can be made dependent on the mcinber of moves

7 Note that we have written “might work” and not “works”.

12.5 Local Search — Think Globally, Act Locally 255

.‘
DRI IXAAT IS
ol B s XK
NAY W, P SAv A7

@
[
Ve eues

O 0 7
AL I W

0::0:- 000 0! 0. 0::8.
Fig. 12.11. The fi s a partial coloring of the graph underlying sudoku
puzzles. Thebold straig indicate cliques consisting ohatles touched by

the line. The figure p of Kempe chain annealing using colors 1 and 2

and a nodey

accepted. Furthermore implified statistiodel of the process to
uilibrium. Thesld®f dynamic sched-
. Readers agadfto [1] for more

orithm for the knapsaoklpm.
olusithat can be obtained by
wo elements

The local neighborhood of a fea
removing up to two elements and th

Graph Coloring

We shall now exemplify simulated anne
mentioned in Sect. 2.10. Recall that we are
and are looking for an assignmentV — 1.k g
given the same color, i.ec(u) # c(v) for all €

gtaphG = (V,E)
adjacent nodes are
here is always a

to minimizek. There are many applications of gra
The most “classical” one is map coloring —the nodes are ¢
Id not be

(i.e. planar graphs) can be colored with at most four colb62]: oku puzzles
are a well-known instance of the graph-coloring problemerelthe playe
to complete a partial coloring of the graph shown in Fig. 12uxth the
We shall present two simulated-annealing approaches phgmloring;
have been tried.

Kempe Chain Annealing

Of course, the obvious objective function for graph colgrisithe number of colors
used. However, this choice of objective function is too distig in a local-search

256 12 Generic Approaches to Optimization

framework, since a typical local move will not change the bbemof colors used.
We need an objective function that rewards local changéstied'on a good way”

2
fO=y 6P
1
0 be maximized. Observe thatdhgective function in-
creases whe 0 lass is enlarged further at gie@ta small color class.
Thus local | eventually empty some colassks, i.e., the number

nction, we come to the dediniof a local change
ion is as follows: a lo@dlange consists in re-

i to j. In order to maintain feasibil-
lors too: noehght be connected to
des with coloMhese nodes might,

the node-induced subgraphof hich contains all nodes with colorandj. The
connected component &f that i
in. We maintain feasibility by swappi

ise order. Consider
1 and 3 are
1 be used to

that the neighbors of are colored with colors
the subgraph of nodes colored 1 and 3. If the
in distinct connected components of this subgraph,
recolor the node colored 1 with color 3. If they are in th
the subgraph of nodes colored 2 and 4. Argue that
and 4 must be in distinct components of this subgraph.

The Penalty Function Approach

A generally useful idea for local search is to relax some efdbnstraints on feasible
solutions in order to make the search more flexible and to
starting solution. Observe that we have assumed so far th ehow have a
feasible solution available to us. However, in some situretj finding any feasible
solution is already a hard problem; the eight-queens probleExercise 12.21 is an

example. In order to obtain a feasible solution at the entl@process, the objective

12.5 Local Search — Think Globally, Act Locally 257

function is modified to penalize infeasible solutions. Thegtraints are effectively
moved into the objective function.

in whic nodes may have the same color. An Irstilution is generated
er of colors needed and coloring thesmradielomly. A neigh-

oloring, howeveralominima are legal
i ulated anngadi guaranteed to find a

Exercise 12.25Show that th
colorings. Hint: consider the nge fiic) if one end of a legally colored edge is

with particular emphasis on simulated a
findings and then draw some conclusions. Mg
on random graphs in th&, p-model or on rand

In the Gy p-model, wherep is a parameter
with n nodes is built by adding each of tiné¢n
ability p. The random choices for distinct edges*e
expected degree of every nodepé — 1) and the expe
pn(n—1)/2. For random graphs with 1 000 nodes aa

phisticated and expensive greedy algorithm, XRLF, prodeenhe
in less time. For very dense random graphs wita 0.9, Kempe chain
performed better than XRLF. For sparser random graphs wiigje @rob
penalty function annealing outperformed Kempe chain alimgeand
times compete with XRLF.

Another interesting class of random inputgamdom geometric graphsiere,
we choosen random, uniformly distributed points in the unit squéd®el] x [0, 1].
These points represent the nodes of the graph. We conneqidints by an edge
if their Euclidean distance is less than or equal to somengiaager. Figure 12.12

258 12 Generic Approaches to Optimization

Fig. 12.12.Left a random graph with 10
nodes ando = 0.5. The edges chosen are
drawn solid, and the edges rejected are
drawn dashedRight a random geometric

1 graph with 10 nodes and range- 0.27

gives an exa . ances are frequently used tol mitektions where the
itters and colors represantdncy bands. Nodes that
lie within a distal other must not use the same frequency, to avoid
interference. Fo e chain annealing peréarwell, but was out-
performed by a third egy, calle@d-K annealing

puting time. Moreove make predictiab®ut their performance
on any given instance of experience frhar atstance classes.
So be warned. Simulated a [ristic and, amjoother heuristic, you

i e on an instaass before you have

12.5.3 More on Local Search

We close our treatment of local sear
be used to modify or replace the ap ed so far.

Threshold Acceptance

There seems to be nothing magic about the
used in simulated annealing. For example, a
parametefT as a threshold. New states with &
accepted, whereas others are not.

@ftceptance rule
essful rule uses the
the threshold are

Tabu Lists

Local-search algorithms sometimes return to the same sinfals a
again — they cycle. For example, simulated annealing migh¢ meached
a steep hill. Randomization will steer the search away frbendptimu
state may remain on the hill for a long tinfabu searclsteers the seargh away from
local optima by keeping tbu listof “solution elements” that sho
new solutions for the time being. For example, in graph éotpra Search step could
change the color of a noddromi to j and then store the tuplg,i) in the tabu list to
indicate that color is forbidden forv as long agv,i) is in the tabu list. Usually, this
tabu condition is not applied if an improved solution is abéal by coloring node

12.6 Evolutionary Algorithms 259

with colori. Tabu lists are so successful that they can be used as théecbreque
of an independent variant of local search catiloll search

Restasts

The typical behavior of a well-tuned local-search alganitts that it moves to an
area with good feasiblesolutions and then explores thig, anging to find better
and better localgdptima.\However, it might be that there dher far away areas
with muchgb@tter'solutions. The search for Mount Everessithtes this point. If
we start in Australia, the pest we can hope for is to end up atril&osciusko
(altitude 2229 m),a salution far from optimum. It therefonakes sense to run the
algorithm multiple times with_different random startindions because it is likely
that different starting points'will explore different aseaf good solutions. Starting
the search for MouptiEverest at multiple locations and ie@titinents will certainly
lead to a better solution thanyjust starting in Australiaefeyf these restarts do not
improve the average‘performance of the algorithm, they malyenit more robust in
the sense that it will be less likely togar@duce grossly stinmgd solutions. Several
independent runs are also an_easy source of parallelistnryosthe program on
several different workstatiop§ eoncurrently,

12.6 Evolutionary AlgoritAms

Living beings are ingeniously adaptiveto their envirenimand master the problems
encountered in daily life with great ease. Can we semehowhesprinciples of life
for developing good algorithms? The theory of evolutiorstet that the mechanisms
leading to this performance amsutation feéeembinationandsurvival of the fittest
What could an evolutionary approach mean foroptimizatiub@ems?

The genome describing an individual corrgsponds to therigitien of a feasible
solution. We can also interpret infeasible solutions agldweallindividuals. In na-
ture, itis important that there is a sufficiently lagggpulationof genomes; otherwise,
recombination deteriorates to incest, and survivahof titesficannot demonstrate its
benefits. So, instead of one solution as in local search, wewmafk'with a pool of
feasible solutions.

The individuals in a population produce offspring."Becatessources are lim-
ited, individuals better adapted to the environment areentikely to sufvive and to
produce more offspring. In analogy, feasible solutionsemauated tsing @fithess
function f, and fitter solutions are more likely to survive and to prcalaffspring.
Evolutionary algorithms usually work with a solution podllonited size, sayN.
Survival of the fittest can then be implemented as keeping thielN best selutions.

Even in bacteria, which reproduce by cell division, no offigg’is identical to
its parent. The reason mutation When a genome is copied, small errors happen.
Although mutations usually have an adverse effect on fitressie also improve
fitness. Local changes in a solution are the analogy of naunsti

260 12 Generic Approaches to Optimization

Create an initial populatiopopulation= {x!,...,xN}
while not finishe

A generic evolutionary algorithm

dient in evolutiorrégombinationOffspring con-

arents. The importaofaecombination is easy
are useful mutationSaerefore it takes much
longer to obtain an
two individuals with

to be filled in before one ca rithm for a spegpifablem. The algo-

f silkle This process should involve

randomness, but it is also u heuristics thaum@good initial solutions.
In the loop, it is first deci

viduals are chosen for reproduction.
important to base reproductive succ
usually not desirable to draw a hard
this might lead to too uniform a popu
choose reproduction candidates rand
fitter individuals. An important design decisio
choice is to sort the individuals by fitness and
bility as some decreasing function of rank. T
that it is independent of the objective functibra

parent. Figure 12.14 shows this procedure. Alternativaig may choosk
positions from the first parent and the remaining bits fromdther pare
knapsack example, crossover is a quite natural choice. Eadecides
corresponding item is in the knapsack or not. In other casessoveri

seem more natural to cut the graph into two pieces such tihaadaw edges are cut.
Now one piece inherits its colors from the first parent, aredatiner piece inherits its
colors from the other parent. Some of the edges running lestiee pieces might

12.7 Implementation Notes 261

Fig. 12.14.Mating
(right)

or. This could be repaset) some heuris-
egal color for wiged nodes in the part
.14 gives an pl@am

tics, for example cho
corresponding to the fi

Mutations are realized asgi h. In fact, locatcdess nothing but an
evolutionary algorithm wit .

The simplest way to limi the population is to kédixed by remov-
ing the least fit individual in e iteration. Other apptoesthat provide room for
different “ecological niches” ca r exanfplethe knapsack prob-
lem, one could keep all Pareto-optim ions.The diatary algorithm would

Igarith

12.7 Implementation Notes

We have seen several generic approaches/to optimizatidfataéaapplicable to a
wide variety of problems. When you face an e therefore likely
sticzdly implement.
In a commercial environment, you may even ha in.@fggesapproach

e Study the problem, relate it to problems you aré
on the Web.

Look for approaches that have worked on related problems.
Consider blackbox solvers.

If the problem instances are small, systematic search acardjmpr
may allow you to find optimal solutions.

e If none of the above looks promising, implement a simple
a greedy approach or some other simple, fast heuristic; hietype will help
you to understand the problem and might be useful as a compoh@ more
sophisticated algorithm.

262 12 Generic Approaches to Optimization

e Develop a local-search algorithm. Focus on a good repratentof solutions
and how to i corporate application-specific knowledge thisearcher. If you
have a g idea for a mating operator, you can alsoidensvolutionary

i andomization and restarts to make thétsesore robust.

implementation i plicated, you should definitely use one of these packages

exceptin very Spe Ci umstances. The Wikipedia pagéimear programming”

is a good sta Some systems for linear programgraiso support integer

linear prod i
There are also

eworks that simplify the implenténtaf local-search
or evolutionary alg i

these algorithms amdyfaimple, the use of these
s for linear programmiegektheless, the imple-

search parameter i upport parallel prioceSthe Wikipedia page

solvers, clever modeling of pr
thousands of scientific papers.
rithm [45]. Although this algorithm w
exponential time in the worst case. | n problbdether some vari-
ant runs in polynomial time in the w wn utlo, that even slightly
perturbing the coefficients of the constraints leads to paiyial expected execu-
tion time [184]. Sometimes, even probl
constraints or variables can be solved effici

antzegnited the simplex algo-
ticepme of its variants take

Another interesting blackbox solver eonstraint progra
hinted at the technlque in Exercise 12.21. Here we are

ally small finite sets). Constramts come in a much wideretgriThere
ties and inequalities, possibly involving arithmetic eagsions, but also
constraints. For examplelIDifferent(xy, ..., X«) requires thaky, ...
different values. Constraint programs are solved usingeecly ed systematic
search. Constraint programming is more flexible than lipragramming, but re-

stricted to smaller problem instances. Wikipedia is a gdadisg point for learning

more about constraint programming.

