
Since

SIMSCRIPT III
Users Manual

CACI Products Company

SIMSCRIPT III User’s Manual

 2

Copyright © 2007
CACI Products Company

All rights reserved. No part of this publication may be reproduced by any means without written permission from CACI

If there are questions regarding the use or availability of this product, please contact CACI at any of the following addresses:

For product Information contact:

CACI Products Company CACI Worldwide Headquarters
1455 Frazee Road, suite 700 1100 North Glebe Road
San Diego, California 92108 Arlington, Virginia 22201
Telephone: (619) 881-5806 Telephone (703) 841-7800
 www.caciasl.com www.caci.com

For technical support contact:

Manager of Technical Support
CACI Products Company
1455 Frazee Road #700
San Diego, CA 92108

simscript@caci.com

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume the responsibility
for any consequences resulting from the use thereof. The information contained herein is subject to change. Revisions to this
publication or new editions of it may be issued to incorporate such change.

SIMSCRIPT III® and SIMSCRIPT II.5® are a registered trademarks and service mark of CACI Products Company.

TABLE OF CONTENTS

PREFACE... D

INTRODUCTION... 1

1. DEVELOPING SIMULATION MODELS WITH SIMSTUDIO.................... 3

1.1 SIMSTUDIO OVERVIEW... 4
1.2 CREATING A NEW PROJECT.. 6
1.3 ADDING SOURCE CODE TO A PROJECT ... 7

1.3.1 Creating a New File with the Text Editor .. 7
1.3.2 Adding a Directory or a File Using Project Window 9
1.3.3 Adding Multiple Directories and Files .. 11
1.3.4 Adding Graphical Elements to a Project 12

1.4 OPENING AN EXISTING PROJECT .. 14
1.5 BUILDING A PROJECT ... 16

1.5.1 Building a Project for Debugging .. 17
1.5.2 Building a Project for Release ... 19
1.5.3 Compiler Listings ... 19

1.6 USING THE CLASS BROWSER ... 19
1.7 EXECUTING A MODEL .. 21

1.7.1 Passing Command-Line Arguments .. 21
1.6.2 Running the Executable with the Symbolic Debugger 22

1.8 CLOSING THE PROJECT... 23
1.9 SETTING SIMSTUDIO PREFERENCES ... 24
1.10 ON-LINE HELP ... 24
1.11 ADVANCED COMPILER/LINK OPTIONS .. 26

2. DEVELOPING SIMULATION MODELS USING COMMAND-LINE
INTERFACE... 28

2.1 PREPARING SOURCE FILES ... 28
2.2 COMPILING .. 28
2.3 RECOMPILING .. 34
2.4 LINKING... 34
2.5 EXECUTING.. 36
2.6 MAKEFILES .. 37

2.6.1 Compilation Sequence ... 37
2.6.2 Make Description File Format .. 38
2.6.3 Transformation Rules ... 39
2.6.4 Special Notes.. 39
2.6.5 Sample Makefile .. 40

2.7 OBTAINING ONLINE HELP.. 41
2.8 EXAMPLE PROGRAM .. 41

 a

SIMSCRIPT III User’s Manual

3. SIMSCRIPT II.5 LANGUAGE CONSIDERATIONS.................................... 46

3.1 INPUT AND OUTPUT ... 46
3.2 MODES... 48

3.3.1 Calling C Routines... 48
3.3.2 Calling FORTRAN Routines... 50

4. SIMDEBUG SYMBOLIC DEBUGGER .. 53

4.1 COMPILING FOR DEBUG AND INVOKING SIMDEBUG .. 53
4.1.1 Compiling for Debug ... 53
4.1.2 Invoking SimDebug ... 54

4.2 A QUICK TOUR OF SIMDEBUG ... 55
4.2.1 Tour 1: Showing the Stack and Variables 55
4.2.2 Tour 2: Breakpoints and Single Stepping..................................... 58
4.2.3 Tour 3: Pointer Handling: Entity / Set Display............................. 61

4.3 SIMDEBUG COMMAND REFERENCE ... 62
4.4 ADVANCED TOPICS .. 76

4.4.1 Batchtrace.v .. 76
4.4.2 Signal Handling / External Events .. 76
4.4.3 Reserved Names ... 76
4.4.4 Displaying Arrays... 77
4.4.5 Permanent Entities and System Owned Variables/Sets.......... 77
4.4.6 Conditional Breakpoints... 77
4.4.7 Continuous Variables ... 78

APPENDIX A COMPILER WARNING AND ERROR MESSAGES 80

APPENDIX B RUNTIME ERROR MESSAGES... 101

B.1 RUNTIME ERROR MESSAGES.. 101

APPENDIX C STANDARD SIMSCRIPT III NAMES...................................... 111

A.1 MODE CONVERSION... 112
A.2 NUMERIC OPERATIONS .. 114
A.3 TEXT OPERATIONS... 119
A.4 INPUT/OUTPUT... 121
A.5 RANDOM-NUMBER GENERATION... 125
A.6 SIMULATION .. 129
A.7 MISCELLANEOUS... 134

APPENDIX D LATIN 1 CHARACTER SET.. 136

APPENDIX E DEPRECATED SIMSCRIPT II.5 FEATURES 138

APPENDIX F NON-SIMSCRIPT ROUTINES CAN BE CASE SENSITIVE 149

APPENDIX G CONTINUOUS SIMULATION .. 151

 b

FIGURES

FIGURE 1-1: OPENED IN SIMSTUDIO WITH SOURCE AND GRAPHICS WINDOWS....................... 5
FIGURE 1-2: PROJECT TREE .. 7
FIGURE 1-3: CREATING A NEW SOURCE FILE .. 8
FIGURE 1-4: CREATING A NEW FOLDER IN THE PROJECT TREE.. 10
FIGURE 1-5: PROJECT TREE WITH HIERARCHICAL ORGANIZATION OF SOURCE CODE 11
FIGURE 1-6: PROJECT TREE WITH SIMSCRIPT III SOURCE CODE WITH SUBSYSTEMS........ 12
FIGURE 1-7: ADDING A NEW ICON IN SIMSTUDIO ... 14
FIGURE 1-8: SELECTING PROJECT OPTIONS ... 17
FIGURE 1-9: SELECTING DEBUGGING OPTIONS IN SIMSTUDIOERROR! BOOKMARK NOT

DEFINED.
FIGURE 1-10: SELECTING RELEASE OPTIONS IN SIMSTUDIO..........ERROR! BOOKMARK NOT

DEFINED.
FIGURE 1-11: DEFINING COMMAND LINE FOR MODEL EXECUTION 22
FIGURE 1-12: SIMSCRIPT SYMBOLIC DEBUGGER WINDOW ... 23
FIGURE 1-13: SIMSTUDIO ON-LINE HELP WINDOW.. 25
FIGURE 1-14: IMPORTING LIBRARIES AND OBJECTS FOR LINKING....................................... 26
FIGURE 1-15: SELECTING IMPORTED LIBRARIES AND OBJECTS FOR LINKING ERROR!

BOOKMARK NOT DEFINED.

 c

SIMSCRIPT III User’s Manual

PREFACE

This document contains information on the use of CACI's SIMSCRIPT III compiler for
developing simulation models. Development can be done either using SIMSCRIPT III
Development Studio (Simstudio) or Command-line interface.

CACI publishes Manuals that describe the SIMSCRIPT III Programming Language,
SIMSCRIPT III Graphics and SIMSCRIPT III SimStudio. All documentation is available on
SIMSCRIPT WEB site http://www.simscript.com

• SIMSCRIPT III User’s Manual – this manual - a detailed description of the
SIMSCRIPT III development environment: usage of SIMSCRIPT III Compiler and
the symbolic debugger from the SIMSCRIPT Development studio - Simstudio, and
from the Command-line interface.

• SIMSCRIPT III Programming Manual - A short description of the programming
language and a set of programming examples.

 • SIMSCRIPT III Reference Manual - A complete description of the SIMSCRIPT III
programming language constructs in alphabetic order. Graphics constructs are
described in SIMSCRIPT III Graphics Manual.

• SIMSCRIPT III Graphics Manual — A detailed description of the presentation
graphics and animation environment for SIMSCRIPT III

Series of Manuals and text books for SIMSCRIPT II.5 language and SIMSCRIPT II.5
Simulation Graphics, Development environment, Data Base connectivity, Combined
Discrete-Continuous Simulation, etc

• SIMSCRIPT II.5 Simulation Graphics User’s Manual — A detailed description of
the presentation graphics and animation environment for SIMSCRIPT II.5

• SIMSCRIPT II.5 Data Base Connectivity (SDBC) User’s Manual — A description
of the SIMSCRIPT II.5 API for Data Base connectivity using ODBC

• SIMSCRIPT II.5 Operating System Interface — A description of the SIMSCRIPT
II.5 APIs for Operating System Services

• Introduction to Combined Discrete-Continuous Simulation using SIMSCRIPT II.5
— A description of SIMSCRIPT II.5 unique capability to model combined discrete-
continuous simulations.

• SIMSCRIPT II.5 Programming Language — A description of the programming
techniques used in SIMSCRIPT II.5.

• SIMSCRIPT II.5 Reference Handbook — A complete description of the

 d

 e

SIMSCRIPT II.5 programming language, without graphics constructs.

• Introduction to Simulation using SIMSCRIPT II.5 — A book: An introduction to
simulation with several simple SIMSCRIPT II.5 examples.

• Building Simulation Models with SIMSCRIPT II.5 —A book: An introduction to
building simulation models with SIMSCRIPT II.5 with examples.

The SIMSCRIPT language and its implementations are proprietary program products of the
CACI Products Company. Distribution, maintenance, and documentation of the SIMSCRIPT
language and compilers are available exclusively from CACI.

Free Trial Offer

SIMSCRIPT III is available on a free trial basis. We provide everything needed for a
complete evaluation on your computer. There is no risk to you.

Training Courses

Training courses in SIMSCRIPT III are scheduled on a recurring basis in the following
locations:

San Diego, California
Washington, D.C.

On-site instruction is available. Contact CACI for details.

For information on free trials or training, please contact the following:

CACI Products Company
1455 Frazee Road, suite 700
San Diego, California 92108
Telephone: (619) 881-5806
 www.simscript.com

Introduction

As an aid to making important decisions, the use of computer simulation has grown at an
astonishing rate since its introduction. Simulation is now used in manufacturing, military,
nuclear applications, models relating to urban growth, hydroelectric planning, transportation
systems, election redistricting, cancer and tuberculosis studies, hospital planning,
communications, and multi-computer networks. SIMSCRIPT III is suitable for building high-
fidelity simulation models especially very large models. SIMSCRIPT III modularity and
object-orientated concepts simplify development, maintenance and code reuse.

SIMSCRIPT III is a language designed specifically for simulation. It is the most efficient and
effective program development technique for simulation, due to the following properties:

• Portability. SIMSCRIPT III development environment, which includes
Development Studio, language compiler and Graphical systems are available on the
various computer systems. This facilitates the development of general-purpose
models and simulation applications that can be moved easily from one site to another
and from one organization to another.

• Appropriate Constructs. SIMSCRIPT III provides constructs designed especially
for simulation (e.g., classes, objects, object attributes, processes, resources, events,
entities, and sets). These constructs make it easier to formulate a simulation model.
Implementation of the simulation program is also quicker because these powerful
tools do not have to be invented anew.

• Self-Documenting Language. Applications developed using the SIMSCRIPT III
language is characteristically easy to read and understand. The language encourages
this because it is oriented toward the kinds of problems being solved rather than the
machines being used as tools. The very high-level language features of SIMSCRIPT
III were designed to make it possible to manage a complex simulation models.

• Error Detection. SIMSCRIPT III performs a number of error checks that help to
assure that a simulation model is running correctly. Powerful inline symbolic
debugger speeds up run-time analysis of model behavior.

When an error in a run is detected, model enters SIMSCRIPT III symbolic debugger,
which allows program status investigation, which includes the names and values of
variables, system status, and other valuable information. This reduces the time spent
in developing and testing programs.

• Statistical Tools. Along with the mathematical and statistical functions most often
used in simulation (exponential functions, random number generators, and so on),
SIMSCRIPT III includes the accumulate and tally statements that allow the model
builder to collect statistics on key variables in his model.

• Simulation Graphics. Brings interactive animated and display graphics to the

SIMSCRIPT III User’s Manual

 2

SIMSCRIPT III models. Graphical objects can be easily added to the program
providing automatic animation and information display. Input/ Output dialog boxes,
menu bars, pallets can easily be added to the model providing elegant and functional
Graphical User Interfaces.

 • Data Base Connectivity. Provides SIMSCRIPT III Application Program Interfaces
(API’s) to the major databases available on the market: Microsoft Access, SQL
Server Oracle, IBM DB2 and IBM Informix.

• Operating System Interface. Provides SIMSCRIPT III Application Program
Interfaces (API’s) to Operating System Services facilitating portable models across
all SIMSCRIPT III supported computer platforms.

• Open System. SIMSCRIPT III provides possibility to call non-simscript
routines/functions from a SIMSCRIPT model. This facilitates usage of libraries
written in C/C++ , Java or FORTRAN from SIMSCRIPT models.

• Complete Methodology. The SIMSCRIPT III approach to simulation model
development provides the complete set of capabilities needed to develop a simulation
model. A simulation model developed in the SIMSCRIPT III programming language
is readable by the analyst familiar with the system under study.

• Support. CACI provides SIMSCRIPT III software, documentation, training and
technical support. Model development services are also available from CACI.

1. Developing Simulation Models with Simstudio

Developing a SIMSCRIPT III model typically involves the following steps:

1. Preparing one or more SIMSCRIPT III source files using a text editor.
2. Preparing graphical elements: Icons, Graphs, Dialog boxes, Menubars, etc
3. Building the model (creating the executable file), checking for compilation or

linking errors
4. Editing and re-building the model, as needed, until there are no errors.
5. Executing the model
6. Debugging the model. In case of errors during execution, the model should be

built with the debugging option, and executed with the interactive SIMSCRIPT
III symbolic debugger, to examine the state of the model and find the cause of the
error.

This development process can be done in the following two ways:

1. Using SIMSCRIPT III Development Studio – Simstudio or
2. Using Command-line interface from cmd window.

Simstudio is an easy to use, user friendly integrated programming development environment.
It is the Graphical User Interface (GUI) to the SIMSCRIPT III compiler, syntax color coded
text editor, graphical editors, automatic project builder and help system. In Simstudio,
editing source files, compiling and linking model executable is controlled automatically for
optimal efficiency. Simstudio provides the most commonly used compiler switches and link
options. It will be explained in detail in Chapter 1.1

Command-line interface can be used from a “cmd” window on MS Windows or a shell
terminal window on Linux. It is very convenient for users who need more control over
compilation and link phases and like to make use of make files and scripts. You can use
ed4sim SIMSCRIPT editor or your own favorite text editor such as “edit”, “vi”, etc. to create
SIMSCRIPT source files. To create graphical (either display or user input) elements for your
model, use the Simstudio graphical editors. Here you can make icons either by hand or
imported from JPG files. These can then be used for presenting dynamic objects or a realistic
background. CACI provides a set of commands for compiling and linking graphical and non-
graphical models like: simc, simld, simgld etc. These commands are explained in full detail
in Chapter 2. It also contains description of all available compiler switches.

SIMSCRIPT III User’s Manual

1.1 Simstudio Overview

SIMSCRIPT III Development Studio helps you to organize your model as a project which
can be built automatically using menu options.

When you start a new model development you have to create a new project, add source files,
add graphical elements and define how you want your project to be built. After that, you can
build and execute your model.

For a new project you will define the name of your project and directory where it will be
located. In the project directory a project_name.sp file will be created to hold model
information. Three subdirectories will be created: sources, executable and temp.

sources – will hold all the source files of your project. You can keep all source files
in one directory or organize them as a hierarchical structure of subdirectories. If
model is organized as a set of modules (subsystems), please see recommended
source code organization section 1.3.3

executable– will hold model executable project_name.exe and graphics.sg2 file
which holds graphical elements used during model execution. Input data files
necessary for model execution should also be placed in this directory.

temp– will hold object files necessary for building the model and other temporary
files. The contents of this directory are not important to developers.

This project directory structure helps you during development and deployment of your
model. The subdirectory “sources” contains the current version of the model source code,
while “executable” contains all files necessary to run the model.

Simstudio consists of a Menubar, Toolbar and three windows. The Project window is on the
left, Editor window on the right and Status window at the bottom.

Menu bar options: File, Project, Options, Window and Help, facilitate creating a new project,
opening an existing project setting project options and building and executing the model.

 4

Developing Simulation Models with Simstudio

Figure 1-1: Simstudio with source and graphics windows

The project window displays the project tree with current project subdirectories: sources,
executable and temp. The editor window contains windows for text and graphical editing.
The status window displays messages during project build and execution.

The project tree is composed of source code files with the extension ‘.sim’ in the directory
sources. The graphics.sg2 file contains the following graphical elements: icons with
extension ‘.icn’, forms with extension ‘.frm’ , and graphs with extension ‘grf’.
“graphics.sg2” can be found in the directory “executable”.

 5

SIMSCRIPT III User’s Manual

Simstudio incorporates the SIMSCRIPT III syntax color coded text editor for creating/editing
source files and graphical editors for creating/editing: icons, graphs, dialogs, menus and
palettes. When you open a text file with extension “.sim”, all necessary text editing menus
and tool bars will appear. The same applies to graphical editors.

The following sections will describe how to create projects, add source code and graphical
elements, and build and execute the model.

1.2 Creating a New Project

To create a new project, use the Project->New menu option. The dialog box Create New
Project will appear.

Figure 1-2: Create new project dialog.

Type in a name for the project. You can click on the Browse… button to help select a
directory for the project. Select the type of project to create in the drop-down box.

Figure 1-3: The project type dropdown box.

Currently you can create the following types of projects:

Simscript II.5 executable – For supporting legacy programs.
Simscript III executable – Create an object oriented SIMSCRIPT III model.
Simscript III library – Create a runtime library that can be linked into another model.

The new project will be created along with the following project directories: executable,
sources and temp. These will appear in the project window. An empty graphics.sg2 file
will be created in the executable directory to hold graphical elements. A “.sp” file named
after the project and will be created in the project directory to hold project information.

 6

Developing Simulation Models with Simstudio

Figure 1-4: Project tree

1.3 Adding Source Code to a Project

Source code for projects is stored by default in the directory sources. You can create a new
text ‘.sim’ file, add individual directories and files or add the whole subdirectory with
multiple sub-directories to your project.

1.3.1 Creating a New File with the Text Editor

 7

SIMSCRIPT III User’s Manual

Use File->New to open an untitled text window. Type in the text and use File->Save As
to save it in the directory sources. The new file will appear in the project tree in the
project window and will be saved on the disk.

Figure 1-5: Creating a new source file

To open this file again, double-click on its name in the project tree. When you open a text
file for editing the menu option Edit and the text editor toolbar will contain all
necessary options for text editing.

You can open or delete a file from the project tree. Right mouse click on the source file
name in the project tree. This will open a pop-up menu with the options open or delete.
You can open the file for editing or you can delete it from the project and the disk.

 8

Developing Simulation Models with Simstudio

1.3.2 Adding a Directory or a File Using Project Window

To add a new directory to the directory sources, right-click on its name in the tree. It will
bring a pop-up menu with options: find in directory, add files, new folder and delete.
Chose new folder.

Figure 1-6: New folder dialog

Enter the new folder name in the dialog box and click OK. The new folder will be created
on the disk and will appear in the project tree.

 9

SIMSCRIPT III User’s Manual

Figure 1-7: Creating a new folder in the project tree

You can right mouse click on this new folder to delete it from the disk and the project
tree.

When you chose add files from the pop-up menu the browsing dialog box will appear.
This allows you to add any file to your project. The added file will be copied to the
selected directory and will appear in the project tree.

 10

Developing Simulation Models with Simstudio

1.3.3 Adding Multiple Directories and Files

To add multiple source files that are organized in hierarchical multiple subdirectories, copy
the whole directory structure with to the project sources directory. Use Project->Update
Project Tree to include all directories and files for the project tree.

Figure 1-8: Importing source code files and directories.

If the SIMSCRIPT III model is using subsystems, the following file naming conventions are
suggested: The public preamble of the main module should be placed in a file name.sim,
where name is name of the main module. For example main module of system shipping
should be placed in shipping.sim file. The implementation of the main module i.e. methods
and routines should be placed in a file shipping_i.sim

Subsystems should also be placed in two files: subsysname.sim and subsysname_i.sim. The
file subsysname.sim should contain the public preamble of the subsystem and

 11

SIMSCRIPT III User’s Manual

subsysname_i.sim should contain the private preamble (if any) and the implementation of the
subsystem. The private preamble must appear first followed by the methods of the
subsystem. For example, subsystem resource would be placed in resource.sim and
resource_i.sim files.

All model files have to be placed in project directory sources, or a sub-directory of
sources.

Figure 1-9: Project tree with SIMSCRIPT III source code with subsystems

1.3.4 Adding Graphical Elements to a Project

Graphical elements for your model are located in the graphics.sg2 in the directory called
executable. An empty graphics.sg2 container will be created with every new project.

 12

Developing Simulation Models with Simstudio

Right mouse click on graphics.sg2 in the project window. This brings up a pop-up menu
with the following options: new, import and save. If you click on new, a dialog box will be
presented allowing you to name the new graphical element and to chose its type: Icon, Dialog
Box, Simple message box, Menu bar, Palette, 2D chart, Pie chart, Analog clock, Digital
clock, Dial, Level Meter, Digital display and Text display.

Figure 1-10: Create a new icon, graph or form.

After you define a type and click Create, a new graphical element icon will appear in the
graphics.sg2 project window. This opens the graphics window in the Editor window along
with the toolbar for the corresponding Graphical editor.

 13

SIMSCRIPT III User’s Manual

Figure 1-11: Adding a new Icon in Simstudio

A detailed explanation on how to create and use graphical elements in SIMSCRIPT III
models can be found in the SIMSCRIPT III Graphics Manual.

1.4 Opening an Existing Project

 To open existing projects use the Project->Open menu. The dialog box Open Project will
appear allowing you to locate a project file.

 14

Developing Simulation Models with Simstudio

Figure 1-12: Open an existing project.

Select project_name.sp and click Open. The selected project will be opened for
development.

 15

SIMSCRIPT III User’s Manual

1.5 Building a Project

Building a project can be done in two ways: using menu options: Project->Build or
Project-> Rebuild All.

If you use Project-> Rebuild All, all source files will be compiled and linked. When you use
Project->Build only the modules changed after the previous build will be recompiled, and
the model will be re-linked.

Options for building a model are found by clicking on the Options->Project menu. It will
bring up the Project options dialog.

If you are building an existing SIMSCRIPT II.5 project, in some cases you can use the
compatibility switch so that compiler suppresses warnings about deprecated functionality,
and your existing model should behave as before. But, usage of this switch will also exclude
the new more efficient time scheduling mechanism and an improved algorithm for handling
ranked sets.

The model can be built either for release or for debugging.

You can define compiler options for release mode to optimize code generation and to include
run-time checking. For debugging mode you can define warning messages to be suppressed
or displayed and run-time checking to be performed. You can also request various compiler
listings to be generated.

Your model can be linked With Graphics libraries or Without Graphics libraries. Models
that import from the gui.m, or 3d.m modules must be linked with graphics. It can also be
linked statically or dynamically. Static link will link all necessary modules in the
executable, while dynamic link will link with the dynamic link libraries. Dynamic link is
faster and convenient during model development. However, executables should be linked
statically before begin moved to another computer for execution.

The name of the executable is by-default its project_name, but you can change it by typing
the desired name into the Binary text box

 16

Developing Simulation Models with Simstudio

Figure 1-13: The Project Options dialog

1.5.1 Building a Project for Debugging

During the development of your model, you may want to build your project for debugging.
Select Options->Project to open the Project options dialog box. Check build mode Debug.
This will cause debugging facilities to be incorporated in your model.

You can also define if you would like compiler warnings to be presented or to be suppressed.
During the debug phase, it is advisable that run-time checking be enabled – this will turn on
entity/object attribute access checking and array index checking at runtime. A run-time error
will be generated in for invalid accesses. These features will speed-up the testing phase.

To run your model with the debugger use Project->Debug. This will allow you to execute
the model step-by-step and to observe model variables.

 17

SIMSCRIPT III User’s Manual

A model built for debugging can also be executed with Project->Execute. Project will run
normally but in case of run-time error, control will be transferred to the debugger and you
will have full debugging capabilities.

 18

Developing Simulation Models with Simstudio

1.5.2 Building a Project for Release

Once a model has been debugged it can be rebuild in Release mode. Use Options->Project
to bring up the Project options dialog box and click the Release radio button (under “build
mode”). Choosing Optimization can increase execution speed. Turning off Runtime
checking can increase speed even more. However, as seen in the following table,
optimization has the following influence on the ability to locate the source of a crash or
runtime error.

Build mode Optimization Debugging notes
Release On No traceback or debugging in event of crash.
Release Off Traceback available, but no line numbers or debugging.
Debug Off Full Traceback and debugging.

A model built in Release mode should be run with Project->Execute.

1.5.3 Compiler Listings

Checking the appropriate Listing boxes in Project Options will tell the SIMSCRIPT III
compiler to generate various compiler listings: a compiler listing with or without local cross-
reference, or a compiler listing with global cross-reference. All compiler listings will appear
in the status window and will be placed in the project_name.lis file in the temp directory.

1.6 Using the Class Browser

Simscript III users of SimStudio can click on the classes tab at the bottom of the project
tree view to show a tree representing all subsystems, classes, methods and routines in the
model. This is a useful way to see a “summery” of your model, or to investigate a model
that is not well known. The class browser also allows you to edit a particular
implementation or definition of a particular construct by double–clicking on its name in
the tree.

At the “root” level of the tree structure that composes the class browser there will be an
item for each subsystem in the model.

 19

SIMSCRIPT III User’s Manual

Figure 1-14: The Class Browser

Clicking to expand one of these items will allow you to choose to browse the public
declarations, private declarations or the implementation code.

 20

Developing Simulation Models with Simstudio

Figure 1-15: Class browser – selecting a module.

1.7 Executing a Model

After building, the model’s executable is located in the project directory executable. To run
it, use the menu option Project->Execute.

The graphics.sg2 file will be found in the executable directory. All input data necessary to
run the model should be placed in this directory.

Projects built in Debug mode should be executed using Project->Debug.

1.7.1 Passing Command-Line Arguments

To pass command line arguments to the model, or to redirect model output use the

 21

SIMSCRIPT III User’s Manual

Command line text box of Project Options to enter the command.

 Project_name.exe – arg1 –arg2 …

Here is an example of the redirection of output of the model intro5.exe to a file intro5.out.
When the program is run, intro5.out will be created in the executable directory.

Figure 1-16: Defining the command line for model execution

 1.6.2 Running the Executable with the Symbolic Debugger

If the executable was built in Debug mode it can either be executed using menu options
Project->Execute or Project->Debug.

Project->Debug will invoke the symbolic debugger and the user will be able to have full
debugging control during execution like: stepping, setting break points and viewing

 22

Developing Simulation Models with Simstudio

model variables. Chapter 4 of this manual explains all debugging commands and
facilities.

Figure 1-17: Simscript Symbolic Debugger window

1.8 Closing the Project

To close a project use menu option Project-> Close.

 23

SIMSCRIPT III User’s Manual

1.9 Setting Simstudio Preferences

Chose menu option Options->Preferences.. and set your preferences in the dialog box .

Figure 1-18: SimStudio preferences dialog.

“Reload last project at startup” will load the last project that was open at the time Simstudio
was last shut down.Marking check box “Reload files when opening project”, allows
Simstudio to open files from the previous editing session. Checking “Force save before
build” will automatically save an edited source code file before the project is built. For
editing, the number of spaces per <tab> can be set also.

1.10 On-line Help

Simstudio provides full on-line help for all aspects of developing SIMSCRIPT Models,
including: SIMSCRIPT language constructs, Simulation graphics Editors and graphics
library, Simstudio, Command-line interface for developing models, List of Compiler and
Run-time errors., using Symbolic Debugger, Data Base connectivity, etc.

Use menu option Help to invoke on-line help system.

 24

Developing Simulation Models with Simstudio

Figure 1-19: Simstudio on-line help window

 25

SIMSCRIPT III User’s Manual

1.11 Advanced Compiler/Link Options

Produce C Files…

Project options dialog box has two buttons used for more advanced model development. The
“Produce C Files” check box will preserve the “C” files that are generated for each
SIMSCRIPT source file at the time the model is built. If you check this option, you will only
generate C files. If you want to build the model, you should not check this option.

Libraries and Binary Object Files…

Facilitates linking executable with objects from additional objects or external libraries.

Press “Move up”/”Move down” to change order of libraries and objects to be linked.

Figure 1-20: Importing libraries and objects for linking

Press “Add…” to select additional libraries and objects. Use the browser dialog to locate
and select object files to add to the project. The <Shift> key can be used to select
multiple files.

 26

Developing Simulation Models with Simstudio

 27

Imports…

This option is available for Simscript III projects. It specifies search path for “import”
declarations found at the beginning of the public or private preamble.

Press “Add…” to select directories to be searched. Press “Move up”/”Move down” to change
order of these directories.

By default, the path to the “defs” folder found in the ‘SIMHOME’ (distribution directory) is
included. The defs folder contains public preambles for the gui.m, 3d.m, 3dshapes.m,
sdbc.m, and continuous.m subsystems.

Figure 1-21: The Imports.. dialog box

2. Developing Simulation Models Using Command-
Line Interface

Developing a SIMSCRIPT III program, using command-line interface commands,
typically involves the following steps:

1. Preparing one or more SIMSCRIPT III source files using a text editor.
2. Compiling the program and checking for compilation errors.
3. Editing and re-compiling the program, as needed, until there are no

compilation errors.
4. Linking the object files generated by the compiler to produce an

executable file.
5. Executing the program.
6. Debugging the program. In case of errors during execution, the program

should be compiled with the debugging option linked and then executed
with the interactive SIMSCRIPT symbolic debugger to examine the state
of the program and find the cause of the error.

2.1 Preparing Source Files

A SIMSCRIPT III program may be prepared using ed4sim SIMSCRIPT syntax color
coded editor, vi, emacs or any other text editor.

If the program is small, it is convenient to store the entire program within a single file. If
the program is large, it is best to organize the code as subsystems. Files containing
SIMSCRIPT III source code must be given names that end with .sim or .SIM. The public
preamble of a subsystem called name MUST be placed in the file “name.sim”. There are
no naming restrictions on source files containing private preambles or implementation
code.

As a convention, you can place the private preamble followed by the implementation and
the file “name_i.sim”. Although not a requirement, it is easier to compile and link a
SIMSCRIPT III program that is stored in a directory of its own; i.e., a directory
containing the entire source files of the program in question and none of the source files
of other programs.

2.2 Compiling

The SIMSCRIPT III compiler translates a program written in the SIMSCRIPT III
programming language into one or more object files. The compiler uses C as an intermediate
language, but this is transparent to you, the SIMSCRIPT III program developer. The compiler

Developing Simulation Models Using Command-Line Interface

will write diagnostics — error messages and warning messages — to stderr. Errors prevent
the generation of object files; warnings do not. See Appendix A for a complete list of error
and warning messages that are issued by the compiler.

The simc command is used to invoke the SIMSCRIPT III compiler and linker. Its general
form is:

% simc [options] file1.sim, file2.sim, ...
For example, to compile and link a program consisting of a single source file named
abc.sim, enter:

% simc abc.sim

This command will compile the SIMSCRIPT source file abc.sim, reporting compilation
errors and warnings to the terminal. If the compilation is successful, the object module abc.o
or abc.obj will be linked producing an executable file named a.out or a.exe, depending on a
platform.

The SIMSCRIPT compiler options follow the same general format as many C compilers and
other standard UNIX compilers. The options available should be familiar to experienced
programmers. Below is a brief overview of a few of the most commonly used options:

-c Do not link any object files after compilation.

-d Enable SIMSCRIPT symbolic debugging.

-e Compatibility switch for SIMSCRIPT II.5 programs

-h Use a single event set for all process notices.

-I Specify path for imported public preambles.

-l Display a program listing.

-o name When linking, create an executable with the name provided.

-s Turn on case sensitivity for names.

-v Compile the preamble as “VERY OLD”. See below for more details.

-w Do not report any compiler warnings

-w kk, nn, mm Do not report compiler warnings number kk, nn, mm

-O Maximize speed by eliminating the traceback in the event of a crash.

-T Link the program statically instead of dynamically.

-X Display a local cross-reference listing for a module

 29

SIMSCRIPT III User’s Manual

Below is a complete list of the options available in the SIMSCRIPT III compiler:

-a Compiler will produce a file containing the generated source code for the
together with the SIMSCRIPT source code as comments. Produces a .c file
with “ALLSTARS” comments, which shows the expansion of complex
SIMSCRIPT statements into simpler ones.

-c The compiler's default behavior is to link using simld after compilation. If

you want to stop this from happening, use this option.

-C The compiler will generate code to perform full runtime checking. This code
validates every array element reference and every attribute reference (for both
object and entities). Also, in the event of a runtime error, a more elaborate
traceback will be provided. This option allows SIMSCRIPT III to detect a
larger class of runtime errors and should be used when compiling a program
that is not fully debugged. Both the traceback and runtime error checking will
make your programs run somewhat slower. Note that runtime checking is not
enabled by default.

-C0 Provide runtime checking for array element reference only without entity
class checking and object type checking. Note this is C"zero", not
C"oh".

-d Selects 'compiling for debug'. The compiler is fully integrated with the
SIMSCRIPT III symbolic debugger. After linking, the program can be
activated with the command line switch -debug to provide interactive dialog
with the debugger. The SIMSCRIPT III symbolic debugger allows you to
study and change the behavior of a model at runtime. Debugging features
include the following:

 Setting a break point in a method or a routine, or in an active

SIMSCRIPT process instance or process-method.

 Single stepping one source line at a time

 Viewing source code

 Displaying of local, global variables, object attributes

temporary entities in various formats and their modifications

 Displaying the status of the program: I/O and memory usage
statistics etc.

To use all the debugger functions, a SIMSCRIPT II.5 program must be
compiled with the -d compilation switch. To start a program in “'debugging
mode” where you can set breakpoints etc., the executable should be invoked
with the -debug option:

 30

Developing Simulation Models Using Command-Line Interface

simc -d prog.sim -o prog
prog –debug

The -debug option is internal to SIMSCRIPT and will not be seen by the
user program.

A runtime error will automatically activate the debugger so that you can
examine the current stack and variables that led to the error. If the program
was not compiled with the -d option, only a minimal set of debugging
functions will be available. If the program was compiled with the -d option,
all debugger functions will be available. An on-line help command h will
display a list of available debug commands and parameters. See chapter 4.

-e Compatibility switch for use with existing SIMSCRIPT II.5 models. It will
suppress warnings for deprecated functionality, but the model will not have
benefits of SIMSCRIPT III faster execution and handling of ranked sets.

-G Link a SIMGRAPHICS program using simgld.

-h The compiler will place all event and process notices into a single event set

EV.S(1). This means that the ordering of process notices is in chronological
order. Process notices that are scheduled for the same exact time will be
ranked as FIFO (first activated first run). Note that the priority order and
break ties statements are not allowed when compiling with the –h option.

-l The compiler will write a listing to the standard output. Typically, standard

output is redirected to a file. For example, to write a listing to a file named
listfile, enter:

% simc -l *.sim > listfile

The listing shows the source statements together with diagnostic messages, if
any. It may also include local and/or global cross-references (see the –x and -
X options).

-I path Import declarations which are in the public preambles in the path

-L n The compiler will produce output listings with n lines per page. The default
value is 55.

-o name When linking, the executable file created will be called name. If this option

is not specified, a.out is the default executable name. For example, the
following command creates an executable called file after compiling all the
.sim source files in this directory.

simc *.sim -o file

-O This will compile the SIMSCRIPT III code without any traceback support in

an effort to improve speed. Normally, if a runtime error occurs the debugger

 31

SIMSCRIPT III User’s Manual

window is shown. Even if the model is compiled without debugging, you can
type the “t” command to see which routine or method that caused the runtime
error. When a model compiled with –O crashes, the debugger window is not
shown.

simc -O -o prog filename.sim

-s Turn on case sensitivity. Code compiled with this option will have case

sensitive names (but not keywords). This applies to all routine, method,
attribute, variable, etc names. For example:

 Define My_Var as an integer variable
 . . .
 Let my_var = 6 ``error! my_var is undefined!

-v This option means a VERY OLD PREAMBLE. It is used during re-compilation

of SIMSCRIPT routines when there are no changes to the Preamble.sim. It
will speed-up the re-compilation process because Preamble.o will not be
generated. Also, the PREAMBLE will not appear in the listing.

For example, enter the following command to re-compile file1.sim into an
object file (which will be called file1.o). The name of the file which contains
the PREAMBLE, Preamble.sim, must always be given because it contains
definitions for SIMSCRIPT data structures. The -c option prevents linking.

simc -cv Preamble.sim file1.sim

Enter the following command to create an executable called a.out (the default
name) from the object files in this directory after re-compiling rout1.sim.

simc -v Preamble.sim rout1.sim *.o

It can also be used for recompilation of implementation part of the subsystem
when public preamble has not been changed.

-w The compiler will suppress warning messages, i.e., no warning messages

will be displayed.

-wA,B The compiler will suppress warning messages, i.e., no warning messages

will be displayed for errors number A and B. For example, to get rid of
only the warning 1002 “Local variable not used”:

simc –w1002 Preamble.sim rout1.sim

-X The compiler will append to the listing a global cross-reference for the entire

program. A global cross-reference shows the name of every routine or
method, which references each globally defined name.

 32

Developing Simulation Models Using Command-Line Interface

The following command compiles a program consisting of main module with three source
files: abc.sim, def.sim and ghi.sim. Warning messages will be suppressed (-w option) and
runtime checking code will be generated (-C option).

% simc -w -C abc.sim def.sim ghi.sim

The following is a convenient way to compile a program consisting of many source files
within a single directory:

% simc *.sim

In this example, *.sim is automatically expanded into a list of source files sorted by name.

If the program consists of main module mname and a set of subsystems sub1, sub2, sub3,
sub1.sim, sub2.sim, and sub3.sim must contain (at the beginning of the file) the public
preambles for the subsystem sub1, sub2, and sub3. As a convention we can put
implementation code for sub1 in sub1_i.sim, i.e. private preamble and methods and routines
(although this is not a requirement). By convention the preamble for the main module
“mname” should be placed in file “mname.sim”.

The SIMSCRIPT III compiler uses the headings (first line of code) at the beginning of a
source file to determine what the file contains. Here are the possible headings

Public preamble for the name subsystem -- Public preamble. Source file MUST be named
“name.sim”. (Can optionally be followed a private preamble or implementation code).

Private preamble for the name subsystem – Private preamble (optionally followed by
implementation code). There is no file naming restriction.

Preamble for the name system – Main module preamble (optionally followed by
implementation code). There is no file naming restriction.

Implementation for the name subsystem – Contains implementation code for subsystem
name. There is no file naming restriction. This statement must be used if implementation
code for a subsystem is to span multiple files.

<no heading> -- Contains implementation code for the main module or “the system”.

Importing

If the program imports some external modules/subsystems like exsub1, exsub2, which reside
in the directories dir1 and dir2 respectively, then directories where the public preambles of
the imported modules reside, have to be given to the compiler in the command like:

simc –c –I dir1 –I dir2 *.sim

Object files exsub1_i.obj and exsub2_i.obj or the library which contain the implementation
should be included during the linking of the model.

 33

SIMSCRIPT III User’s Manual

2.3 Recompiling

Main module

If the model contains only a main module, whenever a change is made to the PREAMBLE, it is
necessary to re-compile the entire program. If a changes are made only to routines of the
program, only the modified routines need be re-compiled, not the entire program. Suppose
that the routine in file xyz.sim has been modified. If this routine does not require anything
declared in the PREAMBLE, then the following command can be used to re-compile it:

% simc -c xyz.sim

If this routine does reference something declared in the PREAMBLE, it is necessary to
recompile the PREAMBLE along with it:

% simc -cv PREAMBLE.sim xyz.sim

The -v option is specified to avoid regenerating the scripted routines contained in the
PREAMBLE.o.

Subsystems

When a program contains main module and a set of subsystems the subsystems can be
compiled separately. If any file in a subsystem is modified, the whole subsystem has to be
recompiled. If the public preamble of a subsystem is modified, all the subsystems which
import this module (or import modules that import this module) have to be recompiled and
subsequently re-linked.

2.4 Linking

If the -c option is used to suppress linking, the compiler generates object files, which need to
be linked. Each of these files has a name that ends with .o on Unix or .obj on Windows
platform. The simld command is used to link a SIMSCRIPT III non-graphical program. Its
general form is:

% simld file.o ...

If there are any undefined references, the name of each missing routine will be displayed.
If there are no undefined references, an executable file named a.out will be produced. (a.exe
is produced on Windows). Suppose a program consists of only three routines: main.sim,
sub1.sim and sub2.sim. Then the object files generated by the compiler are main.o, sub1.o
and sub2.o. The following command will link this program:

% simld main.o sub1.o sub2.o

 34

Developing Simulation Models Using Command-Line Interface

The following is a convenient way to link a program consisting of many object files within a
single directory:

% simld *.o

Note that it is necessary to link all of the object files generated by the compiler. Even if just a
single routine has been modified and re-compiled, it is necessary to re-link the entire set of
object files.

simld is a shell script which invokes the UNIX C compiler, cc, to link object files. Any
option, which may be specified to cc, may also be specified to simld. The most useful of
these is the -o option. It is used to name the executable file something other than a.out. For
example, to create an executable file named compute, enter:

% simld -o compute *.o

simgld is another shell script which invokes cc. It must be used instead of simld to link with
graphics or with the built in subsystems distributed with SIMSCRIPT III. For example, to
link a graphics program and name the executable file animate, enter

% simgld -o animate *.o

It is possible to create a library of SIMSCRIPT III routines using the UNIX archive utility,
ar. To create a library named xyz from the object files in a directory, enter the following
command:

% ar r libxyz.a *.o

To make the library accessible to all users, enter the following sequence of commands:

% mv libxyz.a $SIMHOME/lib
% ranlib $SIMHOME/lib/libxyz.a
% chmod 644 $SIMHOME/lib/libxyz.a

SIMHOME is the environment variable, which contains the full path where SIMSCRIPT III is
installed. For more details of the SIMHOME, see the Installation Notes for the current
SIMSCRIPT III release.

Note that ranlib is not available on all systems. On systems where it is not available it is not
needed. To link the object files in a directory with this library, enter:

% simld *.o –lxyz

A SIMSCRIPT III program can call routines written in other languages, such as C or
FORTRAN. To link such a program, specify to simld (or simgld if the program makes use
of SIMGRAPHICS features) the name of each object file created by the other compiler,
along with the name of each object file created by the SIMSCRIPT III compiler.

Compiler switch -G will link graphical models with the graphics libraries.

 35

SIMSCRIPT III User’s Manual

simc -G *.sim

SIMSCRIPT III runtime libraries are distributed in two versions: dynamic link libraries and
archive libraries. This facilitates dynamic and static linking. By default programs will be
linked dynamically.

When a model is linked dynamically, the executable image does not include the entire object
modules it needs for execution. It contains pointers to the dynamic link libraries also called
“shareable libraries”. The benefits of dynamic linking are twofold: first linking time is
shorter, second all SIMSCRIPT models in the same computer platform share the same
runtime libraries which results in substantial savings of disk space. When you use existing
link commands: simld, simgld your model will be linked dynamically.

If you want to execute your model on some other platform, which does not have the same
release of SIMSCRIPT III, or does not have SIMSCRIPT III installed at all, your model must
be linked statically. SIMSCRIPT III provides commands for platform independent static
linking or “total linking” for both non-graphical and graphical SIMSCRIPT models:

tsimld - static link of non-graphical models
tsimgld - static link of graphical models by with graphics

2.5 Executing

A SIMSCRIPT III program is executed by entering the name of the executable file. For
example:

% a.out

Parameters specified on the command line are available to the SIMSCRIPT III program
in the global text array, parm.v. For example, consider the following command:

% a.out -i 10 WXYZ.dat

Upon entry to this program, parm.v will be set up as follows:

DIM.F(PARM.V(*)) = 3
PARM.V(1) = -i
PARM.V(2) = 10
PARM.V(3) = WXYZ.dat

A SIMSCRIPT III program can read from standard input by reading from UNIT 5. It can
write to standard output by writing to UNIT 6 and can write to standard error by writing to
UNIT 98. Any redirection of these units, which is allowed by the operating system, may be
specified on the command line.

Internal command line switches used for debugging, like -debug and -batchtrace, will not

 36

Developing Simulation Models Using Command-Line Interface

be seen by the program in parm.v.

If a runtime error is detected by SIMSCRIPT III, the program will be stopped and:

1. A runtime error message will be written to standard error (see Appendix B for a
complete list of runtime error messages) and the interactive debugger dialog will be
entered allowing you to examine the state of the program;

2. If the program was invoked with the command line switch -batchtrace, a runtime

error message, a traceback, a simulation status report, a memory status report and an
I/O status report will be written to a file simerr.trc and the user-supplied snapshot
routine, snap.r, will be called, if it exists. The level of debugging information
included in a traceback depends on the compiler switches used for compilation: -d
will provide method names and routine names with local variables and line numbers.
Compiling with no switches will include routine and method names only.

Any SIMSCRIPT III program may be invoked from a shell script. The exit status returned by
the program will be zero if the program was terminated by a stop or end statement, and will
be non-zero if the program was aborted due to a runtime error. However, you may explicitly
call exit.r to terminate your program and return a particular exit status.

2.6 Makefiles

The file-naming scheme that this compiler uses is compatible with the naming scheme used
by the C language compiler. Because of this, it is possible to use the UNIX “make” utility.
This utility only recompiles the source files that have changed since the last compilation.
This is an easy and reliable way to manage models of medium to large size. Make is not very
good at handling models whose sources are spread over many directories but, with care, it is
possible.

The make utility relies on a special file, called a “make file”, to describe the rules for
rebuilding your particular model. By default, the “make file” is named either makefile or
Makefile. Other file names may be specified with the -f option of make. See the man page
for make(1) for more information.

2.6.1 Compilation Sequence

The compiler knows about the following kinds of file extensions, and treats them as follows:

.sim: Compile as SIMSCRIPT source files.

.SIM: Alternate suffix for SIMSCRIPT source files.

.o: Object files.

 37

SIMSCRIPT III User’s Manual

.c: C source files, produced in intermediate stage.

.a: Archive libraries to include in linking.

Files must be named using this convention. For other kinds of file extensions, consult the
manual for your C compiler. Files are named after the SIMSCRIPT source using the
following convention

myfile.sim -> myfile.o

This allows the use of makefiles.

The easiest way to use the compiler is to simply specify all the sources you want compiled,
and let the compiler compile and link them into an executable program. However, during
development of a large program, only recompiling those source files that have changed since
the previous compilation can save much time. This is accomplished by saving the object file
for each source file. Then, when a source file is recompiled, the new object file replaces the
old, and all of the object files can be relinked to create a new executable. Linking all of the
object files is much faster than compiling all of the source files.

Make takes this one step further. It checks the modify time of each source file, and only
recompiles it if it is newer that its object file or the target executable. This way, only the
source files that need compiling are actually compiled. The actual compilation and linking
commands are specified in the makefile.

2.6.2 Make Description File Format

The descriptions in this section are simplified. For a complete description of the file format,
see the documentation that came with your system.

Entries in a makefile are of the following form:

target1 [target2 ...] : [dependent1 ...]
<tab> command [# comments ...]

Items in square brackets are optional. The <tab> must be a “tab” character. Shell
metacharacters such as '*' and '?' are expanded. The entry is concluded with a blank line.

Makefiles can also contain simple macros. Macros can be defined in the make command line,
or more commonly, in the makefile. The definition is simple: a macro name, an “equal” sign,
and the macro value. An example is PREAMBLE = Preamble.sim. A macro is invoked by
preceding the name with a dollar sign ($$ is used to represent a real dollar sign). Macro
names longer than one character must be parenthesized like this: “$(PREAMBLE)”. When the
macro is invoked, its text is replaced with its current value, so in our example,
“$(PREAMBLE)” would be replaced with Preamble.sim. Make also has four predefined
macros specific to the job it performs. These special macros are $*, $@, $?, and $<. These
macros are re-evaluated before each command. They are evaluated as follows:

 38

Developing Simulation Models Using Command-Line Interface

• The $* macro is the root file name of the current file. For example, if the

current file were frequency.sim, $* would equal frequency.

• The $@ macro represents the current “target” file name.

• The $? macro is the string of file names found to be newer than the current

target.

• The $< macro is the name of the file which caused this command to be

executed.

2.6.3 Transformation Rules

A transformation rule is what make uses to “transform” a source file into an object file, or
several object files into an executable. Many useful transformation rules are built into make,
such as rules to compile C, FORTRAN, or even assembler. Unfortunately, the rules for
SIMSCRIPT are not built in.

To provide make with this information, make must first be informed of the new source suffix,
.sim. This is done using a fake target called. SUFFIXES. For our purposes, SUFFIXES:
.sim .o is sufficient. Next, make needs to know how to transform .sim files into .o files. We
do this using a transformation rule called. sim.o. See the sample makefile in paragraph 2.7.5
for an example. In transformation rules, the special macros are set as follows: $* is set to the
file name without the suffix, $< is the name of the file to be transformed, and $@ is the name
of the file to be created (or updated).

2.6.4 Special Notes

Each line in a makefile is executed by a new invocation of the shell, so commands like cd for
example, must be combined into one line using the shell command separator, “;”.

By default, make displays each command before executing it. This can be prevented by
preceding the command with an at sign (@).

If a macro is defined on the make command line, it supersedes the makefile's definition, if
any is present. A typical use of this is to use make SFLAGS=-O to use optimization on any
compiles that need to be performed.

There are several ways to force recompilation:

1. Use touch(1) to update the source file's modify time. Make will then consider the
source file “changed”. This will also force relinking if the corresponding object
file is a dependent of the executable.

 39

SIMSCRIPT III User’s Manual

2. Delete the corresponding object file. This has the same effect as the above.
3. Delete the executable. This will force relinking, but will not recompile any

sources unless they are out of date.

2.6.5 Sample Makefile

Generic makefile for SIMSCRIPT programs

MAKE ARGUMENTS:
<no arg> : Make executable with the name in the "PRG" parameter.
clean : Remove all non-source files, i.e. object files and
the executable and all intermediate files.
cleanexe : Remove the executable.
#---

#===
FILL IN THE PARAMETERS BELOW UNTIL THE LINE
">>> END OF PARAMETERS <<<"
#===

<<< PARAMETERS >>>
PRG: The name of the executable.
PRG = bounce

PREAMBLE: SIMSCRIPT source file containing the preamble.
SIMFILES: All other SIMSCRIPT source files. A "\" followed
immediately by a carriage return must be put at the
end of the line to continue to the next.
PREAMBLE = Preamble.sim
SIMFILES = ball.sim bounce.sim done.sim init.sim main.sim menu.sim \

 menuctl.sim output.sim
SFLAGS: SIMSCRIPT compile flags.
SFLAGS = -d
SIMLINK: Specify link command with SIMGRAPHICS I, SIMGRAPHICS II,
or no graphics; dynamic or static link.

<<< DYNAMIC LINK >>>
SIMGRAPHICS I - simgld1
SIMGRAPHICS II - simgld2 or simgld
NO GRAPHICS - simld

<<< STATIC LINK >>>
SIMGRAPHICS I - tsimgld1
SIMGRAPHICS II - tsimgld2
NO GRAPHICS - tsimld
SIMLINK = simgld
>>> END OF PARAMETERS <<<

#===
#=========== BELOW HERE NO CHANGES SHOULD BE NECESSARY ===============
#===

 40

Developing Simulation Models Using Command-Line Interface

SIMC: SIMSCRIPT compile command.
SIMC = simc

OBJS: List of .o files.
OBJS = $(PREAMBLE:.sim=.o) $(SIMFILES:.sim=.o)

The first (empty) .SUFFIXES clears the SUFFIXES list. The second
acknowledges only the .sim and .o suffixes. This avoids problems
with extraneous .c files and others.
.SUFFIXES:
.SUFFIXES: .o .sim .c

$(PRG) : $(OBJS)

 @echo "-- Linking ..."
 $(SIMLINK) -o $(PRG) $(OBJS)
 @echo "-- $(PRG) was successfully built!"

clean :
 @echo "-- Removing all intermediate files and the executable."
 rm -f *.o *.c *.i *.s *~ core a.out $(PRG)

cleanexe :
 @echo "--- Removing executables."
 rm -f core a.out $(PRG)

#-------------------------- RULES -----------------------------------

If preamble was changed, we need to recompile everything. Since
after that all *.o will be current, just the link is left in the
target above.

$(PREAMBLE:.sim=.o): $(PREAMBLE)

 @echo "-- $(PREAMBLE:.sim=.o) outdated or missing!"
 @echo "-- Recompiling everything ..."
 $(SIMC) -c $(SFLAGS) $(PREAMBLE) $(SIMFILES)

How to make an individual object file from a simcript source file.

.sim.o:

 $(SIMC) -cv $(SFLAGS) $(PREAMBLE) $*.sim

2.7 Obtaining Online Help

Online documentation regarding the use of the SIMSCRIPT compiler can be obtained at the
SIMSCRIPT WEB Site

http://www.simscript.com

2.8 Example Program

The following is an example of a complete program and compilation.
 % ls

 41

SIMSCRIPT III User’s Manual

 main.sim SIMU01 job.sim stop.sim
 % simc -l *.sim > listing
 % ls

Preamble.o a.out* job.o main.o stop.sim
Preamble.sim generator.o job.sim main.sim
SIMU01 generator.sim listing stop.o
% cat listing

PAGE 1
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PREAMBLE
2
3 RESOURCES INCLUDE CPU AND MEMORY
4 PROCESSES INCLUDE GENERATOR AND STOP.SIM
5 EVERY JOB HAS A JB.PRIORITY
6 AND A JB.MEMORY.REQUIREMENT
7 DEFINE JB.PRIORITY AND JB.MEMORY.REQUIREMENT
8 AS INTEGER VARIABLES
9 DEFINE JOB.DELAY.TIME AS A REAL VARIABLE
10 EXTERNAL PROCESS IS JOB
11 EXTERNAL PROCESS UNIT IS 1
12 DEFINE SMALL.JOB.INTERARRIVAL.TIME,
13 MEAN.SMALL.JOB.PROCESSING.TIME, RUN.LENGTH
14 AND STOP.TIME AS REAL VARIABLES
15 DEFINE NO.CPU AND MAX.MEMORY AS INTEGER VARIABLES
16 DEFINE MAX.MEMORY.QUEUE TO MEAN 1MAX.MEMORY.QUEUE
17
18 ACCUMULATE CPU.UTILIZATION AS THE AVG OF N.X.CPU
19 ACCUMULATE MEMORY.UTILIZATION AS THE AVERAGE
20 OF N.X.MEMORY
21 ACCUMULATE AVG.CPU.QUEUE AS THE AVG AND
22 MAX.CPU.QUEUE AS THE MAXIMUM OF N.Q.CPU
23 ACCUMULATE AVG.MEMORY.QUEUE AS THE AVG
24 AND MAX.MEMORY.QUEUE AS THE MAXIMUM OF N.Q.MEMORY
25 TALLY AVG.JOB.TIME AS THE AVERAGE AND NO.JOBS.PROCESSED
AS
26 THE NUMBER OF JOB.DELAY.TIME
27
28 DEFINE HOURS TO MEAN UNITS
29
30 END ''PREAMBLE

 42

Developing Simulation Models Using Command-Line Interface

PAGE 2

CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PROCESS GENERATOR
2
3 UNTIL TIME.V >= STOP.TIME
4 DO
5 ACTIVATE A JOB NOW
6 LET JB.PRIORITY.. = RANDI.F(1,10,1)
7 LET JB.MEMORY.REQUIREMENT.. = RANDI.F(1,MAX.MEMORY,2)
8 WAIT EXPONENTIAL.F(SMALL.JOB.INTERARRIVAL.TIME,3) MINUTES
9 LOOP
10
11 END

PAGE 3
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PROCESS JOB
2
3 DEFINE ARRIVAL.TIME AND PROCESSING.TIME
4 AS REAL VARIABLES
5 IF PROCESS IS EXTERNAL
6 READ JB.PRIORITY..,JB.MEMORY.REQUIREMENT.. AND
7 PROCESSING.TIME
8 ELSE
9 LET PROCESSING.TIME = MIN.F(EXPONENTIAL.F
10 (MEAN.SMALL.JOB.PROCESSING.TIME,4),2 *
11 MEAN.SMALL.JOB.PROCESSING.TIME)
12 ALWAYS
13 LET ARRIVAL.TIME = TIME.V
14 REQUEST JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY(1)
15 WITH PRIORITY JB.PRIORITY..
16 REQUEST 1 CPU(1) WITH PRIORITY JB.PRIORITY..
17 WORK PROCESSING.TIME MINUTES
18 RELINQUISH JB.MEMORY.REQUIREMENT.. UNITS OF MEMORY(1)
19 RELINQUISH 1 CPU(1)
20 LET JOB.DELAY.TIME = TIME.V - ARRIVAL.TIME
21
22 END

 4
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 MAIN
2
3 WRITE AS /, "A COMPUTER CENTER STUDY", /, /
4
5 Open unit 1 for input
6
7 LET HOURS.V = 1
8 CREATE EVERY CPU(1) AND MEMORY(1)
9 Let U.CPU(1) = 1

 43

SIMSCRIPT III User’s Manual

 44

10 Let U.MEMORY(1) = 6
11 LET NO.CPU = U.CPU(1)
12 LET MAX.MEMORY = U.MEMORY(1)
13
14 Let SMALL.JOB.INTERARRIVAL.TIME = 2.0
15 Let MEAN.SMALL.JOB.PROCESSING.TIME = 0.8
16 Let RUN.LENGTH = 12.0
17 LET STOP.TIME = RUN.LENGTH / HOURS.V
18
19 PRINT 6 LINES WITH U.CPU(1), U.MEMORY(1),
20 60/SMALL.JOB.INTERARRIVAL.TIME,
21 MEAN.SMALL.JOB.PROCESSING.TIME AND RUN.LENGTH THUS

A C O M P U T E R C E N T E R S T U D Y
NO. OF CPU'S ** STORAGE AVAILABLE ****
SMALL JOBS ARRIVE AT THE RATE OF *** / HOUR

AND HAVE A MEAN PROCESSING TIME OF ***.*** SECONDS
LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
THE SIMULATION PERIOD IS **.** HOURS
28
29 ACTIVATE A GENERATOR NOW
30 ACTIVATE A STOP.SIM IN STOP.TIME HOURS
31 START SIMULATION
32
33 END ''MAIN

5
CACI SIMSCRIPT II.5 (R) v2.0 6/26/1997 15:23:42

1 PROCESS STOP.SIM
2
3 SKIP 6 LINES
4 PRINT 9 LINES WITH TIME.V, CPU.UTILIZATION(1)*100/NO.CPU,
5 MEMORY.UTILIZATION(1)*100/MAX.MEMORY,
6 AVG.MEMORY.QUEUE(1), MAX.MEMORY.QUEUE(1),
7 AVG.CPU.QUEUE(1), MAX.CPU.QUEUE(1),
8 NO.JOBS.PROCESSED AND AVG.JOB.TIME * MINUTES.V
9 THUS
A F T E R **.** HOURS
THE CPU UTILIZATION WAS *.** %
THE MEMORY UTILIZATION WAS *.** %
THE AVG QUEUE FOR MEMORY WAS *.** JOBS
THE MAX QUEUE FOR MEMORY WAS *.** JOBS
THE AVG QUEUE FOR A CPU WAS *.** JOBS
THE MAX QUEUE FOR A CPU WAS *.** JOBS
THE TOTAL NUMBER OF JOBS COMPLETED WAS ***
WITH AN AVERAGE PROCESSING TIME OF *.*** MINUTES
19
20 STOP
21
22 END

% cat SIMU01
JOB 1.00 3 1 5.00 *
JOB 2.46 1 2 7.00 *
JOB 3.78 3 3 10.00 *
JOB 9.28 2 2 30.00 *
JOB 10.48 1 4 40.00 *
JOB 24.22 1 5 60.00 *

% a.out

A COMPUTER CENTER STUDY

A C O M P U T E R C E N T E R S T U D Y
NO. OF CPU'S 1 STORAGE AVAILABLE 6
SMALL JOBS ARRIVE AT THE RATE OF 30 / HOUR
 AND HAVE A MEAN PROCESSING TIME OF .800 SECONDS
LARGE JOBS ARE SUPPLIED AS EXTERNAL DATA
THE SIMULATION PERIOD IS 12.00 HOURS

A F T E R 12.00 HOURS
THE CPU UTILIZATION WAS 47.74 %
THE MEMORY UTILIZATION WAS 10.39 %
THE AVG QUEUE FOR MEMORY WAS 1.16 JOBS
THE MAX QUEUE FOR MEMORY WAS 19.00 JOBS
THE AVG QUEUE FOR A CPU WAS .15 JOBS
THE MAX QUEUE FOR A CPU WAS 2.00 JOBS
THE TOTAL NUMBER OF JOBS COMPLETED WAS 364
WITH AN AVERAGE PROCESSING TIME OF 3.527 MINUTES
%

SIMSCRIPT III User’s Manual

3. SIMSCRIPT II.5 Language Considerations

Some features of the SIMSCRIPT II.5 programming language vary from one implementation
to another. This chapter describes implementation-specific features of
UNIX SIMSCRIPT II.5.

3.1 Input and Output

The open statement associates a SIMSCRIPT I/O unit with a file. Its general form is

open [unit] EXPRESSION1
[for] { input | output } < comma >
[[file] name is TEXT1 |
 binary |
 recordsize is EXPRESSION2 |
 noerror |
 append |
 fixed
] < comma >

EXPRESSION1 specifies the unit number. If input is specified, the unit may appear in use
for input statements. If output is specified, the unit may appear in use for output
statements. If both input and output are specified, the unit may appear in both use for input
statements and use for output statements. However, it is necessary to execute a rewind
statement before reading from an output file or writing to an input file since the intermingling
of I/O operations is not allowed.

TEXT1 specifies the name of the file associated with the unit. If the name phrase is omitted,
the filename SIMUnn is assumed, where nn is the unit number. For example, for unit 3, the
default filename is SIMU03.

The default file type is an ASCII file containing variable-length records. If binary is
specified, the file is treated as a binary file containing fixed-length records. If fixed is
specified, the file is treated as an ASCII file with fixed length records. The free-form read,
formatted read, print, write and list statements are used with ASCII files. The read as
binary and write as binary statements are used with binary files.

Expression2 specifies the size of records in bytes. If the recordsize phrase is omitted, the
size of records is assumed to be 80. For binary files, this is the actual length of each record.
For files with variable length records, this is the maximum length of a record. Note that the
“newline” character is not counted as part of the record length. Examples are:

open unit 1 for input, recordsize is 132
open 7 for output, binary, name is "datafile"

Normally, if a file cannot be opened for some reason, such as the file does not exist or the

 46

SIMSCRIPT III Language Considerations

filename is invalid, the program will be aborted with a runtime error. If noerror is specified,
however, the program will not be aborted. Instead, a global variable, ropenerr.v for the
current input unit, or wopenerr.v for the current output unit, will be assigned a non-zero
value which may be tested by the program. For example:

open unit 12 for input,
 file name is INPUT.FILENAME, noerror
use unit 12 for input
if ropenerr.v <> 0
 write INPUT.FILENAME as "Unable to open ", T *, /
 close unit 12
always

Note: Ropenerr.v and wopenerr.v will be set after the use unit statement, not after the
open statement.

If a unit, which has not been opened, appears in a use statement, the following statement will
open it automatically:

open UNIT-NUMBER for input and output

The standard units — 5, 6 and 98 — are opened automatically by the system and may not
appear in an open statement. The record size of each is 132. Unit 5 is stdin, the standard
input unit. It is opened for input and is the current input unit when a program begins
execution. Unit 6 is stdout, the standard output unit. It is opened for output and is the
current output unit when a program begins execution. Unit 98 is stderr, the standard error
unit. It is opened for output and is used for writing system error messages. Each of the
standard units is associated with the terminal unless it has been redirected.

The units 1-4 and 7-97 have no predefined meaning and are available for general use. Unit 99
is the buffer. This unit may also appear in an open statement, but the name phrase is
ignored and no physical file is associated with it. The recordsize phrase is also ignored. The
record size for the buffer is obtained from the global variable, buffer.v, with a default value
of 132.

The close statement dissociates a SIMSCRIPT I/O unit from a file. Its general form is:

close [unit] EXPRESSION1

where EXPRESSION1 specifies the unit number.
If the current input unit is closed, unit 5 becomes the current input unit. If the current output
unit is closed, unit 6 becomes the current output unit.

A unit, which is open when a program terminates, is closed automatically. All units,
including unit 99, may be closed, except for the standard units, which must remain open at all
times.

The global variable, lines.v, indicates whether pagination is enabled for the current output
unit. By default, lines.v = 0 which indicates that pagination is disabled. To enable pagination,
initialize lines.v to a non-zero value indicating the desired number of lines per page. For

 47

SIMSCRIPT III User’s Manual

example, to produce paginated output on unit 1, with 60 lines per page, specify:

use unit 1 for output
let lines.v = 60

A record read from a file containing variable-length records will automatically have blanks
appended to it so that it is as long as the record size specified for the unit. Furthermore, each
tab character found in the record will be expanded into one or more blanks following UNIX
convention, i.e. tab stops are set every 8 columns, starting with column 1. The global variable
rreclen.v contains the length of the record last read from the current input unit before blanks
are appended but after tabs have been expanded.

3.2 Modes

The following modes are supported:

Alpha An 8-bit unsigned integer used to store an ASCII character
code (0 to 255)

Integer2 A 16-bit unsigned integer (0 to 65535)
Signed integer2 A 16-bit signed integer (-32768 to +32767)
Integer4 A 32-bit unsigned integer.
Signed Integer4 A 32-bit signed integer.
Integer A signed integer 32 or 64 bits.
Real A floating-point number of 32 bits
Double A floating-point number of 64 bits
Pointer An address
Subprogram An address of a routine
Text An address of a character string

For the 64-bit SIMSCRIPT III release, modes integer, pointer, subprogram and text are
all 64-bits. 64-bit SIMSCRIPT users can use the integer4 mode to get a 32-bit integer.

3.3 Non-SIMSCRIPT Routines

This section illustrates how a SIMSCRIPT II.5 program can call a routine written in C or
FORTRAN.

3.3.1 Calling C Routines

Suppose we wish to call a subroutine named Sub, which is written in C and has two
arguments:

void Sub(long inarg, long *outarg);

 48

SIMSCRIPT III Language Considerations

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define Sub as a nonsimscript routine given
 1 integer argument yielding
 1 integer argument

When calling this subroutine, the first argument should evaluate to integer since this is
the SIMSCRIPT III mode, which corresponds to the C type long. The second argument
should be passed using the yielding keyword. For example:

define IN.ARG, OUT.ARG as integer variables
write as "Enter the input value:", /
read IN.ARG
call Sub(IN.ARG) yielding OUT.ARG
write OUT.ARG as "The output value is ", I 10, /

Note that the “C” nonsimscript names are case sensitive. They must be declared in the
preamble and used in the program with the correct case. This is true even if the –s option is
not applied to simc. Also, if the arguments to the nonsimscript routine are prototyped,
arguments will be automatically converted to the correct mode at the time the routine is
called. Real and double arguments are rounded, not truncated. For example:

define IN.ARG as a double variable
define OUT.ARG as an integer variable
Let IN.ARG = 37.6
call Sub(IN.ARG) yielding OUT.ARG /~ passes 38 to Sub ~/

Suppose we wish to call a function named FUNC, which is written in C and has one
argument:

long func(double inarg);

The declaration of the function in the preamble specifies the mode of the function:

define func as an integer nonsimscript function
 given 1 double argument

Here is an example of a call to this function:

define IN.ARG as a double variable
define RESULT as an integer variable

write as "Enter the input value:", /
read IN.ARG
let RESULT = func(IN.ARG)
write RESULT as "The function result is ", I 10, /

It is very important that the SIMSCRIPT III mode of each argument and function matches its
C type. Here is a list of C types and the corresponding SIMSCRIPT III modes:

 49

SIMSCRIPT III User’s Manual

unsigned char alpha
unsigned short integer2
short signed integer2
long integer (32-bit Linux,Windows, 64 bit Linux)
long long integer (64-bit Windows)
float real
double double
char * pointer

If an argument is a pointer to a null-terminated character string, you can pass a text value.
You should not however “yield” or return a value of type “text”.

3.3.2 Calling FORTRAN Routines

Suppose we wish to call a subroutine named SUB, which is written in FORTRAN and has
two arguments:

subroutine SUB(inarg,outarg)
integer inarg
integer outarg

The first argument is an input to the subroutine, and the second argument is an output. The
subroutine must be declared in the preamble:

define SUB as a fortran routine

Unlike SIMSCRIPT II.5 and C, FORTRAN passes arguments by reference, i.e., the address
of the argument is passed rather than its value. The compiler for all routines declared as
FORTRAN routines does this automatically.

write as "Enter the input value:", /
read IN.ARG
call SUB(IN.ARG, OUT.ARG)
write OUT.ARG as "The output value is ", I 10, /

Suppose we wish to call a function named FUNC, which is written in FORTRAN and has
one argument:

integer function func(inarg)
double precision inarg

The declaration of the function in the preamble specifies the mode of the function:

define FUNC as an integer fortran function

Here is an example of a call to this function:

write as "Enter the input value:", /

 50

SIMSCRIPT III Language Considerations

read IN.ARG
let RESULT = FUNC(IN.ARG)
write RESULT as "The function result is ", I 10, /

It is very important that the SIMSCRIPT II.5 mode of each argument and function matches
its FORTRAN type. Here is a list of FORTRAN types and the corresponding SIMSCRIPT
II.5 modes:

integer*2 signed integer2
integer integer
logical integer
real real
double precision double

Calling a FORTRAN routine that returns a real or uses real arguments results in a special
case. Unlike SIMSCRIPT III and C, which interpret real/float function results and
assignments as 64-bit values, FORTRAN uses a 32-bit value. To obtain this value within a
SIMSCRIPT II.5 program, it is necessary to declare the function not as real but as integer
and then “equivalence” an integer and real array to interpret the value as real. For example,
suppose we wish to call a function named RFUNC, which is written in FORTRAN and has
one argument:

real function rfunc(inarg)
real inarg

Declare the function in the preamble as follows:

define RFUNC as an integer fortran function

To call the function:

define IRESULT as a 1-dim integer array
define RRESULT as a 1-dim real array

write as "Enter the input value:", /
read IN.ARG
reserve IRESULT(*) as 1
let IRESULT(1) = RFUNC(IN.ARG)
let RRESULT(*) = IRESULT(*)
write RRESULT(1) as "The function result is", D(10,3),/

 51

SIMSCRIPT III User’s Manual

 52

4. SimDebug Symbolic Debugger

SimDebug is the SIMSCRIPT III Symbolic Debugger. In contrast to other debuggers that are
separate programs, this debugger is built into the language. Simply compile the modules you
want to debug with debugging and then run your program with the command line argument -
debug. This will bring up the SimDebug dialog before the program starts. Since the
debugger is “always there,” any runtime error will also put you into the SimDebug dialog,
where you can examine the stack, local and global variables, etc. SimDebug’s features
include:

 single stepping
 setting breakpoints
 viewing stack and global variables
 displaying temporary and permanent entities
 displaying sets and arrays
 displaying system variables, I/O and memory statistics
 displaying the I/O buffer
 displaying simulation status
 changing variables and attribute values
 stopping at a certain simulation time
 command/dialog logging
 and a lot more.

This chapter describes how to use SimDebug. We first describe how to compile for and run
SimDebug. Then we will give you a quick tour that introduces the usage and major features
of SimDebug in the style of a tutorial. A detailed alphabetical description of all the
SimDebug commands is given in paragraph 4.3. Some advanced topics related to
SimDebug are given in paragraph 4.4.

4.1 Compiling for Debug and Invoking SimDebug

4.1.1 Compiling for Debug

This paragraph describes how to compile for debugging using the SIMSCRIPT II.5.
There are three levels of debugging support that can be selected for compilation. The
debugging level is controlled through a command line option to simc. The three levels of
debugging are none, traceback only, and full debug. The selected debugging level applies to
all routines in the modules supplied to that invocation of simc. The option to use is -d for full
debug. If no options are specified you will get “traceback only”. The –O flag will elimiate
all debugging.

SIMSCRIPT III User’s Manual

To be able to look at entities, system variables and global variables you must compile both
public and private PREAMBLE with debugging, i.e. with the -d option.

You should not mix the debug and optimization flags in the simc call. That is, do not specify
-d and -O at the same time, since this can lead to erroneous output from SimDebug.

4.1.2 Invoking SimDebug

To invoke SimDebug simply invoke your program with the command line option -debug.
This option will only be recognized by SimDebug and will not be visible to your
SIMSCRIPT III program as a command line argument. The position of the -debug option on
the command line is irrelevant.

SimDebug Dialog

When you invoke your program with -debug you will be put into the SimDebug dialog.
Here you can examine the source, set breakpoints, and start your program. When you do not
specify the -debug option, your program will run as usual without any interference from
SimDebug.

At the beginning of the SimDebug dialog (whether you invoked it with -debug or entered the
dialog through a runtime error) SimDebug looks for a file simdebug.ini in the current
directory. If this file exists, it is loaded as a SimDebug command file (see READCMDS). This
way you can easily customize the setup and initialization of SimDebug.

SimDebug will always show a SimDebug> prompt when it is ready for a new command.

Runtime Errors

Even when you do not compile your program with the -d option and you do not call your
program with -debug, when SIMSCRIPT detects a run-time error, you are put into the
SimDebug dialog. You can then perform all SimDebug commands to inspect your program,
with one exception: You cannot continue execution from floating point errors, segment
violations and bus errors! Keep in mind, that to detect more runtime errors, you should
compile with the –C option to enable subscript checking.

When you do not want to enter the SimDebug dialog in case of a runtime error, you can set
the global system variable batchtrace.v = 1. This results in the traceback being written to
simerr.trc, after which the program exits. This is a change from the behavior of the previous
release 1.9 where the traceback would always be output on the current output device
(according to write.v). However, using the trace statement in your program will still write
the traceback to the current output unit (write.v).

Instead of setting batchtrace.v = 1 in your program, you can also call your program with the
command line argument -batchtrace. This automatically sets batchtrace.v=1. As with -
debug, this command line argument will not be seen by your SIMSCRIPT program.

 54

SimDebug Symbolic Debugger

If you want your program to exhibit the old traceback behavior and have a runtime error, just
write a traceback and then exit. Compile your program with no options then execute with the
option -batchtrace. The traceback will be written to simerr.trc. For further information see
paragraph 4.4.1.

Interrupting Running Programs

You can interrupt a running program by pressing Ctrl-C (or the INTERRUPT key
combination defined for your system). This will put you in the SimDebug dialog where the
program is currently executing. This is very useful to detect endless loops or recursions. See
the Ctrl-C command in the command reference paragraph for more details.

Text Input/Output

On UNIX platforms, the SimDebug dialog runs in the terminal window from which the
program was started. This means that the program's input/output using units 5,6, or 98 will be
intermixed with the SimDebug dialog, as you would expect.

However, when you redirect input or output when calling your program, this will not affect
the dialog of SimDebug. Thus, even if you type prog -debug < infile > outfile the
SimDebug dialog will still be connected to your terminal (window). This allows you to debug
programs that read a lot of input from unit 5 (standard-in) without the input interfering with
the SimDebug dialog.

4.2 A Quick Tour of SimDebug

In this paragraph we will introduce SimDebug by example. In the following tutorial user
input is shown in bold face Courier, and SimDebug output and example program
source are shown in the regular Courier font. The SimDebug dialog is indented,
our comments appear in between the dialog segments in italic.

We assume that we have recompiled our entire program using the -d compiler option
(including the PREAMBLE so that we can see the attributes of entities).

4.2.1 Tour 1: Showing the Stack and Variables

Our program contains a runtime error. When the error occurs, SimDebug shows the error
message, floating point error. The meaning of the minor error code is machine specific; here
it means division by zero.

OS-prompt$ tst -debug
ERROR: Floating point error. Minor error code = 200
----- R1 (sample.sim) ------------------------------------- Line =
39

 55

SIMSCRIPT III User’s Manual

. 39> write B/A as I 4,/

SimDebug shows that the error occurred in routine R1, source file sample.sim, at line 39.
The actual source code at that line is shown on the next line. To see a traceback of the routine
call hierarchy, type t.

SimDebug> t
===================== call stack ======================

----- R1 (sample.sim) ----------------------------------Line = 39
Given Arguments:

A = 0 (Integer) 00000000]
B = 2 (Integer) [00000002]

Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

----- R1 (sample.sim) ----------------------------------Line = 36
Given Arguments:

A = 1 (Integer) [00000001]
B = 2 (Integer) [00000002]

Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

----- MAIN (sample.sim) --------------------------------Line = 62
Local Variables:
#1 AARR = (null) (Pointer)

I = 6 (Integer) [00000006]
#2 IARR = 00060548 (1-dim Integer array)
#3 IARR2 = 0005C268 (2-dim Pointer array)
#4 LE = 0005C3E8 (Ptr--> class LISTELEM)

We now see that R1 is recursive and that A is 0. Obviously we tried to divide by zero.
A few more comments on the traceback output: The types of variables distinguished in the
output for each routine are: Given Arguments, Yielded Arguments, Local Variables, and
Saved Local Variables. Given and yielded arguments appear in the order in which they were
defined in the routine source code. All other variables (including the global variables) appear
in alphabetical order. Each line that shows a variable has basically the same format:

VarName Variable name
Value The value. Pointers are shown as 8 hex digits.
Mode Mode information for that variable. For pointers, SimDebug shows where it

points to (which kind of entity, array etc.). For integers we also show the
value again as hex in [].

To see the global variables, type glob. They are ordered by name and appear in the same
format as the variables in the traceback.

SimDebug> glob

#1 DSPLY.E = (null) (Pointer)
#2 F.LISTSET = 0005C368 (Ptr--> class LISTELEM)

GLOBALD = 0. (Double)

 56

SimDebug Symbolic Debugger

GLOBALI = 0 (Integer) [00000000]
#3 LISTELEM = (null) (Pointer)
#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)
N.LISTSET = 5 (Integer2) [00000005]

Again, we want to see where we are. The w command shows us the context of the current
line (default 5 lines) with a "=>" in front of the current line.

SimDebug> w
----- R1 (sample.sim) --------------------------------- Line = 39
. 34 J = A-B
. 35 if A > 0
. 36 call R1(A-1, B)
. 37 else
. 38 write as "B/A = "
=> 39 write B/A as I 4,/
. 40 endif
. 41 end

All these commands still apply to the current routine or the current frame in the traceback
(called hierarchy). If we want to see where we are in the routine that called this R1, we must
move the current frame one level down (“Top of stack” is the last routine called, “Bottom of
stack” is MAIN). The dn command moves the current frame one level down and SimDebug
shows us the current line on that level. Then we use tc to get a traceback of only the current
routine frame which is now R1 at stack level 2. Note that in this frame, A=1. With pv we can
ask for only one variable. When it is in the current routine, that value is printed. Otherwise,
SimDebug looks at the global variables. Before actually printing the line with the variable
name, value and type, pv first prints whether the found variable is a given or yielded
argument, and whether it is a local, local saved, or a global variable.

SimDebug> dn
----- R1 (sample.sim) ----------------------------------Line = 36

36>. call R1(A-1, B)
SimDebug> tc
----- R1 (sample.sim) ----------------------------------Line = 36
Given Arguments:

A = 1 (Integer) [00000001]
B = 2 (Integer) [00000002]

Local Variables:
I = 5 (Integer) [00000005]
J = 1 (Integer) [00000001]

SimDebug> pv A
Given Argument:

A = 1 (Integer) [00000001]

In large programs, variable names as well as routine names are generally quite long. To avoid
having to type in the whole variable name, you can enter just the first few letters.
SimDebug matches your input with the defined variables. When your input uniquely
identifies a certain variable, it will be printed as usual. When you enter pv G* and there are
several variables (locals or globals) that begin with G, you will be offered a list of matches
from which you can select by number. In the same way, you can select from all variables that

 57

SIMSCRIPT III User’s Manual

end with a certain suffix by using pv *suffix. When we want to use the input as a prefix the
"*" is optional. pv always looks in the current frame first, and then at global variables to find
variables with a certain name/pattern.

SimDebug> pv g*
---- Matching GLOBAL variable names ----

1 GLOBALD
2 GLOBALI

---> Select variable by number (0=none) > 2
Global Variable:

GLOBALI = 0 (Integer) [00000000]
SimDebug> pv li
#1 LISTELEM = (null) (Pointer)
SimDebug> pv *set
---- Matching GLOBAL variable names ----

1 F.LISTSET
2 L.LISTSET
3 N.LISTSET

---> Select variable by number (0=none) > 3
Global Variable:

N.LISTSET = 5 (Integer2)
[00000005]

In the same way you can restrict the output from the GLOB command with a prefix* or a
*suffix argument. The following example ends our first tour:

SimDebug> glob g

GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [00000000]

SimDebug> glob *set
#1 F.LISTSET = 0005C368 Ptr--> class LISTELEM)
#2 L.LISTSET = 0005C3E8 Ptr--> class LISTELEM)
N.LISTSET = 5 (Integer2) [00000005]
SimDebug> quit

Leaving SSDB ...
OS-prompt$

4.2.2 Tour 2: Breakpoints and Single Stepping

We are now going to a different program that will illustrate the use of breakpoints, single
stepping and SimDebug's advanced pointer handling features. This program creates a few
entities and arrays. We call our program with -debug so that we are immediately put into the
SimDebug dialog. With the lr command we get a list of the routines in the program that were
compiled with debugging and their line number range. You can use wildcards at the
beginning and end of a routine name argument in lr in the same way as with variable names.
Note how R2, a left routine, gets displayed. In these routines we can single step, set
breakpoints, etc. With ls we can look at the source of the routine main.

 58

SimDebug Symbolic Debugger

A “.” in front of a source line means that this line is executable and that you can set a
breakpoint there.

OS-prompt$ tst -debug
SimDebug (SIMSCRIPT Symbolic Debugger) Version 1.0

SimDebug> lr { lists all routines compiled with debug or trace }

MAIN (sample.sim : 44- 64)
R1 (sample.sim : 29- 41)
R2-L (rtns.sim : 1- 32)

SimDebug> lr r{ lists all routines that begin with an "R" }
R1 (sample.sim : 29- 41)
R2-L (rtns.sim : 1- 32)

SimDebug> ls m{ lists the (only) routine that begins with "M" }

---- MAIN -------------------------------------(main.sim: 44-64)
. 44 main

45 define LE as pointer variable
46 define IARR as 1-dim integer array
47 define AARR as 1-dim alpha array
48 define IARR2 as 2-dim integer array
49 define I as integer variable
50

. 51 reserve IARR as 10

. 52 reserve IARR2 as 5 by 5
53

. 54 for I = 1 to 5
55 do

. 56 create a LISTELEM called LE

. 57 ATTRI(LE) = I

. 58 ATTRP(LE) = IARR2(I,*)

. 59 file LE in LISTSET

. 60 loop
61

. 62 call R1(3,2)
 63

. 64 end

We can start our program simply by invoking the s command (single step). But instead we
will set a breakpoint on the line where a new entity gets created and where R1 gets called.
With lb we get a list of the currently set breakpoints. With r we start the program which runs
until it hits the first breakpoint. A message is printed and the source line that will be executed
next is shown.

Note: The current line in SimDebug is the line that gets executed next. Thus, a breakpoint at
a certain line stops execution before that line.

We also set a breakpoint at the beginning of R2. Note that SimDebug asks for missing
argument information.

SimDebug> sb main 56

 59

SIMSCRIPT III User’s Manual

SimDebug> sb m* 62{ "M" uniquely identifies MAIN, the "*" is optional}
SimDebug> sb r*

----- List of matching routines -----
1 R1
2 R2-L

Enter routine by number > 1
Enter line number > 1
*** No executable source code at that line. Used line 4 instead.
SimDebug> lb

------- List of Breakpoints --------
1 MAIN @ line 56
2 MAIN @ line 62

SimDebug> r

BREAK: User breakpoint

----- MAIN (sample.sim) -----------------------------------
Line = 56
 56># create a LISTELEM called LE

After reaching the breakpoint, we single step through the program for a while. After each s
command, SimDebug shows the new 'current line' (that will be executed next). Since an
empty command repeats the last command we can simply press Return to repeat the
singlestep. If a line contains a routine call, s will step into the routine, whereas n will step
over the routine. After we have stepped enough, we use the c command to continue the
program until the next breakpoint.

SimDebug> s
57 ATTRI(LE) = I
SimDebug> { no input = repeat last command }
58 ATTRP(LE) = IARR2(I,*)
SimDebug>
59 file LE in LISTSET
SimDebug>
60 loop
SimDebug> c { continue execution }
BREAK: User breakpoint
----- MAIN (sample.sim) -----------------------------------
Line = 62
#> 62 call R1(3,2)
SimDebug> ls { lists source of 'current routine' }

. 44 main
45 define LE as pointer variable
46 define IARR as 1-dim integer array
47 define AARR as 1-dim alpha array
48 define IARR2 as 2-dim integer array
49 define I as integer variable
50
. 51 reserve IARR as 10
. 52 reserve IARR2 as 5 by 5
53
. 54 for I = 1 to 5

 60

SimDebug Symbolic Debugger

55 do
56 create a LISTELEM called LE
. 57 ATTRI(LE) = I
. 58 ATTRP(LE) = IARR2(I,*)
. 59 file LE in LISTSET
. 60 loop
61
#> 62 call R1(3,2)
63
. 64 end

Conditional Breakpoints: You can programmatically set conditional breakpoints on
arbitrarily complex conditions by calling SimDebug itself! See paragraph 4.4.6.

4.2.3 Tour 3: Pointer Handling: Entity / Set Display

Now the set is created and we are ready to look at the set and the entities. The set
LISTSETwas declared in the PREAMBLE as 'owned by the system'. This is why the fields for
the setF.LISTSET, L.LISTSET and N.LISTSET are global variables. We first display
theglobal variables to see the variable F.LISTSET, which holds the pointer to the first
element in the set. Once we are in the set, we follow the pointers using fp (follow pointer
debugger command) along S.LISTSET (successor) to get to the next elements. Observe that
the attribute ATTRI is 1,2,3... and that the ATTRP points to the different arrays as assigned in
the loop.

SimDebug> glob
#1 DSPLY.E = (null) (Pointer)
#2 F.LISTSET = 0005C368 Ptr--> class LISTELEM)

GLOBALD = 0. (Double)
GLOBALI = 0 (Integer) [00000000]

#3 LISTELEM = (null) (Pointer)
#4 L.LISTSET = 0005C3E8 (Ptr--> class LISTELEM)

N.LISTSET = 5 (Integer2) [00000005]

SimDebug> fp #2
------- Entity #2: 0005C368 (class LISTELEM) ----------

ATTRI = 1 (Integer) [00000001]
ATTRA = 00 (hex) (Alpha)

#1 ATTRP = 0005C2C8 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C388 (Ptr--> class LISTELEM)
#3 P.LISTSET = (null) (Pointer)

M.LISTSET = 1 (Integer2) [00000001]

SimDebug> fp #2
------- Entity #2: 0005C388 (class LISTELEM) ----------

ATTRI = 2 (Integer) [00000002]
ATTRA = 00 (hex) (Alpha)

#1 ATTRP = 0005C2E8 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C3A8 (Ptr--> class LISTELEM)
#3 P.LISTSET = 0005C368 (Ptr--> class LISTELEM)

M.LISTSET = 1 (Integer2) [00000001]

 61

SIMSCRIPT III User’s Manual

SimDebug> {Pressing Return repeats last FP command. Step through set }
------- Entity #2: 0005C3A8 (class LISTELEM) ----------

ATTRI = 3 (Integer) [00000003]
ATTRA = 00 (hex) (Alpha)

#1 ATTRP = 0005C308 (Ptr--> Array (5) of Integer)
#2 S.LISTSET = 0005C3C8 (Ptr--> class LISTELEM)
#3 P.LISTSET = 0005C388 (Ptr--> class LISTELEM)

M.LISTSET = 1 (Integer2) [00000001]

SimDebug> fp #1 { "FP" knows how to interpret pointers ; this is IARR(3,*) }

#1(1) = 0 [00000000]
#1(2) = 0 [00000000]
#1(3) = 0 [00000000]
#1(4) = 0 [00000000]
#1(5) = 0 [00000000]

This concludes our quick tour of SimDebug. All commands are fully documented in
paragraph 4.3.

4.3 SimDebug Command Reference

The SimDebug commands and their options are listed below in alphabetical order. When
commands have abbreviations, the abbreviations are given on the next lines below the
command. To list each command with its optional arguments the following notation is
employed:

CMD arg: Command names and keywords are shown in UPPER CASE,
arguments are shown in lower case.

[...] Optional arguments are enclosed in square brackets.

a | b Alternatives are separated by the vertical slash.

For example, LOG [CMDS|DIALOG|START|STOP|CLOSE] means that the LOG command
can have no argument, or can have one of the listed arguments. The notation T [from [to]]
means that the command T (traceback) can have one or two optional arguments, from and to.
Command names and keyword arguments are shown in UPPER CASE, arguments of
commands are shown in lower case (e.g. READCMDS cmdfile).
Basic Syntax: Each SimDebug command consists of the command name followed by one
or more arguments, each seperated from each other by one or more spaces. There are no
parentheses and there is no nesting of expressions needed. SimDebug commands are not case
sensitive. Except for file names, upper/lower case is irrelevant.

Missing Arguments: Whenever possible, SimDebug will ask you for a missing argument
instead of issuing an error message.

Repeat Last Command: When you press Return (no command entered), the last
command will be repeated. This is particularly useful for the S, N and FP commands.

 62

SimDebug Symbolic Debugger

Scrolling Output: The output of SimDebug will appear in the 'terminal window' from
which you invoked your program. If your 'terminal window' does not allow scrolling back,
you can set a parameter SET SCROLLINES n so that the output will pause after every n lines
(press Return to continue).

Routine Names: Several SimDebug commands take routine names as arguments. You can
type the routine name just as you use it in your program (e.g. TACK.ORDER.QUEUE).
Upper/ lower case in routine names is irrelevant.

Variable Names: You may use wildcards, i.e. the "*", when entering variable names, or
may enter just the first few letters of the desired name. When the input matches several
names you will be offered a list from which you can select the desired variable. Whenever
SimDebug looks for a variable, it looks in the 'current frame' first (local variables on the
stack), and when the specified variable is not found there, in the set of global variables.

List of SimDebug Commands:

Comment: The remainder of this line is discarded. This is useful for inserting
comments in command files (see READCMDS).

?
Help: See HELP command.

BOT
Bottom: Set the 'current frame' to the bottom of the stack, i.e. to MAIN. See note on
'current frame' in the DN command.

BPDIS n
Breakpoint disable: Disables breakpoint n (n comes from the LB command).

BPEN n
Breakpoint enable: Enables breakpoint n. The LB command shows each defined
breakpoint with a number that can be used for BPEN, BPDIS and DB.

BR rtnname
Break in Routine: Sets breakpoint on the first executable line of the given routine.
Execution stops when the routine is entered.

BUF n
Show Buffer: Show the contents of the buffer of unit n. This can also be used to
show the contents of the buffer, i.e. unit 99.

Ctrl-C (INTERRUPT key)
This command interrupts your running program and enters SimDebug so you can see
where you are in the program's execution. The 'current routine' is the currently
executing routine.

 63

SIMSCRIPT III User’s Manual

INTERRUPT in no-debug routine: When you do not compile the current routine
with debug, you will not be able to see the current line of execution or the local
variables/ arguments. You will only see the routine name. An s (single step)
command in a routine that was not compiled with debug will take you to the next line
of code that was compiled with debug (this may be several levels up in the calling
hierarchy).

INTERRUPT during simulation: When you press the INTERRUPT key while a
simulation is running, SimDebug may report the current line as the line that contains
the start simulation statement. This means that your program is in between the last
and the next process/event. A single-step command s will take you into the next line
of the next process when you compiled that process routine with debug.

C
Continue: Continues execution. When there is no breakpoint set in the 'execution
path' the program runs until completion, until a runtime error occurs, or until you
press Ctrl-C to interrupt the running program.

DB n
Delete Breakpoint: Deletes breakpoint n (n is defined from the LB command).

DM [addr [type [count]]]
Display Memory: For the rare cases where you might want to look at memory in an
unstructured way (e.g. for non-SIMSCRIPT data), the DM command allows you to
view areas of memory as Hex values (4 bytes each), as Integers (4 bytes), Reals (4
bytes), 4 Doubles (8 bytes) or 40 characters (1byte each). To display contiguous areas
of memory, you can use DM in two ways: First with DM addr type count, you set the
starting point, the type and the count of your memory display. Then, subsequent DM
commands (with NO ARGUMENTS) will continue memory display where the
previous display left off. The arguments are:

addr Starting address (in hex)
type Type of display of item: H, P: 4 bytes as hex, I: integer, R:real, D:

double, A: alpha. Default is H = hex.

count Number of items to display per command (always 4 per line). For
Alpha mode non-printable characters are shown as ".".

DN [n]
Down: Move 'current frame' n levels down (towards MAIN) in the stack. Default:
n = 1. Note: The current frame is the routine being looked at in the call stack shown
by the T traceback command. When you look at a certain variable with the PV
command, you look first at the current frame, and then at global variables to find this
variable. Thus, with UP and DN you can move the current frame to allow inspection
(e.g. a certain instance of a recursive routine call).

ECHO arg1 arg2 ...

Echo: Echoes the words arg1, arg2, ... to the output. This is useful to output
messages from within a command file.

 64

SimDebug Symbolic Debugger

EV

Event set: Prints information about the simulation, including the event set, the
current simulation time, the current and next process etc. For each process/ event the
time of the next scheduled process/event and of the last scheduled process/event of
that class is shown with pointer numbers [#n] in brackets behind the times. Using
these pointer numbers you can step through the event sets for each process/event type
using the FP command. The event/process that is scheduled next is marked with a
“*” behind the class number. When only one process is scheduled in a class, only
the time.a(First) is printed (so you can easily tell that there is just one).

Entity in process.v: Process.v is a pointer to the process/event notice of the
currently active process/event. For a process 'CUSTOMER' the entity class will be
'CUSTOMER'. This entity contains any user declared attributes as well as some
internal attributes. Never change any of the internal attributes!

FP ptrvariable

FP ptrvalue

FP #n

Follow Pointer: With this command you can display the contents of an object that a
pointer points to. This will generally be an entity, in which case the entity attributes
are shown, or an array, in which case the array elements are shown. There are three
varieties of the command:

FP ptrvariable: Ptrvariable is the name of a (local or global) pointer
variable.

FP ptrvalue: Ptrvalue is a pointer value (in hex) taken from previous output.

FP #n: n is a pointer index. Whenever a pointer is shown as output from the
T, FP or other commands, it is displayed with a prefix of the type #n where n
is a running index. This way each pointer can be uniquely identified by #n.
The running index n is 'restarted' by each command that displays a pointer
value. Thus #n applies to the last displayed #n. Thus, with the FP #n
command you can follow a previously displayed pointer. This is very useful
for all data structures that employ pointers, such as lists, sets, your own graph
structures etc.

Example: Walking through a set: To step through all elements of a set,
simply type FP #n where n is the index of the pointer that represents
.setname (pointer to first in set). The first displayed element will have a
pointer field S.setname (to successor), say with index #3. Repeated
commands FP #3 will display one set member after another.

Temporary Entity Display: For temporary entities SimDebug shows the whole
entity with all attributes. Packing (*/2, */4, bit packing, overlap) is fully supported.

 65

SIMSCRIPT III User’s Manual

To see just one field of an entity, type FP entname attrname.

Note on Destroyed Entities: Remember that when you destroy an entity, the pointer
to that entity is still there. But the storage freed by the 'destroy' command will
generally be reused immediately. Thus, a pointer variable that points to an entity
might suddenly display "Ptr --> Text ! Error !!" in its mode field, or appear to point
to a different entity class even though you did not touch that variable. This is
especially noticeable for the global process entities that are deallocated when the
corresponding process is suspended or terminated.

Note on Global System Variables: When global variables are listed you will also
see several internal/ system variables that are implicitly defined by SIMSCRIPT II.5
(such as resources, temporary entities etc). Instead of hiding these values, SimDebug
shows these internals since they are documented, (such as fields of resources, etc).
However, you should never change a variable that you did not create/define yourself.

Printing Text Values: SimDebug shows only a few characters of the text in the
normal PV output. To see the whole text, use FP textvar. See notes on the text
display at the FP command. Note on Integers Used as Pointers: Since many
SIMSCRIPT programs use integer variables to store pointers as well, SimDebug
allows you to 'follow integers' as if they were pointers.

FPN ...

Like FP, but this command does not reset the pointer number counter. This allows
you to keep the 'access handle' #n to the entity after you have displayed it. This is needed for
the SEV command (set entity values). See the notes for the SEV command.

GL [pattern]

GLOB [pattern]

Globals: Prints a list of all global variables and their values (in alphabetical order).
See the T command for a description of the output. Pattern can be prefix or prefix*
which shows all variables that begin with the given prefix, or *suffix which shows all
variables that end with the given suffix.

H

HELP [name]

HELP: Gives an overview (just the names) of all SimDebug commands. When name
is given, SimDebug gives a more detailed description of the topic/command with that
name. Name can be either a command name, or a topic name (such as 'breakpoints').
Both the command and topic names are given in the help overview.

IO
I/O Information: Shows information about the I/O status of your program, i.e. for
each unit used whether it is input or output, which file is attached (if any), how many

 66

SimDebug Symbolic Debugger

records were read/written etc. Use the BUF command to look at buffer contents for
units.

LB
List Breakpoints: Lists all currently defined breakpoints. Disabled breakpoints (see
BPEN, BPDIS) appear in parentheses.

LOG [CMDS|DIALOG|STOP|START|CLOSE] [logfilename]

Command and Dialog Logging: You can have SimDebug write all commands or all
of the dialog (commands and SimDebug output) to a log file. Command and dialog
logging cannot be active at the same time (there is only one log file). The variants of
the command are the only arguments listed:

 (without argument) Show status of logging.

CMDS [logfilename] Start command logging. Default file:

cmdlog.log
DIALOG [logfilename]

Start dialog logging. Default file:dialog.log

STOP Stop current logging.

START Resume logging

CLOSE Close current log file. Allows you to start a new log
(command or dialog).

When command logging is turned on, only the actual commands and not the
SimDebug> prompts are put into the log file. As a special case, LOG commands are
not put into the command log since you generally do not want them when repeating
the command sequence. They are written to the dialog log, however.

When you press Return to repeat the last command, the full command name will still
be written to the command/dialog log.

LR [rntname|prefix*|*suffix|ALL|NODEBUG]

List Routines: Lists the names of the routines in your program in the following
order: PREAMBLE, MAIN, and then all others in alphabetical order.

LR List all user routines compiled with debug or trace.

LR ALL List all user routines (nodebug routines prefixed with N;

routines compiled with -g are prefixed with T).

LR TRACE List all routines compiled with traceback (-g).

LR NODEBUG List all user routines that were not compiled with debug.

 67

SIMSCRIPT III User’s Manual

LR prefix*

List user routines that begin with prefix ("*" is optional).

LR prefix*-L
Append -L after the “*” to see only left routines.

LR *suffix
List routines that end with a suffix (e.g. LR *.CTRL)

Note: Continuous variables will display as right and left routines. When you have a
routine with the name ALL, TRACE or NODEBUG, you must use ALL*, TRACE*, or
NODEBUG* to get the routine individually.

LS [rtnname [from [to]]]
List Source: Lists the source lines of the given routine. The default is to show the
whole routine. Line numbers (for from and to) are given relative to the file (not
relative to the routine beginning or the like).

When the program is active the rtnname can be omitted in which case the 'current
routine' (the source of the current frame) is shown.

Source Listing Format: Each output line consists of four fields:

1. A "." for executable source lines (you can set breakpoints

there) or a "#"
 when a breakpoint is set on that line
2. A ">" when this is the current line (of execution)
3. The source line number of the line (in the source file), and
4. The first 72 characters of the source line itself.

Note: Only the first 72 characters of a source line are printed so that all output fits on
one line.

MEM

Memory Information: Shows memory statistics, such as how many entities of each
type are currently created, and how many strings and arrays there are.

Note: Since string and array counters are for both SIMSCRIPT internal use and for
user data, the numbers do not directly reflect your program's memory usage. Also,
since SimDebug uses strings, the numbers will be higher when compiling with debug.
A good way to find out if your program has a 'memory leak' is to write down the
number of strings, arrays etc. at the beginning of the program, and then let it run for
awhile. Interrupt the program with Ctrl-C and look again.

N [n]
Next: Execute the next n (default: 1) SIMSCRIPT source lines and then return to the
SimDebug dialog. N steps over a routine call. This routine and all routines called
from this command execute until you are returned to the SimDebug dialog. Unless, of

 68

SimDebug Symbolic Debugger

course, there is a breakpoint set somewhere in the called routines.

Also, see comment on "Specifying Repeat index n" in the S command.

Context Switch: When a context switch occurs during a N or S or SR command, a
message is printed accordingly.

O
Step out: Step out of the existing routine. Continue executing until the current

routine or method returns. At this point the debugger will become active again.

PAV arrvarname [selvec]
Print array variable: With this command you can display all or part of a multi-
dimensional array or parts thereof. Arrvarname must be an array variable name and
the whole array is printed by default. Selvec is the 'selection vector' that allows you
to limit the output. It consists of several elements with the following meanings:
n Show only this element from the current dimension

* Show all elements of this dimension

+ Stop display at this dimension.

A few examples will clarify this command. Assume ARR3I is a 3-dimensional integer
array, reserved as (5,5,5). Then:

PAV ARR3I 1 Prints all elements of ARR3I(1,*,*) (25 integers)

PAV ARR3I 2 3 Prints ARR3I(2,3,*) (5 integers)

PAV ARR3I * 4 5

Prints ARR3I(1,4,5), (2,4,5), (3,4,5), ... (5 integers)

PAV ARR3I 3 + Prints 5 pointers to the integer arrays of the last dimension, ie.
(3,1,*), (3,2,*), (3,3,*),...

Equivalencing: An array may be defined and reserved as a 5-by-5 integer array. But
if you assign this pointer to an array variable of mode "2-dim alpha array" you can
look at the data as alphas. The PAV command uses the mode of the given array
variable (arrvarname) to determine how to interpret the data.

PDV arrvarname [selvec]

PDV ptrvariable [selvec]

PDV ptrvalue [selvec]

Print descriptor variable: Same as PAV except that the array is printed from the
information contained in the array descriptors. That is, the array will be printed with
the mode it was first reserved as.

 69

SIMSCRIPT III User’s Manual

PT textvar|textptr
Print text values in full: This command prints the whole text of a text variable or a
pointer pointing to a text value. This command is needed since PVonly prints the first
few characters of a text string. The whole text value isprinted with string quotes
around it and a "-" at the end of each line whenthe text continues on the next line.
Thus, on an 80-character line you can see77 characters of text (with two string quotes
around it, and a "-" at the end).

Text attributes: If the text you want to see in full length is an attribute of an entity,
you can use the address of the text that is given with the attribute output as an
argument for FP. The same holds for arrays of text pointers.

PV varname
Print Variable: Prints the value and type information for the variable varname.
SimDebug first searches the current frame, and if varname is not defined there, then
the global variables for varname. As described at the beginning of this paragraph,
you can use wildcards to specify the variable name (prefix, prefix*, *suffix). When
several variables match, a selection list is shown.

Format of output: Before printing the line with the actual variable, SimDebug prints
the type of variable it found: Given Argument, YieldingArgument, Local Variable,
Local Saved Variable, or Global Variable.

Then each line follows basically the same format:

ptrnum varname = value (mode information)

where the fields contain:

ptrnum For pointers: The #n entries for the FP (follow pointer)
command.

varname The variable name.

value The value. Text is shown to the extent that it fits in the space,

where internal string quotes are not doubled (i.e. a string
containing a single string quote is printed as """). Integers and
alpha characters are printed as usual, where nonprintable
alpha values are also printed in hex. For reals and doubles
you can define the output format with SET OREALF (see SET
command). Pointers and subprogram variables are shown in
hex.

mode info

Mode information. For integers, the value in "[]" in hex is
appended. For pointers, pointer destination information (e.g.
entity class, array type) is shown. *** Bad pointer *** means
that this is an illegal address, i.e. an address that would cause

 70

SimDebug Symbolic Debugger

a segment violation if it were used. For subprogram variables
the subprogram name is shown. Use SET EXTINFO 0 when
you do not want this extended information for pointers.

Array mode info

Normally, arrays mode information is shown as the array was
declared in the program, e.g. "2-dim integer array". With the
SET parameter SHOWARRAYPTRS you can choose to see
the internal structure of the arrays, instead. That is, you can
see the pointer structure (arrays of pointers) that makes up
multi-dimensional arrays. This is necessary when dealing with
ragged arrays or assigning array fragments.

Printing Text Variables: The normal output of PV and T shows just the first 10
characters of the text. If you want to see the whole text, use PT textvar.

QUIT
Quit: Quit/exit from SimDebug. All open log files will be closed. Synonyms are: Q,

EXIT, END, BYE.

R
Run: Run/start your program from the beginning. You cannot start your program 'in
the middle', or restart the program with the R command. To restart for debugging you
must call your program again with -debug.

READCMDS cmdfilename
Read Commands from File: With this command you can put a series of commands
into a file and read them in just as if you had interactively typed them at SimDebug.
This is useful in conjunction with command logging (see LOG) when you want to
store and then replay a sequence of commands that got you to a certain place.

Normally SimDebug does not echo commands read from a file, even though output
from these commands (e.g. LR) is, of course, visible. When you want to see the
commands read from a command file you can SET OREADCMDS 1.

Init Command File: At the beginning of the SimDebug dialog, SimDebug looks for
a file simdebug.ini in the current directory. When this file exists, it is read as a
SimDebug command file before you enter the SimDebug dialog. In this file you can
store your preferred SimDebug parameter settings (see SET command).

Empty lines in a command file are ignored. Commands from a command file are
not remembered in the "last command" buffer. However, since 'empty commands'
that re-execute the last command are still written to the command log file in full, you
will still get exactly the same behavior when reading a command file previously
written as a command log.

S [n]

Step: Single step. It executes the next n (default: 1) SIMSCRIPT source lines and

 71

SIMSCRIPT III User’s Manual

then returns to the SimDebug dialog. S steps in to routines when the next instruction
is a routine call. That is, it stops on the first instruction in the called routine.

Specifying Repeat Index n: After a single step command, SimDebug will show you
the next executable source line. This is the source line that will be executed by the
next S command. When you specify a repeat index n you generally do not want to
see the output of the n source lines executed. However, if you do, you can enable the
output for repeatable commands (S,N, UP, DN) with SET OREPCMDS 1.

Context Switch: When a context switch occurs during a N or S or SR command, a
message is printed accordingly and the current simulation time is printed.

SET [[parname] [newvalue]]

Set SimDebug Parameter: Several aspects of SimDebug commands are controlled
by parameters that you can change. SET without arguments lists the values of all
SimDebug parameters. When a paremeter name (parname) is given, you can change
its value. For example, SET OREPCMDS 1. You only have to type the first few letters
of a SET parameter that make it unique.

SimDebug "SET parameters" and their meanings (n: integer > 0; m: 0 or 1;
defaults are given in []):

SET WW n [5] (WhereWidth) Show n lines with W command.

[5]

SET OREALF de a b
(OutRealFormat): Output format for Reals/ Doubles. They are
output as de(a,b), e.g. "E(14,4)" [D 17 6]

SET OREPCMDS m
Show output from repeated commands (n=1) or not.
[0]

SET OREADCMDS m
Show output from read commands (n=1) or not. [0]

SET EXTINFO m
Show extended information for pointer in mode field.
[1]

SET GLOBWTRACE m
Show global variables (GLOB) with trace command
(T). [0]

SET SHOWINTGL m
m=1: Show internal global variables with GL. [0] Internal
global variables (A.*, I.*, G.*) are created by SIMSCRIPT and
are, in general, not useful to see.

 72

SimDebug Symbolic Debugger

SET SCROLLINES n

n>0: Output pauses after n lines. Press Return to continue. [0]

SET SHOWARRAYPTRS m
m=1: Show array mode information not as '2-dim integer
array' but as the internal pointers that implement this array.
[0]

SET SHOWSTACKLEVELS m
m=1: Show SL=.., (the stack level in traceback). [0]

SET SHOWLIBRTNS m
m=1: Show library routines in traceback [0].

SET NAMECOMPLETION m
m=1: Variable and routine names are automatically completed
by SimDebug. That is, FP CU will follow the pointer that
begins with CU. In case of multiple matches, you are offered a
choice.

Note on OREPCMDS and OREADCMDS: Even when output from read or
repeated commands is turned off, the output from the last command that was
read or repeated will be shown so that you can see 'where you landed'.

SEV entname attrname value

Set Entity Values: Allows you to change the attribute value of a temporary entity.
For quoting rules to set text values see the SV command. For entname you can enter
the same values as for FP: an entity pointer name, an entity pointer value (in hex) or a
#n (pointer number).

Using #n for entname: When you get to an entity using FP (follow pointer)
commands, the display of the pointer attributes in the entity will 'overwrite' the
pointer number n you used to display this entity (with FP #n). Thus, there is no
longer a valid #n to use for entname. You should 'go back outside' of the entity (e.g.
back one element in a list) and then use FPN #n to display the entity. FPN works like
FP except that it does not reset the pointer numbers. This way you will keep all
pointers along the way for use by SEV.

Limitations: It is currently impossible to change values of permanent entities (i.e.
arrays). Also, you cannot set the values of packed temporary entity attributes.

SB rtnname lineno
Set Breakpoint: Sets a breakpoint in routine rtnname at line lineno. You can use
"." for the routine name to denote the current routine (routine in the current frame).

SNAP
Snap: Calls your specified 'snap routine' SNAP.R. This is useful for debugging

 73

SIMSCRIPT III User’s Manual

complicated data structures that require special (user) code to display relevant
information. You can use normal write statements to output your data.

Note that the output from this ‘snap routine’ will NOT appear in the log file (see
LOG) but in the normal program’s output. Thus, when output is redirected, the ‘snap
routine’ will write into your output file.

SRCDIRS [src_dir_list]

Allow you to specify alternate directories where SimDebug can find the SIMSCRIPT
source files (for LS, W etc.). src_dir_list is a list of directories separated by spaces.
When no src_dir_list is given, the current source directory list is shown.

In searching for source files, SimDebug always starts at the current directory. If the
source file is not found there, SimDebug looks into the directories in the order they
were given in the src_dir_list. When your executable runs in a directory other than
where it was built, it is advisable to specify the source directories as absolute paths.

Example:

SRCDIRS /src/d1 /src/d2 /src/d3

STOPTIME [stoptime]
Stop at Simulation Time: Allows you to stop execution (and call SimDebug) when
the simulation time reaches the given stoptime. A stoptime of 0.0 means that there 'is
no stoptime active'. The stoptime is only valid for 'one stop'. It is then reset to zero
(set inactive again).

SV varname value
Set Value: Allows you to the change values in your program! Use SV to change
values of simple variables of any type. You can change local variables, arguments
and global variables.

For text values: Enter the text enclosed in string (double) quotes. When the string
you want to enter should contain a string quote itself, it must be doubled, i.e. a single
string quote is denoted by """". Use SEV to set attributes of entities.

SYSVARS
System Variables: Shows the values of several system variables such as read.v,

write.v, buffer.v, prompt.v, and hours.v.

T [from [to]]
Traceback: Prints a traceback of the current call stack (the hierarchy of called
routines) starting at the last called routine down to MAIN. The arguments from and to
can be given to limit the traceback to a range of routines (useful for deep recursions).
From and to are specified as the level numbers given in the traceback for each
routine (MAIN is at level 1), where "." as a level number means the 'current frame'.

By default, the level numbers ([SL=...] in the routine header in traceback) are not

 74

SimDebug Symbolic Debugger

given in the traceback. However, they are useful for deep tracebacks (when you want
to see only part of the traceback) and for recursion. You can enable the display of
these stack levels with SET SHOWSTACKLEVELS 1. See SET command.

Global variables: Generally the global variables are not considered a part of the
traceback and hence are not shown with the T command. If you SET GLOBWTRACE
1 (see SET command) you will also get the global variables at the end of each
traceback (implicit GLOB command).

Output: For each routine, SimDebug first prints a line with the routine name, the file
name, possibly the stack level and the current line number. When a routine is
compiled with debug, all its local variables are shown with its values and modes.
When a routine is not compiled with debug, only the routine name is shown. The
variables are given in a sequence of sections: Given Arguments (ordered as in
routine definition), Yielding Arguments (ordered as in routine definition), Local
Variables (ordered alphabetically) and Local Saved Variables (also ordered
alphabetically).

Several SimDebug controls the extent of the output for each variable parameter. See
the SET command. The format of the output for each variable is described by the PV
command.

The 'current frame' and 'current routine': The T command shows you the whole
traceback, i.e. all routines in the call stack. Each invocation of a routine that is on the
stack is called a (stack) frame. Initially, after a T command, the top routine on the
stack (farthest away from MAIN) is called the current routine, which is in the
current frame. Since a routine can be called recursively we must destinguish
between 'routine' (the source code) and the 'frame' (invocation of the routine [its
arguments and local variables]). When PV looks up a variable, it starts at the current
frame and when the variable is not found there, it looks at global variables. The
commands up. dn. top. bot move the 'current frame' up, down, to the top (last
routine called), or bottom (MAIN).

TC
Traceback Current: Write trace of current frame.

TOP
Top Frame: Set 'current frame' to the top of the stack, which is the last user routine,
called (farthest away from MAIN). See note on 'current frame' in the DN command.

UP [n]
Up Frame: Set 'current frame' n levels up (away from MAIN) in the stack. Default: n
= 1. [SL=...] in the header line shows the stack level. See note on 'current frame' in
the DN command.

W [n]
Where: Shows where you are in the source in the current frame. It shows n source
lines around the current line. The default n is taken from the SimDebug parameter
WW (see SET command). The 'current source line' is shown with a ">" in front of it.

 75

SIMSCRIPT III User’s Manual

Breakpoints appear with "#" in front of the line.

WT [filename [from [to]]]
Write traceback (output of T) and the output from the IO, MEM, and EV commands
to a file. The default filename is trace.out. By specifying from and to you can limit
the traceback to those levels. When the trace file exists it is overwritten.

WTA [filename [from [to]]]
Write Trace Append: Same as WT except that the output is appended to the trace
file.

4.4 Advanced Topics

4.4.1 Batchtrace.v

Normally, when a SIMSCRIPT program runs into a runtime error, SimDebug will be called
so you can examine the stack and variables to find out what went wrong. Sometimes you may
want to just get a traceback into a file and want the program to terminate on a runtime error,
e.g. when you run i t in batch mode. When you set the system variable batchtrace.v = 1, a
runtime error will cause the traceback. The I/O, event and memory information will be
written to a fixed file simerr.trc.

Another way of setting batchtrace.v to 1 is to call your executable with the command line
option -batchtrace. As with -debug your application program does not see this option.
Setting batchtrace.v = 2 causes an immediate exit in case of a runtime error or a user
interrupt (e.g. Ctrl-C). No traceback is written.

4.4.2 Signal Handling / External Events

SimDebug uses the signal handling facilities of the operating system to catch events like
floating point errors, segment violations etc. If your program uses C code that sets its own
signal() handling routines, you must comment out that code as long as you want to use
SimDebug on that program. Any mix will not work.

4.4.3 Reserved Names

In SIMSCRIPT all names that begin with "<letter>." or end with ".<letter>", where
"<letter>" is any letter, are reserved for the system's usage. This is why they do not appear in
SimDebug.

If you use such an illegal name, e.g., for a routine, it will not appear as a user routine in

 76

SimDebug Symbolic Debugger

SimDebug. You cannot see it with the LR command. Thus, even if such a routine name does
not clash with a system routine, you should not use these kinds of names.

4.4.4 Displaying Arrays

Before discussing SimDebug's array display capabilities we must discuss some background
information. Each SIMSCRIPT object that a pointer can point to, such as arrays, text or
dynamic entities, has a descriptor that contains information on what this 'object' is and how to
interpret the data. For instance, an entity descriptor contains the entity ID and, an array
contains the size of the array and the type of its elements. This means that the FP (follow
pointer) command can always follow a pointer to anything and display what it finds.

Apart from that, SIMSCRIPT supports array equivalencing. You can define an array IA(*)
for instance as a 1-dim integer array, and then assign the pointer IA(*) to a variable of type 1-
dim alpha array AA(*) and look at the data as characters.

The command PAV (Print Array Variable) looks at the array 'through the eyes of the array
variable', i.e. in the above example AA(*) as alpha.

The command PDV (Print from Descriptor Variable) always looks at the array with the data
given in the descriptor. It looks at how the array was first created, and, in the example above,
looks at the array as integer.

4.4.5 Permanent Entities and System Owned Variables/Sets

Permanent entities are implemented as a set of 1-dimensional arrays that will appear as global
arrays. Use the GLOB command. At this point the different fields of a permanent entity are
not shown together (e.g. with the entity name), but appear separately in the alphabetical
listing of all global variables.

'The system owns' ... variables and sets show up as global variables, in alphabetical order.

4.4.6 Conditional Breakpoints

Certain problems only appear after a large amount of data has been processed. For example,
after 10000 iterations in a loop. To allow you to break the process and go into the debugger
upon any arbitrarily complex condition, SimDebug offers you a direct call to SIMDEBUG.R.

When you call this routine from your application program you are put into the SimDebug
dialog just as if you had set a breakpoint. You can examine the stack, global variables,
entities, and single step through the program in the usual manner.

Example:

for i = 1 to 10000

 77

SIMSCRIPT III User’s Manual

do
 do something
 if i>10000 and A+B-C > DATTR(ENTPTR)

 call SIMDEBUG.R
 endif
loop

4.4.7 Continuous Variables

Continuous variables (for continuous simulation) are implemented as right and left functions.
Therefore, they will show as right and left routines in the LR command, but not as variables.

WARNING

Simdebug Recursion: SimDebug protects itself from errors
that normally cause a program to fail, such as attempting to
use a bad pointer, or having unaligned accesses. However,
in some rare cases it can happen that SimDebug does not
catch an error condition that then causes another error 'within'
SimDebug. Since SimDebug is a program that is called
when an error occurs, SimDebug will be called from within
SimDebug! You will get a warning message.

You can look at some more variables, but you cannot continue
the execution. Exit from SimDebug with QUIT and restart
your program to find the error.

 78

SimDebug Symbolic Debugger

 79

Appendix A Compiler Warning and Error Messages

A.1 Warning and Error Messages
During compilation, warning messages and error messages may be produced. The text of
each message appears below:

1001 Invalid syntax
A word found in the input stream did not conform to the syntax requirements of the
SIMSCRIPT II.5 language. The unrecognized word is ignored and the error scan resumes
with the next statement keyword in the input stream.

1002 Missing ')'
An arithmetic expression or subscript is missing a right parenthesis. A (possibly misplaced)
right parenthesis is assumed.

1003 Missing terminal " in ALPHA literal
An ALPHAnumeric string must be contained on one line.

1004 More format specifications than variables
In formatted read and write statements, there must be a one-to-one correspondence between
variables and format descriptors. The format descriptors, including “/,” must be separated by
commas. In a print statement, fields are defined by “*” or a sequence of at least 8 contiguous
periods.

1005 More variables than format specifications
See message 1004.

1006 Conflicting or redundant properties in define
More than one MODE, DIMENSION or TYPE specification appears in the same define
statement. The indicated statement is ignored.

1007 Number of subscripts different from definition or previous use
A subscripted variable is redefined with a different number of subscripts than originally, or a
set name in a file or remove statement is improperly subscripted.

1008 else or always without matching if
The indicated statement is misplaced in the program.

1009 if not terminated by always
This error is detected at the end of a routine.

1010 Use conflicts with definition
The previous definition or use of this name precludes its use in this context. This message
can apply in a number of cases. The most common are described below.

Compiler Warning and Error Messages

 A belong clause in an every statement does not refer to a set name.

 Common membership in sets is limited to temporary entities.

 An every statement attempts to define an entity but the name has already

been defined differently.

 A define statement attempts to define a variable, a procedure or a set, but the
name has already been defined differently.

 The variable in an external unit statement has already been defined

differently.

 The attribute of a has clause has already been defined differently or a
common attribute is defined with a different word assignment or packing
code.

 Attempt to read or write a variable defined as a set.

 Attempt to release a quantity, which is not an array, a routine or a

subprogram variable.

 Attempt to store in a random variable.

1011 Illegal assignment target
This error is caused by an illegal attempt to store information in a built-in function. Builtin
functions include abs.f, div.f, int.f, real.f, mod.f, max.f, min.f and all text-related functions.
Except for substr.f, these functions cannot be used on the left-hand side of assignment
statements or as yielded arguments.

1012 Array number out of range
Application has more than 8000 variables and/or permanent entities. The maximum
permissible array or word number for global variables or permanent attributes is 8000. Use of
an array number larger than this is not permitted in this implementation.

1013 Context requires routine name
A routine statement uses an incorrect name or the name appearing is not a routine name.

1014 return with not allowed here
Event routines and left-handed routines cannot return any values.

 81

SIMSCRIPT III User’s Manual

1015 loop without a matching do
The compiler ignores the loop statement.

1016 Implied subscripting attempted on a common attribute
Common attributes must be explicitly subscripted.

1017 Number of given arguments inconsistent with definition
A call or function reference uses a number of arguments different than that defined for the
subject routine.

1018 Multiple definition of label
The label has been defined elsewhere in the routine.

1019 Subscript required on label
The label name was previously encountered with a subscript.

1020 Name repeated in parameter list
The names in the given arguments list or in the yielded arguments list may each appear only
once in the list.

1021 Undefined label
This error is detected at the end of a routine.

1022 do without a matching loop
This error is detected at the end of a routine.

1023 MAIN routine should use stop
The MAIN routine should not use a return statement. The compiler substitutes a stop
statement.

1024 Missing end
The compiler supplies the end statement and completes the processing for the routine.

1025 define to mean or substitute incomplete
An end-of-file was encountered during the processing of a substitute statement or no
substitutable text was found. Blanks and comments ('') are invalid substitutable text. The
statement is ignored.

1026 Inappropriate mode or dimension for implicit subscript
Due to local redefinition, the mode or dimensionality for this implied subscript is
inappropriate. The compiler ignores the dimensionality but uses the new mode.

1027 Attribute in first 5 words of event notice is illegal
The first five words of an event notice contain the time.a, m.ev.s, p.ev.s, s.ev.s and eunit.a
attributes. These attributes cannot be redefined. The compiler ignores the specification.

 82

Compiler Warning and Error Messages

1028 Context requires an un-subscripted subprogram variable
An indirect call to a function using the $ name feature requires that the subprogram variable
name be unsubscripted, as the subscripts are treated as given arguments for the indirect call.

1029 Attribute in first 8 words of process notice is illegal
See message 1027. In addition, a process notice contains the ipc.a, rsa.a,
sta.a and f.rs.s attributes.

1030 Temporary attribute word number out of range
The maximum permissible entity length is 1023 words. Entities of this size should never be
required.

1031 Subscripts not permitted for this variable
A variable defined as unsubscripted is used with a subscript.

1032 Non-integer subscript on a temporary attribute
Temporary attribute subscripts must be pointers.

1033 Negative constant used as a subscript
This illegal condition cannot be compiled.

1034 Subscript not permitted on label
A label is used with a subscript in a go to statement or is defined as subscripted although it
has already appeared without a subscript.

1035 then if statement appears outside if
The then keyword can only be used within an if block. The compiler ignores the then word.

1036 Missing ')' in logical expression
A (possibly misplaced) right parenthesis is assumed.

1037 div.f valid only with integer values
A floating-point division is performed.

1038 Number of yielding arguments inconsistent with definition
See message 1017.

1039 Attribute of mixed compound entity must be a function
Attributes of mixed compound entities (compound of at least one permanent entity and at
least one temporary entity) must be functions. The compiler assumes a function definition.

1040 Attempt to equivalence function attributes
Function attributes are not assigned any storage and therefore cannot be equivalenced.

1041 Missing ')' in equivalence attribute group
A (possibly misplaced) right parenthesis is assumed.

1042 Attempt to pack function attribute

 83

SIMSCRIPT III User’s Manual

Function attributes are not assigned any storage and therefore cannot be packed.

1043 Attempt to pack un-subscripted system attribute
The packing definition cannot be honored.

1044 Illegal packing code
For bit packing, the bit numbers should satisfy the inequality 1 n m 32. For field
packing and intra-packing, the denominator must be 2 or 4.

1045 Packing code (*/n) illegal for temporary attribute
The */N packing codes can only be used for arrays (such as attributes of permanent entities or
subscripted attributes of the system). A field packing of 1/N is assumed.

1046 Compound entity may not belong to a set
The compiler ignores the belong clause.

1047 Attempt to define non-local variable as saved or recursive
This is an attempt to define a local variable in the PREAMBLE. The definition is not processed.

1048 Incorrect mode specified for packed variable
Packing applies only to INTEGER quantities.

1049 Defining set not previously declared in every statement
Set definitions must be placed after the owns and belongs clauses defining their owner and
members. The definition of the set is ignored. This may cause follow-on errors.

1050 Statement should be preceded by a control phrase
A compute statement, find statement, when statement or a controlled read or write
statement must be within a for, while or until block.

1051 write format used in read statement
A character string appears in the as clause of a read statement.

1052 Illegal or out of place '*'
Either an attribute of a temporary entity or an argument to a function call is subscripted by an
*, or an array reference has an * before the last subscript.

1053 Attempt to perform set operation on a non-set
A file statement, a remove statement, a for each of set statement, an if set is empty or a
before or after statement references a quantity not defined as a set.

1054 Statement requires attributes not defined for named set
A file statement, a remove statement, an if set is empty or a for each of set phrase is
used, but the necessary set attributes were deleted by a without phrase.

1055 Name of a permanent entity required in this context
A create each statement or a for each statement must refer to a permanent entity.

 84

Compiler Warning and Error Messages

1056 also statement outside do ... loop
An also statement appeared outside of a do block. The compiler assumes a do statement
after the also block.

1057 Name of a temporary entity required in this context
A create statement, destroy statement or before or after statement must refer to a
temporary entity.

1058 group used without column repetition
An in groups of phrase must be controlled by a for phrase. The statement is ignored.

1059 Name of an event required in this context
The event, process, activates, cause, cancel, break ties and priority statements must
refer to an event or process name. In the case of an event or process statement, a routine
named R0 is assumed.

1060 Misuse of suppression amid column repetition group
The suppression phrase is misplaced.

1061 Context requires a for phrase to follow the word printing
The printing phrase is not properly programmed.

1062 Column repetition context requires in groups of phrase
The column repetition clause must include an in groups of phrase.

1063 Column repetition group size is illegal
The in groups of phrase specifies a 0 group size. The compiler assumes a value of 1
in its subsequent error scan.

1064 end statement required to terminate report heading
The compiler assumes an end statement at this point.

1065 end statement required to terminate report
The compiler assumes an end statement at this point.

1066 print 0 lines statement is ignored
Subsequent error messages may refer to form lines.

1067 Too few formats or too many expressions in print
There must be a one-to-one correspondence between expressions and format specifications.

1068 Set owner or member not defined
A set name must appear in both an owns clause and a belongs clause to be defined. Both the
owns and the belongs clauses must precede the set definition.

1069 Attributes of common set must be declared in an every statement
The set pointers must appear in an every statement. No attribute definition takes place.

 85

SIMSCRIPT III User’s Manual

1070 Mode of quantity conflicts with automatic definition
The M or N attribute for a set, or the N.entity name for a permanent entity were explicitly
defined with real mode. They must be integer.

1071 Number of subscripts conflicts with automatic definition
The attributes of a set were explicitly defined with an incorrect dimension, or the
N.entity name for a permanent entity was defined as a subscripted variable.

1072 Explicit definition conflicts with automatic definition
One of several conditions has appeared:

 The owner or member attributes of a set were explicitly defined and their
definition conflicts with the owns or belongs clause for the set.

 The N.entity name for a permanent entity is neither a global variable nor

apermanent attribute of the system.

 The F.name or S.name of a random variable should be left for automatic
definition.

1073 Ranking attribute must be declared in an every statement
The ranking attribute in the define set statement is not an attribute of the member entity.

1074 Illegal file statement for ranked set
The file first, file last, file before, and file after statements are not permitted on ranked sets.

1075 Number of given arguments exceeds the maximum allowed
The combined number of given and yielding arguments cannot exceed 127.

1076 Number of yielding arguments exceeds the maximum allowed
See message 1075.

1077 Number of subscripts exceeds the maximum allowed
The maximum number of subscripts allowed is 254.

1078 Label subscript must be between 1 and 3000
The maximum subscript allowed on a label is 3000. Since subscripted labels require a table
as large as the maximum subscript value, smallest program size suggests that subscripts
should normally range from 1 to n in increments of 1.

1079 Number of recursive local variables exceeds available space.
Each routine has 1024 words of storage available for recursive local variables. Some of
this total is used by variables which the compiler generates internally.

1080 Context requires subscripted label
A subscripted label is required at this point.

 86

Compiler Warning and Error Messages

1081 Yielding arguments illegal in left-function
Yielding arguments are not allowed in monitoring routines or left-handed functions. Ignoring
the yielding argument list scans the routine.

1082 enter statement permitted only in left-functions
This statement should be the first executable statement in a left-handed routine.

1083 Global properties specified in local define
Local variables cannot be monitored, packed, or defined as stream variables.

1084 Incorrect number of given arguments in left-function
A routine monitoring a variable must be given the same number of arguments as the number
of subscripts originally defined for the variable.

1085 move statement not allowed here
A move to statement can only appear in a right-handed routine. A move from can only
appear in a left-handed routine. The statement is out of place.

1086 before creating and after destroying options not allowed
After creating and before destroying can be used to collect usage statistics.

1087 More arguments than defined attributes in process or event
It is necessary to define an attribute to hold each argument received by the event. The excess
arguments supplied can receive no values.

1088 More arguments than defined attributes in activate
It is necessary to define an attribute to hold each argument received by the event. The excess
arguments supplied cannot be stored anywhere.

1089 Context requires name of an entity
A list attributes of statement does not refer to a temporary entity.

1090 Illegal attempt to break ties on an external event
External events cannot appear in break ties statements.

1091 Illegal attempt to equivalence random attributes
Random attributes cannot be equivalenced with other variables of any type.

1092 Illegal mode for a random variable
A random variable cannot be of alpha or text mode.

1093 stream phrase ignored - variable not defined as random
The define name as stream statement should be placed after the definition of the variable
as a random variable.

1095 cycle or leave ignored - no loop in effect
Either cycle or leave must appear within a do ... loop block.

1096 Missing here for a jump back

 87

SIMSCRIPT III User’s Manual

A here statement must exist prior to the occurrence of a matching jump back statement.

1097 Missing here for a jump ahead
A here statement must appear after a jump ahead. This error is detected at the end of
the routine.

1098 Both accumulate and tally illegal on the same variable
The mixing of statistics type is not allowed for a given variable. See message 1099.

1099 accumulate/tally illegal for monitored/random variables
These operations are in fact implemented by constructing monitoring routines.

1100 Statistic requested twice for the same variable
One statistical keyword appeared more than once for a given variable.

1101 Improper type of variable for accumulate or tally
Accumulate or tally can be requested for unsubscripted global variables, attributes of
permanent entities, temporary entities, event notices, processes, resources and compound
entities. They cannot be requested for subscripted global variables, subscripted attributes of
the system, or common attributes of temporary entities.

1102 Attribute for accumulate or tally improperly pre-defined
The variables containing the accumulated or tallied statistics should be left for automatic
definition by the compiler. They should not appear in define statements.

1103 Accumulate or tally on an undefined variable
The name of the variable is probably spelled wrong.

1104 Histogram of attribute of a temporary entity is forbidden
Histograms may be requested for global variables, system attributes, and attributes of
permanent entities.

1105 Improper word boundary for a variable of mode double
Certain systems — the Gould and IBM mainframes among them — require that all double
precision floating point numbers be aligned on a double-word boundary. This requires that
un-subscripted double permanent attributes be assigned to odd-numbered in array numbers,
and that double temporary attributes be assigned to odd in word numbers. Other systems —
such as the VAX — do not require such assignments, but are compatible with them.

1106 Multiple else statements not allowed on a if
The language allows only one else statement. Other diagnostic messages may indicate
the prior if statement was not processed.

1107 Then if statement after else - obscure structure
The then if construction is not permitted on a structured if. Correct by explicitly using else
and always statements as appropriate instead of using then if.

1108 Else statement after then if - obscure structure
See message 1107.

 88

Compiler Warning and Error Messages

1109 A statement above this point is unreachable
An unlabeled statement or group of statements follows a return or an unconditional
transfer. This may be due to a missing label, else, or case statement.

1110 Process not declared - routine assumed
The process routine has not been declared in the PREAMBLE.

1111 This statement may appear only in a process

1115 Illegal implied conversion between text and other modes
Use ttoa.f or atot.f or access conversion routines by write and read using the buffer.

1116 Improper argument mode for intrinsic function
An argument of mode text was expected and not found, or a text argument was given where
a numeric argument was expected.

1119 Packed variable cannot be passed in this context
Array rows of variables that are bit packed, or packed (n/m), cannot be passed as arguments
to NONSIMSCRIPT routines. Individual elements or arrays packed (*/m) are valid
arguments.

1120 Improper first argument to left substr.f
The first argument to substr.f must be an unmonitored text variable.

1121 Attempt to equivalence text variable
Text variables cannot be equivalenced with other variables.

1124 Conflicting parameters in open or close
The open or close statement was used improperly.

1126 open does not specify either input or output
Either input or output (or both) must be specified as an open statement option.

1127 text function illegal in store statement
The store statement should generally not be used with text data. In this instance, its use
would result in permanent loss of a block of memory.

1128 double variable overlap caused by equivalencing
A double variable occupies two successive array number locations. The second of these
should not be assigned to any other use.

1129 always is preferred usage in this context
The else (otherwise) statement should be changed to an always.

1130 Number of labels exceeds allowed maximum
Implementation constraints impose a limit on the allowed number of statement labels. The
routine should be subdivided into two or more routines.

 89

SIMSCRIPT III User’s Manual

1131 Subprogram variable used out of context
A subprogram variable may not be used within a computation.

1132 Implicit conversion of subprogram variable
Only subprogram variables or subprogram literal values may be assigned to a variable
declared as mode subprogram.

1133 Dimensioning of attributes not permitted
Attributes of temporary and permanent entities are implicitly 1-dimensional, subscripted by
an entity pointer value. The explicit dimensioning of these may cause ambiguity. A
dimension of 1 is substituted.

1134 Illegal use of store with quantities of differing mode
This usage of store may have undesirable side effects and is no longer permitted.

1135 Use of store with text quantities may have undesired effect
The use of the store statement between text quantities is allowed, but strongly discouraged,
because it disables the automatic actions that assure the integrity of text values.

1136 Variable is undefined or not fully defined
This message appears when the background mode has been explicitly set to undefined using
a normally statement.

1137 Parameter in open statement not supported
Differences in operating systems do not allow complete compatibility between SIMSCRIPT
III implementations of the open statement. Unsupported parameters are ignored.

1138 Release routine statement no longer supported
The statement is ignored.

1139 Reset references variable not accumulated or tallyed
Totals do not exist for a variable which has not been the object of an accumulate or tally
statement.

1140 Reset uses qualifier not declared as such
Only a qualifier defined for an accumulated or tallyed statistic may be specified in a reset
statement.

1141 This statement not supported or no longer required

1142 Local variable used only once
The indicated local variable appears only once in the routine. This could be due to a
typographical error.

1143 Local variable never modified
The indicated local variable has not been modified by the routine. This means that its value is
always zero (or "", if a text variable). This could be due to a typographical error.

 90

Compiler Warning and Error Messages

1144 Bad Block structure - overlapping do and if
The statement violates SIMSCRIPT III's structured programming nesting rules, by
overlapping one of the following three control structures:

 do ... loop
 if ... else ... endif
 select ... case ... default ... endselect

For example, if the statement in error is a loop statement, then an if block was not terminated
by an endif, or a select was not terminated by an endselect. The error will also be seen
when one block overlaps a portion of another block, as in if ... do ... else ... loop ... endif.

1145 Variable or function name required
A non-numeric quantity — such as a set — cannot be the object of a read, print, or list
statement. A statement such as list attributes of each entity in set may have been intended.

1146 Assignment between incompatible data types
Check the modes on both sides of the equal sign in an assignment (let) statement.

1147 Implicit conversion of pointer variable
The indicated variable must be either mode pointer or mode integer.

1148 Name of a resource required
The request and relinquish statements apply to resources only.

1150 Multiple MAIN routines encountered
Only one MAIN routine may be included in any compilation.

1151 case control outside select...endselect
A case or default statement can be used only between a corresponding select ... endselect
pair.

1152 Mode of case term does not match select
The mode of the term is incompatible with the mode of the select expression. Some mode
conversion is performed. A real expression may include integer terms, and both text and
alpha expressions require string literal case terms. If necessary, assign the expression to a
variable of the appropriate mode.

1153 case term duplicates previous term(s)
This term is unreachable because it is completely blocked by corresponding terms in an
earlier case statement. This message will not be given for select expressions with a mode of
real, double, or text.

1154 Statement not allowed after default
The case or default statement is not valid within a select block after the use of the default
statement.

1155 No case statements appear within select

 91

SIMSCRIPT III User’s Manual

Each select ... endselect block must include at least one case statement.

1156 Select case without matching endselect
Each select case block must be terminated by a matching endselect statement.

1158 Symbol redefinition
A local define to mean is redefining a global define to mean, without an intervening
suppress substitution. This may have unexpected consequences. For example, if the
PREAMBLE contains the statement define .NUMBER to mean 10, and a routine contains the
statement define .NUMBER to mean 20, the compiler will first substitute 10 for .NUMBER
in the routine, making the statement read define 10 to mean 20, and will then substitute 10
for 20 throughout the remainder of the routine.

1161 Changing PROCESS pointer may affect implicit subscripting
Changing the pointer to a PROCESS within its PROCESS routine will prevent the routine
from later accessing the attributes of the current process. Such attributes are often referenced
through implied subscripts. This warning may be the result of an activate, create or
remove statement intended to point to a different process notice. Use a different pointer
name to avoid this problem.

1162 Storage may not be de-allocated on destroy of a process
When a PROCESS terminates normally, SIMSCRIPT II.5 automatically performs some
memory management functions. By explicitly destroying the PROCESS pointer, these
functions are disabled. In general, if a PROCESS may be terminated prematurely, the
PROCESS itself should check for the conditions requiring termination, rather than having the
PROCESS pointer destroyed by a separate routine.

1163 Context requires the name of a HISTOGRAM
A statement of the form accumulate HISTOGRAM.NAME (LO to HI by INCREMENT) as
the histogram of VARIABLE.NAME must appear in the PREAMBLE. Also see
message1104.

1164 Name of routine is not a monitored variable
SIMSCRIPT II.5 monitors global variables by defining routines with the same name. In this
case, you have provided a routine with the same name as a global variable, but the variable is
not being monitored. Rename the variable or the routine.

1165 Statement out of place
A PREAMBLE type statement appeared in a routine, or vice versa. The unrecognized word is
ignored and the error scan resumes with the next statement keyword in the input stream.

1166 Invalid literal value
The value of the literal provided is too large to hold in a variable location.

1167 Returned Function mode undefined
The mode of the value returned by a function must be declared in the PREAMBLE (define
FN as a FN.MODE function). If the mode is not explicitly included in the define statement,
the background (i.e., normally mode is...) mode currently in effect is assumed.

 92

Compiler Warning and Error Messages

1168 Function should return a value

1169 Statement incomplete

1170 Pointers can test for equality only

1171 Used as implicit subscript
SIMSCRIPT II.5 is free format and allows for usage of implicit subscripts. This increases the
expressive power of the language but sometimes is error prone. You can suppress implicit
subscripts by using the SIMSCRIPT II.5 language statement:

suppress implicit subscripts

The compiler will generate warning message 1171 whenever it detects implicit subscripts
usage. The scope of the suppress statement is global if used in a PREAMBLE or local if
used in a routine. Usage of implicit subscripts can be resumed by the statement:
 resume implicit subscripts
Any number of suppress/resume statements are allowed in a routine.

1172 Subscript should be pointer mode

1173 Attribute doesn't belong to subscript
If a reference pointer is used as a subscript, the compiler can detect when the attribute is
unrelated to the reference type.

1174 Mode of given variable does not belong to set
An attempt was made to FILE or REMOVE from a set given a reference pointer that does not
belong to the set.

1175 Mode not specified
A mode was not specified in a list of argument prototypes.

1176 Mismatched number of dimensions in argument
When passing an array argument to prototyped routine or method, the number of dimensions
defined in the prototype must exactly match the number of dimensions of the argument.

1177 Mode of argument does not match prototype
When passing an argument to prototyped routine or method the mode of the argument must
be "assignment compatible" with the mode defined in the prototype.

1178 Name is ambiguous and needs proper qualification
This message will be reported when an unqualified name is used that matches different
classes or entities declared in two or more modules. The error also occurs if the name
matches more than one inherited class or object attribute.

1179 A class cannot be cyclically derived from itself
Illegal cycles are detected and reported by the compiler when the "IS A" clause is used to
derive a new class from an existing class that is already derived from this new class.

 93

SIMSCRIPT III User’s Manual

1180 END required to terminate a class declaration
Every BEGIN CLASS statement must be terminated by an END statement.

1181 Subscript must be a reference variable
All pointer variables used as subscripts to an object attribute or method must be
REFERENCE pointer of the matching type.

1182 Must be declared as an object or class attribute
All object attributes and methods referred to in a DEFINE statement must be declared in the
same BEGIN CLASS block.

1183 Class attributes must be defined inside a class definition block
The "THE CLASS HAS" statement can only appear inside a BEGIN CLASS...END block.

1184 Invalid name
This message is usually reported when a qualification is used in a place that it is not
expected, or if the qualification is of the improper form.

1185 Word assignment of object attributes not allowed
The IN WORD clause cannot be used to explicitly assign storage locations for object
attributes.

1186 Data size mismatch for equivalent object attributes
Equivalent object attributes must have the modes that are the same size in bytes. For
example, a DOUBLE variable cannot be equivalanced to an INTEGER.

1187 The name of a class is required in this context
The compiler expected the name of a class declared in either the current module or an
imported module.

1188 Method must be overridden
When using multiple inheritance, two or more parent classes may derive from the same class.
If any parent class has overridden a method defined in this "common" base class, then the
name of this method has now become ambiguous from the standpoint of the multiply derived
class. This method must be overridden.

1189 Unknown module
The name of an unknown module was used in a qualification.

1190 Qualifier is not a class
A class qualifier must the name of a known class.

1191 Name not defined or inherited by class
The name of an object attribute, object method, or class set was expected. The name must be
defined or inherited by the class reference in the nearby subscript, or the current class.

1192 Invalid use of set
The name of a set was used in a context where it was unexpected. Or a set was expected in a

 94

Compiler Warning and Error Messages

certain context and not found.

1193 Invalid reference
The name of a class or temporary entity was expected as a reference type.

1194 Undefined name
The name is not defined in the current module or any imported module.

1195 Set must be declared by a belongs phrase of this module
The name given for a set is not defined in the current module or any imported module. This
error can occur if necessary set name qualification is omitted.

1196 Set must be declared by a belongs phrase of this class
An attempt was made to define a something as a set that has not been declared as a set
through the BELONGS phrase.

1197 Name cannot be used to rank entities or break ties
Ranking attributes must be attributes of the same entity or object that the set belongs to.

1198 Process method expected
A name was used in a context where a process method was expected

1199 A function cannot have yielded arguments
Only subroutines and subroutine methods can have yielded arguments.

1200 Constant used as a subscript
It is not allowed to use a constant in any context where a pointer is required.

1201 Invalid method
If inside a BEGIN CLASS block, the name used after the word CALL in a before/after
statement must be the name of a method.

1202 Process method not declared in enclosing class
A process method name is expected for before/after scheduling/canceling statement
appearing inside a BEGIN CLASS block.

1203 Method not declared in enclosing class
An attempt was made to define an undeclared name as a method.

1204 Unknown event
An event heading was found that was not declared in the preamble under the EVENTS
section or was not used in a EVENTS INCLUDE statement.

1205 Unknown process
An event heading was found that was not declared in the preamble under the PROCESSES
section or was not used in a PROCESSES INCLUDE statement.

1206 Unknown class
The class name used in a qualification or in a METHODS FOR statement was not declared in

 95

SIMSCRIPT III User’s Manual

a BEGIN CLASS block.

1207 Incompatible reference
In a CREATE/DESTROY statement, the mode of reference variable appearing after
CALLED must match the class or entity name appearing before CALLED.

1208 Entity type or class not permitted in this statement
The name of a process, event or process method was expected.

1209 Source code file could not be opened
The error message will occur when attempting to import a module that cannot be found. The
source code file containing the public preamble of the imported module should be named
after the module with ".sim" appended.

1210 Only one main module is allowed
A second main module was found on the command line.

1211 Redefinition of a system entity
In SIMSCRIPT III, predefined system entities cannot be modified through the every
statement.

1212 Word number mismatch for equivalent attributes
If the IN WORD clause is used for two equivalent attributes the word numbers must match

1213 Name already specified in a priority order statement
The same event, process, or process method cannot appear in more than one PRIORITY
ORDER statement.

1214 Comparison of pointer to a constant
Only integer variables should be compared to a constant.

1215 Private preamble is unexpected here
A private preamble must proceed its public preamble. This error can also occur if a duplicate
private preamble is found.

1216 Public preamble is unexpected here
Only one public preamble is allowed per file.

1217 LIFO and FIFO are ignored for ranked sets
The LIFO and FIFO keywords do not apply if the set is ranked.

1218 Name of private preamble must match public preamble
If a private preamble is included in the same source as the public, its name must match that
of the public preamble.

1219 Public preamble was not found
The preamble heading for an imported module was not found.

1220 Public preamble name must match source file name

 96

Compiler Warning and Error Messages

The file containing a public preamble must be named after the preamble. For example, the
public preamble for a module named FACTORY must be found in the file named
"factory.sim"

1221 Left monitoring routine/method not found
The compiler will generate a warning whenever routines and methods are not found in the
any of the source code files presented by the user. Use the "-v" option to prevent these
warnings from being displayed.

1222 Right monitoring routine/method not found
The compiler will generate a warning whenever routines and methods are not found in any of
the source code files presented by the user. Use the "-v" option to prevent these warnings
from being displayed.

1223 Override on the right not allowed here
If an object attribute is overridden, only a LEFT METHOD can be provided for this attribute.

1224 Override on the left of non-numeric not allowed here
Only object attributes of mode alpha, integer2, integer, real and double can be overridden.

1225 Initialize not allowed in main module
The INITIALIZE routine is only allowed in subsystems.

1226 Found duplicate routine or method
A second routine or method heading was found.

1227 Implementation of method not found
The compiler will generate a warning whenever routines and methods are not found in any of
source code files presented by the user. Use the "-v" option to prevent these warnings from
being displayed.

1228 Mode of yielded argument does not match prototype
If the dimensionality of a prototyped yielded argument is greater than 1, the mode must
match exactly. For 0-dim arguments, the mode of argument must be assignment compatible
with the mode of the prototype.

1229 Process methods cannot return a value
A process method cannot be defined as a function. A RETURN WITH statement is not
allowed in the body of a process method.

1230 Pointer variable used in expression
A warning will be displayed if a variable of mode POINTER is used in an arithmetic
expression.

1231 Invalid boundaries for histogram
The "high" value used in a histogram declaration must be greater than the low value. The
DELTA value must be greater than zero.

1232 Definition cannot be modified privately

 97

SIMSCRIPT III User’s Manual

In some cases it is not permissible to modify the definition of a name in the private preamble
that was originally declared in the public preamble.

1233 Argument list ignored when scheduling existing processes
If a "THE" keyword is used in conjunction with the SCHEDULE statement, arguments are
not passed to the process or process method.

1234 Implicit conversion of a reference variable
A reference variable cannot be used in the same way as a generic pointer variable, and cannot
be used in any expression. It must only point to an object or entity of the type.

1235 Unsigned INTEGER4 bit 32 ignored under this architecture
Currently, the unsigned INTEGER4 mode is not supported on 32 bit platforms. The
"SIGNED" term can be used when defining a variable as INTEGER4 to get rid of this
warning.

1236 MAIN cannot appear inside a subsystem
The MAIN routine can only appear in the Main module.

1237 Invalid context for definition of a dummy variable
A dummy variable cannot be defined here

1238 Invalid prototype for routine or method
Prototypes and headings for routines and methods specified in a BEFORE/AFTER statement
are subject to restrictions since these routines are called automatically. See the SIMSCRIPT
III reference manual for a description of the arguments for these routines.

1239 Invalid name for override of object method or attribute
The name used in an override clause must be inherited by the object.

1240 Set must be declared by an owns phrase of this class
The set referenced in a BEFORE/AFTER FILING/REMOVING statement must be owned by
the class containing the statement.

1241 Set must be declared by an owns phrase of this module
The set referenced in a BEFORE/AFTER FILING/REMOVING statement must be owned by
an entity or the system within the module containing the statement.

1242 Missing comment delimiter
Multiple line comment delimiters /~ and ~/ must be used in pairs.

1243 Invalid assignment to a constant
Constants cannot be used on the left side of an assignment statement.

1244 Global, class or local constant expected
Some statements (such as the CASE statement) expect only numeric or predefined constants.

1245 Use of a deprecated feature
Some features of SIMSCRIPT II.5 have been deprecated in SIMSCRIPT III.

 98

Compiler Warning and Error Messages

These features can still be used in practice but are no longer formally documented. (Passing
the "-w1245" option to simc will eliminate these warnings.)

1246 Duplicate definition or specification
A name was used twice in the same list.

1247 Use of a monitored variable in substring assignment
Using the SUBSTR.F call on the left while passing a left monitored text variable as an
argument is not supported.

1248 Invalid mode for statement
A variable used within the statement was not of the expected mode. (Pointer/integer mode
interchangeability is not allowed in some cases in SIMSCRIPT III).

1249 Attempt to create a process method
Unlike process routines, the notice for process methods cannot be instantiated using a
CREATE statement. The process notice must be created using a
ACTIVATE/SCHEDULE/CAUSE statement.

1250 Assignment to a statistical variable
Statistical holder variables such as those declared in a tally or accumulate statement are for
reading only and cannot be assigned.

1251 Attempt to divide by zero
A zero or a constant with the defined value of zero cannot be placed in the denominator of a
fractional expression.

1252 Prototype mismatch with base class of covariant override
Overridden methods that accept object reference types as parameters can be redefined within
the same class as the override. This definition must match up with the base class definition in
accordance with the rules for covariant methods.

1253 Low value of range is greater than high value
When a range of values is specified in a CASE statement, the second constant must be
greater than or equal to the first.

1254 This automatic variable should not be reserved/released
The automatically declared derivative of a continuous array is reserved automatically at the
time the continuous variable is reserved. This array should not be reserved by the application
code.

1255 This method does not match original declaration.
The heading of the implementation of a method originally declared as a "process" method
must have contain the word "process". Methods not declared as process methods must not be
implemented as process.

1256 Dollar sign not allowed in names compiled with case sensitivity.
When compiling with the –s options for case sensitivity, the dollar sign is not allowed in a
routine, variable, attribute, etc name.

 99

SIMSCRIPT III User’s Manual

 100

1257 BREAK TIES and PRIORITY ORDER statements not allowed with '-h' option.
When compiling with the –h option (single event set) the break ties and priority order
statements are not currently allowed. These statements must be removed or commented out.

Appendix B Runtime Error Messages

B.1 Runtime Error Messages

When a runtime error is detected, a runtime error message is written to standard error. The
text of each message appears below:

2001 zero raised to a negative power

2003 negative number raised to a real power

2004 invalid I/O unit
The unit number is less than 1 or greater than 99.

2005 negative expression in SKIP INPUT statement

2006 attempt to file an entity in a set it is already in
The M.set attribute of an entity being FILEd in a set is not equal to zero.

2007 attempt to file before or after an entity that is not in the set
The M.set attribute of the entity in the before or after phrase is equal to zero.

2009 attempt to remove from an empty set
The F.set attribute is equal to zero when a remove operation is attempted.

2010 attempt to remove an entity that is not in a set
The M.set attribute is equal to zero when a remove specific operation is attempted.

2011 invalid random number stream
The absolute value of the stream number is less than 1 or greater than the number of random
number streams (normally 10).

2013 attempt to schedule an event/process already scheduled
The m.ev.s attribute of the event/process is not equal to zero when a schedule operation is
attempted.

2014 attempt to cancel an event/process not scheduled
The m.ev.s attribute of the event/process is equal to zero when a cancel operation is
attempted.

2016 no memory space available
The program is attempting to dynamically allocate more memory than the operating system
will allow.

2017 negative argument in itoa.f

SIMSCRIPT III User’s Manual

2018 argument > 9 in itoa.f

2019 attempt to use a write-only I/O unit for input
An I/O unit opened for output only appears in a use for input statement.

2020 attempt to use a read-only I/O unit for output
An I/O unit opened for input only appears in a use for output statement.

2021 attempt to use a unit for input that is in the output state
An I/O unit last used for output appears in a use for input statement without an intervening
rewind.

2022 attempt to use a unit for output that is in the input state
An I/O unit last used for input appears in a use for output statement without an intervening
rewind.

2023 unable to open existing file
See the UNIX error message on the line following this message for more information.

2024 unable to create new file
See the UNIX error message on the line following this message for more information.

2025 subscript out-of-range
An array subscript is less than 1 or greater than the number of array elements.

2027 range error on computed go to
The index value used in a computed go to statement is less than 1 or greater than the number
of labels.

2028 formatted read goes beyond the end of input record
An attempt is made to read characters beyond the record size specified for the unit.

2030 formatted write goes beyond the end of output record
An attempt is made to write characters beyond the record size specified for the unit.

2032 negative field width in input format

2036 negative field width in output format

2040 mixed binary and character I/O
An I/O operation allowed only on an ASCII file is attempted on a binary file, or vice versa.

2041 invalid character while reading 'C' format
A character is read which is not one of the following: blank, 0-9, A-F, or a-f.

2044 output format field width greater than record size

 102

Runtime Error Messages

2048 input format field width greater than record size

2051 zero entity pointer
The pointer used to identify a temporary entity is equal to zero.

2052 reference to destroyed entity
This error can be caused by keeping copies of an entity pointer in several variables,
destroying one copy, and referencing attributes of another copy. This error is detected by the
runtime checking option. If the option (-C) is omitted, a “bus error” may occur instead, or bad
values may enter a computation, causing a delayed failure. This is actually a special case of
error “2053: invalid entity pointer.” It is not always possible to detect a destroyed entity,
since the memory may have been reused since it was destroyed. If this is the case, you will
get error 2053 instead.

2053 invalid entity pointer
The pointer used to identify a temporary entity does not contain the address of a temporary
entity.

2054 wrong temporary entity class
The pointer used to identify a temporary entity contains the address of a temporary entity
which belongs to an entity class different from the one that was expected.

2058 reference to unreserved array
The pointer used to identify an array is equal to zero.

2060 zero or negative subscript specification in reserve statement
The number of array elements specified in a reserve statement is less than 1.

2061 dim.f for array is > 65535
The number of array elements specified in a reserve statement is greater than 65535.

2062 attempt to create invalid entity class
The entity class is not recognized when attempting to create an entity, which is usually
caused by failing to link the compiler-generated routine setup.r.

2066 invalid array pointer
The pointer used to identify an array does not contain the address of an array.

2067 reference to a released array.
This error also appears for references to attributes of a permanent entity that has been
destroyed. The error is detected by the runtime checking option. The comments that apply to
destroyed entities apply here as well.

2068 end of file encountered during read operation while eof.v=0

2069 fatal I/O error during read
See the UNIX error message on the line following this message for more information.

 103

SIMSCRIPT III User’s Manual

2070 fatal I/O error during write
See the UNIX error message on the line following this message for more information.

2071 record length exceeds specified recordsize
A record is read from the current input unit, which is longer than the record size specified
for the unit.

2072 'B' format input column is not within record
The column number is less than 1 or greater than the record size specified for the unit.

2076 'B' format output column is not within record
See error 2072.

2077 incomplete record on a fixed format file
The last record read from a binary file is shorter than the record size specified for the unit.

2084 invalid character in 'I' format during input
A character is read which is not one of the following: blank, +, -, or 0-9.

2088 integer number too large for input
A value is read which falls outside the range of integer values: -2147483648 to
+2147483647.

2093 attempt to create text string > 32,000 characters

2094 attempt to erase non-text entity
A value which is not text is encountered in a situation where a text value is required.

2095 position zero or negative in substr.f

2096 length negative in substr.f

2097 offset negative in match.f

2101 transfer to missing case in select
In a select statement, the expression is not equal to any of the values specified in any of the
case statements and no default statement has been specified.

2103 wild transfer in subprogram variable CALL
The value of the subprogram variable is not equal to the address of a routine.

2104 wild transfer in subscripted go to statement
An attempt is made to go to an undefined subscripted label.

2106 attempt to suspend when no process is active
A wait, work, suspend, request or relinquish statement is executed by a routine which is
neither a process nor a routine called from a process.

 104

Runtime Error Messages

2107 attempt to relinquish more resources than requested
An attempt is made to relinquish units of a resource that were not previously obtained by a
request.

2112 parameter 2 negative in 'D' or 'E' format
A negative number of decimal places is specified.

2116 parameter 2 > parameter 1 in 'D' or 'E' output format
The number of decimal places exceeds the total width of the field.

2122 parameter 2 > parameter 1 in 'D' or 'E' input format
See error 2116.

2124 real number too large for input
A value is read which falls outside the range of double values.

2128 invalid character in 'D' or 'E' format during input
A character is read which is not one of the following: blank, period, +, -, E, e, or 0-9.

2130 negative argument to skip fields — cannot skip backwards

2132 mean in exponential.f call 0

2133 mean in erlang.f call 0

2134 number of stages in erlang.f call 0

2135 mean in log.normal.f call 0

2136 standard deviation in log.normal.f call 0

2137 standard deviation in normal.f call 0

2138 mean in poisson.f call 0

2139 second parameter less than first in randi.f call

2140 second parameter less than first in uniform.f call

2141 number of trials in binomial.f call 0

2142 probability in binomial.f call 0

2143 shape parameter <= 0 in weibull.f call

2144 scale parameter 0 in weibull.f call

 105

SIMSCRIPT III User’s Manual

2145 mean in gamma.f 0

2146 shape parameter in gamma.f 0

2147 first parameter in beta.f call 0

2148 second parameter in beta.f call 0

2152 value of log.e.f or log.10.f argument 0

2153 absolute value of arcsin.f or arccos.f argument > 1

2154 values of arctan.f arguments = (0,0)

2155 value of sqrt.f argument < 0

2159 negative time expression in call of nday.f

2160 negative time expression in call of weekday.f

2161 negative time expression in call of hour.f

2162 negative time expression in call of minute.f

2169 (minimum mean maximum) is false in triang.f

2171 attempt to open a unit already open

2173 invalid recordsize in open statement
The record size is less than 1 or greater than 65534.

2176 attempt to close a file already closed
An attempt is made to close or rewind a unit that is not open.

2177 attempt to close a standard SIMSCRIPT unit
An attempt is made to close or rewind unit 5, 6 or 98.

2178 unable to close file
See the UNIX error message on the line following this message for more information.

2185 unable to record memory

2186 unable to restore memory

2188 unable to reopen or reposition a file during restore memory

2193 system service error
For VMS systems only - unexpected error condition from VMS received by SIMSCRIPT

 106

Runtime Error Messages

library procedure.

2213 Origin.r must be called before calendar functions

2217 negative argument to out.f
An attempt is made to reference a column position less than 1.

2218 argument to out.f exceeds buffer length
An attempt is made to reference a column position greater than the record size specified for
the unit.

2220 simulation time decrease attempted
The value of time.v has decreased since the last event occurred.

2221 no event/process to match name in external event data
The external event data contains the name of an external event/process, which has not been
defined in the preamble.

2222 invalid external event name

2224 error in use of calendar time format

2225 attempt to destroy an entity owning a non-empty set
An F.set attribute of the entity is not equal to zero when a destroy operation is attempted.

2226 attempt to destroy an entity that is in a set
An M.set attribute of the entity is not equal to zero when a destroy operation is attempted.

2227 attempt to use a random variable that has not been read

2228 Alpha probability encountered in random variable data

2229 probability not between 0.0 and 1.0 in random variable data

2230 end of file while reading value field in random variable data

2231 Alpha value encountered in random variable data

2232 Real value where integer expected in random variable data

2233 first cumulative probability not zero in data for random linear variable

2234 cumulative probability values not in increasing order

2235 individual probability values not allowed for random linear variables

2236 sum of probability values more than 1 plus rounding margin

 107

SIMSCRIPT III User’s Manual

2237 Jump to missing Here statement
See compilation warning.

2238 Time.v decreased since last reset

2239 month origin error
A month is specified which is less than 1 or greater than 12.

2240 day origin error
A day of the month is specified which is less than 1 or greater than the number of days in the
month.

2241 invalid event/process class
An event/process class is specified which is less than 1 or greater than the number of event/
process classes.

2242 year origin error, year must contain four digits, like 1998
A year is specified in the pre-millennium two digit style (i.e. ‘97’). Years must include all
places.

2243 zero object pointer
Access is made to an object attribute using a null pointer as the reference variable.

2244 reference to destroyed object
Access is made to an object attribute using an pointer to an object that has already been
destroyed.

2245 invalid object pointer
Access is made to an object attribute using a pointer to something other than an object
pointer.

2246 wrong class for attribute or method
Access is made to an object attribute that does not belong to the class of the reference
variable or any of its sub-classes.

2247 override of class is required
There are some cases where an object must declare an override of a given method. (See
compile-time error #1188). However, methods declared in a private preamble of a base-class
are not known to the compiler if that base-class is declared in a different subsystem. These
errors are therefore detected at run-time when the program is first initialized.

2248 cycle detected in inheritance, class cannot be derived from itself
A class that is a base-class cannot be derived from the class that it derived from itself.
Normally these errors are detected at compile time. However, due to the fact that private
preambles provide true data hiding, compile time detection of this case is not possible in
every circumstance. A runtime mechanism is employed to check for this case when the
program is initialized.

2249 left method called but not implemented

 108

Runtime Error Messages

When implementing a method, a right and/or left methods can be provided in the
implementation. The compiler will allow a function method to placed on the left side of an
assignment, but since it does not know the implementation it cannot flag the lack of a left
implementation at compile-time. This case is therefore detected at run-time.

2250 right method called but not implemented"
When implementing a method, a right and/or left methods can be provided in the
implementation. The compiler will allow a function method to placed on the right side of an
assignment, but since it does not know the implementation it cannot flag the lack of a right
implementation at compile-time. This case is therefore detected at run-time.

2251 wrong class for operation
When the statement “destroy a <class> called <reference_var>” is executed, the runtime
library will check to make sure that the object pointed to by <reference_var> is the same as
or derived from <class>.

2252 exceeded maximum number of events allowed in student version
The maximum number of process notices allowed over the lifetime of the model is 10000 for
the student version of SIMSCRIPT III

2253 attempt to release an array containing a non-empty set
When a set with dimensionality > 0 is released, every element must be empty.

2254 attempt to create a negative number of permanent entities
The n.perm_entity variable must be greater than or equal to zero before a “create each”
statement is encountered.

2255 attempt create a permanent entity that already exists
A create each statement is executed that refers to an existing permanent entity.

2256 attempt to start simulation when a simulation is already running
A start simulation statement was encountered with a simulation already running.

2257 a simulation must be running to complete this operation
Operations that refer to a current process notices are not allowed if there is no simulation
running.

2258 object reference pointer mismatch
If the called keyword is used in with the cause statement, the runtime library will check that
the process notice matches the reference type specified.

2259 external unit variable cannot be assigned during a simulation

2260 external unit cannot be read from at this time
This error can occur if the external unit if reading from an external unit that is out of data.

2261 attempt to reserve an array which is already reserved
Re-reserving a previously reserved array is not supported. The existing array should be
released before being reserved.

 109

SIMSCRIPT III User’s Manual

 110

2300 graphics system error
See the error message on the line preceding this message for more information.

2301 value of vxform.v is invalid
The number of the current viewing transformation is less than 1 or greater than 15 when an
attempt is made to define a window or viewport.

2302 invalid viewport dimensions
An attempt is made to define a viewport having dimensions, which do not satisfy the
following requirement:

0 xlo xhi 32767 and 0 ylo < yhi 32767

2303 invalid window dimensions
An attempt is made to define a window having dimensions, which do not satisfy the
following requirement:

xlo xhi and ylo yhi

2304 attempt to delete the open segment

2305 segment already open
An attempt is made to open a segment when there already is an open segment.

2306 segment already closed
An attempt is made to close a segment when there is no open segment.

2307 segment does not exist

2308 invalid segment priority
The segment priority is less than zero or greater than 255.

2309 invalid POINTS argument
The points array is unreserved or does not contain enough points.

2310 form/graph/icon not found
The name specified in a show statement does not match any graphic templates in the
graphics.sg2 file or currently loaded .sg2 file.

2311 graph not present
A dynamic histogram has been updated that does not have a visible graph associated with it.

Appendix C Standard SIMSCRIPT III Names

Standard SIMSCRIPT III names are in the standard library.m

Library.m is a special module/subsystem that is implicitly imported by every preamble.
This module defines routines, variables, and constants which are accessible to every
module. These definitions may be accessed without qualification (for example, time.v) or
with qualification (for example, library.m:time.v). The library.m definitions are described
in the sections of this chapter:

1 Mode Conversion
2 Numeric Operations
3 Text Operations
4 Input/Output
5 Random-Number Generation
6 Simulation
7 Miscellaneous

SIMSCRIPT III User’s Manual

A.1 Mode Conversion
__

atot.f (alpha_arg)

A text function that returns a text value of length one containing alpha_arg as its only
character. For example, atot.f("B") converts an alpha "B" to a text "B".
__

int.f (double_arg)

An integer function that returns the value obtained by rounding double_arg to the nearest
integer. If the argument is positive, the rounded value is computed by adding 0.5 to the
argument and truncating the result. If the argument is negative, the value is obtained by
subtracting 0.5 from the argument and truncating. For example, int.f(3.5) returns 4 and
int.f(–3.5) returns –4.
__

itoa.f (integer_arg)

An alpha function that returns the character representation of integer_arg. The argument
must be in the range 0 to 9. The return value is in the range "0" to "9".
__

itot.f (integer_arg)

A text function that returns the text representation of integer_arg. For example, itot.f(100)
returns "100" and itot.f(–5) returns "–5".
__

real.f (integer_arg)

A double function that returns the floating-point representation of integer_arg. For
example, real.f(3) returns 3.0.
__

rtot.f (double_arg, total_width, fractional_width, use_exponential)

A text function that returns the floating-point representation of double_arg. The total
width in places of the resulting text string is given as the second argument. That is
followed by the number of places to the right the decimal and followed by a flag to use
exponential notation (0 or 1). For example, rtot.f(3.0008, 5, 3, 0) returns 3.001.
__

trunc.f (double_arg)

 112

Standard SIMSCRIPT III Names

An integer function that returns the value obtained by truncating double_arg to remove its
fractional part. For example, trunc.f(3.5) returns 3 and trunc.f(–3.5) returns –3.
__

ttoa.f (text_arg)

An alpha function that returns the first character of text_arg or returns a blank if text_arg
is the null string. For example, ttoa.f("yes") returns "y" and ttoa.f("") returns " ".
__

ttoi.f (text_arg)
Converts the text representation of an integer to its integer value and returns it. If the text
cannot be converted, zero is returned.

__

ttor.f (text_arg)
Converts the text representation of a floating point number to its double value and returns
it. If the text cannot be converted, zero is returned.

__

 113

SIMSCRIPT III User’s Manual

A.2 Numeric Operations
__

abs.f (numeric_arg)

A function that returns the absolute value of an integer or double argument. If the
argument is integer, the function returns an integer result. If the argument is double, the
function returns a double result. For example, abs.f(–5) returns 5 and abs.f(12.3) returns
12.3.
__

and.f (integer_arg1, integer_arg2)

An integer function that returns the value obtained by performing a bitwise AND of
integer_arg1 and integer_arg2. For example, and.f(23, 51) returns 19 because the bitwise
AND of binary 010111 (23) and binary 110011 (51) is binary 010011 (19).
__

arccos.f (double_arg)

A double function that returns the arc cosine of double_arg in radians. The argument
must be in the range –1 to +1. The return value is in the range zero to .
__

arcsin.f (double_arg)

A double function that returns the arc sine of double_arg in radians. The argument must

be in the range –1 to +1. The return value is in the range
2

 to

2

 .

__

arctan.f (double_argY, double_argX)

A double function that returns the arc tangent of (double_argY / double_argX) in radians.
Either argument may be zero but not both. If double_argY is positive, the return value is
in the range zero to . If double_argY is negative, the return value is in the range to
zero. If double_argY is zero and double_argX is positive, the return value is zero. If
double_argY is zero and double_argX is negative, the return value is .
__

cos.f (double_arg)

A double function that returns the cosine of double_arg. The argument is specified in
radians. The return value is in the range –1 to +1.
__

 114

Standard SIMSCRIPT III Names

__

dim.f (array_arg)

An integer function that returns the number of elements in array_arg. The argument is
normally an array pointer. However, if the argument names an array of sets, then the
f.set array pointer is implicitly passed in its place. If the argument is zero, then zero is
returned.
__

div.f (integer_arg1, integer_arg2)

An integer function that returns the truncated result of (integer_arg1 / integer_arg2).
Integer_arg2 must be nonzero. For example, div.f(17, 5) returns 3 and div.f(–12, 8) returns
–1.
__

exp.c

A double constant equal to the value of e, 2.718281828459045.
__

exp.f (double_arg)

A double function that returns the value of where double_arg is the exponent. xe
__

frac.f (double_arg)

A double function that returns the fractional part of double_arg. It is computed by
subtracting the truncated value of the argument from the original value. If the argument
is positive, the return value is positive. If the argument is negative, the return value is
negative. For example, frac.f(3.45) returns 0.45 and frac.f(–3.45) returns –0.45.
__

inf.c

An integer constant equal to the largest integer value. On 32-bit computers, this value is

. The smallest integer value is –inf.c–1. 647,483,147,21231
__

log.e.f (double_arg)

A double function that returns the natural logarithm (i.e., the base e logarithm) of
double_arg. The argument must be positive.
__

 115

SIMSCRIPT III User’s Manual

__

log.10.f (double_arg)

A double function that returns the base 10 logarithm of double_arg. The argument must
be positive.
__

max.f (numeric_arg1, numeric_arg2, …)

A function that returns the maximum value of two or more integer or double arguments.
If every argument is integer, the function returns an integer result; otherwise, the function
returns a double result.
__

min.f (numeric_arg1, numeric_arg2, …)

A function that returns the minimum value of two or more integer or double arguments.
If every argument is integer, the function returns an integer result; otherwise, the function
returns a double result.
__

mod.f (numeric_arg1, numeric_arg2)

A function that computes numeric_arg1 divided by numeric_arg2 and returns the
remainder. If both arguments are integer, the function returns an integer result;
otherwise, the function returns a double result. Numeric_arg2 must be nonzero. If
numeric_arg1 is positive, the return value is positive. If numeric_arg1 is negative, the
return value is negative. For example, mod.f(14.5, 3) returns 2.5 and mod.f(–14.5, 3)
returns –2.5.
__

or.f (integer_arg1, integer_arg2)

An integer function that returns the value obtained by performing a bitwise inclusive OR
of integer_arg1 and integer_arg2. For example, or.f(23, 51) returns 55 because the bitwise
inclusive OR of binary 010111 (23) and binary 110011 (51) is binary 110111 (55).
__

pi.c

A double constant equal to the value of , 3.141592653589793.
__

 116

Standard SIMSCRIPT III Names

__

radian.c

A double constant equal to the number of degrees per radian, which is

180
 or

57.29577951308232.
__

rinf.c

A double constant equal to the largest real value. On 32-bit computers, this value is
approximately ; however, a double value may be as large as . The smallest
real value is –rinf.c.

38104.3 30810

__

shl.f (integer_arg1, integer_arg2)

An integer function that returns the value of integer_arg1 shifted left by integer_arg2 bit
positions. For example, shl.f(23, 2) returns 92 because binary 00010111 (23) shifted left
two positions is binary 01011100 (92). The value of integer_arg1 is returned if
integer_arg2 is zero. The result is undefined if integer_arg2 is negative.
__

shr.f (integer_arg1, integer_arg2)

An integer function that returns the value of integer_arg1 shifted right by integer_arg2 bit
positions. For example, shr.f(23, 2) returns 5 because binary 010111 (23) shifted right
two positions is binary 000101 (5). An arithmetic shift is performed with the sign bit
copied to the most significant bit positions. The value of integer_arg1 is returned if
integer_arg2 is zero. The result is undefined if integer_arg2 is negative.
__

sign.f (double_arg)

An integer function that returns the sign of double_arg: +1 if the argument is positive, –1
if the argument is negative, and zero if the argument is zero.
__

sin.f (double_arg)

A double function that returns the sine of double_arg. The argument is specified in
radians. The return value is in the range –1 to +1.
__

 117

SIMSCRIPT III User’s Manual

__

sqrt.f (double_arg)

A double function that returns the square root of double_arg. The argument must be
nonnegative.
__

tan.f (double_arg)

A double function that returns the tangent of double_arg. The argument is specified in
radians.
__

xor.f (integer_arg1, integer_arg2)

An integer function that returns the value obtained by performing a bitwise exclusive OR
of integer_arg1 and integer_arg2. For example, xor.f(23, 51) returns 36 because the
bitwise exclusive OR of binary 010111 (23) and binary 110011 (51) is binary 100100
(36).
__

 118

Standard SIMSCRIPT III Names

A.3 Text Operations
__

concat.f (text_arg1, text_arg2, …)

A text function that returns the concatenation of two or more text arguments. For
example, concat.f("Phi", "ladelp", "hia") returns "Philadelphia".
__

fixed.f (text_arg, integer_arg)

A text function that returns the value obtained after appending space characters to, or
removing trailing characters from, the value of text_arg to make its length equal the value
of integer_arg. For example, fixed.f("abcd", 2) returns "ab" and fixed.f("abcd", 5) returns
"abcd ". Integer_arg must be nonnegative; if it is zero, a null string is returned.
__

length.f (text_arg)

An integer function that returns the number of characters in text_arg. For example,
length.f("Chicago") returns 7 and length.f("") returns zero.
__

lower.f (text_arg)

A text function that returns the value of text_arg with each uppercase letter converted to
lowercase. All other characters are unchanged. For example, lower.f("Chicago") returns
"chicago" and lower.f("CAFÉ") returns "café".
__

match.f (text_arg1, text_arg2, integer_arg)

An integer function that returns the position of the first occurrence of text_arg2 in
text_arg1 excluding the first integer_arg characters of text_arg1, or returns zero if there is
no such occurrence. Zero is returned if text_arg1 or text_arg2 is the null string.
Integer_arg must be nonnegative. For example, match.f("Philadelphia", "hi", 2) returns 10
and match.f("Chicago", "hi", 2) returns zero.
__

repeat.f (text_arg, integer_arg)

A text function that returns the concatenation of integer_arg copies of text_arg. For
example, repeat.f("AB", 3) returns "ABABAB". Integer_arg must be nonnegative. A null
string is returned if text_arg is a null string or integer_arg is zero.
__

 119

SIMSCRIPT III User’s Manual

__

substr.f (text_arg, integer_arg1, integer_arg2)

A text function that returns a substring of text_arg when called as a right function, or
modifies a substring of text_arg when called as a left function. The substring begins with
the character at position integer_arg1 and continues until the substring is integer_arg2
characters long or until the end of text_arg is reached. (The first character of text_arg is
at position 1.) For example, the statement,

T = substr.f("Philadelphia", 6, 5)

assigns "delph" to T. When called as a left function, the text value assigned to the
function replaces the specified substring of text_arg, which must be an unmonitored text
variable. The following assignment changes the value of T from "delph" to "delta":

substr.f(T, 4, 2) = "ta"

If the value assigned to the substring is not the same length as the substring, then space
characters are appended to, or trailing characters are removed from, the assigned value.
Integer_arg1 must be positive and integer_arg2 must be nonnegative. If integer_arg1 is
greater than the length of text_arg, or integer_arg2 is zero, then a null string is returned
when substr.f is called as a right function, and no modification is made to text_arg when
substr.f is called as a left function.
__

trim.f (text_arg, integer_arg)

A text function that returns the value obtained by removing leading and/or trailing blanks,
if any, from the value of text_arg. If integer_arg is zero, leading and trailing blanks are
removed; if integer_arg is negative, only leading blanks are removed; and if integer_arg
is positive, only trailing blanks are removed. If text_arg is the null string or contains all
blanks, then a null string is returned. For example, trim.f(" Hello ", 0) returns "Hello".
__

upper.f (text_arg)

A text function that returns the value of text_arg with each lowercase letter converted to
uppercase. All other characters are unchanged. For example, upper.f("Chicago") returns
"CHICAGO" and upper.f("café") returns "CAFÉ".
__

 120

Standard SIMSCRIPT III Names

A.4 Input/Output
__

buffer.v

An integer variable that specifies the length of “the buffer” when the first use the buffer
statement is executed. Its default value is 132.
__

efield.f

An integer function that returns the ending column number of the next value to be read by
a free-form read statement using the current input unit, or returns zero if there are no
more input values.
__

eof.v

An integer variable that specifies the action to take when an attempt is made to read data
from the current input unit beyond the end of file. If the value of the variable is zero
(which is the default), the program is terminated with a runtime error. However, if the
value of the variable is nonzero (typically the program sets it to 1), the variable is
assigned a value of 2 to indicate that end-of-file has been reached. Each input unit has its
own copy of this variable.
__

heading.v

A subprogram variable that specifies a routine to be called for each new page written to
the current output unit when pagination is enabled (lines.v is greater than zero), or
contains zero (which is the default) if no routine is to be called. The routine typically
writes a page heading but may perform other tasks. Each output unit has its own copy of
this variable.
__

line.v

An integer variable that contains the number of the current line for the current output
unit. It is initialized to 1. If pagination is enabled (lines.v is greater than zero), then the
first line of each page is number 1. Each output unit has its own copy of this variable.
__

 121

SIMSCRIPT III User’s Manual

__

lines.v

An integer variable that enables pagination for the current output unit if containing a
positive value indicating the maximum number of lines per page, or disables pagination if
zero (which is the default) or negative. Each output unit has its own copy of this
variable.
__

mark.v

An alpha variable that specifies the character that marks the end of input data describing
an external process or random variable. Its default value is "*" (asterisk).
__

out.f (integer_arg)

An alpha function that returns (when called as a right function), or modifies (when called
as a left function), the specified character of the current output line. Integer_arg is the
column number of the character, which must be between 1 and the record size. For
example, the statement, A = out.f(4), assigns the character in column four to the variable
A. The statement, out.f(4) = "s", changes the character in column four to "s". This
function may not be used if the current output unit has been opened for writing binary
data.
__

page.v

An integer variable that contains the number of the current page for the current output
unit. It is initialized to 1 and is incremented for each new page when pagination is
enabled (lines.v is greater than zero). Each output unit has its own copy of this variable.
__

pagecol.v

An integer variable that specifies for the current output unit, a positive starting column
number at which the word “Page,” followed by the current page number, will be written
as the first line of each page (preceding lines written by a heading.v routine) when
pagination is enabled (lines.v is greater than zero); or the variable is zero (which is the
default) or negative to disable this feature. Each output unit has its own copy of this
variable.
__

 122

Standard SIMSCRIPT III Names

__

rcolumn.v

An integer variable that contains the column number of the last character read from the
current input line, or zero if no character has been read. Each input unit has its own copy
of this variable.
__

read.v

An integer variable that contains the unit number of the current input unit. Its initial
value is 5 because unit 5 (standard input) is the current input unit when a program begins
execution. The assignment, read.v = N, changes the current input unit and has the same
effect as the statement, use N for input.
__

record.v (integer_arg)

An integer function that returns the number of lines read from, or written to, the specified
I/O unit. Integer_arg must be a valid unit number.
__

ropenerr.v

An integer variable that equals 1 to indicate that an error occurred when opening the file
associated with the current input unit, or equals zero if no error occurred. If the Open
statement for the unit specifies the noerror keyword, then the program can check the
value of this variable after a use statement to determine whether an error occurred when
opening the file; otherwise, such an error causes the program to terminate. Each input
unit has its own copy of this variable.
__

rreclen.v

An integer variable that contains the number of characters read in the current input line,
excluding the end-of-line character. Each input unit has its own copy of this variable.
__

rrecord.v

An integer variable that contains the number of lines read from the current input unit.
Each input unit has its own copy of this variable.
__

 123

SIMSCRIPT III User’s Manual

__

sfield.f

An integer function that returns the starting column number of the next value to be read
by a free-form read statement using the current input unit, or returns zero if there are no
more input values.
__

wcolumn.v

An integer variable that contains the column number of the last character written to the
current output line, or zero if no character has been written. Each output unit has its own
copy of this variable.
__

wopenerr.v

An integer variable that equals 1 to indicate that an error occurred when opening the file
associated with the current output unit, or equals zero if no error occurred. If the Open
statement for the unit specifies the noerror keyword, then the program can check the
value of this variable after a use statement to determine whether an error occurred when
opening the file; otherwise, such an error causes the program to terminate. Each output
unit has its own copy of this variable.
__

wrecord.v

An integer variable that contains the number of lines written to the current output unit.
Each output unit has its own copy of this variable.
__

write.v

An integer variable that contains the unit number of the current output unit. Its initial
value is 6 because unit 6 (standard output) is the current output unit when a program
begins execution. The assignment, write.v = N, changes the current output unit and has
the same effect as the statement, use N for output.
__

 124

Standard SIMSCRIPT III Names

A.5 Random-Number Generation
__

beta.f (double_arg1, double_arg2, integer_arg)

A double function that returns a random number in the range zero to one from the beta
distribution having shape parameters 1 equal to double_arg1 and 2 equal to

double_arg2, and mean equal to
21

1

, where 01 and 02 . Integer_arg must

specify a random number stream between 1 and dim.f(seed.v), or a negative stream
number to generate the antithetic variate.
__

binomial.f (integer_arg1, double_arg, integer_arg2)

An integer function that returns a random number in the range zero to n from the
binomial distribution having parameters n equal to integer_arg1 and p equal to
double_arg, and mean equal to np, where and . The return value
represents a random number of successes in n independent trials where p is the
probability of success for each trial. Integer_arg2 must specify a random number stream
between 1 and dim.f(seed.v), or a negative stream number to generate the antithetic
variate.

0n 0p

If n equals 1, the binomial distribution is the same as the Bernoulli distribution.
__

erlang.f (double_arg, integer_arg1, integer_arg2)

A double function that returns a nonnegative random number from the Erlang distribution
having mean equal to double_arg, shape parameter equal to integer_arg1, and scale

parameter equal to

, where 0 and 0 . Integer_arg2 must specify a random

number stream between 1 and dim.f(seed.v), or a negative stream number to generate the
antithetic variate.
__

exponential.f (double_arg, integer_arg)

A double function that returns a nonnegative random number from the exponential
distribution having mean equal to double_arg, where 0 . Integer_arg must specify
a random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

 125

SIMSCRIPT III User’s Manual

__

gamma.f (double_arg1, double_arg2, integer_arg)

A double function that returns a nonnegative random number from the gamma
distribution having mean equal to double_arg1, shape parameter equal to

double_arg2, and scale parameter equal to

, where 0 and 0 . Integer_arg

must specify a random number stream between 1 and dim.f(seed.v), or a negative stream
number to generate the antithetic variate.

If equals 1, the gamma distribution is the same as the exponential distribution. If is
an integer, the gamma distribution is the same as the Erlang distribution. If is an

integer and equals
2

, the gamma distribution is the same as the chi-square

distribution with degrees of freedom.
__

log.normal.f (double_arg1, double_arg2, integer_arg)

A double function that returns a nonnegative random number from the lognormal
distribution having mean equal to double_arg1 and standard deviation equal to
double_arg2, where 0 and 0 . Integer_arg must specify a random number stream
between 1 and dim.f(seed.v), or a negative stream number to generate the antithetic
variate.
__

normal.f (double_arg1, double_arg2, integer_arg)

A double function that returns a random number from the normal distribution having
mean equal to double_arg1 and standard deviation equal to double_arg2, where

0 . Integer_arg must specify a random number stream between 1 and dim.f(seed.v),
or a negative stream number to generate the antithetic variate.
__

poisson.f (double_arg, integer_arg)

An integer function that returns a nonnegative random number from the Poisson
distribution having mean equal to double_arg, where 0 . Integer_arg must specify
a random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

 126

Standard SIMSCRIPT III Names

__

randi.f (integer_arg1, integer_arg2, integer_arg3)

An integer function that returns a random number in the range m to n from the discrete
uniform distribution having parameters m equal to integer_arg1 and n equal to

integer_arg2, and mean equal to
2

nm
, where nm . Integer_arg3 must specify a

random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

random.f (integer_arg)

A double function that returns a uniform random number in the range 0 to 1. Integer_arg
must specify a random number stream between 1 and dim.f(seed.v), or a negative stream
number to generate the antithetic variate equal to 1 – random.f(–integer_arg).
__

seed.v

A one-dimensional integer array that contains the current seed value for each random
number stream. A stream number is used as an index into the array. The number of array
elements returned by dim.f(seed.v) is the number of streams and is initially 10; however,
the program may release the array and reserve it to change the number of streams.
__

triang.f (double_arg1, double_arg2, double_arg3, integer_arg)

A double function that returns a random number in the range m to n from the triangular
distribution having parameters m equal to double_arg1, peak k (the mode) equal to

double_arg2, and n equal to double_arg3, and mean equal to
3

nkm
, where

. Integer_arg must specify a random number stream between 1 and
dim.f(seed.v), or a negative stream number to generate the antithetic variate.

nkm

__

 127

SIMSCRIPT III User’s Manual

__

uniform.f (double_arg1, double_arg2, integer_arg)

A double function that returns a random number in the range m to n from the continuous
uniform distribution having parameters m equal to double_arg1 and n equal to

double_arg2, and mean equal to
2

nm
, where nm . Integer_arg must specify a

random number stream between 1 and dim.f(seed.v), or a negative stream number to
generate the antithetic variate.
__

weibull.f (double_arg1, double_arg2, integer_arg)

A double function that returns a nonnegative random number from the Weibull
distribution having shape parameter equal to double_arg1 and scale parameter
equal to double_arg2, where 0 and 0 . Integer_arg must specify a random
number stream between 1 and dim.f(seed.v), or a negative stream number to generate the
antithetic variate.

If equals 1, the Weibull distribution is the same as the exponential distribution. If
equals 2, the Weibull distribution is the same as the Rayleigh distribution.
__

 128

Standard SIMSCRIPT III Names

A.6 Simulation
__

between.v

A subprogram variable that specifies a routine to be called by the timing routine before
each process method or process routine is executed, or contains zero (which is the
default) if none is to be called. The process notice is removed from the event set (ev.s),
and the simulation time (time.v) and event set index (event.v) are updated, before this
routine is called; however, the pointer to the process notice (process.v) is not yet
assigned.
__

clearevents.r

This routine is a utility that can be called to remove and destroy all remaining process
notices in the event set(s).

__

date.f (integer_arg1, integer_arg2, integer_arg3)

An integer function that returns the number of days from the origin date (established by a
prior call of origin.r) to the specified date, where month m equals integer_arg1, day d
equals integer_arg2, and year y equals integer_arg3. The arguments must satisfy

, , and . 121 m 311 d 100y
__

day.f (double_arg)

An integer function that returns the day of the month in the range 1 to 31 for the date that
is double_arg days after the origin date (established by a prior call of origin.r). The
argument must be nonnegative.
__

ev.s

A one-dimensional array of sets called the “event set.” Each process method and process
type in the program is assigned a unique index into this array. A smaller index value
gives higher priority to the process method or process type. The set at an index contains
a process notice for each scheduled invocation of the process method or process type
associated with the index. The process notices are ranked within the set by increasing
time of occurrence (time.a). The number of elements in this array is contained in
events.v.

 129

SIMSCRIPT III User’s Manual

__

event.v

An integer variable that contains the event set index, in the range 1 to events.v, of the
current process method or process type during a simulation.
__

 130

Standard SIMSCRIPT III Names

__

events.v

An integer variable that contains the largest event set index, which is equal to the total
number of process methods and process types defined by the program.
__

f.ev.s

A one-dimensional pointer array that contains in each element the reference value of the
process notice for the most imminent invocation (smallest time.a) of a process method or
process type, or is zero if there are no scheduled invocations. The number of elements in
this array is contained in events.v.
__

hour.f (double_arg)

An integer function that returns the hour part, in the range 0 to hours.v–1, of the number
of days specified by double_arg, which must be nonnegative.
__

hours.v

A double variable that specifies the number of hours per day. Its default value is 24.0.
__

l.ev.s

A one-dimensional pointer array that contains in each element the reference value of the
process notice for the least imminent invocation (largest time.a) of a process method or
process type, or is zero if there are no scheduled invocations. The number of elements in
this array is contained in events.v.
__

minute.f (double_arg)

An integer function that returns the minute part, in the range 0 to minutes.v–1, of the
number of days specified by double_arg, which must be nonnegative.
__

minutes.v

A double variable that specifies the number of minutes per hour. Its default value is 60.0.
__

 131

SIMSCRIPT III User’s Manual

__

month.f (double_arg)

An integer function that returns the month in the range 1 to 12 for the date that is
double_arg days after the origin date (established by a prior call of origin.r). The
argument must be nonnegative.
__

n.ev.s (integer_arg)

An integer function that returns the number of process notices in ev.s(integer_arg). The
argument must be in the range 1 to events.v.
__

nday.f (double_arg)

An integer function that returns the day part of the number of days specified by
double_arg, which must be nonnegative.
__

origin.r (integer_arg1, integer_arg2, integer_arg3)

A subroutine that establishes the specified date as the origin, where month m equals
integer_arg1, day d equals integer_arg2, and year y equals integer_arg3. The arguments
must satisfy , , and . 121 m 311 d 100y
__

process.v

A pointer variable that contains the reference value of the process notice for the current
process method or process routine during a simulation, or zero if no process method or
process routine is active.
__

time.v

A double variable that contains the current simulation time. Its initial value is zero,
which corresponds to the start of the day of origin.
__

 132

Standard SIMSCRIPT III Names

__

weekday.f (double_arg)

An integer function that returns the weekday, in the range 1 to 7 representing Sunday
through Saturday, for the date that is double_arg days after the origin date. If no origin
date has been established by a prior call of origin.r, the origin is assumed to be a Sunday.
The argument must be nonnegative.
__

year.f (double_arg)

An integer function that returns the year for the date that is double_arg days after the
origin date (established by a prior call of origin.r). The argument must be nonnegative.
__

 133

SIMSCRIPT III User’s Manual

A.7 Miscellaneous
__

batchtrace.v

An integer variable that specifies the action to take when a runtime error occurs. The
debugger is invoked unless the value of the variable is 1 or 2. If the value is 1, a
traceback is written to a file named “simerr.trc” and snap.r is called. If the value is 2, the
program exits without a traceback or snap.r invocation. The default value is zero, which
invokes the debugger.
__

date.r yielding text_arg1, text_arg2

A subroutine that returns the current date in the form MM/DD/YYYY in text_arg1 and the
current time in the form HH:MM:SS in text_arg2.
__

err.message.f

A left function that can be assigned a text string in the event of an error detected while
running the program. The error message will be printed and the debugger will be
invoked.
__

exit.r (integer_arg)

A subroutine that terminates the program with an exit status of integer_arg.

__

high.f

Returns the upper index boundary of an array. “DIM.F” will be returned unless the array
is reserved using the reserve statement in conjunction with to keyword. I.e. “reserve
ARR(*) as –10 to 10”

__

low.f

Returns the lower index boundary of an array. “1” will be returned unless the array is
reserved using the reserve statement in conjunction with to keyword. I.e. “reserve
ARR(*) as –10 to 10”

 134

Standard SIMSCRIPT III Names

 135

__

parm.v

A one-dimensional text array that contains the command-line arguments given to the
program when it was invoked. Dim.f(parm.v) is the number of command-line arguments
and is zero if no arguments were provided.
__

snap.r

A subroutine that may be provided by the program which is invoked when a runtime
error occurs and the value of batchtrace.v is 1. The subroutine may write to the file
named “simerr.trc” by writing to the current output unit.
__

wordsize.f

Returns 64 for 64-bit simscript and 32 for 32-bit simscript

__

Appendix D Latin 1 Character Set

SIMSCRIPT III supports the Latin1 character set, more formally ISO 8859-1, which is an 8-
bit character encoding that includes ASCII as a subset. Values 0 to 127 are defined by
ASCII, and values 128 to 159 are non-printable Latin1 characters. Values 160 to 255 are
printable Latin1 characters and include these letters,

À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü Ý Þ ß

à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ø ù ú û ü ý þ ÿ

and these special symbols:

¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ × ÷

Words in the following languages can be represented using the Latin1 character set:
Afrikaans, Albanian, Basque, Catalan, Danish, Dutch, Faroese, Finnish, French, German,
Icelandic, Irish, Italian, Norwegian, Portuguese, Romansh, Scottish Gaelic, Spanish, Swahili,
and Swedish.

Standard SIMSCRIPT III Names

ASCII Character Set

0 NULL 32 Space 64 @ 96 `
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ' 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 ú
29 GS 61 = 93] 125 }
30 RS 62 > 94 ^ 126 ~
31 US 63 ? 95 _ 127 DEL

 137

SIMSCRIPT III User’s Manual

Appendix E Deprecated SIMSCRIPT II.5 features

SIMSCRIPT III is a superset of SIMSCRIPT II.5. Using language features of SIMSCRIPT
II.5 that have been deprecated is allowed. These features will continue to function normally
and be supported, but a warning message will be printed by the compiler whenever a
deprecated feature is compiled.

Below, each deprecated feature is described followed by examples of code using the feature,
and a suggested modification to the code.

Modification of the code is recommended, but if not possible, deprecation warnings can be
suppressed by compiling using compiler switch “-w1245”.

All deprecated warnings/errors can also be suppressed using compatibility switch “–e”.

The deprecation warnings will NOT appear when compiling with the SIMSCRIPT II.5
compatibility switch (“-e”). When this switch is used, statements will exhibit the behavior
described in SIMSCRIPT II.5 Language and Reference Manuals.

RELEASABLE routines

Defining a routine as "releasable" has no effect. The "releasable" keyword can be safely
removed.

Old code:

define RTN as a releasable routine

New code:

 define RTN as a routine

DUMMY variables

A dummy variable can be used like a traditional variable, but no storage is allocated to the
variable. Such variables must be monitored on the left and/or right sides to be usable. The
same functionality can be achieved by defining the name as a function instead of a variable.

Old code:

every TE has a X
define X as an integer dummy variable monitored on the left and right

 138

Standard SIMSCRIPT III Names

New code:

every TE has a X function
define X as an integer function
…
routine X(TE.PTR)
 …
end
left routine X(TE.PTR)
 …
end

Using the ERASE statement for a text variable

The erase statement is sometimes used to clear a text variable. Assigning the empty string “”
to a text variable has the same effect.

Old code:

erase T

New code:

let T = ""

Graphic input and output units

Using a unit for graphic input and output is a relic of 16 bit Windows SIMSCRIPT and has
no effect in modern SIMSCRIPT II.5. For compatibility, the syntax remains in the language.
These statements can be removed.

Old code:

use unit 8 for graphic output
use unit 7 for graphic input

New code:

<remove the statements>

Event routines

Event routines can be scheduled for future activation like process routines, but cannot elapse
time (i.e. cannot include the “wait” or “work” statement). It is not a requirement that process
routines elapse time, so event routines can be re-declared as process routines.

Old code:

 139

SIMSCRIPT III User’s Manual

preamble
events
 every SALE has a PRODUCT.TYPE, a PRICE and a QUANTITY
end
…
event SALE
…
end

New code:

preamble
processes
 every SALE has a PRODUCT.TYPE, a PRICE and a QUANTITY
end
…
process SALE
…
end

External events

External events can be replaced with external processes.

Old code:

external event is SALE
external event unit is 3
…
if event is external
…

New code:

external process is SALE
external process unit is 3
…

if process is external

NORMALLY, TYPE IS UNDEFINED statement

The NORMALLY, TYPE IS… statement is used to force the specification of either
RECURSIVE or SAVED clauses when defining a local variable. The statement can be
removed.

Old code:

normally, type is undefined

 140

Standard SIMSCRIPT III Names

New code:

<remove the statement>

Comparison operators @=, @>, and @<

The operators @=, @>, and @< are used to mean “not equal”, “not greater than” and “not
less than” respectively. They can be replaced with the equivalent operators such as <>, <=,
and >=.

Old code:

if X @> Y

New code:

if X <= Y

OLD, VERY OLD, and NEW preamble declaration

The behavior of clauses OLD, VERY OLD and NEW when preceding a preamble declaration
is unclear and not implemented consistently. These keywords can be removed.

Old code:

very old preamble
…
end

New code:

preamble
…
end

The STORE statement

In very early implementations of SIMSCRIPT II.5 the STORE statement was used to assign
variables without automatic mode conversion. In SIMSCRIPT II.5 the statement is identical
to a LET statement and can be replaced

Old code:

store 5 in X

New code:

 141

SIMSCRIPT III User’s Manual

let X = 5

Bit, field, and intra packing

Packing is designed to allow more than one attribute or array element to share the same
memory location. For bit packing the bit location and number of bits that an attribute takes
up in a 32-bit word can be specified. Field packing allows the attribute to be assigned to
individual bytes within the 32-bit word. With intra-packing, each 32-bit word of an array can
hold more than one element. Packing specifications can usually be removed from the
preamble without affecting the application. However, there are the following rare
exceptions:

a) Overlapped packing – more than one variable needs to shares the same bits.
b) Memory usage – Packing used to save memory in an application where every bit is

critical.
c) Linking with other languages – A specific entity structure is required “bit for bit” by

part of the application written in a different language (like C/C++).
d) Packed attribute is written to a file whose format dictates that data elements are to be

bit or field packed.

Old code:

temporary entities
 every TE has
 a (FIELD.PACK1(1/4),
 FIELD.PACK2(2/4),
 FIELD.PACK3(3/4)),
 a (BIT.PACK1(1-8), BIT.PACK2(9-16))
…
 the system has
 a INTRA.PACKED(*/4)

New code:

Temporary entities
 Every TE has
 a FIELD.PACK1,
 a FIELD.PACK2,
 a FIELD.PACK3,
 a BIT.PACK1,
 a BIT.PACK2
…
 The system has
 a INTRA.PACKED

 142

Standard SIMSCRIPT III Names

Attribute equivalencing

An individual entity attribute can be assigned multiple names using attribute equivalencing.
Equivalencing can be eliminated by removing the aliases in the preamble and changing the
implementation code to refer to only one name. If there are too many references to the alias
name in the implementation code, a substitution can be used in the preamble to redefine each
alias to be the original variable.

Old code:

every DOG.HOUSE has
 a (DOG, CANINE, POOCH)
…
let CANINE(DOG.HOUSE) = MY.DOG ''same as LET DOG(DOG.HOUSE) =
let POOCH(DOG.HOUSE) = MY.DOG ''same as LET DOG(DOG.HOUSE) =

New code:

every DOG.HOUSE has
 a DOG
define POOCH to mean DOG
define CANINE to mean DOG

Word and array assignment of attributes

SIMSCRIPT allows the programmer to control the memory assignment of both entity and
system attributes using the “IN WORD” clause where the attribute is declared. The IN
WORD clause can be safely eliminated unless there is a compatibility issue with another
language that somehow depends on the specific in-memory layout of SIMSCRIPT entities.

Old code:

every SHIP has
 a WEIGHT in word 1,
 a LENGTH in word 2

New code:

every SHIP has
 a WEIGHT,
 a LENGTH

The FIN statement

 143

SIMSCRIPT III User’s Manual

The FIN statement is a synonym for ALWAYS or ENDIF and can be replaced by either.

Old code:

if X <> 0
 list X
fin

New code:

if X <> 0
 list X
always

Using the FIND statement with embedded assignments

The FIND statement permits embedded assignment statements that are executed the first time
the condition given in the statement is true. The same result can be achieved by moving the
assignments after an IF FOUND clause.

Old code:

for each ITEM in COLLECTION with ACTIVE(ITEM) <> 0
 find ACTIVE.ITEM = ITEM, ID = ID.TAG(ITEM)

New code:

for each ITEM in COLLECTION with ACTIVE(ITEM) <> 0
 find the first case
if found
 let ACTIVE.ITEM = ITEM
 let ID = ID.TAG(ITEM)
always

Defining sets without attributes and routines

Sets can be defined to specifically exclude attributes and functionality that is normally
provided automatically. F., L., N., attributes can be eliminated from the owner, and P., S.,
and M. attributes can be eliminated from member entities. Individual set routines that are
scripted to handle the various types of file and remove operations (FF, FL, FB, FA, RF, RL
and RS) can also be eliminated. The WITHOUT clause can be removed without affecting the
behavior of the set.

Old code:

define COLLECTION as a lifo set
 without L., M. attributes without FL, RL routines

 144

Standard SIMSCRIPT III Names

New code:

define COLLECTION as a lifo set

Mixed compound entities

SIMSCRIPT II.5 permits compound entities that are composed either of both permanent and
temporary entities or of only temporary entities. Each attribute of a mixed compound entity
must be a function attribute. The mixed compound entity specification can be removed and
its attributes replaced by functions which accept the former component entity types as
parameters.

Old code:

temporary entities
 every SOURCE has a LINK.LIST
 every DESTINATION has a NAME
 every SOURCE, DESTINATION has
 a DISTANCE function
 define DISTANCE as a double function

New code:

temporary entities
 every SOURCE has a LINK.LIST
 every DESTINATION has a NAME
define DISTANCE as a double function given
 1 SOURCE reference argument,
 1 DESTINATION reference argument

Use of a right monitored variable as a subprogram literal

Using any right monitored variable as a subprogram literal automatically refers to the right
monitoring routine for the variable. For the same results, the monitoring routine can be
replaced with a traditional function with left and right implementations. These
implementations refer to a separate variable to hold the data.

Old code:

preamble
define X as a double variable monitored on the right
end
right routine X
 …
end
…
define subv as a double subprogram variable
define result as a double variable
let subv = ' X '
let result = $subv

 145

SIMSCRIPT III User’s Manual

New code:

preamble
define XV as a double variable
define X as a double function
end
right routine X
 …
end
left routine X
 enter with XV
end
…
define subv as a double subprogram variable
define result as a double variable
let subv = ' X '
let result = $subv

The LAST COLUMN statement

The LAST COLUMN statement specifies the maximum length of a line of code in the
program. Lines longer than the specified value are truncated automatically by the compiler.
“Last column” statements can be safely removed.

Old code:

last column is 80

New code:

<remove the statement>

Use of the STA.A attribute

STA.A is an attribute of a process notice used to indicate the current condition of the process.
Using the WAIT statement automatically sets the process status (STA.A attribute) to 0. Using
the WORK statement sets STA.A = 1. The value of STA.A has no effect on scheduling. An
application defined status attribute can be used to replace STA.A.

Old code:

preamble
 processes include GENERATOR,LATHE
end
process LATHE
 wait 5 units
 work 5 units
end
process GENERATOR

 146

Standard SIMSCRIPT III Names

 if STA.A(LATHE) <> 0
 write as “Lathe is working”, /
 else
 write as “Lathe is waiting”, /
 always
end

New code:

preamble
 processes include GENERATOR
 every LATHE has a STATUS
end
process LATHE
 let STATUS = 0
 wait 5 units
 let STATUS = 1
 work 5 units
end
process GENERATOR
 if STATUS(LATHE) <> 0
 write as “Lathe is working”, /
 else
 write as “Lathe is waiting”, /
 always
end

The GENERATE/INHIBIT LIST ROUTINES statement

This statement performs no function and can be removed from the preamble.

Old code:

preamble
inhibit list routines
end

New code:

<remove the statement>

The REWIND statement

The REWIND statement is equivalent to closing the unit number provided in the statement.
It can be replaced with a CLOSE statement

Old code:

rewind unit 3

 147

SIMSCRIPT III User’s Manual

New code

close unit 3

Archaic options for the OPEN statement

Several of the options used in the OPEN statement have been deprecated which include:

SYNCHRONOUS, ASYNCHRONOUS, REOPENABLE, REPOSITIONABLE, VARIABLE,
FIXED, UNDEFINED, NUMBERED, SPANNED, ASA, DEVICE, SAVE, DELETE,
PRINT, NOPAD, STRIP, PASS, INSERT, LOCK, TEMPORARY.

The following options are not deprecated:

APPEND, BINARY, CHARACTER/FORMATTED, NOERROR, NAME, and
RECORDSIZE.

Archaic options for the CLOSE statement

Options given to the CLOSE statement have been deprecated. These options include the
following:

SAVE, DELETE, PRINT, NAME IS, UNLOCK.

Report generation statements

These statements include

BEGIN REPORT,
BEGIN HEADING
IF PAGE IS FIRST
PRINT ... A GROUP OF ... FIELDS SUPPRESSING FROM ...

Refer to the SIMSCRIPT II.5 documentation for a description of the above features.

 148

Standard SIMSCRIPT III Names

Appendix F Non-Simscript routines can be case
sensitive

In SIMSCRIPT III Handling Non-Simscript routines has been improved as follows:

1) Mixed case routine names can be defined. The nonsimscript routine defined in the preamble
should match its definition in C routine. The nonsimscript routine called in the executable should
match its definition in the preamble exactly. For example:

Preamble

Define MixedCaseRoutine as a nonsimscript routine

End

Main

 Call MixedCaseRoutine(5)

''generated C code::: MixedCaseRoutine(5);

End

2) The argument prototyping enhancement can be applied to nonsimscript routines. Under
SIMSCRIPT III caution must be taken when writing the code to call a nonsimscript routine. For
example, if the implementation of MixedCaseRoutine takes “double” as its first parameter, and the
integer ‘5’ is passed by the caller, no conversion on the argument will take place. (The SIMSCRIPT
II.5 compiler has no way of knowing about the details of arguments to MixedCaseRoutine!) In
SIMSCRIPT III, each mode of each argument to a nonsimscript routine can be specified explicitly in
the preamble. The appropriate conversions of arguments are then performed by the calling function.

Preamble

Define MixedCaseRoutine as a nonsimscript routine

 given 1 real argument

End

Main

''generated C code::: S_VOID MixedCaseRoutine(S_R);

''after seeing this prototype for MixedCaseRoutine, “C” will

''perform the correct conversion to “real”

 Call MixedCaseRoutine(5)

End

The prototype of input arguments is optional, though recommended. The prototype of output
arguments is a must, to avoid error reported by the compiler.

 149

SIMSCRIPT III User’s Manual

3) The ‘yielding’ clause can be used in conjunction with the argument prototyping: A nonsimscript
routine can be defined as “yielding” one or more arguments. This allows arguments to be passed to
the nonsimscript routine by reference. For example, suppose that MixedCaseRoutine was prototyped
in the “C” code as follows:

void MixedCaseRoutine(double *dp);

It should then be defined in the Preamble as:

Preamble

Define MixedCaseRoutine as a nonsimscript routine yielding

 1 double argument

End

The nonsimscript routine can be called like a prototyped SIMSCRIPT routine. Modes of variables
used by the caller do not have to match exactly modes used by the callee. In the following code, an
integer mode variable is yielded. Since the nonsimscript routine was prototyped in the preamble, the
appropriate conversion takes place.

Main

Define V1 as an integer variable

Call MixedCaseRoutine yielding V1

end

4) If input of a nonsimscript routine is un-prototyped, variables passed as arguments that are of mode
“REAL” are NOT automatically converted to 64-bit “double”. The variable will be passed as a 32-
bit float and it is assumed in this case that the “C” routine expects a “32-bit float” and not a “64-bit
double”.

 150

Standard SIMSCRIPT III Names

Appendix G Continuous Simulation
SIMSCRIPT supports discrete and combined discrete/continuous simulation through
several unique features: “wait continuously” statement, and capability to define
continuous variables. In SIMSCRIPT III these features have been improved. They are re-
implemented in a separate system module continuous.m. The public preamble for this
module is in SIMSCRIPT directory SIMHOME/defs. Models which use SIMSCRIPT
continuous capabilities should state in the preamble the import of this module/subsystem
and to import this directory during compilation. All necessary library objects will be
automatically linked with the model.
Here is description of the improved wait continuously statement.

Work/wait continuously evaluating ‘rtn’ … statement

When this statement is executed inside a process, that process is suspended allowing
continuous attributes of the process notice to be updated. In SIMSCRIPT II.5 continuous
attributes of a process are only updated while that process is suspended in a WAIT
CONTINUOUSLY statement.

In SIMSCRIPT III, continuous attributes are always updated. Even if the process is
suspended in some other way (such as a discrete WAIT/WORK statement). In SIMSCRIPT
II.5 an “evaluate” routine can be passed in the WAIT CONTINUOUSLY statement as a
subprogram literal. This routine is called frequently by the runtime library allowing the
application to assign new values to the continuous attribute derivatives. In SIMSCRIPT III
the SystemOfEquations object can be subclassed and its “evaluate” method overridden.
Code for derivative evaluation should be placed in this overridden method.

Old code:

preamble
 processes
 every BALLISTIC has an X
 define X as a continuous double variable
end
routine EVALUATE.RTN(BALLISTIC)
 let D.X(BALLISTIC) = …
end
process BALLISTIC
 let D.X = 1200
 work continuously evaluating ‘EVALUATE.RTN’
end

New code:

preamble including the continuous.m subsystem
 processes
 every BALLISTIC has an X

 151

SIMSCRIPT III User’s Manual

 152

 define X as a continuous double variable
 begin class Ballistic_Eq
 every Ballistic_Eq is a SystemOfEquations
 and overrides the Evaluate
 end
end
method Ballistic_Eq’evaluate
 let D.X(BALLISTIC) = …
end
process BALLISTIC
 let D.X = 1200
 suspend
end

	PREFACE
	Introduction
	1. Developing Simulation Models with Simstudio
	1.1 Simstudio Overview
	1.2 Creating a New Project
	1.3 Adding Source Code to a Project
	1.3.1 Creating a New File with the Text Editor
	1.3.2 Adding a Directory or a File Using Project Window
	1.3.3 Adding Multiple Directories and Files
	1.3.4 Adding Graphical Elements to a Project

	1.4 Opening an Existing Project
	1.5 Building a Project
	1.5.1 Building a Project for Debugging
	1.5.2 Building a Project for Release
	1.5.3 Compiler Listings

	1.6 Using the Class Browser
	1.7 Executing a Model
	1.7.1 Passing Command-Line Arguments
	 1.6.2 Running the Executable with the Symbolic Debugger

	1.8 Closing the Project
	1.9 Setting Simstudio Preferences
	1.10 On-line Help
	1.11 Advanced Compiler/Link Options

	Developing Simulation Models Using Command-Line Interface
	2.1 Preparing Source Files
	2.2 Compiling
	2.3 Recompiling
	2.4 Linking
	2.5 Executing
	2.6 Makefiles
	2.6.1 Compilation Sequence
	2.6.2 Make Description File Format
	2.6.3 Transformation Rules
	2.6.4 Special Notes
	2.6.5 Sample Makefile

	2.7 Obtaining Online Help
	2.8 Example Program

	3. SIMSCRIPT II.5 Language Considerations
	3.1 Input and Output
	3.2 Modes
	3.3.1 Calling C Routines
	3.3.2 Calling FORTRAN Routines

	4. SimDebug Symbolic Debugger
	4.1 Compiling for Debug and Invoking SimDebug
	4.1.1 Compiling for Debug
	4.1.2 Invoking SimDebug

	4.2 A Quick Tour of SimDebug
	4.2.1 Tour 1: Showing the Stack and Variables
	4.2.2 Tour 2: Breakpoints and Single Stepping
	4.2.3 Tour 3: Pointer Handling: Entity / Set Display

	4.3 SimDebug Command Reference
	4.4 Advanced Topics
	4.4.1 Batchtrace.v
	4.4.2 Signal Handling / External Events
	4.4.3 Reserved Names
	4.4.4 Displaying Arrays
	4.4.5 Permanent Entities and System Owned Variables/Sets
	4.4.6 Conditional Breakpoints
	4.4.7 Continuous Variables

	Appendix A Compiler Warning and Error Messages
	Appendix B Runtime Error Messages
	B.1 Runtime Error Messages

	Appendix C Standard SIMSCRIPT III Names
	A.1 Mode Conversion
	A.2 Numeric Operations
	A.3 Text Operations
	A.4 Input/Output
	A.5 Random-Number Generation
	A.6 Simulation
	A.7 Miscellaneous

	Appendix D Latin 1 Character Set
	Appendix E Deprecated SIMSCRIPT II.5 features
	Appendix F Non-Simscript routines can be case sensitive
	Appendix G Continuous Simulation

