
Growth and Innovation in Software Ecosystems∗

(Work in Progress)

Geoffrey Parker
Tulane

gparker@tulane.edu

Lones Smith
Wisconsin

lones@ssc.wisc.edu

Marshall Van Alstyne
Boston University/MIT

mva@bu.edu

July 18, 2013

Abstract

This paper introduces and develops a new model of platform growth, inspired by the
standard growth literature. At each moment in continuous time, the platform owner
must choose (i) how much source code to open and make available to a developer
community, (ii) how fast to absorb developer code into the platform, (iii) how much
to tax developer output, and (iv) how much to invest in the platform itself. Without
any public code, the control problem reduces to the growth model of Solow (1956).

Our platform model captures an infinitely recursive R&D ecosystem with innovation
spillovers across developers. To optimize growth, the platform owner must internalize
this recursive externality. Developers also innovate less the sooner they lose their
code, but the platform grows faster with earlier code expropriation. The platform thus
willingly privately contributes to the collective public good of open source code, as part
of a dynamic profit-maximizing strategy to encourage taxable innovation.

We find that with the nonrival character of software, there are initially increasing

returns to irreversibly releasing code into the public domain. Consistent with a variety
of data, larger platforms should impose higher developer fees and taxes, expropriate
less, and save more. We conclude by comparing the platform to a benevolent social
planner.

∗This paper is supported by National Science Foundation grant #0925004.



1 Introduction

A substantial and growing fraction of the economy is represented by software platforms —

namely, closed economic ecosystems whose owner sustains their development, and who can

set rules for opening platforms and for choosing when to bundle downstream applications into

the platform. The platform owner faces a dynamic economic control problem with options

and tradeoffs not jointly present in other economic settings. Notably, he can divest some of

his platform code into the public domain and thereby profit from an external community of

developers endowed with commercially valuable ideas that augment this code. For instance,

while Myspace created its entire platform by itself, Facebook allowed outside developers to

build new applications.1 That Facebook has since proved a stunning business success and

Myspace a catastrophic failure speaks to the critical role of played by developer firms in the

platform viability.

We develop a parsimonious model of platform optimization of its software ecosystem that

embodies several key features of the optimization they face and its social welfare implications:

platform depreciation and re-investment, heterogenous developer ideas, developer taxes, code

expropriation. In our key modeling innovation, the platform must choose how much of its

code to open up for a heterogeneous continuum of small developers to build upon. Developers

indexed by the quality of their product ideas. The platform owner becomes a landlord to

developer firms that build and sell applications on its property. When a traditional landlord

allocates land to one tenant, it is unavailable to another. But here all firms can productively

encamp on the same ground, since the code is a nonrival good.

Since platform code depreciates rapidly, the platform must choose how fast to re-invest

revenues into building the platform. These production and savings-investment decisions

1“We tried to create every feature in the world and said, ’O.K., we can do it, why should we let a third
party do it?’” says (MySpace cofounder) DeWolfe. “We should have picked 5 to 10 key features that we
totally focused on and let other people innovate on everything else.” — Felix Gillette, Business Week,
6/27/2011.
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resemble those in the standard exogenous growth paradigm in macroeconomics that we

parallel (Solow, 1956). But we differ critically in having two legal dimensions of capital —

privately-held and publicly-held platform code. For instance, modular programming is an

example of public code that can serve as the bricks and mortar for future developers code

(MacCormack et al. (2007)). We show that releasing code into the public initially benefits

from increasing returns. For the more code that is released, the more developers are able to

devise new and more imaginative applications.

In our continuous time setting, the platform constantly depreciates. Indeed, one should

expect that code depreciates much faster than physical capital both because of constant

attacks on its integrity (wear and tear), and given the rapidly changing technological frontier

(rust and dust). The platform owner therefore must make a critical choice of how fast to

replenish the public domain code. But this activity is by no means a free lunch. For the

decision to release code into the public domain is an irreversible one. The platform must

worry that an upstart can learn from his published code, and produce its own rival platform.

Faced with potential competition from other platforms that may arise, we assume that the

platform owner can only charge for the surplus value his private code confers upon consumers.

This embodies a classic tradeoff that more openness helps future innovation at the cost of

lower current profits (Besen and Farrell, 1994).

Our paper contributes to the dynamic R&D literature. For we allow two platform choices

regarding the developer ecosystem: First, developers may see their revenues taxed by the

platform — as with Apple’s 30% rate on iPhone applications. We therefore model the

choice of the platform developer tax rate. Second, unlike firms producing tangible standard

rival goods, the platform owner may at some point copy or confiscate an application that

adds value to the platform. We model this code expropriation simply as a choice of how

long application producers may own their products. In practice, a platform owner often
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creates a functionally equivalent application he then bundles into the platform.2 This is

analogous to a choice of patent length for R&D firms, and captures an intrinsic tradeoff:

Bundling applications into the platform sooner reduces innovation incentives, but enriches

the platform for future developers. This captures the essence of the ex ante – ex post

tradeoff in technology markets. The platform eventually embeds arbitrarily many rounds of

innovation sequentially layered on one another. Our paper tells a much richer story of R&D

than usually told,3 with profit and adoption tradeoffs in open versus closed code.4

The platform sponsor profits from the developer ecosystem in two ways — the tax rate on

developer revenues and the finite proprietary period before expropriation. A higher tax rate

or shorter proprietary period helps the platform, but reduces developer profits, and thereby

this shrinks the developer ecosystem. The platform sponsor selects a positive tax rate and

positive expropriation rate that equate his dynamic tradeoff with the developers.

We model the platform environment as a closed economy. Faced with a depreciating code

base, the platform sponsor is a social planner who must directly reinvest in its maintenance.

He must balance current against future consumption at the margin. As with the macroeco-

nomic growth literature, we compute the golden rule solution that maximizes the platform’s

steady state value. We ask how this solution varies with the basic parameters. We show,

for instance, intuitive result that the platform owner should more heavily re-invest in the

platform when the depreciation rate is greater. Less intuitively, we argue that platforms

serving larger markets should impose smaller taxes on developers, and instead rely more

2This has happened many times — for instance, Microsoft saw the vital importance of web browsing and
released Internet Explorer with Windows 95. When Microsoft bundled web browsing, instant messaging,
streaming media multi-threading, and disk compression into Windows — all features originally developed
by downstream developers — venture capital firms reduced funding any startups whose products might be
bundled into the operating system.

3The leading papers here Green and Scotchmer (1995) and Chang (1995) explore two stage innovation.
4Closest in spirit to our paper is Boudreau and Hagiu (2009). They show that when discoveries sequen-

tially build on one another, patent protection is unwise, and that inventors may find higher profits in a world
with competition and imitation. This idea emerges in our setting, but without the same developers moving
twice.

3



heavily on code expropriation. This finding partially makes sense of the different strategies

employed by the Windows and iPhone platforms.

Our point of departure from the growth literature mirrors the knowledge spillover growth

model of Romer (1986). But whereas he focused on the positive external effect of new

knowledge that “cannot be perfectly patented or kept secret”, we explicitly model the public

domain code as a capital stock.

Whither Cloud Computing? We allow the platform to write contracts with develop-

ers that includes code expropriation. In a world with cloud computing, the platform would

not own the domain, and would lose this lever of power. We see in §5 would lose its dominant

source of platform growth.

We next analyze in sequence the platform model of private and public code, explore

optimization with the platform ecosystem, and then the platform dynamics. Finally, we

turn to the twin platform and planner’s problems.

2 Motivation

Depreciation is much more important than holds for standard physical capital (eg. 15%) in

the macroeconomy for two reasons. First, there may be significant obsolescence, as the tech-

nological environment is rapidly changing; therefore, software must be quickly re-configured,

possibly with new functionality added. Second, the platform software environment is prone

to attack by hackers, and this ongoing war requires constant repairs and defensive adap-

tations. Microsoft updates for Windows operating systems, for instance, often arrive more

than once a week in response to the latest discovered vulnerabilities.

platform code can be re-used, given software modularity

The platform owner also takes a “piece of the action” from the applications firms — for
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instance, Apple taxes 30% of developers revenues for the iPhone and zero for Mac.5

The platform owners can expropriate any piece of software it deems mission critical.

What it does in practice is make a take it or leave it offer, and threaten replication. We will

treat this as “eminent domain”.

We assume that the platform managing the ecosystem invests in its code and and ex-

propriates code. This captures many real life features. Platforms often acquire companies

to secure their code. But behind the scene is the threat that the platform will replicate the

code.

• Apple acquired NeXT in 1997, it acquired the core for its new MAC OS kernel.

• Mac: eMagic became Garageband

• Soundjam became iTunes

As long as the platform offers the developer a discounted price, this is best modeled as

expropriation. If the platform offered the developer full value, then it is essentially investment

in the platform.

Really, platform code is not all the same.

• Developer library is published.

• Video game platforms like XBox typically charge licensing fees from $3 to $10.

Our code dynamics describe an open source ecosystem like Lynux, but our platform

optimization is inapplicable there.

The Ecosystem. Steve Jobs boasted at 2010 Apple World Wide Developers Conference

of 225,000 iPhone and iPod touch apps in the App Store, and an excess of $1 billion of tax

revenues from developers in the App store. The number of developers for the Windows

platform swamps this number.

5Windows charges 0%; Salesforce.com charges 30%; Amazon Kindle charges 70%.
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3 The Platform Model

Growth theory explicitly models production as a function of labor and capital, and explores

the capital dynamics given exogenous depreciation and investment. We develop a related

dynamic model of a platform optimization with a two dimensional capital stock: a mass

K > 0 of private code known only by the platform owner, and a mass L > 0 of public code

that can be built on by others. The distinction is at the heart of our contribution.6

In the spirit of growth models, we assume a concave production function of the total

platform code K +L. More specifically, total code K +L is worth ψ(K +L)α to consumers,

where 0 < α < 1. Think of ψ > 0 as a measure of the economic size of the platform market.

Our public code presents the key substantive economic difference from growth models.

A start-up firm could presumably bundle the public code itself, and create a free limited

platform of consumption value Lα. We thus assume that the platform owner is constrained by

potential competition from future platforms that may arise by enterprising upstarts building

on this public code. To best capture this, we assume that the platform owner can only profit

from the value-added conferred by his private code. We do not model the platform pricing

decision except to assume that it extracts a platform rental fee equal to the annuity value of

the difference ψ(K + L)α − ψLα.

The public and private code bases evolve with the passage of time. We suppose that

code erodes at a constant depreciation rate δ > 0. Balancing this, private code has two

engines of growth. First, the platform owner produces new code. We assume without loss of

generality that it only adds to the private code base, and then sustains the public code by

“divesting” private code into the public domain. To this end, let π > 0 be the publication

rate of private code into the public domain. Next, the platform owner maintains private

code by re-investment. Analogous to the Solow growth model, we assume that the platform

6We suppress the time argument for K,L and all other variables in our model for notational ease.
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owner pays for investment by saving a fraction 0 < s < 1 of his platform revenues.

For the second source of growth, we allow the platform to exploit his property rights on

the developers, since they are building on the platform domain (K,L). We first allow the

platform owner to write contracts with the legal spirit of “eminent domain” provisions: An

application developer has only a limited duration monopoly on its product, after which its

code is folded into the private platform code. Reflecting this, we assume that the platform

owner expropriates developer code into the private code base at some rate χ > 0. Such a

stochastic exclusionary period induces a stationary model. Secondly, we allow the platform

owner to seize a “piece of the action” from the applications firms before expropriation. We

venture that the platform chooses a tax rate 0 < τ < 1 on developer revenues.

Altogether, the platform owner chooses parameters χ, π, s, τ to maximize the present

value of the revenue flow from direct sales, less re-investment costs, and developer taxes:

(1− s)ψ[(K + L)α − Lα] + τ(developer ecosystem revenues) (1)

We now explore the developer ecosystem, thereby fleshing out the latter term.

4 The Developer Ecosystem

The developer ecosystem sustains the external returns to public capital. In a modeling

assumption consistent with this myriad of firms, we assume free entry from a heterogeneous

continuum of potential developers.

A. Individual Developers. The continuum assumption embodies a lack of market power

by developers. The source of increasing returns in this world is the ever-welling pool of

external ideas. Developers differ by their ideas x > 0, where we envision that an idea simply

scales up the value of the developer code. While developers live in a dynamic world, their
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decision formally reduces to a static optimization. We do not model demand, and instead

work in a reduced form setting — as if assuming infinitely elastic demand — where the

production function translates directly into revenue. It is also in the spirit of the Solow

growth model, in which the planner simply cares about productivity. This is consistent with

our assumption of no market power, and our laser focus on how the ecosystem contributes

software to the platform. We assume that by using public code L > 0, any application firm

with idea x can produce code of present value

v(x,m) ≡ AxmσLξ (2)

by using a variable input m, costing wm + κ. We might think of the variable input m as

hours of engineers, for instance, while the fixed cost κ > 0 includes the one-shot opportunity

costs of doing the start-up, and in particular, embeds any platform-imposed developer fee.

Costs are measured upfront in current dollars — as if the developer first rents its facility and

hires its engineers, and afterwards sells its product. The coefficient A > 0 is a technology

productivity parameter, measuring the ease of platform code re-use. It is higher, for instance,

with greater software modularity of any applications. Since software engineers and platform

code are highly specialized inputs, we assume diminishing returns to scale, so that scaling

up a developer firm’s size increases its profits less than proportionately:

σ + ξ < 1 (3)

Instead, the only source of increasing returns in our model is more and better ideas, which

is the focus of this model. To this end, we assume an inflow of potential new developers. Of

these, the mass of ideas x has density g(x) = µβx−β−1 on [1,∞), where β > 0. Intuitively,
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ideas x ≤ 1 are worthless and so ignored.7 Equivalently, there is a total mass µx−β of new

potential developer ideas above any level x ≥ 1. The tail size determines the level of the

external returns: smaller β corresponds to a thicker developer idea tail. Not only is the mass

of ideas finite, but we shall soon see that the tail must vanish much faster, with β > 1.8

Platform code reabsorption creates a dynamic pricing drag on developers. For they

cannot sell code of consumer value v(x,m) for full-price, because consumers can simply

wait until it is rebundled into the platform. We assume the developers set a price p(x,m)

that leaves consumers indifferent about waiting, and buying immediately. Intuitively, a

greater expropriation rate blunts a firm’s ability to charge for its applications. Given the

expropriation rate χ, consumers expect to secure a fraction ρ of developer value by waiting,

where

1− ρ ≡

∫

∞

0

χe−χte−rtdt =
χ

r + χ
(4)

In other words, the market price p(x,m) of developer x solves the consumer indifference

equation v(x,m) − p(x,m) = (1 − ρ)v(x,m), namely, p(x,m) = ρv(x,m). This creates a

curious inversion for the value of owning developer applications: Unlike for normal durable

goods, a lower interest rate lowers prices, rather than raises them. For consumers enjoy a

greater future outside option, and so are more patient; they are willing to pay less for any

given application. Since the platform also values the developer revenues indirectly through

its taxation, its optimization on χ and τ will take into account this interaction.

With this device, we hereby reduce the developer optimization to a static one, in which

they can secure a price p(x,m). Since each developer only retains a fraction 1 − τ of its

7The left tail under this mass density has infinite area when β ≥ 1, which we will need; truncating it is
essential in order to preclude a divergent dynamical system in §5, in which an exploding public capital stock
is fed by an exploding mass of very poor developer ideas.

8This model subsumes the case in which ideas more than proportionately scale the output, say by y = xζ

with ζ > 1. For in this case, simply use our model with the idea density parameter β/ζ. But this logic
reveals that β encodes production considerations too.
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revenues, the expected present value of profits for one such firm with an idea x is then:

(1− τ)p(x,m)− wm− κ = ρ(1− τ)AxmσLξ − wm− κ (5)

given the consumer value expression (2). The optimal input level m∗(x) obeys the first order

condition:

wm∗(x) = ρσ(1 − τ)Axm∗(x)σLξ ≡ ρσ(1− τ)v(x,m∗(x)) (6)

Substituting this factor demand function into (5), the developer with idea x ≥ 1 earns profits:

wm∗(x)(1− σ)/σ − κ = w
[

ρσ(1− τ)AxLξ/w
]1/(1−σ)

(1− σ)/σ − κ (7)

Combining (6) and (7), his optimized flow software creation value is

v(x,m∗(x)) =
[ρσ(1− τ)Ax/w]1/(1−σ)

ρσ(1− τ)
Lξ/(1−σ)

Those firms with the best ideas x ≥ x enter, and all but the marginal one earns positive

profits. This yields the expression for the marginal firm with idea x earning zero profits:

x =

(

κσ

w(1− σ)

)1−σ
w

ρσA(1− τ)Lξ
(8)

provided this expression yields x ≥ 1. At some point, once the public capital stock is large

enough, we get x = 1. Specifically, this happens when L = L̄, where

L̄ξ =

(

κσ

w(1− σ)

)1−σ
w

ρσA(1− τ)
(9)

The marginal firm determines the size of the ecosystem. Observe that for public code levels

L < L̄, entry into the developer pool is discouraged by higher costs κ or w or taxes τ , or code
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expropriation (via the parameter ρ, in light of (4)), and encouraged by more public code L,

and productivity A, the interest rate r (also via (4)). Finally, the ecosystem size obviously

varies inversely to the marginal firm x, and thus moves oppositely to each parameter.

B. The Whole Ecosystem. Assume that L < L̄. Given optimal entry into the ecosystem,

integrating across all active developers, the gross flow value of total code produced at each

moment in time equals:

µ

∫

∞

x

v(x,m∗(x))βx−β−1dx = µβ

[

ρσ(1− τ)ALξ/w
]1/(1−σ)

ρσ(1 − τ)

x1/(1−σ)−β

β − 1/(1− σ)
≡ ∆Lγ

where γ ≡ ξβ, and the constant D fully reflects parameters of the technology and developers:

∆ =
µβAβ(1− τ)β−1ρβ−1

β − 1/(1− σ)
σβσw−1−βσ

(

1− σ

κ

)(1−σ)β−1

(10)

The developer diminishing returns assumption (3) yields a bound on the returns to public

code:

γ = ξβ < (1− σ)β

When the public code L exceeds the threshold L̄, the marginal developer firm idea is constant

at 1, and so by similar logic, the gross flow value of total code produced equals

µ

∫

∞

1

v(x,m∗(x))βx−β−1dx = µ

∫

∞

1

[ρσ(1− τ)Ax/w]1/(1−σ)

ρσ(1 − τ)
Lξ/(1−σ)βx−β−1dx ≡ DLg (11)

where g ≡ ξ/(1− σ). Next, the lead constant is

D =
µβ

β − 1/(1− σ)
[ρσ(1− τ)]σ/(1−σ) (A/w)1/(1−σ) (12)

For instance, the developer fixed cost κ does not affect the production of any of the firms,
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since they are all inframarginal. As a result, ecosystem code is invariant to κ when L ≥ L̄.

In light of (10) and (12), the returns to variable inputs m cannot be too large relative to

the size of the developers idea tail, or else the ecosystem value explodes. Namely:

Lemma 1 The value of the ecosystem entry is finite if and only if (1− σ)β > 1.

There may initially be increasing returns to public code for all L ≤ L̄, for γ = ξβ possibly

exceeds one. But the returns to public code are smaller for large public code levels L ≥ L̄,

since g = ξ/(1− σ) < ξβ = γ by Lemma 1. In fact, since g = ξ/(1− σ) < 1 by diminishing

returns (3), the platform ecosystem (11) has eventual diminishing returns to public code.

Equally well, the average present value of developer profits equals the inflow of returns

less the marginal and fixed costs. Exploiting our expressions for the marginal firm in (8)

and the constant ∆ in (10), the platform profits in (7) equal:

profits =















(1− σ)∆Lγ − µκx−β = [(1− σ)− (1− σ − 1/β)(1− τ)ρw]∆Lγ L < L̄

(1− σ)DLg − µκ L ≥ L̄

(13)

5 Public and Private Code Capital Stock Dynamics

The ecosystem analysis takes as given the public code level L. We now turn to the dynamic

optimization facing the platform, and derive this critical capital stock. Given the assumed

depreciation and code publication rates, the public code admits the law of motion:

L̇ = −δL+ πK (14)

Easily, we see that the public code stock would evaporate absent any private code publication.
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Likewise, the private code base evolves according to the law of motion:

K̇ = f(K,L) ≡ −(δ + π)K + sψ[(K + L)α − Lα] + ∆Lγ for L < L̄ (15)

K̇ = h(K,L) ≡ −(δ + π)K + sψ[(K + L)α − Lα] +DLg for L ≥ L̄ (16)

where L̄ is given by (9). The first term in (15) and (16) includes the losses from depreciation

of old code, and divestiture into the public code base. The middle term of captures the new

private code due to savings re-investment. Observe that since 0 < α < 1, the difference

(L+K)α − Lα = Lα[(1 +K/L)α − 1] ≈ Lαα(K/L) = αKLα−1 → 0 as L→ ∞ (17)

The last term in (15) and (16) is the developer code expropriation into private code.9

Corollary 1 The platform code from reinvestment vanishes as public code L explodes, and

so eventually, the platform code is maintained almost wholly by developer code expropriation.

This has important implications for cloud computing. For this structure usually escapes

the platform property rights, and thereby the latitude to expropriate. In other words, the

only source of re-investment in a cloud platform structure is the vanishing revenues from

reinvestment. This greatly limits the size of sustainable cloud platform structures. Unlike

with standard platforms, monopoly is therefore a prediction for cloud computing.

Dynamical systems are often solved by understanding their resting points, and ours is no

exception. In fact, we shall perform all of our analysis in steady state. Our two dimensional

system enriches the analysis. Figure 1 plots the level sets of (14)–(16). By (17), the stationary

curve K̇ = 0 curve at large L approaches the concave curve (δ+π)K = DLg. The diminishing

returns intuitively suggests that a stable stationary fixed point exists, for similar reasons as

9In steady-state, developer code available to a platform accumulates over time comes from an infinite
pre-history. Computing the total stock of code requires dividing the coefficient D by χ, since the expected
longevity of any developer code before expropriation is 1/χ. Scaled by χ, this is the flow of expropriated code.
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K̇ < 0 < L̇

K̇ = 0

L̇ = 0

K̇ > 0 > L̇

K̇, L̇ < 0

K̇, L̇ > 0

✻

✲✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑✸

L

KK̂K0

L̂ = (π/δ)K̂

L̄

Figure 1: Dynamical System. This reflects how marginal returns to public code are
initially increasing (thin red curve), but eventually diminishing (thick blue curve). The fixed
point for private and public code levels exists provided K ≤ K̄ ≡ (δ/π)L̄. This fixed point
is stable under the adjustment dynamics (14) and (15)–(16). The inequalities in the boxes
capture the dynamics in the adjacent bounded areas.

in the Solow growth model. But if the diminishing returns kick in too early, then a crossing

point might not obtain in Figure 1. For existence, it is sufficient, eg., that the increasing

returns persists until the K̇ = 0 curve exceeds the locus (14) where the ratio of public and

private capital stocks obeys L/K = π/δ. In other words, it suffices that f(δL̄/π, L̄) < 0:

(δ + π)(δ/π)L̄ > ∆L̄γ + sψ[((δ/π) + 1)α − 1]L̄α (18)

Since the constant ∆ and the threshold L̄ are independent of s, π, δ, this inequality holds for

small enough savings rates s and code publication rates π, since 0 < α < 1. This is intuitive,

for these assumptions jointly ensure that the private capital stock shrinks, K̇ < 0, and thus

the dynamics lie right of the K̇ = 0 locus.

Altogether, for some public capital stock L̂ > L̄, there is a unique intersection of L̇ = 0
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and the diminishing returns locus K̇ = h(K,L) = 0 in (16). Here:

(δ + π)(δ/π)L̂ = DL̂g + sψ[((δ/π) + 1)α − 1]L̂α (19)

Theorem 1 (Unique Steady-State Code) For small enough savings rates s and code

publication rates π, there exists a unique positive stationary public and private code base pair

(K̂, L̂) solving (14) and (16); furthermore, it is stable for the dynamic adjustment process.

Proof: The K̇ = 0 locus hits the horizontal axis L = 0 at the positive solution K0 of

(δ + π)K0 = sψKα
0 ⇒ K1−α

0 =
sψ

δ + π
(20)

Substituting L̂ = (π/δ)K̂, the fixed point of (19) can be rewritten in terms of K̂:

K̂ =
D

δ + π
(L̂/K̂)gK̂g +

sψ

δ + π

(

(1 + L̂/K̂)αK̂α − (L̂/K̂)αK̂α
)

≡ ΥK̂g + ΣK̂α (21)

for the developer and savings constants:

Υ ≡
(π/δ)g

δ + π
·

µβ

β − 1/(1− σ)
[ρσ(1− τ)]σ/(1−σ) (A/w)1/(1−σ)

Σ ≡
sψ

δ + π
((1 + π/δ)α − (π/δ)α)

There is a unique solution to K̂ = ΥK̂g+ΣK̂α, as seen in Figure 2. Since it is a downcrossing,

the fixed point is stable, as usual. QED

Theorem 2 (Comparative Statics) The stationary public and private code bases K̂, L̂

both rise in the technology parameters A and α, market size ψ, savings rate s, and code

expropriation rate χ; they fall in the tax rate τ , worker wages w, the interest rate r, and the

depreciation rate δ.
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Proof: The graph in Figure 2 makes it clear that any parametric change that raises Υ or Σ

pushes up the map K 7→ ΥKg + ΣKα, and thereby inflates the fixed point capital K̄.

• The developer constant Υ rises in A and ρ (and thus χ), falls in τ, w, r, δ, and is

invariant to α, s, κ, ψ. Finally, Υ unambiguously rises in π for small π, but in general

the effect of π is ambiguous.

• The constant Σ rises in α, s and ψ, falls in π, and is invariant to A, χ, r, σ, τ, κ, w.10

Comparative statics for the steady-state public code L̂ = (π/δ)K̂ follow since all shifts

reinforce each other, except for the publication rates π. QED

✻
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✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑✸
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KK̂1 K̂2K0

L̂1

L̂2

ΥKg + ΣKα
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Figure 2: Comparative Statics. This depicts how the unique stable steady-state private
code capital K̂ that solves (21) rises from K̂1 to K̂2 as either Σ or Υ rises. The logic safely
ignores the increasing returns portion.

6 The Platform Steady-State

The Golden Rule (Phelps, 1961; Ramsey, 1928) is the 4-tuple of savings rate s, tax rate τ ,

code publication rate π, and expropriation rate χ that maximizes steady-state revenues (1),

10Define x = π/δ. Then comparative statics in δ require signing the derivative of [x/(1+x)][(x+1)α−xα].
The first term increases in x, and the second falls in x.
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subject to steady-state in (14) and (16). We can make this an unconstrained optimization,

substituting for the steady state code levels K̂, L̂ from Theorem 2. The steady-state value

sums the revenues that are not reinvested in the platform and the total taxes from developers.

V (s, τ, π, χ) = (1− s)ψK̂α[(1 + π/δ)α − (π/δ)α] + τ∆(π/δ)γK̂g (22)

using the implicit definition for K̂ in (21). We maximize this with respect to s, τ , π, and χ,

and find positive derivatives at zero for these control variables. Thus:

Theorem 3 (The Platform Solution) The Golden Rule entails a savings rate 0 < s < 1,

tax rate 0 < τ < 1, code expropriation rate χ > 0, and code publication rate π > 0.

Observe the simple implication of the positive code publication rate π > 0. Public code

publication clearly has the flavor of the private provision of a public good. But unlike

(Bergstrom et al., 1985), it is whole driven by the incentives for dynamic innovation. Indeed,

the social value of the ecosystem owes to the code publication. The platform initially secures

higher geometric returns from the developer ecosystem production on its public code than its

internal rate, of value (∆/χ)Lξβ, where ξβ > α. This source of additional returns, above and

beyond the platform’s own coefficient α, owes both to the expansion of existing developers

and the entry of new ones. Eventually, in the region where the platform operates, its source

of additional returns owes solely to the expansion of existing developers, and the returns are

of the order Lξ/(1−σ).

We now venture some comparative statics predictions of the steady-state of the model.

Theorem 4 (Larger Platforms) As the market size ψ rises, the golden-rule optimal sav-

ings rate s and tax rate τ fall, and the code expropriation rate χ rises.

Proof: According to the method of monotone comparative statics, any optimized control

variable x∗ rises in a parameter ℓ if Vxℓ > 0 whenever Vx = 0 (Topkis, 1998). In other words,
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we must sign the cross partial just when the first order condition holds. Changing the order

of differentiation, and exploiting Vx = 0, we get

Vxψ = Vψx =
(

(1− s)K̄α[(1 + π/δ)α − (π/δ)α]
)

x
= −

(

τ∆(π/δ)γK̄g
)

x
(23)

Now, K̄ rises in s by Theorem 2, while D is constant in it. Hence, Vs = 0 implies that

Vsψ < 0, and so the savings rate s rises in ψ. Next, K̄ falls in τ by Theorem 2. Thus,

Vτ = 0 implies that Vτψ < 0, and so the tax rate τ falls in ψ. The same logic applies for the

developer fees κ and the code expropriation rate χ. QED

Consistent with this result, Microsoft’s XBox platform has yet to make a profit, having

“saved” much more than it has earned in platform sales and developer taxes.

7 Welfare Analysis

The private code stock is the only means of either growth or replenishment of the public

code stock. Additionally, this offers profits for the profit-maximizing platform, and this

marginal additional incentive to build the private code stock is no longer present for a true

social planner. So we suspect that the planner would choose a higher savings rate and/or

publication.

The social planner values all the profits of the developers, and not just the tax rev-

enues (1), as well as the entire consumer surplus. But the planner ignores the platform

transfer from consumers, and developer taxes. In other words, the planner’s steady-state

value function is

W = ψ(K̄ + L̄)α +∆L̄γ/β = ψK̄α(1 + π/δ)α +∆K̄γ(π/δ)γ/β
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hereby building on the expression (13) for total developer profits. How how the public code

figures so much more prominently in the social planner’s objective function than in the

platform owner’s. In other words, at the margin, those controls that inflate the public code

will be larger. On the other hand, the planner does not care about developer taxes.

Theorem 5 (Social Planner) Compared to the platform owner, the social planner would

choose a zero tax rate τ , a larger public code publication rate π, and would expropriate faster.

In other words, even though the platform owner is privately providing the public good, he

is not doing so to the extent that a benevolent social planner would desire.

8 Conclusion

This paper proposes a dynamic model of platform growth reflecting the fact that platforms

may construct closed ecosystems of firms that build on publicly available code. Our model

takes inspiration from the growth literature in macroeconomics. We explain the logic of this

platform strategy, and derive how the platform should optimize its treatment of developers.

A APPENDIX: OMITTED PROOFS

A.1 Proof of Theorem 3

To show x∗ > 0, it suffices that Vx > 0 when evaluated at x = 0. For the controls x = s, χ, π,

this follows from Theorem 2 — recalling the properties of ∆ derived in its proof, and that

[(1+π/δ)α−(π/δ)α] is second order in π near 0. Consider next the control x = τ . For τ near

0, the fall in ∆ is of smaller order than τ , since β > 2; therefore, the last term ∆(π/δ)γK̂γ

in the derivative of (22) at least initially dominates the fall in K̂. So Vτ > 0.
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To see that any control obeys x∗ < 1, we need Vx < 0 when evaluated at x = 1. For the

control x = s, this follows from the same logic as did Vτ > 0 near τ = 0. For the control

x = τ , we have ∆ = 0 when τ = 1. For a small decrease in τ from τ = 1, the last product

term in (22) rises, since both K̂ and ∆ rise, by Theorem 2 and its proof. QED
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