6 Calorimeters

Detectors for Particle Physics

Manfred Krammer

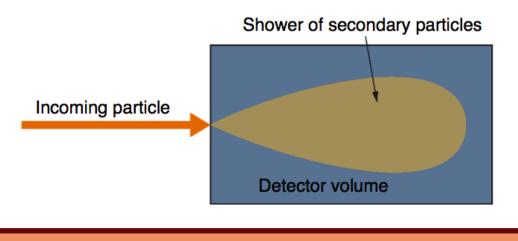
Institute of High Energy Physics, Vienna, Austria

Ser and a second

6 Calorimeters Content

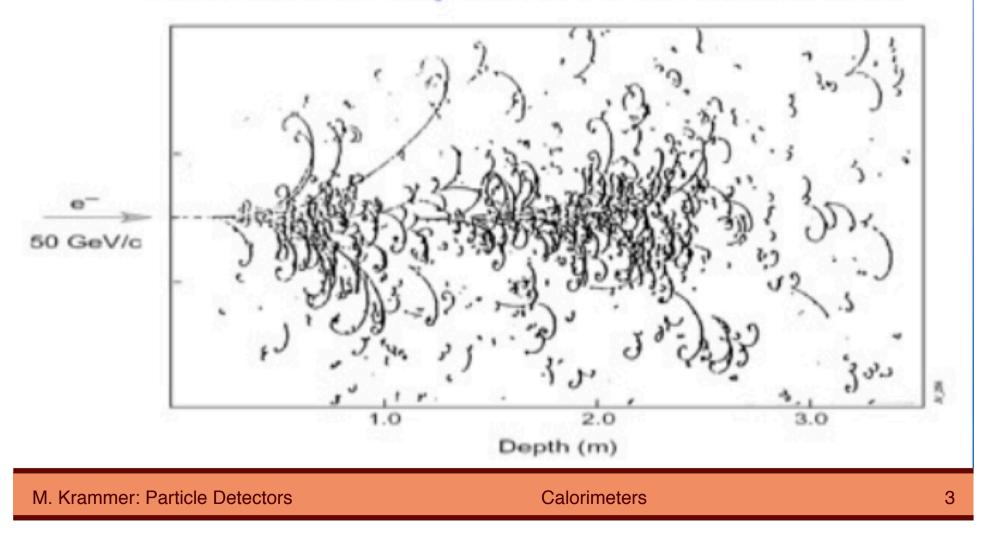
- 6.1 Calorimeters Principles
 - 6.1.1 Homogeneous Calorimeters
 - 6.1.2 Sampling Calorimeters
 - 6.1.3 Energy Resolution General
- 6.2 Electromagnetic Calorimeters6.2.1 Electromagnetic Showers6.2.2 E.M. Energy Resolution

- 6.3 Hadronic Calorimeters
 - 6.3.1 Hadronic Showers
 - 6.3.2 Shower Components
 - 6.3.3 Compensation
 - 6.3.4 Energy Resolution
 - 6.3.5 Linearity
- 6.4 Particle Flow Method
- 6.5 Calorimeter Examples


Calorimeters

6.1 Calorimeters Principles General

- ★ A calorimeter is a detector which fully absorbs the particles. The signals produced are a measure for the energy of the particle.
- ★ The particle initiates a particle shower. Each secondary particle deposits energy and produces further particles until the full energy is absorbed.


The composition and the dimensions of these showers depend on the type and energy of the primary particle (e^{\pm} , photons or hadrons).

6.1 Calorimeters Principles Particle showers

Big European Bubble Chamber filled with Ne:H₂ = 70%:30%, 3T Field, L=3.5 m, X₀=34 cm, 50 GeV incident electron

6.1 Calorimeters Principles Calorimeter signals

 \star The energy of the particle can be deposited in several ways:

- Heat (hence the historical name calorimeter)
- Ionization
- Excitation of atoms
- Cherenkov light
- ...
- ★ Depending on the type of the calorimeter one of these effects is measured and a signal deduced
- ★ For a "practical" calorimeter

Calorimeter signal \propto deposited energy \propto energy of primary particle

6.1 Calorimeters Principles Properties

Calorimeters are very important components of every detector in particle physics. The reasons are:

★ Calorimeters measure also energy and direction of neutral particles.

★ Calorimetry is based on a statistical process. A particle produces on average N secondary particles, where N is proportional to the energy. The energy resolution is dominated by statistical fluctuations of N

 \rightarrow the relative energy resolution improves with increasing energy.

 \star The necessary thickness of a calorimeter scales only with the logarithm of the particle energy.

★ Calorimeters can be used to identify particle types due to their shower shapes

★ Calorimeters are important components for the trigger system at hadron colliders. Within a few ns complex information on particle energy, particle direction, topology of the event, and possible missing energy is available!

6.1 Calorimeters Principles Different calorimeter types

- \star Two different calorimeters by construction:
 - Homogeneous Calorimeters
 - Sampling Calorimeters
- ★ Two different applications:
 - Electromagnetic calorimeters measure the energy of electrons, positrons and photons
 - Hadronic calorimeters measure the energy of hadrons

6.1.1 Homogeneous Calorimeters

- ★ In a homogenous calorimeter the detector material is at the same time the absorbing material and the detector.
- \star Examples for different signal exploited:

Signal	Material	
Scintillation	BGO*, BaF ₂ , CeF _{3,} PbWO ₄	
Cherenkov light	Lead glass	
Ionization	Liquid noble gasses (Ar, Kr, Xe), Germanium (in nuclear physics)	

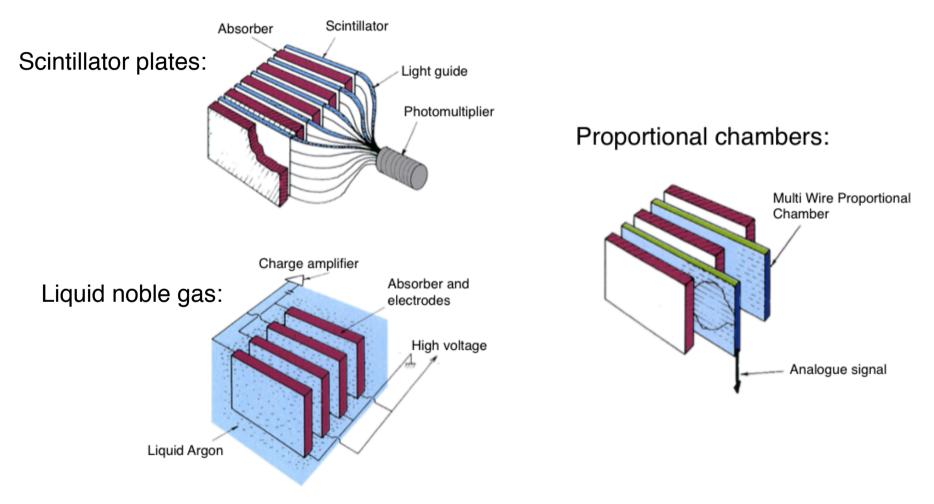
* Bismuth Germanate Bi₄Ge₃O₁₂

- ★ Advantage: Best possible energy resolution achievable
- ★ Disadvantage: Expensive
- ★ Homogenous calorimeters are only used as electromagnetic calorimeters (e.g. to measure energy of e[±] and photons – see later).

6.1.2 Sampling Calorimeters

- ★ A sampling calorimeter consists of alternating layers of passive absorbers and active detectors.
- ★ Typical absorbers are materials with high density, e.g.: Fe, Pb, U
- ★ Typical active detectors:
 - Plastic scintillators
 - Silicon detectors
 - Noble liquid ionization chambers
 - Gas detectors

Principle of a sampling (sandwich) calorimeter:


6.1.2 Sampling Calorimeters Properties

- ★ Advantages:
 - Can optimally choose the absorber and detector material independently and according to the application.
 - By choosing a very dense absorber material the calorimeters can be made very compact.
 - The passive absorber material is cheap
- ★ Disadvantages:
 - Only part of the particles energy is deposited in the detector layers and measured
 - → Energy resolution is worse than in homogeneous calorimeter ("Sampling-Fluctuations").

6.1.2 Sampling Calorimeters A few examples for different detectors

W. Lucha, M. Regler, Elementarteilchenphysik, Verlag Paul Sappl, 1997

M. Krammer: Particle Detectors	Calorimeters	10

6.1.3 Energy Resolution General Intrinsic resolution

In an ideal homogeneous calorimeter with infinite dimensions the energy resolution is determined by the statistical fluctuations of the number of

shower particles N:

$$\frac{\sigma(E)}{E} \propto \frac{\sigma(N)}{N} \approx \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

 $\sigma\,\ldots \text{Standard}$ deviation

E ... Particle energy

Maximal number of "detectable" particles is given :

$$N_{\mathsf{max}}$$
 = E/η

E is the energy of the primary particle and η is the threshold energy of the detector, i.e. the minimal energy to produce a single detectable secondary particle.

Examples for the threshold energy:

- Ge (Si) detectors: $\eta \approx 2.9 \text{ eV}$ (3.6 eV)
- Gas detectors: $\eta \approx 30 \text{ eV}$
- Plastic scintillators: $\eta \approx 100 \text{ eV}$

6.1.3 Energy Resolution General Additional contributions

Photo statistic:

In calorimeters with readout of photons (scintillators, Cherenkov detectors) the inefficiencies connected with light losses and the photo conversion can result in rather low numbers of photo electrons.

With N_{pe} the number of photo electrons an additional component worsening the energy resolution is:

$$\frac{\sigma(N_{pe})}{N_{pe}} \approx \frac{1}{\sqrt{N_{pe}}}$$

Leakage:

Physical calorimeters have a finite dimension. If part of the particles energy is leaking out of the calorimeter (lateral or longitudinal) the energy resolution worsens.

M. Krammer: Particle Detectors

6.1.3 Energy Resolution General Sampling Fluctuations

Sampling fluctuations:

In sampling calorimeters only a small part of the deposited energy is measured.

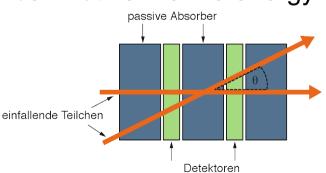
★ The fractions of how much is energy is deposited in the absorber and in the detector varies from event to event \rightarrow these fluctuations cause a worsening of the energy resolution

★ Important is the number of charged secondary particles traversing the detector layers N_{det}

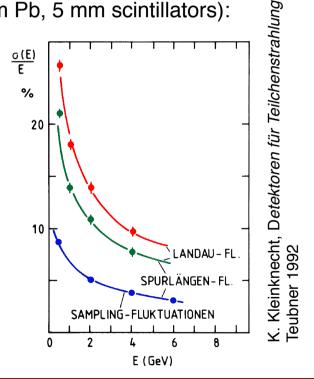
 \rightarrow The fluctuation of this number is another contribution to the total energy resolution

$$\left(\frac{\sigma(E)}{E}\right)_{\text{sampling}} \approx \frac{\sqrt{N_{\text{det}}}}{N_{\text{det}}} = \sqrt{\frac{\Delta E}{E}}$$

E ... Energy of the primary particle ΔE ...mean energy loss in one layer of absorber


6.1.3 Energy Resolution General Additional contributions in sampling calorimeters

Landau fluctuations:


In case of thin detector layers due to the asymmetric energy loss distribution (Landau instead of Gaussian distribution), e.g. important in gas detectors.

Track length fluctuations:

Secondary particles are scattered and cross the detector planes under various angles. From event to event the total track length of secondary particles fluctuates \rightarrow contribution to the energy resolution.

Calculation for an e.m. calorimeter (1 mm Pb, 5 mm scintillators):

6.1.3 Energy Resolution General General parameterization

The energy resolution of a calorimeter can be parameterized using:

$$\frac{\sigma(E)}{E} \approx \sqrt{\left(\frac{c_1}{\sqrt{E}}\right)^2 + \left(\frac{c_2}{E}\right)^2 + c_3^2}$$

E Particle energy in GeV

 c_1, c_2, c_3 ... Empirical, detector dependent constants or fit parameters

- the intrinsic resolution is $\propto 1/\sqrt{E}$
- the term $\propto 1/E$ is mainly due to electronic noise (+ pile up noise in high luminosity environments)
- the constant term is caused by inhomogeneous response, calibration errors, dead channels, longitudinal leakage, etc.

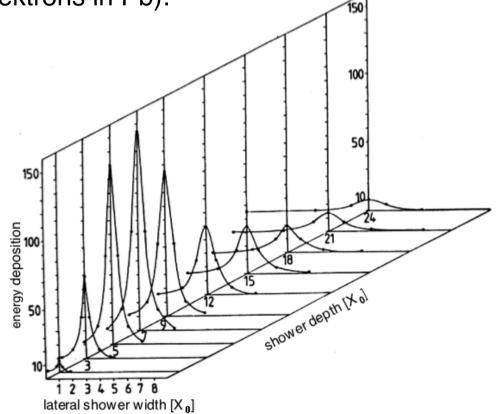
At high energies the constant term dominates the energy resolution!

6.2 Electromagnetic Calorimeters

- ★ Electromagnetic calorimeters measure the energy of electrons, positrons and photons.
- ★ High energy electrons, positrons and photons interact via Bremsstrahlung and pair production (see chapter "Particle Interaction with Matter").
 - \rightarrow shower development scales with radiation length X_0
 - \rightarrow energy loss is fast, e.m. calorimeters are not very thick
- ★ E.m. calorimeters exist as homogeneous and as sampling calorimeters.

6.2.1 Electromagnetic Showers Shower development

- 1. Penetrating e⁻ (or e⁺) emits photon through bremsstrahlung.
- 2. The high energy photon produces e^+e^- pairs. The primary $e^-(e^+)$ may emit further γ 's, resulting in $2e^- + 1e^+ + 1\gamma$.
- The e⁻ und e⁺ emit more γ's, which produce e⁻e⁺ pairs, etc., etc.
- 4. Particle multiplication continues until the mean particle energy equals roughly the critical energy E_c . Below that value ionization and excitation dominates.



If the penetrating particle is a photon, the shower starts with pair production and continues identically.

6.2.1 Electromagnetic Showers Shower shape

Longitudinal und transversal e.m. shower development (6 GeV/c elektrons in Pb):

C. Grupen, Teilchendetektoren, B.I. Wissenschaftsverlag, 1993

6.2.1 Electromagnetic Showers Radiation length X_0 , Moliére radius ρ_M

- ★ The spatial extension of a shower depends on the material. Using the radiation length and the Moliére radius a material independent description of an electromagnetic shower is possible:
 - Longitudinal dimension: radiation length X_0
 - transversal (lateral) dimension:
- ★ Radiation length X₀ is the distance in which the projectile looses 1/e (≈63.2%) of its energy due to radiation.
- ★ The Moliére radius ρ_M is a measure of the transversal deviation of an electron with energy E_c after traversing one radiation length:

$$\rho_M = \frac{\sqrt{\frac{4\pi}{\alpha}} m_e c^2}{E_c} = \frac{21[\text{MeV}]}{E_c \text{ [MeV]}} \cdot X_0$$

The critical energy E_c is the energy at which the loss through ionization equals the loss through bremsstrahlung.

Moliére radius ρ_M

6.2.1 Electromagnetic Showers Parametrisation – 1

A useful tool to understand electromagnetic showers is simulation (Monte Carlo method). A popular program is EGS (Electron Gamma Shower Package*)

★ Parametrisation of the longitudinal e.m. shower profile (in a homogeneous calorimeter):

$$\frac{dE}{dt} = E_0 t^a \frac{b^{a+1}}{\Gamma(a+1)} \cdot \exp(-bt)$$

- ... shower depth in units of X_0
- E_0 ... energy of incident particle
- Γ ... Euler's Gamma function: $\Gamma(z) = \int \exp(-x) \cdot x^{z-1} dx$
- *a*, *b* ... fit parameters (in first approximation *b*~0.5, *a=bt*_{peak})

★ Position of the shower maximum in units of X_0 :

$$t_{\text{peak}} = \ln\left(\frac{E_0}{E_c}\right) + B$$

B = -0.5 for e[±] and B = +0.5 for γ

$$N_{\text{peak}} = 0.3 \frac{E_0}{E_c} \cdot \left[\ln \left(\frac{E_0}{E_c} \right) - C \right]^{-\frac{1}{2}}$$

$$C = 0.37$$
 for e[±] and $C = 0.31$ for γ

* http://www.slac.stanford.edu/egs/

6.2.1 Electromagnetic Showers Parametrisation - 2

★ Important for the design of calorimeter is, first of all, the longitudinal dimension of the shower.

About 95% of the energy of the incident particle is contained within the depth T (semi empirical formula*):

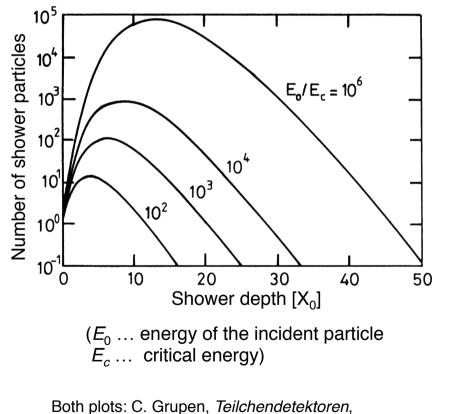
 $T(95\%) = t_{\text{peak}} + 0.08Z + 9.6$

 $Z \dots$ Atomic number of detector material

Rule of thumb: need about 25 X₀

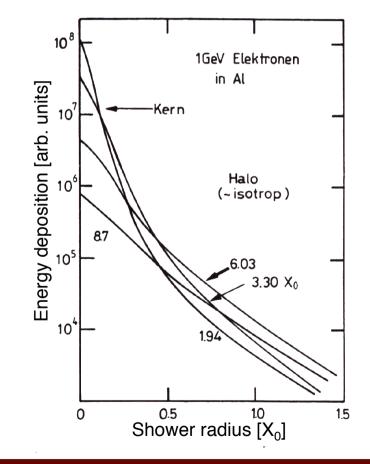
★ In the transversal plane 95% of a shower is contained within 2 Moliére radii:

$$R(95\%) = 2\rho_M$$


★ The transversal shower profile has a central core in which most of the energy is deposited. This core is surrounded by a halo. The width of the core is determined by small angle scattered e[±], whereas the halo develops due to low energy photons, which fly a long distance in the detector.

* From C. Leroy, F.-G. Rancoita, Rep.Prog.Phys. 63, 505–606 (2000)

6.2.1 Electromagnetic Showers Shower Profiles



Longitudinal e.m. shower profile for different incident energies:

B.I. Wissenschaftsverlag, 1993

Transversal e.m. shower profile at different shower depth:

6.2.1 Electromagnetic Showers Shower dimensions

The shower dimensions scale with the radiation length X_0 (longitudinal) and the Moliére radius ρ_M (lateral):

Material	<i>X</i> ₀ [cm]	$ ho_{M}$ [cm]	E _c [MeV]
Fe	1.76	1.77	21–27
Pb	0.56	1.60	7.4
U	0.32	1.00	6.8
W	0.35	0.92	8
Polystyrol	42.9	8.25	80–109
Ar	14	7.2	41.7
Si	9.36	5.28	37.6
BGO	1.12	2.33	10.2
H ₂ O	36.10	10.9	70

C. Leroy, F.-G. Rancoita, *Physics of Cascading Shower Generation and Propagation in Matter: Principles of High-Energy, Ultrahigh-Energy and Compensating Calorimetry*, Rep.Prog.Phys. **63**, 505–606 (2000)

6.2.2 E.M. Energy Resolution

Examples e.m. calorimeters

Homogeneous calorimeters:

Experiment	Material	Energy resolution (E in GeV)
NA48	Liquid Kr	4.8%/√E ⊕ 0.22%
BELLE	CsI(TI)	0.8%/√E ⊕ 1.3%
CMS	PbWO ₄	2.7%/√E ⊕ 0.55%*

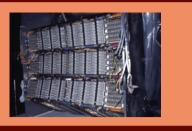
Sampling calorimeters:

Experiment	Detector	Detector thickness [mm]	Absorber material	Absorber thickness [mm]	Energy resolution (E in GeV)
UA1	Scintillator	1.5	Pb	1.2	15%/√E
SLD	liquid Ar	2.75	Pb	2.0	8%/√E
DELPHI	Ar + 20% CH ₄	8	Pb	3.2	16%/√E
ALEPH	Si	0.2	W	7.0	25%/√E
ATLAS	liquid Ar		Pb		10%/√E ⊕ 0.7%*
LHCb	Scintillator		Fe		10%/√E ⊕ 1.5%*

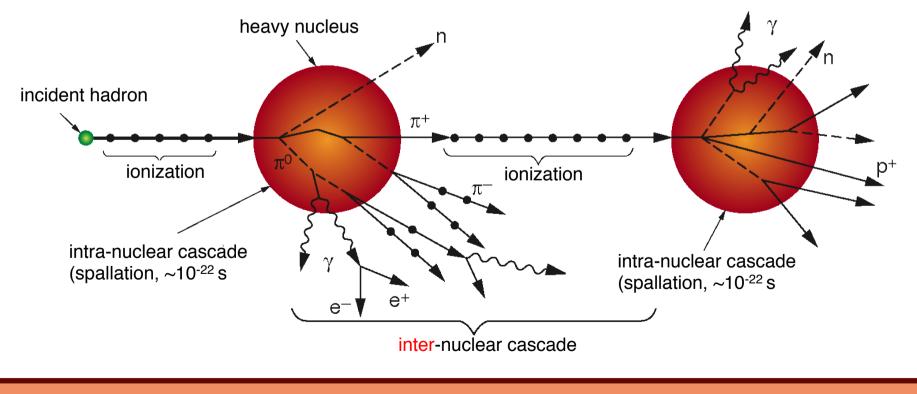
* Design values

M. Krammer: Particle Detectors

6.3 Hadron Calorimeters


- ★ Hadron calorimeters measure the energy of charged and neutral hadrons.
- ★ Shower development similar to e.m. calorimeters. However the interactions are hadronic interactions
 - \rightarrow shower development scales with nuclear absorption length λ_a
 - \rightarrow hadron calorimeters need to be much "thicker"
- ★ Hadron calorimeters exist only as sampling calorimeters.
- ★ In an experimental set-up the e.m. calorimeter is therefore always in front of the hadron calorimeter

6.3.1 Hadronic Showers General



- ★ Hadronic shower are a series of *inelastic hadronic interactions* of a primary particle with the nuclei of the target material. Produced secondary particles undergo further inelastic interactions and produce more particles.
- ★ Due to the multitude of possible processes the development of a hadronic shower is considerably more complicated compared to an electromagnetic shower.
- ★ Elastic interactions do not produce secondary particles, and hence do not contribute to the hadronic shower.
- ★ In between the inelastic interactions with the nuclei and at the end of the shower (were the energy becomes too low for the interactions with the nucleus) the shower particles loose their energy due to ionization and excitation of atoms.

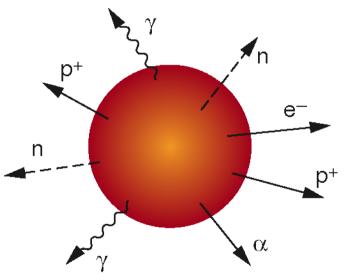
6.3.1 Hadronic Showers Hadronic interactions

- Intra-nuclear cascade: Components of the nucleus receive enough energy to interact with each other and to produce pions or other hadrons.
- ★ Inter-nuclear cascade: Particles escaping the nucleus hit another nucleus.

6.3.1 Hadronic Showers Hadronic interactions - 2

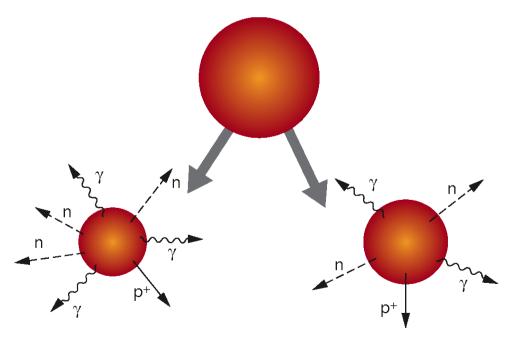
- \star Inelastic interactions of high energy hadrons:
 - Production of mesons $(\pi, K, ...)$ and baryons (n, p, ...)
 - Spallation
 - Excitation of nuclei
 - Nuclear fission
- ★ The neutral mesons decay into photons and initiate an electromagnetic shower within the hadronic shower!

6.3.1 Hadronic Showers Spallation


- ★ Spallation is the transformation of a nucleus caused by an incident, high energetic, hadronically interacting particle. During spallation a large number of elementary particles, α-particles, and possibly larger debris of the nucleus are emitted.
- \star Spallation is the most probable process when a hadron hits a nucleus.
- ★ Following spallation the target nucleus is in an excited state and releases further particles or undergoes fission.
- ★ The secondary particles from the spallation process have mostly enough energy to itself interact with a nucleus.

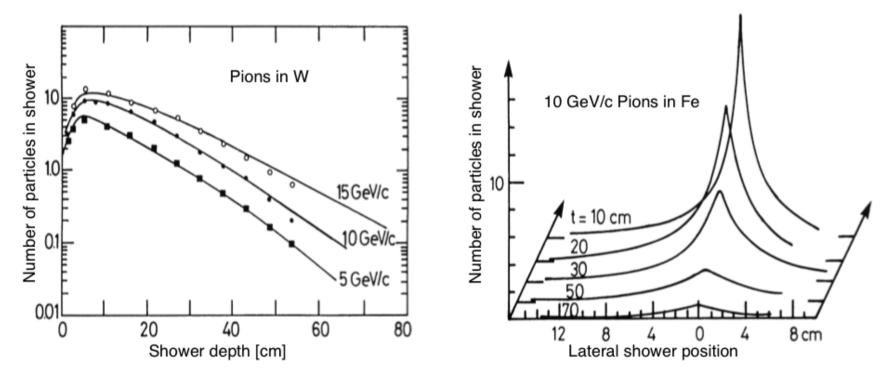
6.3.1 Hadronic Showers Nuclear excitation, nuclear evaporation process

★ Nuclear evaporation: excited nuclei emit particles until the remaining excitation energy is below the binding energy of the components in the nucleus.


Highly excited nuclei loose most of their excitation energy in typically $\sim 10^{-18}$ s.

6.3.1 Hadronic Showers Fission

 In heavy elements, e.g. ²³⁸U, fission may occur following spallation or due to the capturing of slow neutrons. The nucleus decays in two (possibly 3) approximately equal debris. Additionally photons and neutrons are emitted and if enough excitation energy remains further hadrons are emitted.



6.3.1 Hadronic Showers Shower shape

Longitudinal shower development, charged pions in W for 3 different energies:

Longitudinal und transversal shower development, 10 GeV/c Pionen (π^-) in Fe:

C. Grupen, Teilchendetektoren, B.I. Wissenschaftsverlag, 1993

6.3.1 Hadronic Showers Parametrisation

Similar to electromagnetic showers also hadronic showers are simulated by Monte Carlo methods* to achieve a parametrisation, even if it is much more complex.

★ Example for the parametrisation of the longitudinal shower profile:

$$\frac{dE}{ds} = K \Big[w t^a \cdot \exp(-bt) + (1 - w) \cdot l^c \cdot \exp(-dl) \Big]$$

(first term e.m. component, second term hadronic component)

- t ... e.m. shower depth in units of X_0
- *I* ... hadronic shower depth in units of the nuclear absorption length λ_a
- w ... weighting factor e.m. and hadronic component
- *a, b, c, d* ... experimentally determined fit parameters

(depend logarithmically from the energy of the incident particle: $a = a_1 + a_2 \cdot \ln(E)$)

★ The shower maximum is at:

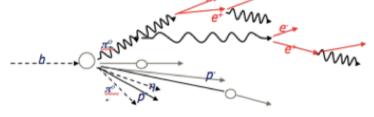
$$t_{peak}(\lambda_a) \approx 0.2 \cdot \ln E [GeV] + 0.7$$

33

6.3.1 Hadronic Showers Dimensions

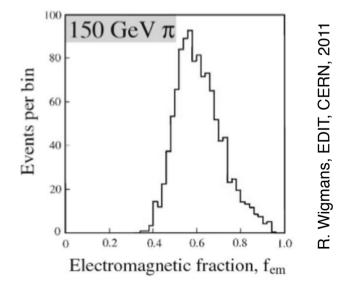
- ★ Hadronic shower dimensions described by the nuclear absorption length λ_a .
- ★ 95% of a shower is contained in approximately 7.6 $λ_a$ (about 80 cm U). Rule of thumb: 10 $λ_a$ required
- ★ 95% of the total energy is deposited in a cylinder with radius λ_a . The transversal profile consists of a high energy core (FWHM¹ 0.1 – 0.5 λ_a) and a halo of low energy particles.

Material	λ_a [cm]
Fe	16.8
Pb	17.1
U	10.5
Cu	15.1
AI	39.4
W	9.6
Polystyrol	79.5
Ar	83.7
Si	45.5


C. Leroy, F.-G. Rancoita, Rep.Prog.Phys. **63**, 505–606 (2000)

¹ Full Width Half Maximum

6.3.2 Shower Components Neutral mesons and the internal e.m. shower

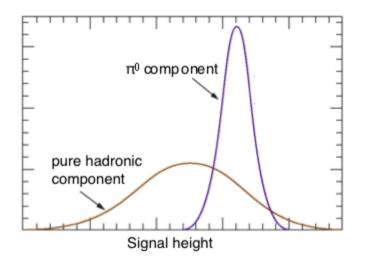

★ The neutral mesons produced in the hadronic shower may decay via the elctromagnetic interaction, and hence initiate a purely e.m. shower within the hadronic shower

E.M. component

hadronic component

- ★ The fraction of the shower energy which goes into the e.m. shower is determined at the first interactions (beginning of the shower).
- → large variation from event to event → worsening of the energy resolution (energy resolution does not improve with $1/\sqrt{E}$

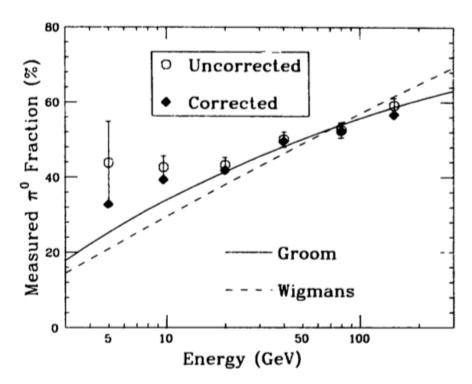
6.3.2 Shower Components


Neutral mesons and the internal e.m. shower

- ★ The absorption of the purely hadronic shower involves energy loss processes which do not create measurable signals:
 - Nuclear binding energy
 - Production of neutrinos and high energy muons
 - Kinetic energy of debris of nuclei
- $\star~$ No such energy loss mechanism in the e.m. shower
 - \rightarrow response of calorimeter

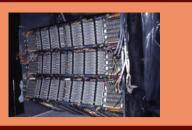
to purely e.m. component larger than to purely hadronic component.

★ e/h response ratio figure of merit of a hadron calorimeters:
 a priori e/h > 1
 ideal calorimeter has e/h=1


6.3.2 Shower Components Neutral mesons and the internal e.m. shower

★ The mean fraction of e.m. showers increase with particle energy \rightarrow non-linearity of the calorimeter

$$\langle f_{\it em} \rangle pprox 0.1 \cdot \ln E \; [{
m GeV}]$$


R. Wigmans, Nucl. Instr. Methods A 265 (1988) 273

D. Acosta e al., Nucl. Instr. Methods A **316** (1992) 184

Calorimeters

6.3.3 Compensation Recipe - 1

Calorimeters with equal response to the e.m. and hadronic shower components e/h = 1 are called compensating calorimeters.

A very simplified cooking recipe to achieve compensation:

★ Use absorber material with large Z and detectors with low Z. Due to the migration effect of photons (cross section $\propto Z^5$) they preferentially interact in the absorber. → reduce *e*

★ Use ²³⁸U as absorber. Induced fission occurs, the binding energy is released and debris of nuclei are produced (including neutrons). → increase *h* (To achieve compensation the use of ²³⁸U is neither mandatory nor sufficient.)

★ Efficient detection of neutrons in the shower. This requires detector materials with large fraction of "free" protons (Hydrogen atoms). Elastic scattering of neutrons on protons transfers large energy and the recoiling protons produce large signals. → increase h

 \star Optimised thicknesses of absorber and detector layers.

6.3.3 Compensation Recipe - 2

★ To achieve compensation the influence of the electronics signal integration time need to be considered.

Some processes (e.g. neutron capture with subsequent γ emission) have long time constants (> 100 ns). Using short integration times such signals are no longer measured.


★ Software compensation:

In fine segmented calorimeters the e.m. showers deposit large signals in a small number of cells compared to hadronic showers. By down weighting cells wit large signals software compensation is achieved

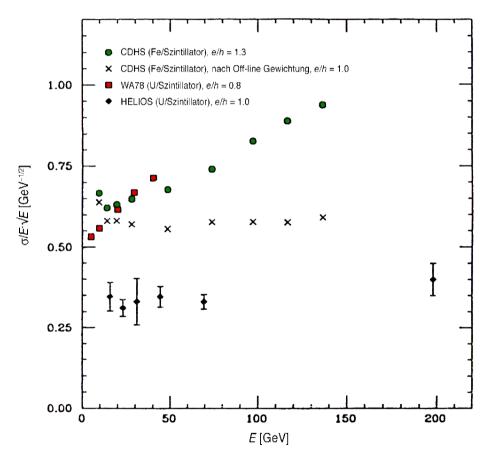
 \rightarrow does not work at trigger level

 \rightarrow problematic for jets

6.3.3 Compensation Calculation of *e*/*h*

- ★ To estimate the expected e/h ratio of a calorimeter one usually looks at the response of individual shower components in relation to the response of a mip.
- \star A possible approach:

$$\frac{e}{h_{int}} = \frac{e/mip}{f_{ion} \cdot ion/mip + f_n \cdot n/mip + f_{\gamma} \cdot \gamma/mip}$$


 f_{ion}, f_n, f_{γ} fraction of the energy transferred into ionisation, neutrons, photons *e/mip*, *n/mip*, *γ/mip*, *ion/mip* ... response of e[±], neutrons, photons, ionisation loss in units of a mip signal.

These fractions depend on the choice of the active material, the absorber material, and the relative thicknesses.

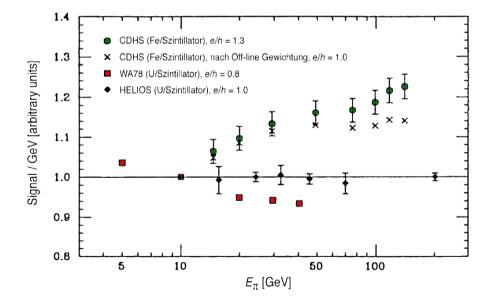
6.3.4 Energy Resolution Examples – 1

Energy resolution of compensating and non-compensating hadron calorimeters:

6.3.4 Energy Resolution Examples – 2

Experiment	Detectors	Absorber material	e/h	Energie resolution (E in GeV)
UA1 C-Modul	Scintillator	Fe	≈ 1.4	80%/√E
ZEUS	Scintillator	Pb	≈ 1.0	34%/√E
WA78	Scintillator	U	0.8	52%/√E ⊕ 2.6%*
D0	liquid Ar	U	1.11	48%/√E ⊕ 5%*
H1	liquid Ar	Pb/Cu	≤ 1.025*	45%/√E ⊕ 1.6%
CMS	Scintillator	Brass (70% Cu / 30% Zn)	≠ 1	100%/√E ⊕ 5%
ATLAS (Barrel)	Scintillator	Fe	≠ 1	50%/√E ⊕ 3%**
ATLAS (Endcap)	liquid Ar	Brass	≠ 1	60%/√E ⊕ 3%**

* After software compensation


** Design values

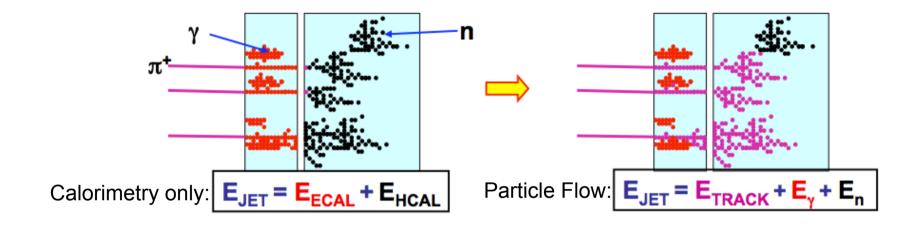
6.3.5 Linearity

- ★ The e.m. fraction is energy dependent and hence non-compensating calorimeters are non-linear.
- ★ Compensating calorimeters are linear over a large energy range. Below 2 GeV non-linearities appear due to low energy hadrons loosing their energy by ionisation only → e/h drops below 2 GeV

Linearity of compensating and non-compensating hadron calorimeters:

6.4 Particle Flow Method

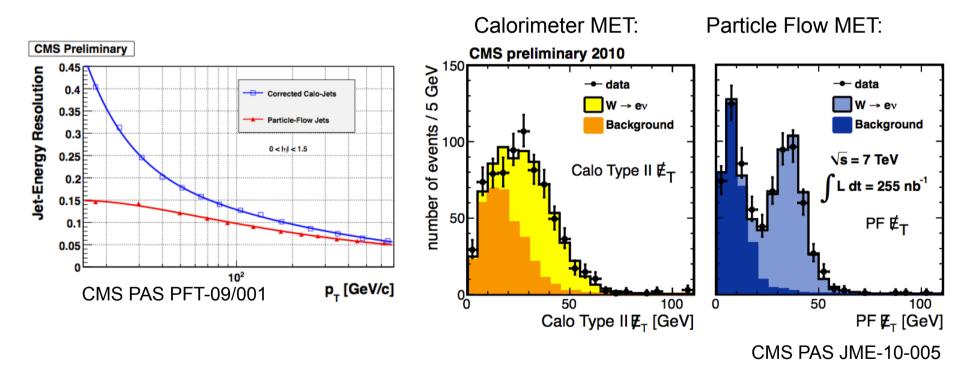
Reconstruct all particles and combine the information from tracking with the measurements in the electromagnetic and hadron calorimeter


- ★ Momenta of charged particles measured in the tracker
- ★ Energy of photons measured in the electromagnetic calorimeter
- ★ Energies of neutral hadrons measured in the em. and had. calorimeter
- → Requires very fine granularity of the calorimeters

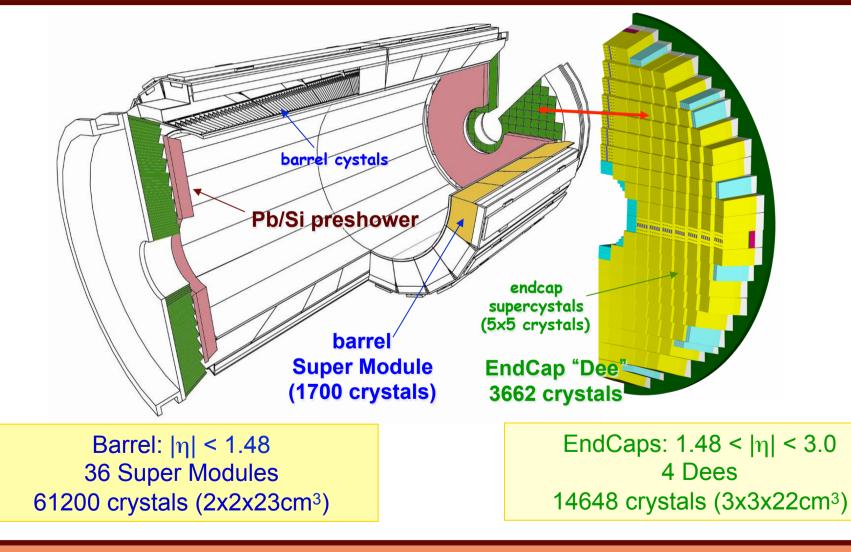
Particles in jets	Fraction of energy in jets	Detectors	Single particle resolution*
Charged particles	65 %	Tracker	$\sigma_{pt}/p_t \sim 1\% p_t$
Photons	25 %	E.m. calorimeter	σ _E /E ~ 2,8%/√E
Neutral Hadrons	10 %	E.m. and had. calorimeter	σ _E /E ~ 100%/√E

The table lists values of a typical experiment, e.g. CMS.

6.4 Particle Flow Method Jet energy measurement

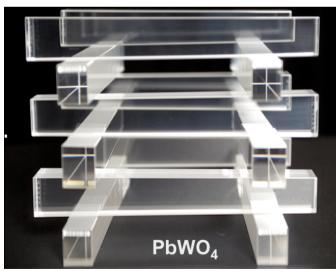

 \rightarrow improves measurement of jet energy, missing transfers energy MET, tau identification.

6.4 Particle Flow Method Example CMS: Particle Flow vs. pure Calorimetry


Jet energy resolution (MC):

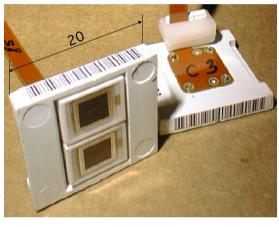
MET distribution in W \rightarrow ev candidate events (Data and MC):

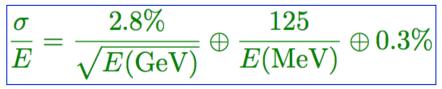
6.5 Calorimeter Examples The PbWO₄ calorimeter of CMS - 1


M. Krammer: Particle Detectors

Calorimeters

6.5 Calorimeter Examples The PbWO₄ calorimeter of CMS - 2




Barrel: Avalanche photodiodes (APD) Two 5x5 mm² APDs/crystal Amplification: 50 QE: ~75% at I_{peak}= 420 nm

Endcaps: - Vacuum phototriodes (VPT) Better radiation resistance compared to APDs Active area ~ 280 mm²/crystal Amplification 8 -10 (B=4T) Q.E.~20% at 420 nm

Result from test beam:

M. Krammer: Particle Detectors

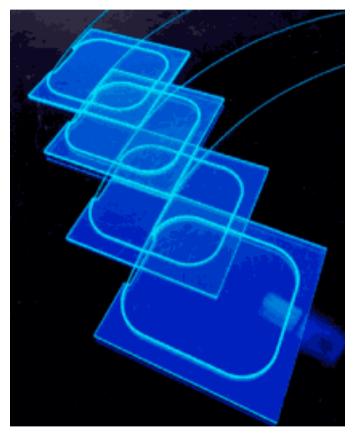
Calorimeters

6.5 Calorimeter Examples CMS – HCAL - 1

Absorber: Brass (70% Cu / 30% Zn) Thickness 50.5 mm, 56.5 mm

Detector: Plastic Scintillator (Kuraray SCSN81), Thickness 3.7 mm

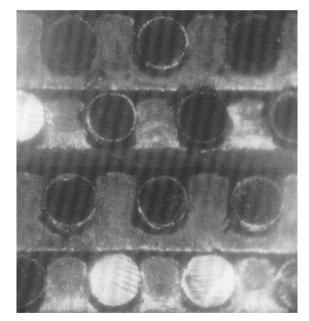
Used over a million World War II brass shell casements from the Russian Navy.


6.5 Calorimeter Examples CMS – HCAL - 1

Plastic scintillators with embedded wave length shifting fibers:

Light from the scintillator is emitted at 410-425 nm (blue-violet). The fibers absorb the light and reemit it at 490 nm (green).

Hybrid Photodiodes are used to convert light into electrical signals.


Energy resolution about 100%/ $\sqrt{E} \oplus 5\%$

6.5 Calorimeter Examples "Spaghetti"-Calorimeter (Scintillating Fiber Calorimeter)

- ★ In this type of calorimeter parallel bundles of scintillating fibers are embedded in an absorber matrix (e.g. Pb). Fiber diameter typically 0.5–1 mm.
- ★ Advantages: cheap, compensation possible, excellent hermeticity of the detector
- ★ Disadvantage: no longitudinal segmentation
- ★ Prototypes: 1 mm thick fibers in Pb matrix, distance between fibers 2.22 mm

→ energy resolution: $\sigma(E)/E (e.m.) = 15.7\%/\sqrt{E} \oplus 2\%$ and $\sigma(E)/E (hadron.) = 33.3\%/\sqrt{E} \oplus 2.2\%$.

Scintillating fibers in Pb matrix:

Nucl. Instr. Methods A., 386, 397-408 (1997)