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Empowered by modern genotyping and large samples, population structure can be accurately 
described and quantified even when it only explains a fraction of a percent of total genetic variance.  
This is especially relevant and interesting for humans, where fine-scale population structure can 
both confound disease-mapping studies and reveal the history of migration and divergence that 
shaped our species’ diversity. Here we review notable recent advances in the detection, use, and 
understanding of population structure.  Our work addresses multiple areas where substantial 
progress is being made: improved statistics and models for better capturing differentiation, 
admixture, and the spatial distribution of variation; computational speed-ups that allow methods to 
scale to modern data; and advances in haplotypic modeling that have wide ranging consequences 
for the analysis of population structure.   We conclude by outlining four important open challenges: 
The limitations of discrete population models, uncertainty in individual origins, the incorporation 
of both fine-scale structure and ancient DNA in parametric models, and the development of 
efficient computational tools, particularly for haplotype-based methods. 
 
If one assumes humans across the globe are a single randomly mating population, it would result in only a 
5-15% average error when predicting the proportion of observed heterozygotes at a locus.  This closeness 
to an idealized randomly mating population is one vestige of how little evolutionary time has passed since 
the common origin of all humans in Africa.  The departure from random mating predictions due to 
population differentiation has a classic quantitative measure, called FST, which appropriately takes on 
values of 5-15% in global samples of human populations  [1–3].  If one zooms in within continental 
regions of the globe, FST tends to be even lower, regularly taking values below 1%, a threshold which we 
use here informally to define “fine-scale structure”.  A triumph of the large datasets available to 
contemporary population geneticists is that they allow fine-scale structure to be detected and dissected to 
reveal population relationships (Figure 1).  
 
The reason large datasets allow fine-scale structure to be dissected is a statistical phenomenon [4].  Subtle 
differences in average pairwise similarity become more apparent as the scale of a dataset increases 
(Figure 2).  For principal component analysis (PCA), Patterson et al. [5] have argued that structure reveals 
itself much like a phase change in physics; namely if the product of the number of genetic markers (m) 
and individuals (n) is greater than 1/(FST

2) then structure will be evident.  The great fortune of human 
geneticists is that novel technologies have made it affordable to amass datasets large enough to 
characterize even very subtle population structure. 
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Characterizations of fine-scale population structure are increasingly empowering the study of human 
population history, helping genetics play a role integral with linguistics, archaeology, and history in the 
study of the human past, as first envisioned by Cavalli-Sforza and colleagues [6]. Studies of population 
structure have also allowed the medical genetics community to build more robust genome-wide 
association studies for disease risk [7–9], enabled evolutionary geneticists to identify exceptional regions 
in the genome that have undergone local adaptation [10–12], and facilitated the individual-level ancestry 
assessment that is increasingly popular in personalized genomics [13], though not without criticism [14].   
  
The most obvious advances in the study of fine-scale structure are the result of increased genome-wide 
single-nucleotide polymorphism (SNP) and sequencing data being collected from diverse regions across 
the world [15–17].  More profoundly, the recent availability of genome-wide data from archaeological 
samples of modern humans (“ancient DNA”, aDNA) is revolutionizing our understanding of the 
processes that generated present-day population structure [18].  As one stimulating example, aDNA 
studies suggest that levels of differentiation in Europe may have actually decreased during the late 
Neolithic period and Bronze Age, as at least three major proposed population lineages have intersected 
through time [17,19,20].   
  
In this review, we highlight several of the most exciting advances in analysis methods in the past three 
years. Analysis methods are especially crucial when structure is fine-scale, and as we show, there has 
been extensive progress in numerous directions.  To complete a picture of recent studies of human 
population structure, we recommend several other recent reviews [21–27].  We also highlight the 
Peopling of the British Isles Project [28] and two recent ancient DNA papers [19,20] as examples from 
the vanguard of fine-scale structure analysis using modern and ancient human data.  
  
Developing and understanding metrics for population differentiation 
  
While Wright’s FST has been a workhorse for describing population structure for decades, a novel set of f-
statistics have become highly influential since their original publication [29,30] because of their utility in 
studying the recent admixture that is common in human history.  In the past several years, the use of f-
statistics has continued to develop; for example, Raghavan et al. [31] developed an ‘outgroup-f3’ statistic 
to provide a measure of similarity that is insensitive to population-specific drift, making it more 
interpretable than FST in many settings. The advent of sequencing data has also made possible a metric 
that is especially sensitive to recent population structure: the estimated time to the most recent common 
ancestor of shared doubleton variants [32].  Doubleton-based metrics are already showing their utility to 
detect fine-scale structure in several large sequencing studies [33–35]. 
  
Alongside the expansion of new metrics, there is an increasing understanding of the basic properties of 
existing ones.  One area of concern is that FST  has inconsistent values across different types of loci (e.g. 
microsatellite, SNP array, and sequence data differ by 0.05-0.07 in several meaningful human examples 
[36,37] also see [38]).  As demonstrated by Jakobsson et al. [37], this discrepancy is largely explained by 
the frequency of the most frequent allele at a locus, which differs greatly between marker classes [37].  
However, the statistical strategy used also has an impact, in particular when rare alleles are present [36].  
Similar understandings need to be developed for f-statistics.  In that vein, one of us [39] recently showed 
how f-statistics can be understood in general coalescent terms, with expectations that can be derived 
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under arbitrary parametric population history models. Interestingly, the work revealed that the mean 
number of pairwise differences between populations is a better measure of differentiation than the 
outgroup-f3 statistic.    
 
Refining and expanding models that handle human admixture 
 
Recognizing that simple bifurcating trees are a poor model for human genetic diversity, several 
researchers have developed tree-building methods that take admixture and migration into account [29,40–
42].  These methods typically build a guide tree and then add migration edges to represent recent 
admixture events.  These methods represent a substantial advance and they are being used broadly; 
however, challenges remain with identifiability, exploring the space of all possible graphs, robustly 
selecting the number of migration edges, and exploiting tools from similar approaches developed 
independently in phylogenetics [43,44]. 
  
A more longstanding approach to study admixture is the use of global [45] and local ancestry models 
[46], and both have been advanced recently by computational speed-ups.  When genome-wide SNP data 
first became available, difficulties in applying the now classic Bayesian method for admixture inference 
(STRUCTURE [45]) occasioned the development of fast maximum-likelihood based approaches [47,48].  
The past two years have seen the return of Bayesian approaches with two new fast approaches that use 
variational approximations [49,50].  Impressively, teraSTRUCTURE [50] handles samples containing 
millions of individuals.  Local ancestry approaches have recently been improved by the development of 
fast algorithms that leverage rare variants within ancestries [51] and wavelet techniques [52].  
Unfortunately, distinguishing local ancestries among weakly differentiated source populations remains 
difficult.  For these cases, alternative approaches based on admixture linkage disequilibrium, which side-
step local ancestry inference, have proven fruitful for detecting admixture occurring in the recent past 
(e.g. within the last three thousand years) and suggest that admixture is widespread in human populations 
[53–55]. 
 
Latent factor models, such as sparse factor analysis and PCA, are also applicable for inference of 
admixture [56,57].  For PCA, more efficient algorithms have been implemented, allowing application to 
hundreds of thousands of individuals with reasonable run-times [58,59].  Another useful development has 
been the expansion of Procrustes approaches (used to align PCA and geography data [60]) to allow 
merging of samples with low-coverage sequence data into PCAs from heavily genotyped reference panels 
[61,62].  Novel factor models are also being developed that may have advantages for assessing admixed 
samples and controlling structure in association studies [63]. 
 
Putting geography into studies of population structure 
  
Geographic information has been under-utilized in the study of fine-scale structure despite its central 
importance in the process of generating structure.  Several recent approaches make progress by using 
Wishart distribution to model genetic similarity as a function of spatial distance.  In one approach, 
Bradburd et al. [64] use a covariance model to visualize samples in a “geogenetic space”. In homogenous 
isolation-by-distance scenarios, the geogenetic space should mirror the geographic space.  Deviations 
from homogeneity will result in adjusted placement of populations in geogenetic space.  For example, 
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barriers to migration result in larger geogenetic distances between populations.  In some respects the 
methods should behave like PCA on spatial data [65], but with less of the sensitivity to uneven sample 
sizes that is typical of PCA [57,65].  Discrete admixture events can be accounted for by adding admixture 
links between sources and targets, in a manner similar to how recent tree-based methods add migration 
edges to model admixture (see above).  
  
A second approach using the Wishart distribution is the EEMS method [66] which uses observed pairwise 
genetic similarities to estimate a map or “surface” of effective migration rates.  The inferred migration 
rates are “effective” in that they reflect migration proportions scaled by effective population sizes under 
an equilibrium model.  As few empirical systems (and especially humans) are at equilibrium, the surfaces 
should best be interpreted as a tool for visualizing patterns of genetic differentiation relative to geographic 
distance.  In closely related work, Hanks and Hooten [67] independently develop a Wishart framework 
much like that in EEMS that can test whether a particular environmental variable is predictive of 
migration rates.  Two additional exciting advances, not using the Wishart distribution, are a method 
(localdiff [68]) that uses locally computed FST values to visualize barriers, and an approach that models  
FST as a function of the bearing between two populations to study anisotropic patterns of spatial 
differentiation [69].  
  
Extracting signatures of fine-scale structure in haplotype data 
  
A very active and promising arena of research is in the development of haplotype-based methods for 
studying fine-scale structure.  Local ancestry models (see above) have long been the only haplotype-based 
approach used to study structure, and haplotypes can be more informative for assignment [70,71], but a 
bevy of methods are being developed that leverage haplotypes in novel ways.  
  
Methods using long shared haplotypes (also known as tracts of identity-by-descent, IBD) are particularly 
well-suited for the characterization and interpretation of fine-scale population structure [72].   As an 
example of their power, Ralph and Coop [73] showed that IBD patterns in Europe can reveal more subtle 
structure than simple pairwise SNP similarity.  More recently Baharian et al [74] use the spatial 
distribution of long shared haplotypes to estimate dispersal rates in the context of the African-American 
history.   These methods have exceptional promise, though interpretations can be complicated when 
shorter tracts are considered [75]. A related approach to IBD patterns is embodied in the 
fineSTRUCTURE model [76,77] which uses long shared haplotypes detected through the use of the Li 
and Stephens haplotype-copying model [78] and then processes them through a downstream analysis that 
includes mixture modeling of copying profiles.  This model underlies the striking structure revealed in the 
Peopling of the British Isles project [28]. 
  
A second approach has been to focus on full chromosomal haplotype data using approximate coalescent 
models.  Using the Sequential Markov Coalescent (SMC) approximation, it is now possible to study 
population divergence using small numbers of genomes [79,80].  As one example, Schiffels and Durbin 
suggest a novel non-parametric approach based on inference of cross-coalescent rates through time 
[80,81].  In related work, a recent approach for sampling coalescent genealogies genome-wide [82] is a 
remarkable achievement but has yet to be adapted to explicitly study population structure. 
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A drawback of most haplotype-based methods is that they are computationally very expensive. A major 
breakthrough is the development of fast and scalable algorithms for representing haplotype data in ways 
that make haplotype similarity evident and easy to query.  One such algorithm, the Positional Burrows-
Wheeler Transform (pBWT, [83]) is revolutionary in this regard, and a new extension [84] is also exciting 
as it links the Li and Stephens haplotype-copying model to the pBWT framework and provides 
approaches that can handle unphased data. 
  
Open challenges 
  
Despite all the methodological progress, many fundamental challenges exist for fine-scale population 
structure studies.  Many of these challenges stem from the difficulty of encapsulating the complexity of 
human population structure with mathematical models.    
 
On the one hand, many models assume a small number of discrete, temporally continuous populations as 
the units of analysis.  This is only an approximation to the structure of human populations on the ground, 
and there is a strong trade-off between the ease-of-analysis provided by using a small number of discrete 
populations and the error induced due to model violations.  On the other hand, other models are not 
sufficiently parametric.  Many available methods focus on summarizing the observed population structure 
in a form that facilitates interpretation, but without explicitly modeling the historical processes that 
shaped these patterns.   
 
As a symptom of this problem, we currently lack a widely accepted generative model for human fine-
scale data. Put another way, we do not have a clear simulation protocol to produce “realistic” human data 
with fine-scale structure.  This hinders applications such as testing new methods and evaluating 
evolutionary models of disease variants in human populations. As an example, consider how recent 
aDNA studies have made clear that fine-scale structure in Europe is partly driven by temporally dynamic 
admixture patterns between 3 ancestral populations [17, 19, 20]; it is unclear from existing publications 
what pairing of simulation protocol and parameters would generate an in silico whole-genome dataset that 
replicates the basic features of European fine-scale structure.     
 
A related persistent challenge is that choices must be made regarding assigning individual origins based 
on sampling location, individual birthplace, or an origin based on parental or grandparental ancestry.  
Given the ubiquity of human movement and admixture, the choice can complicate interpretations and/or 
result in samples being omitted when origins are unclear (e.g. grandparents of differing origins).  The 
problem also arises when assigning aDNA samples into analysis units when they might vary by location, 
cultural context, and sampling time.  One must always interpret results with the location assignment 
procedure in mind. Ideally, approaches can be developed that more explicitly model the uncertainty in 
this stage of analysis.  
 
Another practical challenge with fine-scale population structure is that analysts must be especially 
cautious regarding model deviations such as ascertainment bias, heterogeneous linkage disequilibrium 
(LD) patterns, and complex mutational processes.  For example, even after basic LD filtering, PCs can be 
affected by large blocks of SNPs with complex patterns of LD, such as those that arise due to structural 
variants like the polymorphic 4Mb Chr 8p23 inversion in Europe (e.g. PC2 in the study of [85]).  Such 
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patterns likely pollute the results of various methods that assume marker independence as well as 
haplotype-based methods that do not model complex LD patterns due to structural variants.  One 
precaution is to inspect the PC loadings and repeat the PCA after removing any genomic regions with 
exceptionally high loadings.  An example of a mutagenic process potentially influencing haplotype-based 
approaches is the error-prone DNA-Polymerase Zeta, which may introduce dinucleotide and other 
aberrant mutation patterns [86] that bias analyses when handled as distinct mutations. 
  
A final precaution, and one of broader societal relevance, is that a viewer can become misled about the 
depth of population structure when casually inspecting visualizations using methods such as PCA, 
ADMIXTURE, EEMS or fineSTRUCTURE.  For example, untrained eyes may overinterpret population 
clusters in a PCA plot as a signature of deep, absolute levels of differentiation with relevance for 
phenotypic differentiation.  This is an ironic inverse of what Edwards harshly termed Lewontin’s fallacy 
[4], and what we might instead call Lewontin’s nightmare.  To prevent these misinterpretations, first we 
encourage practitioners to make absolute metrics of differentiation clear to audiences (e.g. FST, PCA 
proportion of variance explained).  Weak levels of differentiation, as measured by FST, imply that neutral 
quantitative traits will be weakly differentiated as well [3,87].  Second, visually displaying the geographic 
distribution of a manageable number of random markers from a dataset can be helpful for students and 
broader audiences to gain a direct sense of levels of population structure.  Several resources make this 
feasible for human genetic datasets (GGV browser [88], ALFRED [89,90] and HGDP Selection Browser 
[91]).   
  
Without any question, the study of fine-scale structure has been an exciting frontier of contemporary 
population genetics, with extensive progress and continued promise.  As this work continues, we will 
begin to more fully understand the processes that shape fine-scale structure in humans, and have a more 
full perspective on human origins.  Of broader relevance, this progress also provides guidance for 
studying other species with highly dynamic population histories, and many of the methods reviewed here 
are useful for applications outside of humans.  
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Figure 1 : Four methods for assessing population structure using large-scale single-nucleotide 
polymorphism data.  A) Ancestry proportion inference using ADMIXTURE.  B) Principal components 
analysis.  C) Plot of population in ‘geogenetic’ space using SpaceMix.  D) Visualization of effective 
migration rates using EEMS (brown = low effective migration; blue = high effective migration).  Each 
method is applied to the dataset analysed in [92] after filtering out populations with fewer than 10 
individuals, where population identifiers are defined on the basis of grandparental ancestry.  Structure is 
visible, even though FST-values average 0.004 between broad geographic regions in Europe [92]. 
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Figure 2 : A large number of loci is required to reveal fine-scale population structure using PCA. 
Four subsamples with an increasing number of loci were taken from the[93] dataset.  Using 100 loci, 
Europe appears panmictic, whereas 1,000 loci are sufficient to establish a North-South cline. With 10,000 
and 100,000 loci, fine-scale details are revealed. 
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