
Altera Corporation 1
AN-404-1.0 Preliminary

Application Note 404

FFT/IFFT Block Floating Point
Scaling

Introduction The Altera® FFT MegaCore® function uses block-floating-point (BFP)
arithmetic internally to perform calculations. BFP architecture is a
trade-off between fixed-point and full floating-point architecture.

Unlike an FFT block that uses floating point arithmetic, a
block-floating-point FFT block does not provide an input for exponents.
Internally, a complex value integer pair is represented with a single scale
factor that is typically shared among other complex value integer pairs.
After each stage of the FFT, the largest output value is detected and the
intermediate result is scaled to improve the precision. The exponent
records the number of left or right shifts used to perform the scaling. As
a result, the output magnitude relative to the input level is:

output*2-exponent

For example, if exponent = –3, the input samples are shifted right by
three bits, and hence the magnitude of the output is output*23.

Block Floating
Point

After every pass through a radix-2 or radix-4 engine in the FFT core, the
addition and multiplication operations cause the data bits width to grow.
In other words, the total data bits width from the FFT operation grows
proportionally to the number of passes. The number of passes of the
FFT/IFFT computation depends on the logarithm of the number of
points. Table 1 on page 3 shows the possible exponents for corresponding
bit growth.

A fixed-point architecture FFT needs a huge multiplier and memory
block to accommodate the large bit width growth to represent the high
dynamic range. Though floating-point is powerful in arithmetic
operations, its power comes at the cost of higher design complexity such
as a floating-point multiplier and a floating-point adder. BFP arithmetic
combines the advantages of floating-point and fixed-point arithmetic.
BFP arithmetic offers a better signal-to-noise ratio (SNR) and dynamic
range than does floating-point and fixed-point arithmetic with the same
number of bits in the hardware implementation.

In a block-floating-point architecture FFT, the radix-2 or radix-4
computation of each pass shares the same hardware, with the data being
read from memory, passed through the core engine, and written back to
memory. Before entering the next pass, each data sample is shifted right

October 2005, ver. 1.0

2 Altera Corporation
Preliminary

FFT/IFFT Block Floating Point Scaling

(an operation called "scaling") if there is a carry-out bit from the addition
and multiplication operations. The number of bits shifted is based on the
difference in bit growth between the data sample and the maximum data
sample detected in the previous stage. The maximum bit growth is
recorded in the exponent register. Each data sample now shares the same
exponent value and data bit width to go to the next core engine. The same
core engine can be reused without incurring the expense of a larger
engine to accommodate the bit growth. The output SNR depends on how
many bits of right shift occur and at what stages of the radix core
computation they occur. In other words, the signal-to-noise ratio is data
dependent and you need to know the input signal to compute the SNR.

Calculating
Possible
Exponent Values

Depending on the length of the FFT/IFFT, the number of passes through
the radix engine is known and therefore the range of the exponent is
known. The possible values of the exponent are determined by the
following equations:

P = ceil{log4N}, where N is the transform length

R = 0 if log2N is even, otherwise R=1

Single Output range = (–3P+R, P+R–4)

Quad Output range = (–3P+R+1, P+R–7)

Altera Corporation 3
Preliminary

Implementing Scaling

These equations translate to the values shown in Table 1.

f For details of the division by N in the IFFT operation, refer to Equation 2
in the Specifications chapter of the FFT MegaCore Function User Guide.

Implementing
Scaling

The scaling algorithm is implemented as follows:

1. Determine the length of the resulting full scale dynamic range
storage register. To get the length, add the width of the data to the
number of times the data is shifted (the MAX value shown in
Table 1). For example, for a 16-bit data, 256-point Quad Output
FFT/IFFT, MAX = –11 and MIN = –3. The MAX value indicates 11
shifts to the left, so the resulting full scaled data width is 16 + 11, or
27 bits.

2. Map the output data to the appropriate location within the
expanded dynamic range register based upon the exponent value.
To continue the above example, the 16-bit output data [15..0] from
the FFT/IFFT is mapped to [26..11] for an exponent of –11, to [25..10]
for an exponent of –10, to [24..9] for an exponent of –9, and so on.

Table 1. Exponent Scaling Values for FFT / IFFT Note (1)

Single Output Engine Quad Output Engine

N P MAX (2) MIN (2) N P MAX (2) MIN (2)

64 3 –9 –1 64 3 –8 –4

128 4 –11 1 128 4 –10 –2

256 4 –12 0 256 4 –11 –3

512 5 –14 2 512 5 –13 –1

1024 5 –15 1 1024 5 –14 –2

2048 6 –17 3 2048 6 –16 0

4096 6 –18 2 4096 6 –17 –1

8192 7 –20 4 8192 7 –19 1

16384 7 –21 3 16384 7 –20 0

Note to Table 1:
(1) This table lists the range of exponents, which is the number of scale events that

occurred internally. For IFFT, the output must be divided by N externally. If more
arithmetic operations are performed after this step, the division by N must be
performed at the end to prevent loss of precision.

(2) The MAX and MIN values show the number of times the data is shifted. A
negative value indicates shifts to the left, while a positive value indicates shifts
to the right.

4 Altera Corporation
Preliminary

FFT/IFFT Block Floating Point Scaling

3. Sign extend the data within the full scale register.

A sample of Verilog HDL code that illustrates the scaling of the output
data (for exponents –11 to –9) with sign extension is shown in the
following example:

case (exp)
6'b110101 : //-11 Set data equal to MSBs

begin
full_range_real_out[26:0] <= {real_in[15:0],11'b0};
full_range_imag_out[26:0] <= {imag_in[15:0],11'b0};

end
6'b110110 : //-10 Equals left shift by 10 with sign extension

begin
full_range_real_out[26] <= {real_in[15]};
full_range_real_out[25:0] <= {real_in[15:0],10'b0};
full_range_imag_out[26] <= {imag_in[15]};
full_range_imag_out[25:0] <= {imag_in[15:0],10'b0};

end
6'b110111 : //-9 Equals left shift by 9 with sign extension

begin
full_range_real_out[26:25] <= {real_in[15],real_in[15]};
full_range_real_out[24:0] <= {real_in[15:0],9'b0};
full_range_imag_out[26:25] <= {imag_in[15],imag_in[15]};
full_range_imag_out[24:0] <= {imag_in[15:0],9'b0};

end
.
.
.

endcase

In this example, the output provides a full scale 27-bit word. You need to
choose how many and which bits should be carried forward in the
processing chain. The choice of bits determines the absolute gain relative
to the input sample level.

Figure 1 demonstrates the effect of scaling for all possible values for the
256-point Quad Output FFT with an input signal level of 5000H. The
output of the FFT is 280H when the exponent = –5. The figure illustrates
all cases of valid exponent values of scaling to the full scale storage
register [26..0]. Since the exponent is –5, you need to look at the register
values for that column. This data is shown in the last two columns in the
figure. Note that the last column represents the gain compensated data
after the scaling (0005000H), which agrees with the input data as
expected. If you want to keep 16 bits for subsequent processing, you can
choose the bottom 16 bits that result in 5000H. However, if you choose a
different bit range, such as the top 16 bits, then the result is 000AH.
Therefore, the choice of bits affects the relative gain through the
processing chain.

Altera Corporation 5
Preliminary

Achieving Unity Gain in an IFFT+FFT pair

Because this example has 27 bits of full scale resolution and 16 bits of
output resolution, we choose the bottom 16 bits to maintain unity gain
relative to the input signal. Choosing the LSBs is not the only solution or
the correct one for all cases. The choice depends on which signal levels are
important. One way to empirically select the proper range is by
simulating test cases that implement expected system data. The output of
the simulations should tell what range of bits to use as the output register.
If the full scale data is not used (or just the MSBs), you must saturate the
data to avoid wraparound problems.

Figure 1. Scaling of Input Data Sample = 5000H

Achieving Unity
Gain in an
IFFT+FFT pair

Given sufficiently high precision, such as with floating-point arithmetic,
you can theoretically obtain unity gain when an IFFT and FFT are
cascaded. However, in BFP arithmetic, special attention must be paid to
the exponent values of the IFFT/FFT blocks to achieve the unity gain.
This section explains the steps required to derive a unity gain output from
an Altera IFFT/FFT MegaCore pair, using BFP arithmetic.

6 Altera Corporation
Preliminary

FFT/IFFT Block Floating Point Scaling

Because BFP arithmetic does not provide an input for the exponent, you
must keep track of the exponent from the IFFT block if you are feeding the
output to the FFT block immediately thereafter and divide by N at the end
to acquire the original signal magnitude.

Figure 2 shows the operation of IFFT followed by FFT and derives the
equation to achieve unity gain.

Figure 2. Derivation to Achieve IFFT/FFT Pair Unity Gain

Any scaling operation on X0 followed by truncation will lose the value of
exp1 and not result in unity gain at x0. Any scaling operation must be
done on X0 only when X0 is the final result. If the intermediate result X0
is first padded with exp1 number of zeros and then truncated or if the data
bits of X0 are truncated, then the scaling information will be lost.

One way to keep unity gain is by passing the exp1 value to the output of
the FFT block. The other way is to preserve the full precision of
data1*2–exp1 and use this value as input to the FFT block. The disadvantage

Altera Corporation 7
Preliminary

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
literature@altera.com

Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Achieving Unity Gain in an IFFT+FFT pair

of the second method is a large size requirement for the FFT to accept the
input with growing bit width from IFFT operations. The resolution
required to accommodate this bit width exceeds, in most cases, the
maximum data width supported by the core.

f For more information, refer to the FFT/IFFT Unity Gain design example
at www.altera.com.

	FFT/IFFT Block Floating Point Scaling
	Introduction
	Block Floating Point
	Calculating Possible Exponent Values
	Implementing Scaling
	Achieving Unity Gain in an IFFT+FFT pair

