

Vector and Tensor Algebra
(including Column and Matrix Notation)

2

1 Vectors and tensors

In mechanics and other fields of physics, quantities are represented by vectors and tensors.
Essential manipulations with these quantities will be summerized in this section. For quan-
titative calculations and programming, components of vectors and tensors are needed, which
can be determined in a coordinate system with respect to a vector basis. The three compo-
nents of a vector can be stored in a column. The nine components of a second-order tensor
are generally stored in a three-by-three matrix.

A fourth-order tensor relates two second-order tensors. Matrix notation of such relations
is only possible, when the 9 components of the second-order tensor are stored in columns.
Doing so, the 81 components of a fourth-order tensor are stored in a 9 × 9 matrix. For
some mathematical manipulations it is also advantageous to store the 9 components of a
second-order tensor in a 9 × 9 matrix.

1.1 Vector

A vector represents a physical quantity which is characterized by its direction and its magni-
tude. The length of the vector represents the magnitude, while its direction is denoted with
a unit vector along its axis, also called the working line. The zero vector is a special vector
having zero length.

�a

Fig. 1 : A vector �a and its working line

�a = ||�a|| �e

length : ||�a||
direction vector : �e ; ||�e || = 1

zero vector : �0
unit vector : �e ; ||�e || = 1

1.1.1 Scalar multiplication

A vector can be multiplied with a scalar, which results in a new vector with the same axis.
A negative scalar multiplier reverses the vector’s direction.

3

�b

�a �b

�b

Fig. 2 : Scalar multiplication of a vector �a

�b = α�a

1.1.2 Sum of two vectors

Adding two vectors results in a new vector, which is the diagonal of the parallelogram, spanned
by the two original vectors.

�a

�c�b

Fig. 3 : Addition of two vectors

�c = �a+�b

1.1.3 Scalar product

The scalar or inner product of two vectors is the product of their lengths and the cosine of
the smallest angle between them. The result is a scalar, which explains its name. Because the
product is generally denoted with a dot between the vectors, it is also called the dot product.

The scalar product is commutative and linear. According to the definition it is zero for
two perpendicular vectors.

4

�b

φ

�a

Fig. 4 : Scalar product of two vectors �a and �b

�a ·�b = ||�a|| ||�b|| cos(φ)

�a ·�a = ||�a||2 ≥ 0 ; �a ·�b = �b ·�a ; �a · (�b+ �c) = �a ·�b+ �a ·�c

1.1.4 Vector product

The vector product of two vectors results in a new vector, who’s axis is perpendicular to the
plane of the two original vectors. Its direction is determined by the right-hand rule. Its length
equals the area of the parallelogram, spanned by the original vectors.

Because the vector product is often denoted with a cross between the vectors, it is also
referred to as the cross product. Instead of the cross other symbols are used however, eg.:

�a×�b ; �a ∗�b

The vector product is linear but not commutative.

�n
φ

�a

�b

�c

Fig. 5 : Vector product of two vectors �a and �b

�c = �a ∗�b = {||�a|| ||�b|| sin(φ)}�n
= [area parallelogram] �n

�b ∗ �a = −�a ∗�b ; �a ∗ (�b ∗ �c) = (�a ·�c)�b− (�a ·�b)�c

5

1.1.5 Triple product

The triple product of three vectors is a combination of a vector product and a scalar product,
where the first one has to be calculated first because otherwise we would have to take the
vector product of a vector and a scalar, which is meaningless.

The triple product is a scalar, which is positive for a right-handed set of vectors and
negative for a left-handed set. Its absolute value equals the volume of the parallelepiped,
spanned by the three vectors. When the vectors are in one plane, the spanned volume and
thus the triple product is zero. In that case the vectors are not independent.

ψ

φ

�a

�b

�n

�c

Fig. 6 : Triple product of three vectors �a, �b and �c

�a ∗�b ·�c = {||�a|| ||�b|| sin(φ)}{�n ·�c}
= {||�a|| ||�b|| sin(φ)}{||�c|| cos(ψ)}
= |volume parallelepiped|

> 0 → �a,�b,�c right handed

< 0 → �a,�b,�c left handed

= 0 → �a,�b,�c dependent

1.1.6 Tensor product

The tensor product of two vectors represents a dyad, which is a linear vector transformation.
A dyad is a special tensor – to be discussed later –, which explains the name of this product.
Because it is often denoted without a symbol between the two vectors, it is also referred to
as the open product.

The tensor product is not commutative. Swapping the vectors results in the conjugate
or transposed or adjoint dyad. In the special case that it is commutative, the dyad is called
symmetric.

A conjugate dyad is denoted with the index ()c or the index ()T (transpose). Both
indices are used in these notes.

6

�a�b �r
�p

Fig. 7 : A dyad is a linear vector transformation

�a�b = dyad = linear vector transformation

�a�b · �p = �a(�b · �p) = �r

�a�b · (α�p + β�q) = α�a�b · �p+ β�a�b · �q = α�r + β�s

conjugated dyad (�a�b)c = �b�a �= �a�b
symmetric dyad (�a�b)c = �a�b

1.1.7 Vector basis

A vector basis in a three-dimensional space is a set of three vectors not in one plane. These
vectors are referred to as independent. Each fourth vector can be expressed in the three base
vectors.

When the vectors are mutually perpendicular, the basis is called orthogonal. If the basis
consists of mutually perpendicular unit vectors, it is called orthonormal.

�c1

�e3

�c2

�c3

�e1

�e2

Fig. 8 : A random and an orthonormal vector basis in three-dimensional space

random basis {�c1,�c2,�c3} ; �c1 ∗ �c2 ·�c3 �= 0

orthonormal basis {�e1, �e2, �e3} (δij = Kronecker delta)
�ei ·�ej = δij → �ei ·�ej = 0 | i �= j ; �ei ·�ei = 1

right-handed basis �e1 ∗ �e2 = �e3 ; �e2 ∗ �e3 = �e1 ; �e3 ∗ �e1 = �e2

7

1.1.8 Matrix representation of a vector

In every point of a three-dimensional space three independent vectors exist. Here we assume
that these base vectors {�e1, �e2, �e3} are orthonormal, i.e. orthogonal (= perpendicular) and
having length 1. A fourth vector �a can be written as a weighted sum of these base vectors.
The coefficients are the components of �a with relation to {�e1, �e2, �e3}. The component ai

represents the length of the projection of the vector �a on the line with direction �ei.
We can denote this in several ways. In index notation a short version of the above

mentioned summation is based on the Einstein summation convention. In column notation,
(transposed) columns are used to store the components of �a and the base vectors and the
usual rules for the manipulation of columns apply.

�a = a1�e1 + a2�e2 + a3�e3 =
3∑

i=1

ai�ei = ai�ei =
[
a1 a2 a3

] ⎡⎣ �e1
�e2
�e3

⎤
⎦ = a

˜
T�e
˜

= �e
˜
Ta
˜

a3

�e1

�e2

�e3

�a

a1

a2

Fig. 9 : A vector represented with components w.r.t. an orthonormal vector basis

1.1.9 Components

The components of a vector �a with respect to an orthonormal basis can be determined directly.
All components, stored in column a

˜
, can then be calculated as the inner product of vector �a

and the column �e
˜

containing the base vectors.

ai = �a ·�ei i = 1, 2, 3 →
⎡
⎣ a1

a2

a3

⎤
⎦ =

⎡
⎣ �a ·�e1
�a ·�e2
�a ·�e3

⎤
⎦ = �a ·

⎡
⎣ �e1
�e2
�e3

⎤
⎦ = �a ·�e

˜

8

1.2 Coordinate systems

1.2.1 Cartesian coordinate system

A point in a Cartesian coordinate system is identified by three independent Cartesian co-
ordinates, which measure distances along three perpendicular coordinate axes in a reference
point, the origin.

In each point three coordinate axes exist which are parallel to the original coordinate
axes. Base vectors are unit vectors tangential to the coordinate axes. They are orthogonal
and independent of the Cartesian coordinates.

x2

x1

x3

�e3

�e3
�e1

�e2
�e1

�e2

Fig. 10 : Cartesian coordinate system

Cartesian coordinates : (x1, x2, x3) or (x, y, z)
Cartesian basis : {�e1, �e2, �e3} or {�ex, �ey, �ez}

1.2.2 Cylindrical coordinate system

A point in a cylindrical coordinate system is identified by three independent cylindrical coor-
dinates. Two of these measure a distance, respectively from (r) and along (z) a reference axis
in a reference point, the origin. The third coordinate measures an angle (θ), rotating from a
reference plane around the reference axis.

In each point three coordinate axes exist, two linear and one circular. Base vectors are
unit vectors tangential to these coordinate axes. They are orthonormal and two of them
depend on the angular coordinate.

The cylindrical coordinates can be transformed into Cartesian coordinates :

x1 = r cos(θ) ; x2 = r sin(θ) ; x3 = z

r =
√
x2

1 + x2
2 ; θ = arctan

[
x2

x1

]
; z = x3

The unit tangential vectors to the coordinate axes constitute an orthonormal vector base
{�er, �et, �ez}. The derivatives of these base vectors can be calculated.

9

θ

�e1

x1

�e3

�e2

�et

z
x3

x2

r

�ez

�er

Fig. 11 : Cylindrical coordinate system

cylindrical coordinates : (r, θ, z)
cylindrical basis : {�er(θ), �et(θ), �ez}

�er(θ) = cos(θ)�e1 + sin(θ)�e2 ; �et(θ) = − sin(θ)�e1 + cos(θ)�e2 ; �ez = �e3

∂�er
∂θ

= − sin(θ)�e1 + cos(θ)�e2 = �et ;
∂�et
∂θ

= − cos(θ)�e1 − sin(θ)�e2 = −�er

1.2.3 Spherical coordinate system

A point in a spherical coordinate system is identified by three independent spherical coor-
dinates. One measures a distance (r) from a reference point, the origin. The two other
coordinates measure angles (θ and φ) w.r.t. two reference planes.

In each point three coordinate axes exist, one linear and two circular. Base vectors are
unit vectors tangential to these coordinate axes. They are orthonormal and depend on the
angular coordinates.

The spherical coordinates can be translated to Cartesian coordinates and vice versa :

x1 = r cos(θ) sin(φ) ; x2 = r sin(θ) sin(φ) ; x3 = r cos(φ)

r =
√
x2

1 + x2
2 + x2

3 ; φ = arccos
[x3

r

]
; θ = arctan

[
x2

x1

]

The unit tangential vectors to the coordinate axes constitute an orthonormal vector base
{�er, �et, �eφ}. The derivatives of these base vectors can be calculated.

10

φ

�e2

�e3

x1

�e1
θ

�et

x2

x3

r

�er

�eφ

Fig. 12 : Spherical coordinate system

spherical coordinates : (r, θ, φ)
spherical basis : {�er(θ, φ), �et(θ), �eφ(θ, φ)}

�er(θ, φ) = cos(θ) cos(φ)�e1 + sin(θ) cos(φ)�e2 + sin(φ)�e3

�et(θ) =
1

cos(φ)
d�er(θ, φ)

dθ
= − sin(θ)�e1 + cos(θ)�e2

�eφ(θ, φ) =
d�er(θ, φ)

dφ
= − cos(θ) sin(φ)�e1 − sin(θ) sin(φ)�e2 + cos(φ)�e3

∂�er
∂θ

= − sin(θ) cos(φ)�e1 + cos(θ) cos(φ)�e2 = cos(φ)�et

∂�er
∂φ

= − cos(θ) sin(φ)�e1 − sin(θ) sin(φ)�e2 + cos(φ)�e3 = �eφ

∂�et
∂θ

= − cos(θ)�e1 − sin(θ)�e2 = − cos(φ)�er + sin(φ)�eφ

∂�eφ
∂θ

= sin(θ) sin(φ)�e1 − cos(θ) sin(φ)�e2 = − sin(φ)�et

∂�eφ
∂φ

= − cos(θ) cos(φ)�e1 − sin(θ) cos(φ)�e2 − sin(φ)�e3 = −�er

1.2.4 Polar coordinates

In two dimensions the cylindrical coordinates are often referred to as polar coordinates.

�et

r

θ

x1

x2

�e1

�e2
�er

11

Fig. 13 : Polar coordinates

polar coordinates : (r, θ)
polar basis : {�er(θ), �et(θ)}

�er(θ) = cos(θ)�e1 + sin(θ)�e2

�et(θ) =
d�er(θ)
dθ

= − sin(θ)�e1 + cos(θ)�e2 → d�et(θ)
dθ

= −�er(θ)

1.3 Position vector

A point in a three-dimensional space can be identified with a position vector �x, originating
from the fixed origin.

1.3.1 Position vector and Cartesian components

In a Cartesian coordinate system the components of this vector �x w.r.t. the Cartesian basis
are the Cartesian coordinates of the considered point.

The incremental position vector d�x points from one point to a neighbor point and has
its components w.r.t. the local Cartesian vector base.

�e1

�e2

�e3

�e1

�e3

�x

d�x

x1

x2

x3

�e2

Fig. 14 : Position vector

�x = x1�e1 + x2�e2 + x3�e3

�x+ d�x = (x1 + dx1)�e1 + (x2 + dx2)�e2 + (x3 + dx3)�e3

incremental position vector d�x = dx1�e1 + dx2�e2 + dx3�e3
components of d�x dx1 = d�x ·�e1 ; dx2 = d�x ·�e2 ; dx3 = d�x ·�e3

12

1.3.2 Position vector and cylindrical components

In a cylindrical coordinate system the position vector �x has two components.
The incremental position vector d�x has three components w.r.t. the local cylindrical

vector base.

�er

x1

�e1

�e2

�et

θ

�x

r

x2

d�x

�ez

�er

z
x3

�e3

�ez

Fig. 15 : Position vector

�x = r�er(θ) + z�ez

�x+ d�x = (r + dr)�er(θ + dθ) + (z + dz)�ez

= (r + dr)
{
�er(θ) +

d�er
dθ

dθ

}
+ (z + dz)�ez

= r�er(θ) + z�ez + r�et(θ)dθ + dr�er(θ) + �et(θ)drdθ + dz�ez

incremental position vector d�x = dr �er(θ) + r dθ �et(θ) + dz �ez

components of d�x dr = d�x ·�er ; dθ =
1
r
d�x ·�et ; dz = d�x ·�ez

1.3.3 Position vector and spherical components

In a spherical coordinate system the position vector �x has only one component, which is its
length.

The incremental position vector d�x has three components w.r.t. the local spherical vector
base.

�x = r�er(θ, φ)
�x+ d�x = (r + dr)�er(θ + dθ, φ+ dφ)

= (r + dr)
{
�er(θ, φ) +

d�er
dθ

dθ +
d�er
dφ

dφ

}
= r�er(θ, φ)+ = r cos(φ)�et(θ)dθ + r�eφ(θ, φ)dφ+ dr�er(θ, φ)

13

incremental position vector d�x = dr �er(θ, φ) + r cos(φ) dθ �et(θ) + r dφ�eφ(θ, φ)

components of d�x dr = d�x ·�er ; dθ =
1

r cos(φ)
d�x ·�et ; dφ = d�x ·�eφ

1.4 Gradient operator

In mechanics (and physics in general) it is necessary to determine changes of scalars, vec-
tors and tensors w.r.t. the spatial position. This means that derivatives w.r.t. the spatial
coordinates have to be determined. An important operator, used to determine these spatial
derivatives is the gradient operator.

1.4.1 Variation of a scalar function

Consider a scalar function f of the scalar variable x. The variation of the function value
between two neighboring values of x can be expressed with a Taylor series expansion. If the
variation is very small, this series can be linearized, which implies that only the first-order
derivative of the function is taken into account.

f(x)

df

x x+ dx

df
dxdx

f(x+ dx)

Fig. 16 : Variation of a scalar function of one variable

df = f(x+ dx) − f(x)

= f(x) +
df

dx

∣∣∣∣
x

dx+ 1
2

d2f

dx2

∣∣∣∣
x

dx2 + ..− f(x)

≈ df

dx

∣∣∣∣
x

dx

Consider a scalar function f of two independent variables x and y. The variation of the func-
tion value between two neighboring points can be expressed with a Taylor series expansion.
If the variation is very small, this series can be linearized, which implies that only first-order
derivatives of the function are taken into account.

14

df = f(x+ dx, y + dy) +
∂f

∂x

∣∣∣∣
(x,y)

dx+
∂f

∂y

∣∣∣∣
(x,y)

dy + ..− f(x, y)

≈ ∂f

∂x

∣∣∣∣
(x,y)

dx+
∂f

∂y

∣∣∣∣
(x,y)

dy

A function of three independent variables x, y and z can be differentiated likewise to give the
variation.

df ≈ ∂f

∂x

∣∣∣∣
(x,y,z,)

dx+
∂f

∂y

∣∣∣∣
(x,y,z,)

dy +
∂f

∂z

∣∣∣∣
(x,y,z,)

dz+

Spatial variation of a Cartesian scalar function

Consider a scalar function of three Cartesian coordinates x, y and z. The variation of the
function value between two neighboring points can be expressed with a linearized Taylor series
expansion. The variation in the coordinates can be expressed in the incremental position
vector between the two points. This leads to the gradient operator.

The gradient (or nabla or del) operator �∇ is not a vector, because it has no length or
direction. The gradient of a scalar a is a vector : �∇a

da = dx
∂a

∂x
+ dy

∂a

∂y
+ dz

∂a

∂z
= (d�x ·�ex)

∂a

∂x
+ (d�x ·�ey)∂a

∂y
+ (d�x ·�ez)∂a

∂z

= d�x ·
[
�ex
∂a

∂x
+ �ey

∂a

∂y
+ �ez

∂a

∂z

]
= d�x · (�∇a)

gradient operator �∇ =
[
�ex

∂

∂x
+ �ey

∂

∂y
+ �ez

∂

∂z

]
= �e

˜
T ∇̃ = ∇̃T�e

˜

Spatial variation of a cylindrical scalar function

Consider a scalar function of three cylindrical coordinates r, θ and z. The variation of the
function value between two neighboring points can be expressed with a linearized Taylor series
expansion. The variation in the coordinates can be expressed in the incremental position
vector between the two points. This leads to the gradient operator.

da = dr
∂a

∂r
+ dθ

∂a

∂θ
+ dz

∂a

∂z
= (d�x ·�er) ∂a

∂r
+ (

1
r
d�x ·�et) ∂a

∂θ
+ (d�x ·�ez) ∂a

∂z

= d�x ·
[
�er
∂a

∂r
+

1
r
�et
∂a

∂θ
+ �ez

∂a

∂z

]
= d�x · (�∇a)

gradient operator �∇ = �er
∂

∂r
+ �et

1
r

∂

∂θ
+ �ez

∂

∂z
= �e

˜
T ∇̃ = ∇̃T�e

˜

15

Spatial variation of a spherical scalar function

Consider a scalar function of three spherical coordinates r, θ and φ. The variation of the
function value between two neighboring points can be expressed with a linearized Taylor
series expansion. The variation in the coordinates can be expressed in the incremental position
vector between the two points. This leads to the gradient operator.

da = dr
∂a

∂r
+ dθ

∂a

∂θ
+ dφ

∂a

∂φ
= (d�x ·�er)∂a

∂r
+ (

1
r cos(φ)

d�x ·�et)∂a
∂θ

+ (
1
r
d�x ·�eφ)

∂a

∂φ

= d�x ·
[
�er
∂a

∂r
+

1
r cos(φ)

�et
∂a

∂θ
+

1
r
�eφ
∂a

∂φ

]
= d�x · (�∇a)

gradient operator �∇ = �er
∂

∂r
+ �et

1
r cos(φ)

∂

∂θ
+ �eφ

1
r

∂

∂φ
= �e

˜
T ∇̃ = ∇̃T�e

˜

1.4.2 Spatial derivatives of a vector function

For a vector function �a(�x) the variation can be expressed as the inner product of the difference
vector d�x and the gradient of the vector �a. The latter entity is a dyad. The inner product of
the gradient operator �∇ and �a is called the divergence of �a. The outer product is referred to
as the rotation or curl.

When cylindrical or spherical coordinates are used, the base vectors are (partly) functions
of coordinates. Differentiaion must than be done with care.

The gradient, divergence and rotation can be written in components w.r.t. a vector basis.
The rather straightforward algebric notation can be easily elaborated. However, the use of
column/matrix notation results in shorter and more transparent expressions.

grad(�a) = �∇�a ; div(�a) = �∇ ·�a ; rot(�a) = �∇ ∗ �a

Cartesian components

The gradient of a vector �a can be written in components w.r.t. the Cartesian vector basis
{�ex, �ey, �ez}. The base vectors are independent of the coordinates, so only the components of
the vector need to be differentiated. The divergence is the inner product of �∇ and �a and thus
results in a scalar value. The curl results in a vector.

�∇�a =
(
�ex

∂

∂x
+ �ey

∂

∂y
+ �ez

∂

∂z

)
(ax�ex + ay�ey + az�ez)

= �exax,x�ex + �exay,x�ey + �exaz,x�ez + �eyax,y�ex +
�eyay,y�ey + �eyaz,y�ez + �ezax,z�ex + �ezay,z�ey + �ezaz,z�ez

=
[
�ex �ey �ez

]
⎡
⎢⎢⎢⎣

∂
∂x

∂
∂y

∂
∂z

⎤
⎥⎥⎥⎦
[
ax ay az

] ⎡⎣ �ex
�ey
�ez

⎤
⎦ = �e

˜
T
(∇̃ a

˜
T
)
�e
˜

16

�∇ ·�a =
(
�ex

∂

∂x
+ �ey

∂

∂y
+ �ez

∂

∂z

)
· (ax�ex + ay�ey + az�ez)

=
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z
= tr

(∇̃ a
˜

T
)

= tr
(
�∇�a
)

�∇ ∗ �a =
(
�ex

∂

∂x
+ �ey

∂

∂y
+ �ez

∂

∂z

)
∗ (ax�ex + ay�ey + az�ez) = · · ·

Cylindrical components

The gradient of a vector �a can be written in components w.r.t. the cylindrical vector basis
{�er, �et, �ez}. The base vectors �er and �et depend on the coordinate θ, so they have to be
differentiated together with the components of the vector. The result is a 3×3 matrix.

�∇�a = {�er ∂
∂r

+ �ez
∂

∂z
+ �et

1
r

∂

∂θ
}{ar�er + az�ez + at�et}

= �erar,r�er + �eraz,r�ez + �erat,r�et + �ezar,z�er + �ezaz,z�ez + �ezat,z�et +

�et
1
r
ar,t�er + �et

1
r
az,t�ez + �et

1
r
at,t�et + �et

1
r
ar�et − �et

1
r
at�er

= �e
˜
T
{∇̃ (a

˜
T�e
˜

)}
= �e

˜
T
{(∇̃a

˜
T
)
�e
˜

+
(
∇̃�e

˜
T
)
a
˜

}

∇̃�e
˜
T =

⎡
⎢⎢⎢⎣

∂
∂r

1
r

∂
∂θ

∂
∂z

⎤
⎥⎥⎥⎦
[
�er(θ) �et(θ) �ez

]
=

⎡
⎢⎣

0 0 0
1
r
�et −1

r
�er 0

0 0 0

⎤
⎥⎦

= �e
˜
T

{ (∇̃a
˜

T
)
�e
˜

+

⎡
⎢⎣

0
1
r
�etar − 1

r
�erat

0

⎤
⎥⎦}
}

= �e
˜
T

{ (∇̃a
˜

T
)
�e
˜

+

⎡
⎢⎣

0 0 0

−1
r
at

1
r
ar 0

0 0 0

⎤
⎥⎦ �e

˜

}

= �e
˜
T (∇̃a

˜
T)�e

˜
+ �e

˜
Th�e

˜

�∇ ·�a = tr(∇̃a
˜

T) + tr(h)

Laplace operator

The Laplace operator appears in many equations. It is the inner product of the gradient
operator with itself.

Laplace operator ∇2 = �∇ · �∇

Cartesian components ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

17

cylindrical components ∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

∂2

∂z2

spherical components ∇2 =
∂2

∂r2
+

2
r

∂

∂r
+
(

1
r cos(φ)

)
∂2

∂θ2
+

1
r2

∂2

∂φ2
− 1
r2

tan(φ)
∂

∂φ

1.5 2nd-order tensor

A scalar function f takes a scalar variable, eg. p as input and produces another scalar variable,
say q, as output, so we have :

q = f(p) or p
f−→ q

Such a function is also called a projection.
Instead of input and output being a scalar, they can also be a vector. A tensor is

the equivalent of a function f in this case. What makes tensors special is that they are
linear functions, a very important property. A tensor is written here in bold face character.
The tensors which are introduced first and will be used most of the time are second-order
tensors. Each second-order tensor can be written as a summation of a number of dyads.
Such a representation is not unique, in fact the number of variations is infinite. With this
representation in mind we can accept that the tensor relates input and output vectors with
an inner product :

�q = A · �p or �p
A−→ �q

tensor = linear projection A · (α�m+ β�n) = αA · �m+ βA ·�n
representation A = α1�a1

�b1 + α2�a2
�b2 + α3�a3

�b3 + ..

1.5.1 Components of a tensor

As said before, a second-order tensor can be represented as a summation of dyads and this
can be done in an infinite number of variations. When we write each vector of the dyadic
products in components w.r.t. a three-dimensional vector basis {�e1, �e2, �e3} it is immediately
clear that all possible representations result in the same unique sum of nine independent
dyadic products of the base vectors. The coefficients of these dyads are the components of
the tensor w.r.t. the vector basis {�e1, �e2, �e3}. The components of the tensor A can be stored
in a 3 × 3 matrix A.

A = α1�a1
�b1 + α2�a2

�b2 + α3�a3
�b3 + ..

each vector in components w.r.t. {�e1, �e2, �e3} →
A = α1(a11�e1 + a12�e2 + a13�e3)(b11�e1 + b12�e2 + b13�e3) +

α2(a21�e1 + a22�e2 + a23�e3)(b21�e1 + b22�e2 + b23�e3) + ...

= A11�e1�e1 +A12�e1�e2 +A13�e1�e3 +
A21�e2�e1 +A22�e2�e2 +A23�e2�e3 +
A31�e3�e1 +A32�e3�e2 +A33�e3�e3

18

matrix/column notation

A =
[
�e1 �e2 �e3

] ⎡⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦
⎡
⎣ �e1
�e2
�e3

⎤
⎦ = �e

˜
TA�e

˜

1.5.2 Special tensors

Some second-order tensors are considered special with regard to their results and/or their
representation.

The dyad is generally considered to be a special second-order tensor. The null or zero
tensor projects each vector onto the null vector which has zero length and undefined direction.
The unit tensor projects each vector onto itself. Conjugating (or transposing) a second-order
tensor implies conjugating each of its dyads. We could also say that the front- and back-end
of the tensor are interchanged.

Matrix representation of special tensors, eg. the null tensor, the unity tensor and the
conjugate of a tensor, result in obvious matrices.

dyad : �a�b

null tensor : O → O · �p = �0
unit tensor : I → I · �p = �p
conjugated : Ac → Ac · �p = �p ·A

null tensor → null matrix

O = �e
˜
·O ·�e

˜
T =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

unity tensor → unity matrix

I = �e
˜
· I ·�e

˜
T =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ → I = �e1�e1 + �e2�e2 + �e3�e3 = �e

˜
T�e
˜

conjugate tensor → transpose matrix

A = �e
˜
·A ·�e

˜
T → AT = �e

˜
· Ac ·�e

˜
T

1.5.3 Manipulations

We already saw that we can conjugate a second-order tensor, which is an obvious manipu-
lation, taking in mind its representation as the sum of dyads. This also leads automatically
to multiplication of a tensor with a scalar, summation and taking the inner product of two
tensors. The result of all these basic manipulations is a new second-order tensor.

When we take the double inner product of two second-order tensors, the result is a scalar
value, which is easily understood when both tensors are considered as the sum of dyads again.

19

scalar multiplication B = αA
summation C = A + B
inner product C = A ·B
double inner product A : B = Ac : Bc = scalar

NB : A ·B �= B ·A
A2 = A ·A ; A3 = A ·A ·A ; etc.

1.5.4 Scalar functions of a tensor

Scalar functions of a tensor exist, which play an important role in physics and mechanics. As
their name indicates, the functions result in a scalar value. This value is independent of the
matrix representation of the tensor. In practice, components w.r.t. a chosen vector basis are
used to calculate this value. However, the resulting value is independent of the chosen base
and therefore the functions are called invariants of the tensor. Besides the Euclidean norm,
we introduce three other (fundamental) invariants of the second-order tensor.

1.5.5 Euclidean norm

The first function presented here is the Euclidean norm of a tensor, which can be seen as a kind
of weight or length. A vector base is in fact not needed at all to calculate the Euclidean norm.
Only the length of a vector has to be measured. The Euclidean norm has some properties
that can be proved which is not done here. Besides the Euclidean norm other norms can be
defined.

m = ||A|| = max
�e

||A ·�e || ∀ �e with ||�e|| = 1

properties

1. ||A|| ≥ 0
2. ||αA|| = |α| ||A||
3. ||A ·B|| ≤ ||A|| ||B||
4. ||A + B|| ≤ ||A|| + ||B||

1.5.6 1st invariant

The first invariant is also called the trace of the tensor. It is a linear function. Calculation of
the trace is easily done using the matrix of the tensor w.r.t. an orthonormal vector basis.

J1(A) = tr(A)

=
1

�c1 ∗ �c2 ·�c3 [�c1 · A · (�c2 ∗ �c3) + cycl.]

20

properties

1. J1(A) = J1(Ac)
2. J1(I) = 3
3. J1(αA) = αJ1(A)
4. J1(A + B) = J1(A) + J1(B)
5. J1(A ·B) = A : B → J1(A) = A : I

1.5.7 2nd invariant

The second invariant can be calculated as a function of the trace of the tensor and the trace
of the tensor squared. The second invariant is a quadratic function of the tensor.

J2(A) = 1
2{tr2(A) − tr(A2)}

=
1

�c1 ∗ �c2 ·�c3 [�c1 · (A ·�c2) ∗ (A ·�c3) + cycl.]

properties

1. J2(A) = J2(Ac)
2. J2(I) = 3
3. J2(αA) = α2J2(A)

1.5.8 3rd invariant

The third invariant is also called the determinant of the tensor. It is easily calculated from
the matrix w.r.t. an orthonormal vector basis. The determinant is a third-order function of
the tensor. It is an important value when it comes to check whether a tensor is regular or
singular.

J3(A) = det(A)

=
1

�c1 ∗ �c2 ·�c3 [(A ·�c1) · (A ·�c2) ∗ (A ·�c3)]

properties

1. J3(A) = J3(Ac)
2. J3(I) = 1
3. J3(αA) = α3J3(A)
4. J3(A ·B) = J3(A)J3(B)

21

1.5.9 Invariants w.r.t. an orthonormal basis

From the matrix of a tensor w.r.t. an orthonormal basis, the three invariants can be calculated
straightforwardly.

A → A =

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

J1(A) = tr(A) = tr(A)
= A11 +A22 +A33

J2(A) = 1
2{tr2(A) − tr(A2)}

J3(A) = detA = det(A)
= A11A22A33 +A12A23A31 +A21A32A13

− (A13A22A31 +A12A21A33 +A23A32A11)

1.5.10 Regular ∼ singular tensor

When a second-order tensor is regular, its determinant is not zero. If the inner product of a
regular tensor with a vector results in the null vector, it must be so that the former vector
is also a null vector. Considering the matrix of the tensor, this implies that its rows and
columns are independent.

A second-order tensor is singular, when its determinant equals zero. In that case the
inner product of the tensor with a vector, being not the null vector, may result in the null
vector. The rows and columns of the matrix of the singular tensor are dependent.

det(A) �= 0 ↔ A regulier ↔ [A ·�a = �0 ↔ �a = �0]
det(A) = 0 ↔ A singulier ↔ [A ·�a = �0 : �a �= �0]

1.5.11 Eigenvalues and eigenvectors

Taking the inner product of a tensor with one of its eigenvectors results in a vector with
the same direction – better : working line – as the eigenvector, but not necessarily the same
length. It is standard procedure that an eigenvector is taken to be a unit vector. The length
of the new vector is the eigenvalue associated with the eigenvector.

A ·�n = λ �n with �n �= �0

From its definition we can derive an equation from which the eigenvalues and the eigenvectors
can be determined. The coefficient tensor of this equation must be singular, as eigenvectors
are never the null vector. Demanding its determinant to be zero results in a third-order
equation, the characteristic equation, from which the eigenvalues can be solved.

22

A ·�n = λ�n → A ·�n− λ�n = �0 → A ·�n− λI ·�n = �0 →
(A − λI) ·�n = �0 with �n �= �0 →
A − λI singular → det(A − λI) = 0 →
det(A− λI) = 0 → characteristic equation

characteristic equation : 3 roots : λ1, λ2, λ3

After determining the eigenvalues, the associated eigenvectors can be determined from the
original equation.

eigenvector to λi, i ∈ {1, 2, 3} : (A − λiI) ·�ni = �0 or (A− λiI)n
˜i = 0

˜

dependent set of equations → only ratio n1 : n2 : n3 can be calculated
components n1, n2, n3 calculation → extra equation necessary
normalize eigenvectors → ||�ni|| = 1 → n2

1 + n2
2 + n2

3 = 1

It can be shown that the three eigenvectors are orthonormal when all three eigenvalues have
different values. When two eigenvalues are equal, the two associated eigenvectors can be
chosen perpendicular to each other, being both already perpendicular to the third eigenvector.
With all eigenvalues equal, each set of three orthonormal vectors are principal directions. The
tensor is then called ’isotropic’.

1.5.12 Relations between invariants

The three principal invariants of a tensor are related through the Cayley-Hamilton theorem.
The lemma of Cayley-Hamilton states that every second-order tensor obeys its own charac-
teristic equation. This rule can be used to reduce tensor equations to maximum second-order.
The invariants of the inverse of a non-singular tensor are related. Any function of the principal
invariants of a tensor is invariant as well.

Cayley-Hamilton theorem A3 − J1(A)A2 + J2(A)A − J3(A)I = O

relation between invariants of A−1

J1(A−1) =
J2(A)
J3(A)

; J2(A−1) =
J1(A)
J3(A)

; J3(A−1) =
1

J3(A)

1.6 Special tensors

Physical phenomena and properties are commonly characterized by tensorial variables. In
derivations the inverse of a tensor is frequently needed and can be calculated uniquely when
the tensor is regular. In continuum mechanics the deviatoric and hydrostatic part of a tensor
are often used.

Tensors may have specific properties due to the nature of physical phenomena and quan-
tities. Many tensors are for instance symmetric, leading to special features concerning eigen-
values and eigenvectors. Rotation (rate) is associated with skew symmetric and orthogonal
tensors.

23

inverse tensor A−1 → A−1 ·A = I

deviatoric part of a tensor Ad = A − 1
3tr(A)I

symmetric tensor Ac = A
skew symmetric tensor Ac = −A

positive definite tensor �a ·A ·�a > 0 ∀ �a �= �0
orthogonal tensor (A ·�a) · (A ·�b) = �a ·�b ∀ �a,�b

adjugated tensor (A ·�a) ∗ (A ·�b) = Aa · (�a ∗�b) ∀ �a,�b

1.6.1 Inverse tensor

The inverse A−1 of a tensor A only exists if A is regular, ie. if det(A) �= 0. Inversion is
applied to solve �x from the equation A · �x = �y giving �x = A−1 · �y.

The inverse of a tensor product A ·B equals B−1 ·A−1, so the sequence of the tensors
is reversed.

The matrix A−1 of tensor A−1 is the inverse of the matrix A of A. Calculation of A−1

can be done with various algorithms.

det(A) �= 0 ↔ ∃! A−1 | A−1 ·A = I

property

(A ·B) ·�a = �b → �a = (A ·B)−1 ·�b
(A ·B) ·�a = A · (B ·�a) = �b →

B ·�a = A−1 ·�b → �a = B−1 ·A−1 ·�b

⎫⎪⎬
⎪⎭ →

(A · B)−1 = B−1 ·A−1

components (minor(Aij) = determinant of sub-matrix of Aij)

A−1
ji =

1
det(A)

(−1)i+j minor(Aij)

1.6.2 Deviatoric part of a tensor

Each tensor can be written as the sum of a deviatoric and a hydrostatic part. In mechanics
this decomposition is often applied because both parts reflect a special aspect of deformation
or stress state.

Ad = A − 1
3 tr(A)I ; 1

3tr(A)I = Ah = hydrostatic or spherical part

properties

24

1. (A + B)d = Ad + Bd

2. tr(Ad) = 0
3. eigenvalues (μi) and eigenvectors (�mi)

det(Ad − μI) = 0 →
det(A − {1

3 tr(A) + μ}I) = 0 → μ = λ− 1
3tr(A)

(Ad − μI) · �m = �0 →
(A − {1

3 tr(A) + μ}I) · �m = �0 →
(A − λI) · �m = �0 → �m = �n

1.6.3 Symmetric tensor

A second order tensor is the sum of dyads. When each dyad is written in reversed order, the
conjugate tensor Ac results. The tensor is symmetric when each dyad in its sum is symmetric.

A very convenient property of a symmetric tensor is that all eigenvalues and associated
eigenvectors are real. The eigenvectors are or can be chosen to be orthonormal. They can be
used as an orthonormal vector base. Writing A in components w.r.t. this basis results in the
spectral representation of the tensor. The matrix A is a diagonal matrix with the eigenvalues
on the diagonal.

Scalar functions of a tensor A can be calculated using the spectral representation, con-
sidering the fact that the eigenvectors are not changed.

Ac = A

properties

1. eigenvalues and eigenvectors are real
2. λi different → �ni ⊥
3. λi not different → �ni chosen ⊥

⎫⎬
⎭ →

eigenvectors span orthonormal basis{�n1, �n2, �n3}

spectral representation of A A = A · I = A · (�n1�n1 + �n2�n2 + �n3�n3)
= λ1�n1�n1 + λ2�n2�n2 + λ3�n3�n3

functions

A−1 =
1
λ1
�n1�n1 +

1
λ2
�n2�n2 +

1
λ3
�n3�n3 +

√
A =

√
λ1�n1�n1 +

√
λ2�n2�n2 +

√
λ3�n3�n3

ln A = lnλ1�n1�n1 + lnλ2�n2�n2 + lnλ3�n3�n3

sin A = sin(λ1)�n1�n1 + sin(λ2)�n2�n2 + sin(λ3)�n3�n3

J1(A) = tr(A) = λ1 + λ2 + λ3

J2(A) = 1
2{tr2(A) − tr(A · A)} = 1

2{(λ1 + λ2 + λ3)2 − (λ2
1 + λ2

2 + λ2
3)}

J2(A) = det(A) = λ1λ2λ3

25

1.6.4 Skew symmetric tensor

The conjugate of a skewsymmetric tensor is the negative of the tensor.
The double dot product of a skew symmetric and a symmetric tensor is zero. Because

the unity tensor is also a symmetric tensor, the trace of a skew symmetric tensor must be
zero.

A skew symmetric tensor has one unique axial vector.

Ac = −A

properties

1. A : B = tr(A ·B) = tr(Ac ·Bc) = Ac : Bc

Ac = −A → A : B = −A : Bc

Bc = B → A : B = −A : B

}
→ A : B = 0

2. B = I → tr(A) = A : I = 0
3. A · �q = �p → �q ·A · �q = �q · Ac · �q = − �q ·A · �q →

�q · A · �q = 0 → �q · �p = 0 → �q ⊥ �p →
∃! �ω such that A · �q = �p = �ω ∗ �q

The components of the axial vector �ω associated with the skew symmetric tensor A can be
expressed in the components of A. This involves the solution of a system of three equations.

A · �q = �e
˜
T

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦
⎡
⎣ q1
q2
q3

⎤
⎦ = �e

˜
T

⎡
⎣ A11q1 +A12q2 +A13q3
A21q1 +A22q2 +A23q3
A31q1 +A32q2 +A33q3

⎤
⎦

�ω ∗ �q = (ω1�e1 + ω2�e2 + ω3�e3) ∗ (q1�e1 + q2�e2 + q3�e3)
= ω1q2(�e3) + ω1q3(−�e2) + ω2q1(−�e3) + ω2q3(�e1)+
ω3q1(�e2) + ω3q2(−�e1)

= �e
˜
T

⎡
⎣ ω2q3 − ω3q2
ω3q1 − ω1q3
ω1q2 − ω2q1

⎤
⎦ → A =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦

1.6.5 Positive definite tensor

The diagonal matrix components of a positive definite tensor must all be positive numbers.
A positive definite tensor cannot be skew symmetric. When it is symmetric, all eigenvalues
must be positive. In that case the tensor is automatically regular, because its inverse exists.

26

�a ·A ·�a > 0 ∀ �a �= �0

properties

1. A cannot be skew symmetric, because :

�a · A ·�a = �a · Ac ·�a →
�a · (A − Ac) ·�a = 0
A skew symm. → Ac = −A

⎫⎬
⎭ → �a ·A ·�a = 0 ∀ �a

2. A = Ac → �ni ·A ·�ni = λi > 0 →
all eigenvalues positive → regular

1.6.6 Orthogonal tensor

When an orthogonal tensor is used to transform a vector, the length of that vector remains
the same.

The inverse of an orthogonal tensor equals the conjugate of the tensor. This implies that
the columns of its matrix are orthonormal, which also applies to the rows. This means that
an orthogonal tensor is either a rotation tensor or a mirror tensor.

The determinant of A has either the value +1, in which case A is a rotation tensor, or
−1, when A is a mirror tensor.

(A ·�a) · (A ·�b) = �a ·�b ∀ �a,�b

properties

1. (A ·�v) · (A ·�v) = �v ·�v → ||A ·�v|| = ||�v||
2. �a ·Ac · A ·�b = �a ·�b → A ·Ac = I → Ac = A−1

3. det(A ·Ac) = det(A)2 = det(I) = 1 →
det(A) = ±1 → A regular

Rotation of a vector base

A rotation tensor Q can be used to rotate an orthonormal vector basis �m
˜

to �n
˜
. It can be

shown that the matrix Q(n) of Q w.r.t. �n
˜

is the same as the matrix Q(m) w.r.t. �m
˜

.
The column with the rotated base vectors �n

˜
can be expressed in the column with the

initial base vectors �m
˜

as : �n
˜

= QT �m
˜

, so using the transpose of the rotation matrix Q.

�n1 = Q · �m1

�n2 = Q · �m2

�n3 = Q · �m3

⎫⎬
⎭ →

�n1 �m1 = Q · �m1 �m1

�n2 �m2 = Q · �m2 �m2

�n3 �m3 = Q · �m3 �m3

⎫⎬
⎭ → Q = �n

˜
T �m

˜

Q(n) = �n
˜

·Q ·�n
˜

T = (�n
˜

·�n
˜

T)�m
˜

·�n
˜

T = �m
˜

·�n
˜

T

Q(m) = �m
˜

·Q · �m
˜

T = �m
˜

·�n
˜

T (�m
˜

· �m
˜

T) = �m
˜

·�n
˜

T

}
→ Q(n) = Q(m) = Q

�m
˜

= Q�n
˜

→ �n
˜

= QT �m
˜

}

27

We consider a rotation of the vector base {�e1, �e2, �e3} to {�ε1, �ε2, �ε3}, which is the result of three
subsequent rotations : 1) rotation about the 1-axis, 2) rotation about the new 2-axis and 3)
rotation about the new 3-axis.

For each individual rotation the rotation matrix can be determined.

1

2

3

�ε
(1)

1 = �e1

�ε
(1)

2 = c(1)�e2 + s(1)�e3

�ε
(1)

3 = −s(1)�e2 + c(1)�e3

⎫⎪⎬
⎪⎭ Q

1
=

⎡
⎣ 1 0 0

0 c(1) −s(1)
0 s(1) c(1)

⎤
⎦

�ε
(2)

1 = c(2)�ε
(1)

1 − s(2)�ε
(1)

3

�ε
(2)

2 = �ε
(1)

2

�ε
(2)

3 = s(2)�ε
(1)

1 + c(2)�ε
(1)

3

⎫⎪⎬
⎪⎭ Q

2
=

⎡
⎣ c(2) 0 s(2)

0 1 0
−s(2) 0 c(2)

⎤
⎦

�ε
(3)

1 = c(3)�ε
(2)

1 + s(3)�ε
(2)

2

�ε
(3)

2 = −s(3)�ε 2)
1 + c(3)�ε

(2)
2

�ε
(3)

3 = �ε
(2)

3

⎫⎪⎬
⎪⎭ Q

3
=

⎡
⎣ c(3) −s(3) 0
s(3) c(3) 0
0 0 1

⎤
⎦

The total rotation matrix Q is the product of the individual rotation matrices.

�ε
˜

(1) = Q
1
T�e
˜

�ε
˜

(2) = Q
2
T�ε
˜

(1)

�ε
˜

(3) = Q
3
T�ε
˜

(2) = �ε
˜

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→ �ε
˜

= Q
3
TQ

2
TQ

1
T�e
˜

= QT�e
˜

�e
˜

= Q�ε
˜

Q =

⎡
⎣ c(2)c(3) −c(2)s(3) s(2)

c(1)s(3) + s(1)s(2)c(3) c(1)c(3) − s(1)s(2)s(3) −s(1)c(2)
s(1)s(3) − c(1)s(2)c(3) s(1)c(3) + c(1)s(2)s(3) c(1)c(2)

⎤
⎦

A tensor A with matrix A w.r.t. {�e1, �e2, �e3} has a matrix A∗ w.r.t. basis {�ε1, �ε2, �ε3}. The
matrix A∗ can be calculated from A by multiplication with Q, the rotation matrix w.r.t.
{�e1, �e2, �e3}.

The column A
˜

with the 9 components of A can be transformed to A
˜
∗ by multiplication

with the 9x9 transformation matrix T : A
˜
∗ = T A

˜
. When A is symmetric, the transformation

matrix T is 6x6. Note that T is not the representation of a tensor.
The matrix T is not orthogonal, but its inverse can be calculated easily by reversing the

rotation angles : T−1 = T (−α1,−α2,−α3).

28

A = �e
˜
TA�e

˜
= �ε

˜
T A∗ �ε

˜
→

A∗ = �ε
˜
·�e
˜
TA�e

˜
· �ε
˜
T = QTAQ

A
˜
∗ = T A

˜

1.6.7 Adjugated tensor

The definition of the adjugate tensor resembles that of the orthogonal tensor, only now the
scalar product is replaced by a vector product.

(A ·�a) ∗ (A ·�b) = Aa · (�a ∗�b) ∀ �a,�b

property Ac ·Aa = det(A)I

1.7 Fourth-order tensor

Transformation of second-order tensors are done by means of a fourth-order tensor. A second-
order tensor is mapped onto a different second-order tensor by means of the double inner
product with a fourth-order tensor. This mapping is linear.

A fourth-order tensor can be written as a finite sum of quadrades, being open products
of four vectors. When quadrades of three base vectors in three-dimensional space are used,
the number of independent terms is 81, which means that the fourth-order tensor has 81
components. In index notation this can be written very short. Use of matrix notation
requires the use of a 3 × 3 × 3 × 3 matrix.

4A : B = C

tensor = linear transformation 4A : (αM + βN) = α 4A : M + β 4A : N

representation 4A = α1�a1
�b1�c1 �d1 + α2�a2

�b2�c2 �d2 + α3�a3
�b3�c3 �d3 + ..

components 4A = �ei�ejAijkl�ek�el

1.7.1 Conjugated fourth-order tensor

Different types of conjugated tensors are associated with a fourth-order tensor. This also
implies that there are different types of symmetries involved.

A left or right symmetric fourth-order tensor has 54 independent components. A tensor
which is left and right symmetric has 36 independent components. A middle symmetric tensor
has 45 independent components. A total symmetric tensor is left, right and middle symmetric
and has 21 independent components.

29

fourth-order tensor : 4A = �a �b �c �d
total conjugate : 4A

c = �d �c �b �a
right conjugate : 4A

rc = �a �b �d �c

left conjugate : 4A
lc = �b �a �c �d

middle conjugate : 4A
mc = �a �c �b �d

symmetries

left 4A = 4A
lc ; B : 4A = Bc : 4A ∀ B

right 4A = 4A
rc ; 4A : B = 4A : Bc ∀ B

middle 4A = 4A
mc

total 4A = 4A
c ; B : 4A : C = Cc : 4A : Bc ∀ B,C

1.7.2 Fourth-order unit tensor

The fourth-order unit tensor maps each second-order tensor onto itself. The symmetric fourth-
order unit tensor, which is total symmetric, maps a second-order tensor on its symmetric part.

4I : B = B ∀ B

components 4I = �e1�e1�e1�e1 + �e2�e1�e1�e2 + �e3�e1�e1�e3 + �e1�e2�e2�e1 + . . .

= �ei�ej�ej�ei = �ei�ejδilδjk�ek�el
4I not left- or right symmetric 4I : B = B �= Bc = 4I : Bc

B : 4I = B �= Bc = Bc : 4I

symmetric fourth-order tensor 4I
s = 1

2 (4I + 4I
rc) = 1

2 �ei�ej(δilδjk + δikδjl)�ek�el

1.7.3 Products

Inner and double inner products of fourth-order tensors with fourth- and second-order tensors,
result in new fourth-order or second-order tensors. Calculating such products requires that
some rules have to be followed.

4A · B = 4C → AijkmBml = Cijkl

4A : B = C → AijklBlk = Cij

4A : B �= B : 4A

4A : 4B = 4C → AijmnBnmkl = Cijkl

4A : 4B �= 4B : 4A

rules

30

4A : (B ·C) = (4A ·B) : C

A ·B + Bc · Ac = 4I
s : (A ·B) = (4I

s ·A) : B

1.8 Column and matrix notation

Three-dimensional continuum mechanics is generally formulated initially without using a
coordinate system, using vectors and tensors. For solving real problems or programming,
we need to use components w.r.t. a vector basis. For a vector and a second-order tensor,
the components can be stored in a column and a matrix. In this section a more extended
column/matrix notation is introduced, which is especially useful, when things have to be
programmed.

1.8.1 Matrix/column notation for second-order tensor

The components of a tensor A can be stored in a matrix A. For later purposes it is very
convenient to store these components in a column. To distinguish this new column from the
normal column with components of a vector, we introduce a double ”under-wave”. In this
new column A

˜̃
the components of A are located on specific places.

Just like any other column, A
˜̃

can be transposed. Another manipulation is however also
possible : the transposition of the individual column elements. When this is the case we write
: A

˜̃ t
.

3 × 3 matrix of a second-order tensor

A = �eiAij�ej → A =

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

column notation

A
˜̃

T =
[
A11 A22 A33 A12 A21 A23 A32 A31 A13

]
A
˜̃

T
t

=
[
A11 A22 A33 A21 A12 A32 A23 A13 A31

]
conjugate tensor

Ac → Aji → AT =

⎡
⎣ A11 A21 A31

A12 A22 A32

A13 A23 A33

⎤
⎦ → A

˜̃ t

Column notation for A : B

With the column of components of a second-order tensor, it is now very straightforward to
write the double product of two tensors as the product of their columns.

31

C = A : B

= �eiAij�ej : �ekBkl�el = AijδjkδilBkl = AijBji

= A11B11 +A12B21 +A13B31 +A21B12 +A22B22 +A23B32 +
A31B13 +A32B23 +A33B33

=
[
A11 A22 A33 A21 A12 A32 A23 A13 A31

]
[
B11 B22 B33 B12 B21 B23 B32 B31 B13

]T
= A

˜̃
T
t
B
˜̃

= A
˜̃

TB
˜̃ t

idem

C = A : Bc → C = A
˜̃

T
t
B
˜̃ t

= A
˜̃

TB
˜̃

C = Ac : B → C = A
˜̃

TB
˜̃

= A
˜̃

T
t
B
˜̃ t

C = Ac : Bc → C = A
˜̃

T
t
B
˜̃

= A
˜̃

TB
˜̃ t

Matrix/column notation C = A ·B
The inner product of two second-order tensors A and B is a new second-order tensor C.
The components of this new tensor can be stored in a 3×3 matrix C, but of course also in a
column C

˜̃
.

A matrix representation will result when the components of A and B can be isolated.
We will store the components of B in a column B

˜̃
and the components of A in a matrix.

C = A ·B = �eiAik�ek ·�elBlj�ej = �eiAikδklBlj�ej = �eiAikBkj�ej →

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11B11 +A12B21 +A13B31

A11B12 +A12B22 +A13B32

A11B13 +A12B23 +A13B33

A21B11 +A22B21 +A23B31

A21B12 +A22B22 +A23B32

A21B13 +A22B23 +A23B33

A31B11 +A32B21 +A33B31

A31B12 +A32B22 +A33B32

A31B13 +A32B23 +A33B33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C
˜̃

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11

C22

C33

C12

C21

C23

C32

C31

C13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11B11 +A12B21 +A13B31

A21B12 +A22B22 +A23B32

A31B13 +A32B23 +A33B33

A11B12 +A12B22 +A13B32

A21B11 +A22B21 +A23B31

A21B13 +A22B23 +A23B33

A31B12 +A32B22 +A33B32

A31B11 +A32B21 +A33B31

A11B13 +A12B23 +A13B33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

32

The column C
˜̃

can be written as the product of a matrix A and a column B
˜̃

which contain
the components of the tensors A and B, respectively. To distinguish the new matrix from
the normal 3×3 matrix A, which contains also the components of A, we have introduced a
double underline.

The matrix A can of course be transposed, giving AT . We have to introduce, however,
three new manipulations concerning the matrix A. First it will be obvious that the individual
matrix components can be transposed : Aij → Aji. When we do this the result is written as
: A

t
, just as was done with a column C

˜̃
.

Two manipulations concern the interchange of columns or rows and are denoted as () c

and () r. It can be easily seen that not each row and/or column is interchanged, but only :
(4 ↔ 5), (6 ↔ 7) and (8 ↔ 9).

C
˜̃

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 A12 0 0 A13 0
0 A22 0 A21 0 0 A23 0 0
0 0 A33 0 0 A32 0 0 A31

0 A12 0 A11 0 0 A13 0 0
A21 0 0 0 A22 0 0 A23 0
0 0 A23 0 0 A22 0 0 A21

0 A32 0 A31 0 0 A33 0 0
A31 0 0 0 A32 0 0 A33 0
0 0 A13 0 0 A12 0 0 A11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11

B22

B33

B12

B21

B23

B32

B31

B13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= AB
˜̃

idem

C = A ·B → C
˜̃

= AB
˜̃

= A
c
B
˜̃ t

; C
˜̃ t

= A
r
B
˜̃

= A
rc
B
˜̃ t

C = A ·Bc → C
˜̃

= AB
˜̃ t

= A
c
B
˜̃

C = Ac · B → C
˜̃

= A
t
B
˜̃

= A
tc
B
˜̃ t

C = Ac · Bc → C
˜̃

= A
t
B
˜̃ t

= A
tc
B
˜̃

1.8.2 Matrix notation of fourth-order tensor

The components of a fourth-order tensor can be stored in a 9 × 9 matrix. This matrix has
to be defined and subsequently used in the proper way. We denote the matrix of 4A as A.
When the matrix representation of 4A is A, it is easily seen that right- and left-conjugation
results in matrices with swapped columns and rows, respectively.

4A = �ei�ejAijkl�ek�el →

33

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1111 A1122 A1133 A1112 A1121 A1123 A1132 A1131 A1113

A2211 A2222 A2233 A2212 A2221 A2223 A2232 A2231 A2213

A3311 A3322 A3333 A3312 A3321 A3323 A3332 A3331 A3313

A1211 A1222 A1233 A1212 A1221 A1223 A1232 A1231 A1213

A2111 A2122 A2133 A2112 A2121 A2123 A2132 A2131 A2113

A2311 A2322 A2333 A2312 A2321 A2323 A2332 A2331 A2313

A3211 A3222 A3233 A3212 A3221 A3223 A3232 A3231 A3213

A3111 A3122 A3133 A3112 A3121 A3123 A3132 A3131 A3113

A1311 A1322 A1333 A1312 A1321 A1323 A1332 A1331 A1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

conjugation

4A
c → AT

4A
rc → A

c

4A
lc → A

r

Matrix/column notation C = 4A : B

The double product of a fourth-order tensor 4A and a second-order tensor B is a second-order
tensor, here denoted as C.

The components of C are stored in a column C
˜̃
, those of B in a column B

˜̃
. The

components of 4A are stored in a 9 × 9 matrix.
Using index-notation we can easily derive relations between the fore-mentioned columns.

C = 4A : B →
�eiCij�ej = �ei�ejAijmn�em�en : �epBpq�eq

= �ei�ejAijmnδnpδmqBpq = �ei�ejAijmnBnm →
C
˜̃

= A
c
B
˜̃

= AB
˜̃ t

idem

C = B : 4A →
�eiCij�ej = �epBpq�eq : �em�enAmnij�ei�ej

= BpqδqmδpnAmnij�ei�ej = BnmAmnij�ei�ej →
C
˜̃

T = B
˜̃

T A
r

= B
˜̃

T
t
A

Matrix notation 4C = 4A · B
The inner product of a fourth-order tensor 4A and a second-order tensor B is a new fourth-
order tensor, here denoted as 4C. The components of all these tensors can be stored in
matrices. For a three-dimensional physical problem, these would be of size 9 × 9. Here we
only consider the 5 × 5 matrices, which would result in case of a two-dimensional problem.

34

4C = 4A · B = �ei�ejAijkl�ek�el ·�epBpq�eq

= �ei�ejAijkl�ekδlpBpq�eq = �ei�ejAijklBlq�ek�eq

= �ei�ejAijkpBpl�ek�el →

C =

⎡
⎢⎢⎢⎢⎣
A111pBp1 A112pBp2 A113pBp3 A111pBp2 A112pBp1

A221pBp1 A222pBp2 A223pBp3 A221pBp2 A222pBp1

A331pBp1 A332pBp2 A333pBp3 A331pBp2 A332pBp1

A121pBp1 A122pBp2 A123pBp3 A121pBp2 A122pBp1

A211pBp1 A212pBp2 A213pBp3 A211pBp2 A212pBp1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
A1111 A1122 A1133 A1112 A1121

A2211 A2222 A2233 A2212 A2221

A3311 A3322 A3333 A3312 A3321

A1211 A1222 A1233 A1212 A1221

A2111 A2122 A2133 A2112 A2121

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
B11 0 0 B12 0
0 B22 0 0 B21

0 0 B33 0 0
B21 0 0 B22 0
0 B12 0 0 B11

⎤
⎥⎥⎥⎥⎦

= AB
cr

= A
c
B

c
→ C

r
= A

r
B

r
= A

cr
B

Matrix notation 4C = B · 4A

The inner product of a second-order tensor and a fourth-order tensor can also be written as
the product of the appropriate matrices.

4C = B · 4A = �eiBij�ej ·�ep�eqApqrs�er�es

= �eiBijδjp�eqApqrs�er�es = �ei�eqBijAjqrs�er�es

= �ei�ejBipApjkl�ek�el →

C =

⎡
⎢⎢⎢⎢⎣
B1pAp111 B1pAp122 B1pAp133 B1pAp112 B1pAp121

B2pAp211 B2pAp222 B2pAp233 B2pAp212 B2pAp221

B3pAp311 B3pAp322 B3pAp333 B3pAp312 B3pAp321

B1pAp211 B1pAp222 B1pAp233 B1pAp212 B1pAp221

B2pAp111 B2pAp122 B2pAp133 B2pAp112 B2pAp121

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
B11 0 0 0 B12

0 B22 0 B21 0
0 0 B33 0 0
0 B12 0 B11 0
B21 0 0 0 B22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
A1111 A1122 A1133 A1112 A1121

A2211 A2222 A2233 A2212 A2221

A3311 A3322 A3333 A3312 A3321

A1211 A1222 A1233 A1212 A1221

A2111 A2122 A2133 A2112 A2121

⎤
⎥⎥⎥⎥⎦

= BA = B
c
A

r
→ C

r
= B

r
A

c
= B

cr
A

cr

35

Matrix notation 4C = 4A : 4B

The double inner product of two fourth-order tensors, 4A and 4B, is again a fourth-order
tensor 4C. Its matrix, C, can be derived as the product of the matrices A and B.

4C = 4A : 4B = �ei�ejAijkl�ek�el : �ep�eqBpqrs�er�es

= �ei�ejAijklδlpδkqBpqrs�er�es = �ei�ejAijqpBpqrs�er�es

= �ei�ejAijqpBpqkl�ek�el

C =

⎡
⎢⎢⎢⎢⎣
A11qpBpq11 A11qpBpq22 A11qpBpq33 A11qpBpq12 A11qpBpq21

A22qpBpq11 A22qpBpq22 A22qpBpq33 A22qpBpq12 A22qpBpq21

A33qpBpq11 A33qpBpq22 A33qpBpq33 A33qpBpq12 A33qpBpq21

A12qpBpq11 A12qpBpq22 A12qpBpq33 A12qpBpq12 A12qpBpq21

A21qpBpq11 A21qpBpq22 A21qpBpq33 A21qpBpq12 A21qpBpq21

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
A1111 A1122 A1133 A1112 A1121

A2211 A2222 A2233 A2212 A2221

A3311 A3322 A3333 A3312 A3321

A1211 A1222 A1233 A1212 A1221

A2111 A2122 A2133 A2112 A2121

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
B1111 B1122 B1133 B1112 B1121

B2211 B2222 B2233 B2212 B2221

B3311 B3322 B3333 B3312 B3321

B2111 B2122 B2133 B2112 B2121

B1211 B1222 B1233 B1212 B1221

⎤
⎥⎥⎥⎥⎦

= AB
r

= A
c
B

Matrix notation fourth-order unit tensor

The fourth-order unit tensor 4I can be written in matrix-notation. Following the definition
of the matrix representation of a fourth-order tensor, the matrix I may look a bit strange.
The matrix representation of A = 4I : A is however consistently written as A

˜̃
= I

c
A
˜̃
.

In some situations the symmetric fourth-order unit tensor 4I
s is used.

4I = �ei�ejδilδjk�ek�el →

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ11δ11 δ12δ12 δ13δ13 δ12δ11 δ11δ12 ·
δ21δ21 δ22δ22 δ23δ23 δ22δ21 δ21δ22 ·
δ31δ31 δ32δ32 δ33δ33 δ32δ31 δ31δ32 ·
δ11δ21 δ12δ22 δ13δ23 δ12δ21 δ11δ22 ·
δ21δ11 δ22δ12 δ23δ13 δ22δ11 δ21δ12 ·

· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

symmetric fourth-order tensor

36

4I
s = 1

2

(
4I + 4I

rc) → Is = 1
2

(
I + I

c

)
= 1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 ·
0 2 0 0 0 ·
0 0 2 0 0 ·
0 0 0 1 1 ·
0 0 0 1 1 ·
· · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

Matrix notation II

In some relations the dyadic product II of the second-order unit tensor with itself appears.
Its matrix representation can easily be written as the product of columns I

˜̃
and its transposed.

II = �eiδij�ej�ekδkl�el = �ei�ejδijδkl�ek�el →

II =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= I
˜̃
I
˜̃

T

Matrix notation 4B = 4I · A
The inner product of the fourth-order unit tensor 4I and a second-order tensor A, can be
elaborated using their matrices.

4B = 4I ·A = �ei�ejδilδjk�ek�el ·�epApq�eq = A · 4I →

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11δ11 A12δ12 A13δ13 A12δ11 A11δ12 ..
A21δ21 A22δ22 A23δ23 A22δ21 A21δ22 ..
A31δ31 A32δ32 A33δ33 A32δ31 A31δ32 ..
A11δ21 A12δ22 A13δ23 A12δ21 A11δ22 ..
A21δ11 A22δ12 A23δ13 A22δ11 A21δ12 ..
..

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 0 0 A12 0 ..
0 A22 0 0 A21 ..
0 0 A33 0 0 ..
0 A12 0 0 A11 ..
A21 0 0 A22 0 ..
..

⎤
⎥⎥⎥⎥⎥⎥⎦

= A
c

37

Summary and examples

Below the tensor/matrix transformation procedure is summarized and illustrated with a few
examples. The storage of matrix components in columns or ’blown-up’ matrices is easily done
with the Matlab .m-files m2cc.m and m2mm.m. (See appendix ??.)

�x → x
˜

A → A ; A
˜̃

; A
4A → A
4I → I

A = mA ; A
˜̃

= ccA = m2cc(mA,9) ; A = mmA = m2mm(mA,9)

x
˜

=

⎡
⎣ x1

x2

x3

⎤
⎦ ; A =

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

A
˜̃

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11

A22

A33

A12

A21

..

⎤
⎥⎥⎥⎥⎥⎥⎦

; A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 A12 ..
0 A22 0 A21 0 ..
0 0 A33 0 0 ..
0 A12 0 A11 0 ..
A21 0 0 0 A22 ..
..

⎤
⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1111 A1122 A1133 A1112 A1121 ..
A2211 A2222 A2233 A2212 A2221 ..
A3311 A3322 A3333 A3312 A3321 ..
A1211 A1222 A1233 A1212 A1221 ..
A2111 A2122 A2133 A2112 A2121 ..
..

⎤
⎥⎥⎥⎥⎥⎥⎦

; I =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 ..
0 1 0 0 0 ..
0 0 1 0 0 ..
0 0 0 0 1 ..
0 0 0 1 0 ..
..

⎤
⎥⎥⎥⎥⎥⎥⎦

Now some manipulations are introduced, which are easily done in Matlab.

Ac → AT ; A
˜̃ t

; A
t
: transpose all components → mmAt

4A
lc → A

r
: interchange rows 4/5, 6/7, 8/9 → mmAr

4A
rc → A

c
: interchange columns 4/5, 6/7, 8/9 → mmAc

mmAt = m2mm(mA’)
mmAr = mmA([1 2 3 5 4 7 6 9 8],:)
mmAc = mmA(:,[1 2 3 5 4 7 6 9 8])

38

c = A : B → c = A
˜̃

T
t
B
˜̃

C = A ·B → C
˜̃

= AB
˜̃

C = 4A : B → C
˜̃

= AB
˜̃ t

C = B : 4A → C
˜̃

T = B
˜̃

T
t
A

4C = 4A · B → C = AB
cr

4C = 4A : 4B → C = AB
r

4I → I

II → I
˜̃
I
˜̃

T

1.8.3 Gradients

Gradient operators are used to differentiate w.r.t. coordinates and are as such associated with
the coordinate system. The base vectors – unit tangent vectors to the coordinate axes – in
the Cartesian system, {�ex, �ey, �ez}, are independent of the coordinates {x, y, z}. Two base
vectors in the cylindrical coordinate system with coordinates {r, θ, z}, are a function of the
coordinate θ : {�er(θ), �et(θ), �ez}. This dependency has ofcourse to be taken into account when
writing gradients of vectors and tensors in components w.r.t. the coordinate system, using
matrix/column notation. The gradient operators are written in column notation as follows :

Cartesian

�∇ = �ex
∂

∂x
+ �ey

∂

∂y
+ �ez

∂

∂z
=
[

∂

∂x

∂

∂y

∂

∂z

]T
⎡
⎣ �ex
�et
�ez

⎤
⎦ = ∇̃T �e

˜
= �e

˜
T ∇̃

cylindrical

�∇ = �er
∂

∂r
+ �et

1
r

∂

∂θ
+ �ez

∂

∂z
=
[

∂

∂r

1
r

∂

∂θ

∂

∂z

]⎡⎣ �er
�et
�ez

⎤
⎦ = ∇̃T �e

˜
= �e

˜
T ∇̃

Gradient of a vector in Cartesian coordinate system

�∇�a = �e
˜
T
{∇̃ (a

˜
T�e
˜

)}
= �e

˜
T
(∇̃a

˜
T
)
�e
˜

= �e
˜
T

⎡
⎣ ax,x ay,x az,x

ax,y ay,y az,y

ax,z ay,z az,z

⎤
⎦�e

˜

39

Gradient of a vector in cylindrical coordinate system

�∇�a = �e
˜
T
{∇̃ (a

˜
T�e
˜

)}
= �e

˜
T
{(∇̃a

˜
T
)
�e
˜

+
(
∇̃�e

˜
T
)
a
˜

}

∇̃�e
˜

T =

⎡
⎣ �er,r �et,r �ez,r

1
r�er,t

1
r�et,t

1
r�ez,t

�er,z �et,z �ez,z

⎤
⎦ =

⎡
⎣ 0 0 0

1
r�et − 1

r�er 0
0 0 0

⎤
⎦

= �e
˜
T

{ (∇̃a
˜

T
)
�e
˜

+

⎡
⎢⎣

0
1
r
�etar − 1

r
�erat

0

⎤
⎥⎦}
}

= �e
˜
T

{ (∇̃a
˜

T
)
�e
˜

+

⎡
⎢⎣

0 0 0

−1
r
at

1
r
ar 0

0 0 0

⎤
⎥⎦ �e

˜

}

= �e
˜
T (∇̃a

˜
T)�e

˜
+ �e

˜
Th�e

˜

�∇ ·�a = tr(∇̃a
˜

T) + tr(h)

Divergence of a tensor in cylindrical coordinate system

�∇ ·A = �ei∇i(�ejAjk�ek)
= �ei · (∇i�ej)Ajk�ek + �ei ·�ej(∇iAjk)�ek + �ei ·�ejAjk(∇i�ek)
= �ei · (∇i�ej)Ajk�ek + δij(∇iAjk)�ek + δijAjk(∇i�ek)

∇i�ej = δi2δ1j
1
r
�et − δi2δ2j

1
r
�er

= �ei · (δi2δ1j
1
r
�et − δi2δ2j

1
r
�er)Ajk�ek + δij(∇iAjk)�ek + δijAjk(δi2δ1k

1
r
�et − δi2δ2k

1
r
�er)

= �ei · (δi2δ1j
1
r
�et − δi2δ2j

1
r
�er)Ajk�ek + δij(∇iAjk)�ek + (δi2δ1k

1
r
�et − δi2δ2k

1
r
�er)Ajkδij

= �et · (δ1j
1
r
�et − δ2j

1
r
�er)Ajk�ek + (∇jAjk)�ek + (δj2δ1k

1
r
�et − δj2δ2k

1
r
�er)Ajk

= δ1j
1
r
Ajk�ek + (∇jAjk)�ek + (δj2δ1k

1
r
�et − δj2δ2k

1
r
�er)Ajk

=
1
r
A1k�ek + (∇jAjk)�ek +

1
r

(A21�et −A22�er)

= (
1
r
A11 − 1

r
A22)�e1 + (

1
r
A12 +

1
r
A21)�e2 +

1
r
A13�e3 + (∇jAjk)�ek

= gk�ek + ∇jAjk�ek

= g
˜

T�e
˜

+ (∇̃TA)�e
˜

= (∇̃TA)�e
˜

+ g
˜

T�e
˜

40

