Vector and Tensor Algebra
(including Column and Matrix Notation)



1 Vectors and tensors

In mechanics and other fields of physics, quantities are represented by vectors and tensors.
Essential manipulations with these quantities will be summerized in this section. For quan-
titative calculations and programming, components of vectors and tensors are needed, which
can be determined in a coordinate system with respect to a vector basis. The three compo-
nents of a vector can be stored in a column. The nine components of a second-order tensor
are generally stored in a three-by-three matrix.

A fourth-order tensor relates two second-order tensors. Matrix notation of such relations
is only possible, when the 9 components of the second-order tensor are stored in columns.
Doing so, the 81 components of a fourth-order tensor are stored in a 9 x 9 matrix. For
some mathematical manipulations it is also advantageous to store the 9 components of a
second-order tensor in a 9 X 9 matrix.

1.1 Vector

A vector represents a physical quantity which is characterized by its direction and its magni-
tude. The length of the vector represents the magnitude, while its direction is denoted with
a unit vector along its axis, also called the working line. The zero vector is a special vector
having zero length.
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Fig. 1: A vector d and its working line

d= [lal| &
length ; @l
direction vector ; e ; el =1
zero vector 0
unit vector 2 ; e =1

1.1.1 Scalar multiplication

A vector can be multiplied with a scalar, which results in a new vector with the same axis.
A negative scalar multiplier reverses the vector’s direction.
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Fig. 2 : Scalar multiplication of a vector d
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1.1.2 Sum of two vectors

Adding two vectors results in a new vector, which is the diagonal of the parallelogram, spanned
by the two original vectors.

Fig. 3 : Addition of two vectors
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1.1.3 Scalar product

The scalar or inner product of two vectors is the product of their lengths and the cosine of
the smallest angle between them. The result is a scalar, which explains its name. Because the
product is generally denoted with a dot between the vectors, it is also called the dot product.

The scalar product is commutative and linear. According to the definition it is zero for
two perpendicular vectors.



Fig. 4 : Scalar product of two vectors d@ and b

d-b = |dll |[b]| cos(¢)
i-a=|apP?=>0 ; ab=ba ; a(b+d=db+a-c

1.1.4 Vector product

The vector product of two vectors results in a new vector, who’s axis is perpendicular to the
plane of the two original vectors. Its direction is determined by the right-hand rule. Its length
equals the area of the parallelogram, spanned by the original vectors.

Because the vector product is often denoted with a cross between the vectors, it is also
referred to as the cross product. Instead of the cross other symbols are used however, eg.:

axb ; axb

The vector product is linear but not commutative.

a

Fig. 5 : Vector product of two vectors d and b

¢=axb={||al bl sin(¢)}

= [area parallelogram| 7@



1.1.5 Triple product

The triple product of three vectors is a combination of a vector product and a scalar product,
where the first one has to be calculated first because otherwise we would have to take the
vector product of a vector and a scalar, which is meaningless.

The triple product is a scalar, which is positive for a right-handed set of vectors and
negative for a left-handed set. Its absolute value equals the volume of the parallelepiped,
spanned by the three vectors. When the vectors are in one plane, the spanned volume and
thus the triple product is zero. In that case the vectors are not independent.

a

Fig. 6 : Triple product of three vectors a, b and ¢

b= {|fall ]| sin(@)} it~}
= {lIall 1] sin(@) HIIel cos()}

= |volume parallelepiped|

>0 —  @b,& right handed
<0 — @b, left handed
=0 — a, I;, ¢ dependent

1.1.6 Tensor product

The tensor product of two vectors represents a dyad, which is a linear vector transformation.
A dyad is a special tensor — to be discussed later —, which explains the name of this product.
Because it is often denoted without a symbol between the two vectors, it is also referred to
as the open product.

The tensor product is not commutative. Swapping the vectors results in the conjugate
or transposed or adjoint dyad. In the special case that it is commutative, the dyad is called
symmetric.

A conjugate dyad is denoted with the index ( )¢ or the index ( )7 (transpose). Both
indices are used in these notes.



1.1.7 Vector basis
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Fig. 7: A dyad is a linear vector transformation

@b = dyad = linear vector transformation

conjugated dyad (65)0 = ba
symmetric dyad (@ a

A vector basis in a three-dimensional space is a set of three vectors not in one plane. These
vectors are referred to as independent. Each fourth vector can be expressed in the three base

vectors.

When the vectors are mutually perpendicular, the basis is called orthogonal. If the basis
consists of mutually perpendicular unit vectors, it is called orthonormal.

Fig. 8 : A random and an orthonormal vector basis in three-dimensional space
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orthonormal basis

right-handed basis

{c1, 2,3} ; Cl*xCp+C3 #0

(0;j = Kronecker delta)
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1.1.8 Matrix representation of a vector

In every point of a three-dimensional space three independent vectors exist. Here we assume
that these base vectors {é1,és, €3} are orthonormal, i.e. orthogonal (= perpendicular) and
having length 1. A fourth vector @ can be written as a weighted sum of these base vectors.
The coefficients are the components of @ with relation to {éi,és,€3}. The component a;
represents the length of the projection of the vector @ on the line with direction €é;.

We can denote this in several ways. In index notation a short version of the above
mentioned summation is based on the Einstein summation convention. In column notation,
(transposed) columns are used to store the components of @ and the base vectors and the
usual rules for the manipulation of columns apply.
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Fig. 9 : A wvector represented with components w.r.t. an orthonormal vector basis

1.1.9 Components

The components of a vector @ with respect to an orthonormal basis can be determined directly.
All components, stored in column a, can then be calculated as the inner product of vector @
and the column ¢ containing the base vectors.

ai:c_i-é} i:1,2,3 —
al 651 51
a9 = 552 =a- 62 =da é
as 653 53



1.2 Coordinate systems

1.2.1 Cartesian coordinate system

A point in a Cartesian coordinate system is identified by three independent Cartesian co-
ordinates, which measure distances along three perpendicular coordinate axes in a reference
point, the origin.

In each point three coordinate axes exist which are parallel to the original coordinate
axes. Base vectors are unit vectors tangential to the coordinate axes. They are orthogonal
and independent of the Cartesian coordinates.
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Fig. 10 : Cartesian coordinate system

Cartesian coordinates ; (z1,22,23) or (z,y,2)
Cartesian basis ; {€1,é5,e3} or {€r, €y, €}

1.2.2 Cylindrical coordinate system

A point in a cylindrical coordinate system is identified by three independent cylindrical coor-
dinates. Two of these measure a distance, respectively from (r) and along (z) a reference axis
in a reference point, the origin. The third coordinate measures an angle (6), rotating from a
reference plane around the reference axis.

In each point three coordinate axes exist, two linear and one circular. Base vectors are
unit vectors tangential to these coordinate axes. They are orthonormal and two of them
depend on the angular coordinate.

The cylindrical coordinates can be transformed into Cartesian coordinates :

x1=rcos(d) ; wxe=rsin(f) ; x3==2

/ T2
r= :c% + :c% ;6 = arctan [—} i z=21x3
1

The unit tangential vectors to the coordinate axes constitute an orthonormal vector base
{€, €, €,}. The derivatives of these base vectors can be calculated.
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Fig. 11 : Cylindrical coordinate system

cylindrical coordinates : (r,0,z)
cylindrical basis : {e-(0),¢e,(0),¢.}
é-(0) = cos(f)ey +sin(0)éa ;  €(0) = —sin(f)é1 + cos(0)éa ; €. =¢e3
%3 = —sin(f)ée] + cos(f)ex =€, % = —cos(f)ée] — sin(0)é = —é,

1.2.3 Spherical coordinate system

A point in a spherical coordinate system is identified by three independent spherical coor-
dinates. One measures a distance (r) from a reference point, the origin. The two other
coordinates measure angles (6 and ¢) w.r.t. two reference planes.

In each point three coordinate axes exist, one linear and two circular. Base vectors are
unit vectors tangential to these coordinate axes. They are orthonormal and depend on the
angular coordinates.

The spherical coordinates can be translated to Cartesian coordinates and vice versa :

x1 =rcos(f)sin(¢p) ; xo=rsin(f)sin(¢p) ; x3=rcos(¢)
r= \/x% + x% + :c% ;¢ = arccos [E] ;@ = arctan [@]
r I

The unit tangential vectors to the coordinate axes constitute an orthonormal vector base
{€r, €, €y} The derivatives of these base vectors can be calculated.
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Fig. 12 : Spherical coordinate system

spherical coordinates : (r,0,0)
spherical basis : {€:(0,0),¢:(0),ex(0,0)}
€r(0,¢) = cos(#) cos(p)e + sin(f) cos(p)er + sin(¢)és
é(0) = cosl(qb) derc(lz’ ?) = —sin(#)e] + cos(0)é,
és(0,9) = %Z,qb) = —cos(0) sin(¢)e1 — sin(0) sin(¢)é + cos(p)es
%ég = —sin(#) cos(¢)€1 + cos(f) cos(¢p)ey = cos(p)é;
%Z = —cos(f) sin(¢)e; — sin(f) sin(¢)ea + cos(¢)esz = €y
% = —cos(#)é) — sin(f)éz = — cos(¢)e, + sin(p)ey,
% = sin(#) sin(¢)é; — cos(0) sin(¢p)ey = — sin(¢)é;
%—? = —cos(f) cos(¢)e1 — sin(f) cos(p)ey — sin(p)és = —é,

1.2.4 Polar coordinates

In two dimensions the cylindrical coordinates are often referred to as polar coordinates.

x2
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Fig. 13 : Polar coordinates

polar coordinates : (r,0)
polar basis : {€-(0),¢e.(0)}

ér(0) = cos(f)é; + sin(f)er

a0 = o)

= —sin(#)é; + cos(0)és —

1.3 Position vector

A point in a three-dimensional space can be identified with a position vector Z, originating
from the fixed origin.

1.3.1 Position vector and Cartesian components

In a Cartesian coordinate system the components of this vector & w.r.t. the Cartesian basis
are the Cartesian coordinates of the considered point.

The incremental position vector dZ points from one point to a neighbor point and has
its components w.r.t. the local Cartesian vector base.

é3 .
T3 dr
25)
€1
€3 T
€5 . X2
& ‘
T

Fig. 14 : Position vector

T = x1€1 + 126 + 2363
T+ dx = (561 + dx1)€1 + ($2 + dm2)52 + (563 + dxg)gg

incremental position vector dZ = dx1€ + dxoey + drses
components of dZ dey=d¥-e1 ; dro=dr¥-éy ; drz=dx¥-¢e3
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1.3.2 Position vector and cylindrical components

In a cylindrical coordinate system the position vector £ has two components.
The incremental position vector dZ has three components w.r.t. the local cylindrical

vector base.

3
z dz
€,
€
L E,
€ ~ )
€3 X
€9 . €2
€1 €y
0
r

x

Fig. 15 : Position vector

T =ré(0)+ ze,
Z+dZ = (r+dr)e. (04 df) + (z + dz)e;
de,
= (

T+ dr) {a(e) + d@} + (2 + dz)ée,
= 1€,(0) + z€. + rey(0)dd + dre,.(0) + €;(0)drdf + dze,

incremental position vector d¥ =dré,(0) +rdfé(f) + dz e,

1
components of dZ dr=dx¥-¢e, ; di=-dr-é& ; dz=dr-é,
T

1.3.3 Position vector and spherical components
In a spherical coordinate system the position vector & has only one component, which is its

length.
The incremental position vector d has three components w.r.t. the local spherical vector

base.

7= Tgr(07¢)
7 di = (r + dr)é. (0 + df, ¢ + do)
= (

r+ dr) {a(e, 6) + L gp 4 o dgb}

o do
=1é-(0,9)+ = rcos(¢)er(0)dd + réy (0, ¢)de + dre,.(6, ¢)
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incremental position vector dZ = dré.(0,¢) + rcos(¢)di € (0) +rdpey(0, ¢)

components of dr dr =dz-e, ; df=-——+dZ-¢ ; dop=d7 ey

r cos(¢)

1.4 Gradient operator

In mechanics (and physics in general) it is necessary to determine changes of scalars, vec-
tors and tensors w.r.t. the spatial position. This means that derivatives w.r.t. the spatial
coordinates have to be determined. An important operator, used to determine these spatial
derivatives is the gradient operator.

1.4.1 Variation of a scalar function

Consider a scalar function f of the scalar variable . The variation of the function value
between two neighboring values of x can be expressed with a Taylor series expansion. If the
variation is very small, this series can be linearized, which implies that only the first-order
derivative of the function is taken into account.

f(x +dx)

x r+dr

Fig. 16 : Variation of a scalar function of one variable

df = f(x +dr) - f(z)

d d?
:f(ac)—i—é‘ dx—i—%d—xé dz? + .. — f(x)
df
~ —| d
dx |, v

Consider a scalar function f of two independent variables x and y. The variation of the func-
tion value between two neighboring points can be expressed with a Taylor series expansion.
If the variation is very small, this series can be linearized, which implies that only first-order
derivatives of the function are taken into account.
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dr +
(z,y)

dy
(z,y)

df = f(x +dx,y +dy) +

_of of
alw dr + Dy

B )
a_i 3—f dy+ .. — f(z,y)

(z,y)

(z,y)

A function of three independent variables x, y and z can be differentiated likewise to give the
variation.

of

ox

of
d ZJ
T + ay

Q

0
dy+—f

d
92 2+

(x1y7z7)

df

(%,y,2,) (%,y,2,)

Spatial variation of a Cartesian scalar function

Consider a scalar function of three Cartesian coordinates x, y and z. The variation of the
function value between two neighboring points can be expressed with a linearized Taylor series
expansion. The variation in the coordinates can be expressed in the incremental position
vector between the two points. This leads to the gradient operator.

The gradient (or nabla or del) operator V is not a vector, because it has no length or
direction. The gradient of a scalar a is a vector : Va

Oa da da da da Oa
da =dr— +dy— +dz— = (d¥-€;)— + (dT-€,)— + (dZ-&,)—
. x8x+y8y+ Zaz (xe)8x+(xey)8y+(xe)8z
L |20a _0a _0a|l . =
=dr- Cx%+€ya—y+€zf%:| = dx (Va)
gradient operator V= [é’x% + é'y(% + _'z% =y =vTe

Spatial variation of a cylindrical scalar function

Consider a scalar function of three cylindrical coordinates r, 8 and z. The variation of the
function value between two neighboring points can be expressed with a linearized Taylor series
expansion. The variation in the coordinates can be expressed in the incremental position
vector between the two points. This leads to the gradient operator.

da:dr@—i—dﬁ@ Oa Oa 1 Oa Oa

g 80—i—dz%:(dx-er)g—l—(;dx-et)%—i—(d:z:-ez)%
L |l.0a 1., 0a _ Oa R
=dz- GTE+;€t%+€Z& dr (Va)
. = L0 10 _0 5o or.
gradient operator V—era—l— t;%—i-eza—g V=V-¢
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Spatial variation of a spherical scalar function

Consider a scalar function of three spherical coordinates r, 8 and ¢. The variation of the
function value between two neighboring points can be expressed with a linearized Taylor
series expansion. The variation in the coordinates can be expressed in the incremental position
vector between the two points. This leads to the gradient operator.

Oa Oa .. 0a 1 L L.0a 1 . _ Oa
da—dr8—+d9—+d¢)8¢ ($'GT)E+(md$'€t)%+(;d$'€¢)a—¢

. 8a 1 _0a 1 _ Oa T

= AT o) aa Ty g — 4 (V)
| a0 a1 010 ag oy
gradient operator v_6r8r+€trcos(qb) 89+6 " 8@1)_@ V=Ve

1.4.2 Spatial derivatives of a vector function

For a vector function @(Z) the variation can be expressed as the inner product of the difference
vector d and the gradient of the vector d. The latter entity is a dyad. The inner product of
the gradient operator V and @ is called the divergence of d@. The outer product is referred to
as the rotation or curl.

When cylindrical or spherical coordinates are used, the base vectors are (partly) functions
of coordinates. Differentiaion must than be done with care.

The gradient, divergence and rotation can be written in components w.r.t. a vector basis.
The rather straightforward algebric notation can be easily elaborated. However, the use of
column/matrix notation results in shorter and more transparent expressions.

grad(@) =Va ; div(@)=V-a ; rot(@)=V=xa

Cartesian components

The gradient of a vector @ can be written in components w.r.t. the Cartesian vector basis
{€z,€y,€-}. The base vectors are independent of the coordinates, so only the components of
the vector need to be differentiated. The divergence is the inner product of V and @ and thus
results in a scalar value. The curl results in a vector.

=, L0 L0 0 . . .

Va = Cagyr + eya—y + €5, (ag€y + ay€y + a€;)
= €ply 1€y + €10y 1€y + €10 2 €, + EyQy o +

€

—

yayﬂey + eyaz7yez + ezaime;E + ezay7zey +€e.a; €,

2 .

(&g el 2 laaalls|=Tde
9 €.
0z
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O R L SR
Q= (€pn ey—ay €5, A€y + ay€y + a.e,
_ Oagy  Oay  Oda, ™ o
_8x+a—y+az _tr(Vg)—tr<Va>

i (02 a1 sttty s -
i= (€5 eyay €5, ap€y + ayey +ae.) =

Cylindrical components

The gradient of a vector @ can be written in components w.r.t. the cylindrical vector basis
{€,€é,e.}. The base vectors €, and € depend on the coordinate 6, so they have to be
differentiated together with the components of the vector. The result is a 3x3 matrix.

- 0 0 10
Va ={é.— +¢é,— + é&——Ha e + a,€, + a;e;
{ or 0z r 00 H }
= €pQpp€p + €rQy r€y + €rGp € + €0y 1€ + €,0, €, + €04 €4 +
1 1 1 1 1

€t— 0y t€r + € —Q; 1€, + € — Q¢ 1€ + €4 —Ar€r — €t —Ater
T T T r r

=&V ("e)} =& {(VaT) &+ (V") o}

2 0O 0 0
p 1 . . . 1. 1.
VQT = ; % [ er(‘g) et(‘g) €z ] = ;et —; e 0
P 0 0 0
oz
0 0 0 0
T T 1 1 T T\ = 1 1
=¢ ¢ (Ve )e+ | —Ga,—-éa |} p=¢ (Yo' )é+ | ——az —a, O
T T T
0 0 0
=& (Va")é+é'he

Laplace operator

The Laplace operator appears in many equations. It is the inner product of the gradient
operator with itself.

— —

Laplace operator Vi=vVv.V
82 82 82
Cartesian components V2 = 5F + a7 + 52
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9% 10 1 92 9?2

cylindrical components V2= 52 + ow + 555 + 57
9> 20 1 7 19 1 0
herical 2 42— )= _
spherical components \Y% 3r2+r 5 (rcos(qﬁ)) 802+r2 92 tan(¢) 3

1.5 2nd-order tensor

A scalar function f takes a scalar variable, eg. p as input and produces another scalar variable,
say ¢, as output, so we have :

q=f(p) or P —— q

Such a function is also called a projection.

Instead of input and output being a scalar, they can also be a vector. A tensor is
the equivalent of a function f in this case. What makes tensors special is that they are
linear functions, a very important property. A tensor is written here in bold face character.
The tensors which are introduced first and will be used most of the time are second-order
tensors. Each second-order tensor can be written as a summation of a number of dyads.
Such a representation is not unique, in fact the number of variations is infinite. With this
representation in mind we can accept that the tensor relates input and output vectors with
an inner product :

A

7g=A-p or P — q
tensor = linear projection A-(am+ pn) =aA-m+ [A-7
representation A = aqd1by + agdoby + azdsbs + ..

1.5.1 Components of a tensor

As said before, a second-order tensor can be represented as a summation of dyads and this
can be done in an infinite number of variations. When we write each vector of the dyadic
products in components w.r.t. a three-dimensional vector basis {€], €2, €3} it is immediately
clear that all possible representations result in the same unique sum of nine independent
dyadic products of the base vectors. The coefficients of these dyads are the components of
the tensor w.r.t. the vector basis {€1, €, €3}. The components of the tensor A can be stored
in a 3 x 3 matrix A.

A= Ozlc_ilbl + OéQC_I:QbQ + 0436_1:31)3 + ..

each vector in components w.r.t. {€1,¢é,¢e3} —

—

A = aq(a11€1 + a12€2 + a13€3)(b11€1 + bi2€s + b13€3) +
ag(aglé’l + ag9€y + a23€3)(b21€1 + bogés + b2353) + ...
= Anéier + Aperéy + Agzéres +
Ag1€3€1 + Agaéaés + Aszeres +

Asz163€1 + Aszp€3€n + Aszeses
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matrix/column notation
A A Asg €1

A=[é& & & || An Axn Ao 25
Az Aszx Ass €3

N
Il
He)
4
S
Wy

1.5.2 Special tensors

Some second-order tensors are considered special with regard to their results and/or their
representation.

The dyad is generally considered to be a special second-order tensor. The null or zero
tensor projects each vector onto the null vector which has zero length and undefined direction.
The unit tensor projects each vector onto itself. Conjugating (or transposing) a second-order
tensor implies conjugating each of its dyads. We could also say that the front- and back-end
of the tensor are interchanged.

Matrix representation of special tensors, eg. the null tensor, the unity tensor and the
conjugate of a tensor, result in obvious matrices.

dyad ab
null tensor o — O.-7=0
unit tensor I — I-p=p
conjugated A€ — A°-p=p- A
null tensor —  null matrix
000
O=¢-0-&=100 0
0 00

unity tensor  —  unity matrix

conjugate tensor —  transpose matrix

A=¢-A.&" N AT —=¢g. Ac. &

1.5.3 Manipulations

We already saw that we can conjugate a second-order tensor, which is an obvious manipu-
lation, taking in mind its representation as the sum of dyads. This also leads automatically
to multiplication of a tensor with a scalar, summation and taking the inner product of two
tensors. The result of all these basic manipulations is a new second-order tensor.

When we take the double inner product of two second-order tensors, the result is a scalar
value, which is easily understood when both tensors are considered as the sum of dyads again.
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scalar multiplication B=aA
summation C=A+B
inner product C=A-B
double inner product A:B= A°: B° = scalar
NB : A-B#+#B-A
A2=A.A ; AP=A.A.A ; etc.

1.5.4 Scalar functions of a tensor

Scalar functions of a tensor exist, which play an important role in physics and mechanics. As
their name indicates, the functions result in a scalar value. This value is independent of the
matrix representation of the tensor. In practice, components w.r.t. a chosen vector basis are
used to calculate this value. However, the resulting value is independent of the chosen base
and therefore the functions are called invariants of the tensor. Besides the Euclidean norm,
we introduce three other (fundamental) invariants of the second-order tensor.

1.5.5 Euclidean norm

The first function presented here is the Euclidean norm of a tensor, which can be seen as a kind
of weight or length. A vector base is in fact not needed at all to calculate the Euclidean norm.
Only the length of a vector has to be measured. The Euclidean norm has some properties
that can be proved which is not done here. Besides the Euclidean norm other norms can be
defined.

m = ||A[| = max ||A- €| vV & with |le]]=1
e
properties
1. || Al >0
2 laAl| = | [|A]l
3. |1A- B < [[A]][|B]]
4. 1A+ B|| < [|A]| + | B]]

1.5.6 1st invariant

The first invariant is also called the trace of the tensor. It is a linear function. Calculation of
the trace is easily done using the matrix of the tensor w.r.t. an orthonormal vector basis.
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1.5.7 2nd invariant
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Ji(A) = J1(A)

Ji(I) =3

Ji(aA) = aJi(A)

Ji(A+ B) = J1(A) + J1(B)
J(A-B)=A:B — Ji(A)=A:1I

The second invariant can be calculated as a function of the trace of the tensor and the trace
of the tensor squared. The second invariant is a quadratic function of the tensor.

Jo(A)

properties

1.5.8 3rd invariant

The third invariant is also called

3{tr’(A) — tr(A%)}
1

— & (A-c A.C l.
51*52.53[01( Ca) * (A~ C3) + cycl ]

J2(A) = Jo(A%)
Jo(I) =3
Jo(aA)

a2J2(A)

the determinant of the tensor. It is easily calculated from

the matrix w.r.t. an orthonormal vector basis. The determinant is a third-order function of
the tensor. It is an important value when it comes to check whether a tensor is regular or

singular.

J3(A)

properties

sl AN
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1.5.9 Invariants w.r.t. an orthonormal basis

From the matrix of a tensor w.r.t. an orthonormal basis, the three invariants can be calculated
straightforwardly.

A Aip Ass
A — A= | Ay Az A
Asz1 Aszy Ass

J1(A) = tr(A) = tr(4)
= Ay + Ay + Ass

Jo(A) = ${tr*(A) — tr(A?)}

J3(A) = det A = det(A)
= A1 A Azz + A19A23A31 + A1 AzpAys
— (A13A22A31 + A12A21 Azg + Az3 Az Arr)

1.5.10 Regular ~ singular tensor

When a second-order tensor is regular, its determinant is not zero. If the inner product of a
regular tensor with a vector results in the null vector, it must be so that the former vector
is also a null vector. Considering the matrix of the tensor, this implies that its rows and
columns are independent.

A second-order tensor is singular, when its determinant equals zero. In that case the
inner product of the tensor with a vector, being not the null vector, may result in the null
vector. The rows and columns of the matrix of the singular tensor are dependent.
det(A)#0 < A regulier o [A-@d=0 < a=0]

-

det(A)=0 <« A singulier < [A-@=0 : ad#J0

1.5.11 Eigenvalues and eigenvectors

Taking the inner product of a tensor with one of its eigenvectors results in a vector with
the same direction — better : working line — as the eigenvector, but not necessarily the same
length. It is standard procedure that an eigenvector is taken to be a unit vector. The length
of the new vector is the eigenvalue associated with the eigenvector.

A-T=\ii  with A#0

From its definition we can derive an equation from which the eigenvalues and the eigenvectors
can be determined. The coefficient tensor of this equation must be singular, as eigenvectors
are never the null vector. Demanding its determinant to be zero results in a third-order
equation, the characteristic equation, from which the eigenvalues can be solved.
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A= i —  Afd- i=0 — AA-MNM-A=0 —
(A-X)-7i=0 with 7@#0 —

A — M\ singular — det(A—AI)=0 —

det(A— X)) =0 —  characteristic equation

characteristic equation : 3 roots A, A9, A

After determining the eigenvalues, the associated eigenvectors can be determined from the
original equation.

eigenvector to \;, @ € {1,2,3} : (A=N\I)-7; = 0 or (A—XI)n; =0
dependent set of equations — only ratio nj : no : ng can be calculated
components ni,n9,n3 calculation —  extra equation necessary

normalize eigenvectors — ||Aill=1 — ni+nit+ni=1

It can be shown that the three eigenvectors are orthonormal when all three eigenvalues have
different values. When two eigenvalues are equal, the two associated eigenvectors can be
chosen perpendicular to each other, being both already perpendicular to the third eigenvector.
With all eigenvalues equal, each set of three orthonormal vectors are principal directions. The
tensor is then called ’isotropic’.

1.5.12 Relations between invariants

The three principal invariants of a tensor are related through the Cayley-Hamilton theorem.
The lemma of Cayley-Hamilton states that every second-order tensor obeys its own charac-
teristic equation. This rule can be used to reduce tensor equations to maximum second-order.
The invariants of the inverse of a non-singular tensor are related. Any function of the principal
invariants of a tensor is invariant as well.

Cayley-Hamilton theorem A3 — J1(A)A? + Jh(A)A — J3(A)T = O

relation between invariants of A1

Ji(ATY = ; J(ATh) = ;o B(ATh) =

1.6 Special tensors

Physical phenomena and properties are commonly characterized by tensorial variables. In
derivations the inverse of a tensor is frequently needed and can be calculated uniquely when
the tensor is regular. In continuum mechanics the deviatoric and hydrostatic part of a tensor
are often used.

Tensors may have specific properties due to the nature of physical phenomena and quan-
tities. Many tensors are for instance symmetric, leading to special features concerning eigen-
values and eigenvectors. Rotation (rate) is associated with skew symmetric and orthogonal
tensors.
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inverse tensor Al 5 At A=T
deviatoric part of a tensor A=A — str(A)I
symmetric tensor A=A

skew symmetric tensor A=—-A

positive definite tensor a-A-a>0 V

orthogonal tensor (
adjugated tensor (

1.6.1 Inverse tensor

The inverse A~! of a tensor A only exists if A is regular, ie. if det(A) # 0. Inversion is
applied to solve Z from the equation A-Z = 7 giving £ = A~ . .

The inverse of a tensor product A - B equals B~'- A7, so the sequence of the tensors
is reversed.

The matrix A~" of tensor A~! is the inverse of the matrix A of A. Calculation of A~

can be done with various algorithms.

det(A) £0 < 3 A1 | Al A=T

property
(A-B)-i=b — a=(A-B)'-b
(A-B)-i=A-(B-@)=b — .
i=A"1b — @=B7'-A'.p
(A-B)'=B"1.471
components (minor(A;;) = determinant of sub-matrix of A;;)
1 L
-1 _ i+ mi .
AL = det(A) (—1)"™7 minor(A;;)

1.6.2 Deviatoric part of a tensor

Each tensor can be written as the sum of a deviatoric and a hydrostatic part. In mechanics
this decomposition is often applied because both parts reflect a special aspect of deformation

or stress state.
Al = A — str(A)I ; str(A)I = A" = hydrostatic or spherical part

properties
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(A+B){= A4+ B¢
tr(A%) =0
eigenvalues (u;) and eigenvectors (771;)

det(A? — puI) =0 —

det(A — {3tr(A) + p}I) =0 — =A-
(A4 —ul)-m =0 —
(A~ {3tr(A) + p}) -1 =0

—

(A-X)-m=0 — m=n

tr(A)

Wl

!

1.6.3 Symmetric tensor

A second order tensor is the sum of dyads. When each dyad is written in reversed order, the
conjugate tensor A€ results. The tensor is symmetric when each dyad in its sum is symmetric.

A very convenient property of a symmetric tensor is that all eigenvalues and associated
eigenvectors are real. The eigenvectors are or can be chosen to be orthonormal. They can be
used as an orthonormal vector base. Writing A in components w.r.t. this basis results in the
spectral representation of the tensor. The matrix A is a diagonal matrix with the eigenvalues
on the diagonal.

Scalar functions of a tensor A can be calculated using the spectral representation, con-
sidering the fact that the eigenvectors are not changed.

A=A
properties
1. eigenvalues and eigenvectors are real
2. A; different — ;L —
3. A; not different — 7; chosen L
eigenvectors span orthonormal basis{7i;, 72, i3 }
spectral representation of A A=A-T=A- (17 + 7igfly + Ti37i3)
= A171711 + Aofiafls + A37i3fi3
functions
A—l 1 - = + 1 - = + 1 — — +
= —f171 + —Tofio + —Tig7
Ny L T )\333

VA = /Mty + \/ Aaiiaits + / Asiigits
In A = In \7i1701 + In Aofiafis + In A37isfis
sin A = sin(\1)7171 + sin(A2)7iafie + sin(Ag)7isiis
JiI(A) =tr(A) = A1 + A2+ A3
J2(A) = 3{tr*(A) —tr(A- A)} = 5{(A1 + A2+ X3)° = (AT + 23 + A9}
Jo(A) = det(A) = A Aods
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1.6.4 Skew symmetric tensor

The conjugate of a skewsymmetric tensor is the negative of the tensor.

The double dot product of a skew symmetric and a symmetric tensor is zero. Because
the unity tensor is also a symmetric tensor, the trace of a skew symmetric tensor must be
Z€ero.

A skew symmetric tensor has one unique azial vector.

Ac=-—A
properties

1. A:B=tr(A-B) =tr(A°-B°) = A°: B¢
A°=—-A — A:B=-A:B°

B°=B — A:B=-A:B } - A:B=0

B=1 — tr((A)=A:1=0

AG=f — (-AG=7AG=-]-A] —
§-A-¢=0 — qg-p=0 — qlp —
& suchthat A.-J=p=dxq

The components of the axial vector & associated with the skew symmetric tensor A can be
expressed in the components of A. This involves the solution of a system of three equations.

An A A Q1 . A11q1 + Ar2q2 + A13q3
A-G=¢&" | An Ay Agy @ | =€ | Anq + Axnge + Azqs

A3z Az Asz qs3 Az1q1 + Az2q2 + A33q3
WJ* ¢ = (w11 + w2eh + w3e3) * (q1€1 + q2€2 + q3€3)

= w1q2(€3) + w1q3(— €2) + waq1(— €3) + wags(€1)+
w3q1(€2) + w3ga(— €1)

Woq3 — wW3qo 0 —ws wo
=& | wiq —wigs — A= w3 0 —w
w1q2 — waqi —w2 w1 0

1.6.5 Positive definite tensor

The diagonal matrix components of a positive definite tensor must all be positive numbers.
A positive definite tensor cannot be skew symmetric. When it is symmetric, all eigenvalues
must be positive. In that case the tensor is automatically regular, because its inverse exists.
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a-A-d>0 V da#0
properties
1. A cannot be skew symmetric, because :
a-A-d=a-A°-a —
a-(A—A%-a=0 — a-A-da=0 V da
A skew symm. — A°=-A
2. A=A° — #0,-A-i;=X>0 —

all eigenvalues positive —  regular

1.6.6 Orthogonal tensor

When an orthogonal tensor is used to transform a vector, the length of that vector remains

the same.
The inverse of an orthogonal tensor equals the conjugate of the tensor. This implies that

the columns of its matrix are orthonormal, which also applies to the rows. This means that
an orthogonal tensor is either a rotation tensor or a mirror tensor.
The determinant of A has either the value 41, in which case A is a rotation tensor, or

—1, when A is a mirror tensor.

-, —

(A-@)-(A-by=a-b vV ab

properties
0 = [|A-] = |7
A a — A-A°=T — A°=A"!
det(A- A°) = det(A)? =det(I) =1 —
det(A) =+1 — A regular

Rotation of a vector base

A rotation tensor @ can be used to rotate an orthonormal vector basis m to 7. It can be
shown that the matrix Q™ of Q w.r.t. 7 is the same as the matrix Q™ w.r.t. 1.

The column with the rotated base vectors i can be expressed in the column with the
initial base vectors m as : 7 = QTTZL, so using the transpose of the rotation matrix Q.

1= Q -y 1my = Q- mymy

Mg = Q + Mo —  figmg = Q- Moo - Q=id"m

iz = Q - i3 figmg = Q - m31m3

QMW =75.Q .77 = Aeadl)m-ial =m-il Q(n):Q(m):Q

Am) _ = ST o STr— ST\ - =T - S A= — AT
Q" =m-Q-m' =m-7 (M-’ ) =m-7a m=Q0 — a=0Q m
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We consider a rotation of the vector base {1, €2, €3} to {1, &%, 3}, which is the result of three
subsequent rotations : 1) rotation about the l-axis, 2) rotation about the new 2-axis and 3)

rotation about the new 3-axis.

For each individual rotation the rotation matrix can be determined.

gV =¢
— €1
g = cWe, + sWey Q, =
gl = —sWa, + (Wey
5—'1(2) — 0(2)51(1) . 8(2)53(1)
52(2) = 52(1) Q,=
53(2) — s 51(1) 4@ 53(1)
70— 8z | @z
52(3) — _® 512) 1@ 52(2) Q,=

50 _ 20

e
53
0

1 0
0 @

—sB®) 07
30
0 1]

The total rotation matrix @ is the product of the individual rotation matrices.

¢W=0,¢
1 6_,: Q
g2 :QQTg(l) — : 5_‘
€=Q¢
5(3) :Q3T§’(2) = s =
@ (3) —c(2)5(3)
Q= | Ws® 4 sWs@cB) DB — 5(1)4(2)43)

DB _ (1) g2

8(1)0(3) _|_ 6(1)8(2)8(3)

T THn Tz_ HTz
3Q2Q1 _QQ

o)
ENONC)
BOPE)

A tensor A with matrix A w.r.t. {€],és,¢e3} has a matrix A* w.r.t. basis {&],85,83}. The
matrix A* can be calculated from A by multiplication with @, the rotation matrix w.r.t.

{€1,ez,€é3}.

The column A with the 9 components of A can be transformed to A* by multiplication
with the 9x9 transformation matrix T : A* =T A. When A is symmetric, the transformation
matrix T is 6x6. Note that T is not the representation of a tensor.

The matrix T is not orthogonal, but its inverse can be calculated easily by reversing the

rotation angles : 77! = T(—aq,—ag, —ag).
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1.6.7 Adjugated tensor

The definition of the adjugate tensor resembles that of the orthogonal tensor, only now the
scalar product is replaced by a vector product.

—. -, —

(A-@)*(A-b)= A" (@xb) V¥

Bl
S

property A A® =det(A)I

1.7 Fourth-order tensor

Transformation of second-order tensors are done by means of a fourth-order tensor. A second-
order tensor is mapped onto a different second-order tensor by means of the double inner
product with a fourth-order tensor. This mapping is linear.

A fourth-order tensor can be written as a finite sum of quadrades, being open products
of four vectors. When quadrades of three base vectors in three-dimensional space are used,
the number of independent terms is 81, which means that the fourth-order tensor has 81
components. In index notation this can be written very short. Use of matrix notation
requires the use of a 3 x 3 x 3 x 3 matrix.

‘A:B=C
tensor = linear transformation ‘A (aM+3N)=a%A: M+ 3%A: N
representation 1A = a1615151cf1 + 0426252526@ + 043631;3536% + ..
components YA = GjAijuere

1.7.1 Conjugated fourth-order tensor

Different types of conjugated tensors are associated with a fourth-order tensor. This also
implies that there are different types of symmetries involved.

A left or right symmetric fourth-order tensor has 54 independent components. A tensor
which is left and right symmetric has 36 independent components. A middle symmetric tensor
has 45 independent components. A total symmetric tensor is left, right and middle symmetric
and has 21 independent components.
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fourth-order tensor ‘A=agbed

total conjugate : 1A°=dcba

right conjugate : ‘A =Gbde

left conjugate ‘A —paed

middle conjugate 1A =Gcbd

symmetries

left t1g=144" . B.4A=B°.%A VvV B

right tA=14A4" , ‘A:B='A:B° V B

middle 1A =1A""

total tA=%4° . B:*A:.Cc=C°:*A:B° vV B,C

1.7.2 Fourth-order unit tensor

The fourth-order unit tensor maps each second-order tensor onto itself. The symmetric fourth-
order unit tensor, which is total symmetric, maps a second-order tensor on its symmetric part.

‘I:B=B V B
components ] = E1818\&) + E281E18 + €31 €183 + €18262E1 + . ..
4T not left- or right symmetric *I: B =B # B°= *I: B¢
symmetric fourth-order tensor =101+ = %é;-é}(&ilc;jk + 6indj1)€Rel

1.7.3 Products

Inner and double inner products of fourth-order tensors with fourth- and second-order tensors,
result in new fourth-order or second-order tensors. Calculating such products requires that
some rules have to be followed.

‘1A.B="1*C — AijemBmi = Cijrl

4A:B:C — Aijlelk:Ci’
‘A:B+B: %A

‘A:'B="1C - Aijmanmk:l = Cijk:l
‘A:'B#'B: 1A

rules
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1A:(B-C)=("A-B): C
A-B+B°-A°='T":(A-B)=('T"A): B

1.8 Column and matrix notation

Three-dimensional continuum mechanics is generally formulated initially without using a
coordinate system, using vectors and tensors. For solving real problems or programming,
we need to use components w.r.t. a vector basis. For a vector and a second-order tensor,
the components can be stored in a column and a matrix. In this section a more extended
column/matrix notation is introduced, which is especially useful, when things have to be
programmed.

1.8.1 Matrix/column notation for second-order tensor

The components of a tensor A can be stored in a matrix A. For later purposes it is very
convenient to store these components in a column. To distinguish this new column from the
normal column with components of a vector, we introduce a double "under-wave”. In this
new column A the components of A are located on specific places.

Just like~any other column, A can be transposed. Another manipulation is however also
possible : the transposition of the individual column elements. When this is the case we write
A

=t

3 x 3 matrix of a second-order tensor

A Ap Ass
A= é;AUé} - A = A21 A22 A23
Asz1 Az Ass

column notation

AT =[ A1x Ay Aszs Ay An Az Asy Agi Ay |
éltT: [ A11 A22 A33 A21 A12 A32 A23 A13 ASI]

conjugate tensor

A A Az
A - Ay — AT=| A Ayn A - A
Arg Agz Ags

Column notation for A: B

With the column of components of a second-order tensor, it is now very straightforward to
write the double product of two tensors as the product of their columns.
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idem

Matrix/column notation

=A:B

= €;Ai;j€j : €, By = A0y B = AijBj;
= A11B11 + A12Bo1 + A13B31 + Ag1Bia + A Bas + A3 B3y +

A3z1B13 + AsaBas + As3Bss
=[ A A Az Ay App Ag

[ Bii By2 Bsg Bia By
AT _ AT
_élt@_él @t
C=A:B° —
C=A°:B —
C=A":B° —

C=A-B

Ags A1z Az |

T
By B3y Bsi Bis |
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The inner product of two second-order tensors A and B is a new second-order tensor C.
The components of this new tensor can be stored in a 3x3 matrix C, but of course also in a

column C.

A matrix representation will result when the components of A and B can be isolated.

We will store the components of B in a column B and the components of A in a matrix.

C = A-B = ¢;Ay€y - €1B);€; = €;Aixdr B1;€; = €Ay Bi€; —

[ Ay

Agy

I
I

ASl

Ca2
C33

Co1
Cas3
Cs2
Cs1
C13

@)
Il

B11 + A12Bg1 + A13B3;

A11B12 + A12Boy + A13B3o

Bi1 + Az Ba1 + A2z B3y

A11B13 + A12Bg3 + A13Bs33

A1 B1a + A2 By + A23B3»

B11 + A3y Bg; + A33Bs;

Ag1B13 + Age B3 + Az B33

Az1B12 + AzaBog + A33Bso

i [ A11B11 + A12B21 + A13Bs;
Ag1B12 + A2 Bas + A3 B3o
A31B13 + A32Baz + A33Bs3
A11B12 + A12Bas + A13B32
= | A1 Bi1 + A2Bo + A3 B3
Ag1B13 + AgoBo3 + A3 Bss
A31B12 + A32Bas + A33 B30
A31B11 + Az Boy + A33B31
A11B13 + A12Bo3 + A13B33

As31B13 + Az Bag + A3z3Bss
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The column C' can be written as the product of a matrix A and a column B which contain
the componeﬁts of the tensors A and B, respectively. To distinguish the new matrix from
the normal 3x3 matrix A, which contains also the components of A, we have introduced a
double underline.

The matrix A can of course be transposed, giving AT. We have to introduce, however,
three new manipulations concerning the matrix A. First it will be obvious that the individual
matrix components can be transposed : A;; — Zji. When we do this the result is written as
c A .+ just as was done with a column C'.

Two manipulations concern the interchange of columns or rows and are denoted as ( ).
and ( ),. It can be easily seen that not each row and/or column is interchanged, but only :
(4 5), (6 7)and (8 < 9).

A O 0 0 Ap O 0 A3 0 77T Bi1 ]
0 AQQ 0 Agl 0 0 Agg 0 0 BQQ
0 0 Asz3 O 0 A3z O 0 As B33
0 Alg 0 A11 0 0 A13 0 0 Blg
C=]45 0 0 0 Ap 0 0 Ay 0 By | =AB
0 0 Asz3 O 0 Ay O 0 Ay Bss
0 Agg 0 A31 0 0 A33 0 0 ng
Az 0 0 0 Az O 0 A3 O B3
0 0 A13 0 0 A12 0 0 All J L Bl3 |
idem
C:A'B - g:égzéc:t ? gt:ér§:é7t~t
C=4-B° — (=AB=A5
C=A°-B - C=AB=4 5,
C=A“B  — C=AD=AD

~+
~+
~+
Q

1.8.2 Matrix notation of fourth-order tensor

The components of a fourth-order tensor can be stored in a 9 x 9 matrix. This matrix has
to be defined and subsequently used in the proper way. We denote the matrix of 1A as A.
When the matrix representation of *A is A, it is easily seen that right- and left-conjugation
results in matrices with swapped columns ‘and rows, respectively.

4 - oo
A = €A uee —
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[ Ann Anze Anss Az Anor Anes Az At Ans
Agg11 Agoon Azazs Aoz Agoor Azzes Asoze Azest Ao
Aszln Aszzax Aszzsz Asziz Asszar Aszzes Aszzze Aszzst Aszis
Ar211 Ar222 Aizzz A2z Arzor Aizes Ai2z2 Az Ar2is
Agiao Az133 Agiiz Aoi21 Azies Azizp Azizr Aoiis
Agz1n Agzon Aszzzz Asziz Aoz Azzes Azzzy Aszzt Aszis
Aso11 Aszooa Aszazs Asoiz Aszzor Aszzes Asaze Aszest As2is
Az Aszioz Azizz Asiiz Asizr Az Azizz Az Asiis
Agzrn Aizor Aizzz Awzie Aizsr Aiges Aizze Azt Aisis

|5S
I
3

conjugation

4AC N éT
4Arc _ éc
4Alc . é

<

Matrix/column notation C = ‘A:B

The double product of a fourth-order tensor *A and a second-order tensor B is a second-order
tensor, here denoted as C.

The components of C' are stored in a column C, those of B in a column B. The
components of *A are stored in a 9 x 9 matrix. ) )

Using index-notation we can easily derive relations between the fore-mentioned columns.

C=4%A:B —

eiCijej = €; injmnemen : epoqeq
= eieinjmnénp(ququ = €i€j14ij7nan’n -
C=A4,B=4B,

idem

C=B:%'A —
€;Ci;€j = €pBpe€y : Em€nAmni;€i€;
= qudqmépnAmnijeiej = BnmAmm'jeiej -

¢"=B"A = BTA

Matrix notation iCc=4A-B

The inner product of a fourth-order tensor A and a second-order tensor B is a new fourth-
order tensor, here denoted as *C. The components of all these tensors can be stored in
matrices. For a three-dimensional physical problem, these would be of size 9 x 9. Here we
only consider the 5 x 5 matrices, which would result in case of a two-dimensional problem.
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4C:

[ A111pBp1
A221pBp1
Asz31pBp1
A121pBp1

| Ao11pBp1

[ A

A2211

Assi
At211

L A2111

A1122
Az222
A3322
A2
As122

‘A.B =

At12pBp2
A222,Bpo
A3z30,Bpo
A122pBpo
A212pBpo

Aq133
Az233
A3333
Aq233
A2133

—

Matrix notation ‘C = B-*A

€:€;Ai11€1E] + EpBpq€y

€;€j A;j11€101p Bpe€q = €;€; A1 Big€1ey

eieinjkpolekel

A113pBp3
Aoo3,Bp3
A3z33,B)p3
A123,Bp3
A213,Bp3

Ar112
A2
As3z12
Aq212
Agi12

At121
A1
A3z21
A1201
Az121

—

A111pBp2
A201pBp2
Asz31pBp2
A121pBp2
Ao11pBp2

B
0

Av12pBp1
A220,Bp1
A3z30,Bp1
A122pBp1
A212pBp1
0 0 Bis
Byy 0 0
0 B33 0
0 0 By
By, 0 0
B

0
By
0
0
Bn
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The inner product of a second-order tensor and a fourth-order tensor can also be written as
the product of the appropriate matrices.

1

ic=B-*A=

[ BipApiin BipApi
BopApo11 BopApon
B3pAp311 BspAps2
BipAp211 BipAp222

| BopApii1 BapApiae
[ Bi1 0 0 0
0 By 0 By

0 0 Bz3 O
0 By 0 Bn

| By 0 0 o0

BA=B A —

€; €j BipApjklek €]

BipApi33
Bop Apass
Bs,Apsss
B1pAp2s3
BapApi33
By

Bas

C

=r

=B

€iB;;€j « €p€qApgrs€r€s

—

BipApii2
BopApo12
BspApsia
BipAp212
BopApi12
A
Aoo11
Aszznn
A1211
Ao
A

r—=c

=B

A122
A2299
A3322
A1222
As122

BipApi21
Bop Apaoi
Bsp Aps3on
BipApao1
BopApi21

A1133
A2233
A3333
Aq233
Az133

—_—cr —cr

= eiBijéjpqupqrseres = eiquijqurseres

Aq112
A2212
A3z3z12
Ar212
Agi12

Aq121
A2o21
A3321
A1221
Az121
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Matrix notation iCc=1A:B

The double inner product of two fourth-order tensors, *A and *B, is again a fourth-order
tensor 4C. Its matrix, C, can be derived as the product of the matrices A and B.
4 44 4 oo S 5 5o - o
C="A:"B = €;€jA;j1eke] : €p€qBpgrs€r€s
= angijklélpquqursgrgs = gingijqupqrsgrgs

= €€ Aijgp Bpgki€iel

Allqupqll Allqupq22 AllqupqSB AllququQ Allqupq21
A22qupq11 A22qupq22 A22qupq33 A22qupq12 A22qupq21
g = A33qupq11 A33qupq22 A33qupq33 A33qupq12 A33qupq21
A12qupq11 A12qupq22 AqupoqSB AqupoqIQ A12qupq21
L A21qupq11 A21qupq22 A21qupq33 A21qupq12 A21qupq21
Aninn Az Anss A A Bi111 Bii22 Biizs Biiiz B
Ago11 Agooa Aoz Aooia Aoon Bos11 Baooo  Boaogz Baogia  Baoor
= | A3 Aszos Asszzz Asziz Asz; Bs311 Bszoo Bsszzs Bsziz Bsson
Ao Ao A3z A2z Aron Boi111 B2122 Boizz Baii2 Baio1
Agi11 Aoi22 Azizz Aoz Az Bi211 Bi222 Bi2sz Bi2iz Biaoi
=AB =A B

Matrix notation fourth-order unit tensor

The fourth-order unit tensor *I can be written in matrix-notation. Following the definition
of the matrix representation of a fourth-order tensor, the matrix I may look a bit strange.
The matrix representation of A = *I : A is however consistently written as A=1_A

In some situations the symmetric fourth-order unit tensor *I° is used.

U = 6;¢;610;1EE)

_
£ =
1 0 0 00O O 0 017
) _ 01 0 0O0O0O0O0TO 0
011611 012012 013613 012011 011012 001000000
021021 022022 023023 022021 0210922 000O0OT1O0TO0TUO0OFO
031031 032032 033033 032031 031032 =10 00100O0O0TU0
011021 012022 13023 12021 11022
021011 09220 093013 0220 6216 000 000100
21' 11 22. 12 023013 22' 11 21. 12 000O0O0T10UO00
L - 000 O0O0ODO0OTG 01
L0 00 00 0 0 1 0

symmetric fourth-order tensor
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U= (I+T) - r=d(I4L) =3

S OO O
O O O NN O
S O NN OO
— = 0O O O
—_ = 0O O O

Matrix notation IT

In some relations the dyadic product Il of the second-order unit tensor with itself appears.
Its matrix representation can easily be written as the product of columns I and its transposed.

II = é€;6;j€jexope; = €;€;0ij0kre —

"1 1100000 07
111000000
111000000
00000O0OTO0O0

II=100000000O0O0]|=1II"

o 00000O0OTO0O0 o
0000O0O0OTOO0
00000O0OTO0O0
(00 00O0O0TO0O0 0|

Matrix notation iB=11.A

The inner product of the fourth-order unit tensor *I and a second-order tensor A, can be
elaborated using their matrices.

1B =T A =Ee0ub;e08 - EplApgey = A- T —

[ A11011 Aipdiz Aizdiz Aiedin Andiz L] [ A 0 0 Ap O
Ag1021  Agodze  Aozloz  Azedar Aida .. 0 Ax O 0 Ay

B A31031  Asp03p  Assdsz Aspdst Aszidze . | _ | 0 0 Azz 00
= A11021  A12022  Aizdoz Ag2021 Ar1d2 . 0 A O 0 An
Ag1011 Agediz Azdiz  Azdin A2idin . Ay 0 0 Axpn 0
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Summary and examples

Below the tensor/matrix transformation procedure is summarized and illustrated with a few
examples. The storage of matrix components in columns or ’blown-up’ matrices is easily done
with the Matlab .m-files m2cc.m and m2mm.m. (See appendix 77?.)

z — z
A = 4 A4 4
4A N A
4I N l
A = mA ; él = ccA = m2cc(mA,9) ; A = mmA = m2mm(mA,9)
xy A A Agg
r=| i A= | Ay Axp A
x3 Az Aszy Ass
i All ] i All O O O A12 ]
Ago 0 Ago 0 Aoy 0
4|, | 0 0 A 0 o0
4= Ar 4= 0 Ap 0 A O
Aoy Ay 0 0 0 A
[ A Az Az Anne Ao i (1 0 0 0 0 ..
Agg1r Azzoa Azezz Aoz Asoon 0100 O
A Aszir Asszzn Aszszs Aszziz Asszol I 00100
= Ar211 Ar2o2 Aiazz Ar212 Areor = 00001
A1 Az1o2 Asizz Asiiz Aoian 00010
Now some manipulations are introduced, which are easily done in Matlab.
A — AT, /th ; ét : transpose all components — mmAt
14" A : interchange rows 4/5, 6/7, 8/9 ~ — mmAr
147 — A, : interchange columns 4/5, 6/7, 8/9 — mmAc
mmAt = m2mm(mA’)
mmAr = mmA([1 2354769 8],:)
mmAc = mmA(:,[1 2354769 8])
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c = A:B — c = éf@
¢ = aB ¢ = 4B
¢ = ‘A~ ¢ = aB,
c = B'A  — T = B2
¢ = taB ¢ =B,
‘C = ‘A:'B - € = 4B,
Ay . I

1 -

1.8.3 Gradients

Gradient operators are used to differentiate w.r.t. coordinates and are as such associated with
the coordinate system. The base vectors — unit tangent vectors to the coordinate axes — in
the Cartesian system, {é,,€,,€.}, are independent of the coordinates {z,y,2}. Two base
vectors in the cylindrical coordinate system with coordinates {r,#, z}, are a function of the
coordinate 0 : {€,(0),€;(0),¢é,}. This dependency has ofcourse to be taken into account when
writing gradients of vectors and tensors in components w.r.t. the coordinate system, using
matrix/column notation. The gradient operators are written in column notation as follows :

Cartesian
. 0 0 .0 [o o o]
v:—»_ > 2 > = . . e - :vT—':—‘Tv
@ +ey6y +€Z8z [ Ox 0Oy 0z } gf veTe
z
cylindrical
. .9 .18 9 o 10 o 1|% T .
eraT+etT 894—6282 [ or r o0 0z g»t veme s
z
Gradient of a vector in Cartesian coordinate system
o Qg ayw az@
Vi=¢ {v (@Tg)} =& (V@T) g=é" Uy Qyy Ozy | €

Qpr Qyz Gz
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Gradient of a vector in cylindrical coordinate system

Va= (v ("e)} =& {(va") e+ (V&) o}

gr,r gt,r gz,r O 0 O
vel' = | e, la, e, |=|1ta —1e o
€m e}z e*z,z 0 0 0
i 0
= ET (V@T) €+ 1gifar ! €ray } }
0

0 0 0
R 1 1 o
= (Vo) e+ | —~ar ~a, 0 Q}
T
0 0 0

Divergence of a tensor in cylindrical coordinate system

V-A=¢

V(€A kek)
DA + € (ViAjr)ek + & - €A (Viéx)
) jkgk + 5¢j(viAjk)€k + 5ijAjk(vi€k)

C“l C“l

N

(V
(V

Vi€;
Vi€;

Ql

~ 1 L
Vi€j = 0i201j — € — 0i202j — &

N 1 1 . . 1 1
= €;+ (04201, e 052025 . € ) Ajrer + 6i(ViAjr)er + 65 Ajr (052015 e di200%, . er)

. 1. 1 1, 1
=é- (51‘2513’ ; é — 512523 €r) Ajrer + 05 (ViA k) ek + (0i201 6 5z252k €r)Ajrdij
. 1 1
=& - (51] 523 &) Ajrer + (ViAjr)er + (05201 e 5325% € )Ajp
1, . 1 1,
= 01 . Ajrer + (ViAjp)er + (6201% 6= 202k, . €r)Aji

1 . . 1 . L
= —Alkek + (V -Ajk)ek + ; (Aglet — AQQQT)
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