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ABSTRACT OF THE THESIS 

Algorithmic Music: 

Using Mathematical Models 

in Music Composition 

by GUSTAVO DIAZ-JEREZ 

Thesis advisor: Nils Vigeland 

 

The intimate connection between music and mathematics 
has been acknowledged throughout history.  This paper is a 
survey of the most relevant methods employed today in 
algorithmic composition.  It covers stochastic processes 
(randomness, probability functions, Markov chains); one-, 
two-, and three-dimensional chaotic systems; fractals; 
algorithms derived from noise spectra (1/f noise); number 
theory (Morse-Thue sequence, 3n+1/Hailstone numbers, prime 
numbers); cellular automata (one- and two-dimensional 
cellular automata); genetic algorithms; formal grammars (L-
systems.)  It includes a brief historical survey, an 
exhaustive list of available computer programs which 
implement most of the processes discussed, and C++ source 
code listings of routines valuable for algorithmic 
composition.  Numerous musical examples are provided to 
demonstrate each process.  These examples are included in 
an accompanying audio CD.  
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PREFACE 
 

 
 

Throughout its history, western music has been based 

largely on four paradigms.  First, the diatonic model was 

dominant until the sixteenth century.  Gradually, this 

model gave birth to a second paradigm, the tonal system, 

which evolved, increasing in chromaticism, until its 

"breakdown" at the beginning of the twentieth century.  

Free atonality followed, in which the rules of tonal 

harmony no longer hold and in which both pitch relationship 

and formal structure are created anew in each piece.  The 

fourth paradigm, Shoenberg’s twelve tone system, a logical 

step (according to him) in the evolution of the tonal 

system, was an attempt to put all twelve pitches in the 

chromatic scale on an equal footing.  Free atonality and 

the twelve-tone system have altered western music most 

dramatically on the twentieth century.  It is worth noting 

that rhythmic evolution has evolved at a much slower pace 

than pitch and formal evolution.  It has been only in the 

twentieth century that rhythmic complexity has increased 

greatly. 
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These paradigms provide outside-of-time structures, 

serving as scaffolds which the composer manipulates until 

the moment of their temporal inscription (that is, when a 

composition is created.)  These outside-of-time structures 

are the tetrachords, Greek modes, scales, rhythmic values, 

dynamics, the row and magic square of twelve-tone music, 

harmonic rules, formal schemes such as sonata form.  

Composers have used them over and over again.  They are, in 

a manner of speaking, the prime matter of music.  These 

outside-of-time structures provide a means through which 

composers are able to create variation and development. 

Aesthetic and value judgements, I believe, are not 

applicable to these outside-of-time structures, since they 

are mere abstract constructs from which actual works of art 

are engendered.  They are comparable to the marble stone 

out of which Michelangelo carved La pietà or David.  Marble 

(the sculptor's prime matter) is moot to any aesthetic or 

value judgements, while the artist's work upon it, or the 

product, is subject. 

The development of computer technology in recent years 

has offered composers a way to incorporate new outside-of-

time structures to the compositional process.  These 

structures are drawn from a discipline as old as mankind: 

mathematics. 



 

 ix

Mathematics and music has been intermingled since the 

times of Pythagoras (ca. 500 B.C.)  Throughout the history 

of music, many composers have used mathematical models as a 

source for compositional creativeness.  However, it has 

been only recently (thanks to the digital computer) that 

the composer can incorporate complex mathematical models in 

composition without having to make the tedious and 

monotonous calculations they require. 

The goal of this thesis is to demonstrate that 

mathematical models provide for music outside-of-time 

structures which yield variation and development. 

The connection between music and mathematical models is 

made through a process known as mapping.  Mapping consists 

of establishing a correspondence between the mathematical 

model's data (usually numerical) and a set (or sets) of 

musical outside-of-time structures (such as scales, 

rhythmic values, dynamics, etc.)  Mapping thus creates an 

intimate link between a new process (the mathematical 

model) and established musical structures.  The choice of 

those outside-of-time musical structures for the mapping 

process is ultimately determined by the composer. 

For the mapping process in the musical examples that 

demonstrate the various mathematical models discussed in 

this thesis, I have chosen to use only simple sets: scales, 



 

 x

usually chromatic, and simple rhythmic values and dynamics.  

The main reason is clarity: simplicity allows the 

structures yielded by the mathematical models to be 

recognized much more easily.  Instead of scales and simple 

rhythms, I could have used continuos (that is, not 

discrete) frequency, rhythmic and dynamic sets——thus 

allowing microtonality and limitless rhythmic complexity——

without affecting the intrinsic structure yielded by the 

mathematical model.  Furthermore, the musical examples 

included are not fully-fledge compositions by themselves.  

They serve only to demonstrate that mathematical models 

offer the composer a new path for variation and musical 

development. 

All musical examples were generated by the author 

through the implementation of their corresponding algorithm 

in the C++ programming language.  Because of the length of 

these programs, they could not be included in the body of 

the thesis.  However, some valuable routines are provided 

in Chapter V. 

It is presupposed that the reader has the necessary 

mathematical and programming proficiency to implement the 

algorithms by himself/herself. 
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CHAPTER I 

 
 

INTRODUCTION 
 

Music and mathematics have been intermingled since the 

dawn of history.  In antiquity, music was considered a 

branch of mathematics.  Flavius Cassiodorus (ca. 485-ca. 

575,) a man who played a pivotal role in the transmission 

of ancient culture to the Latin Middle Ages, describes 

mathematics as the union of four disciplines: arithmetic, 

music, geometry and astronomy.  "Mathematical science ... 

is that which considers abstract quantity ... It has these 

divisions: arithmetic, music, geometry, astronomy ... Music 

is the discipline which treats of numbers in their relation 

to those things which are found in sounds."1   

As early as the sixth century B.C., the Greek 

philosopher and mathematician Pythagoras developed the 

                                                           
1F. Cassiodorus, "Fundamentals of Sacred and Secular 

Learning," in Strunk's Source Readings in Music History, 
ed. O. Strunk (New York: Norton, 1998), 144-145, footnote 
7. 
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concept of "music of the spheres"2 as part of his theory of 

the functional significance of numbers in the objective 

world and in music.  The principles of perfect proportion 

that the ancients held to govern the natural universe were 

applied to their organization of musical pitches into fixed 

interval schemes known today as the Greek Modes. 

To our knowledge, the ancients went no further in 

their provisions to organize the act of musical composition 

than to systematize pitch into fixed patterns; no evidence 

exists to suggest that they might have evolved procedures 

whereby these pitches were combined into principled forms.  

It was not until almost 1500 years after Pythagoras, in the 

Medieval period, that composers began to formulate rules by 

which pitch relations and combinations were governed.  

In more recent times, music and mathematics——the one 

art, the other science, linked together by the common 

factor of logic——have found true conjugality in our age of 

the computer, by whose agency the two fields have been 

consciously and practically integrated.  The recent advent 

of software programs developed for algorithmic composition 

                                                           
2A. Boethius, "Fundamentals of Music," in Strunk's 

Source Readings in Music History, ed. O. Strunk (New York: 
Norton, 1998), 140. 
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reflects man's ancient endeavor to furnish himself ever 

more proficient tools. 

The custom of borrowing systems of organization from 

outside the musical realm has been firmly established in 

compositional practice.3  However, as computer-assisted 

composers have begun to appropriate highly specific 

technical terms from disciplines once thought to be 

completely unrelated to music, the definitions of these 

terms have become clouded and convoluted.  The term 

algorithm has been adopted from the fields of mathematics 

and computer science; however, in some cases its 

misappropriation has caused confusion in meaning.  It is 

therefore necessary to clarify the underlying 

misconceptions that have accompanied the term "algorithmic 

composition" in order to dissolve the growing sense of 

ambiguity.  

The word algorithm has been in use for over a 

millennium; still, in order to clarify its use in reference 

to musical composition, a cursory glance at its etymology 

is useful.  The word comes to us from the ninth century, 

                                                           
3G. Loy, "Composing with computers: a Survey of some 

Compositional Formalisms and Music Programming Languages," 
in Current Directions in Computer Music Research, eds. M. 
Mathews and J. R. Pierce (Cambridge: MIT Press, 1989), 292– 
396. 
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from the work of the Arabic mathematician and writer Abu 

'Abdullah Muhammad ibn Musa of Khwarizmi.4  His most 

distinguished book, entitled al-Kitab al-mukhtasar fi hisab 

al-jabr wa'l-muqabala (Rules of Reintegration and 

Reduction,) was the basis for the standardization of Arabic 

numerals in European mathematics.  Indeed the word algebra 

is a Medieval latinization of the Arabic word al-jabr, 

which means literally "the reduction."  The Latin stem of 

the word algorithm was most likely inherited from this 

mathematician's homeland, al-Khwarizm (The Khwarizm) and 

termed, "algorismus."  The Anglicized form, "algorism," was 

used to mean "the Arabic or decimal system of numerals."  

This archaic word appears in literature even before 1200, 

and little philological argument is needed to deduce that 

it can only be the forerunner of the modern term algorithm.  

An algorithm in contemporary terms is characterized by 

the following properties: 

 

• An algorithm consists of a finite sequence of actions. 

• The sequence of actions has a unique initial action.  

• Each action in the sequence has a unique successor.  

                                                           
4K. H. Parshall, "The Art of Algebra from Al-khwarizmi 

to Viète: a Study in the Natural Selection of Ideas," 
History of Science (June 1988): 129-164. 
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• The sequence terminates with either a solution to the 

problem, or a statement that the problem is 

unsolvable. 

 

In simplified terms, an algorithm is a process that 

solves a problem in a step-by-step fashion through either 

redistribution, recursion, or branching.  The solution must 

be found in a finite number of steps.  In application to 

music, algorithms may be thought of as procedures that test 

potential compositional material for its appropriateness 

within a given context.  Pitch, duration, intensity, and 

other sound and structural constituents may be chosen 

according to a set of questions and answers.  Needless to 

say, the computer is the indispensable tool for the 

incorporation of algorithmic processes into musical 

composition.  The use of algorithms, by reasons of both 

quantity and complexity, is a task perfectly suited to the 

computer.  Best used in this capacity as a labor-saving 

device——to free the composer from carrying out such tedious 

calculations by hand——the computer is nothing more and 

nothing less than a utensil for the realization of abstract 

design constructs, which then may be applied to music-

making according to the composer's own creativity and 

imagination.  Used judiciously and according to the natural 
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parameters of its faculties, the computer enables, for 

instance, the composer to experiment with the musical 

properties of many different algorithmic procedures and to 

judge their potential development into fully-fledged 

compositional systems.  The computer in algorithmic music, 

like the "magic square" in dodecaphonic composition, is 

most usefully employed as a compositional implement rather 

than as a one-stop musical solution. 

Within the young history of algorithmic composition 

with computers, three major approaches have emerged: (1) 

algorithms for sound synthesis; (2) algorithms for 

compositional structure; (3) algorithms for the correlation 

of sound synthesis with structure.   

Sound synthesis algorithms have been used in a variety 

of ways, from the generation of complex waveforms5 (building 

sounds,) to the evolution of timbre development over time.6 

Some of the algorithmic programs and compositions 

specify score information only.  Score information includes 

                                                           
5B. Truax, "Chaotic Non-Linear Systems and Digital 

Synthesis: An Exploratory Study," in Proceedings of the 
1990 International Computer Music Conference, ed. Stephen 
Arnold (San Francisco: International Computer Music 
Association, 1990), 100-103. 

 
6A. Kurepa and R. Waschka, "Using Fractals in Timbre 

Construction: an Exploratory Study," in Proceedings of the 
1989 International Computer Music Conference, eds. David 
Butler and Thomas Wells (San Francisco: International 
Computer Music Association, 1989), 332-335. 
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pitch, duration, and dynamic material, written for acoustic 

and/or electronic instruments: e.g., there are instances in 

which a composer makes use of a computer program to 

generate the score while the instrumental selection has 

been predetermined as either an electronic orchestra or a 

realization for acoustic instruments.  

Other algorithmic programs specify both score and 

electronic sound synthesis.  In this instance, the program 

is used not only to generate the score, but also the 

electronic timbres to be used in performance.   

One of the primary concepts involved in algorithmic 

composition is mapping.  Mapping consists of creating 

direct relationships between an algorithm's output 

(generally numerical) and musical parameters.  Mapping can 

be also understood as the translation of the algorithm's 

extra-musical material into music.  How the mapping is 

performed is entirely the composer's choice.  It must be 

emphasized that there are conceivably infinite ways to map 

an algorithm's numerical output to musical parameters; the 

same algorithm will yield totally different music given the 

application of different mappings.  In addition to pitch, 

mapping can be applied to any musical parameter (rhythm, 

dynamics, etc.,) and to higher-order musical events, such 

as motives or even fully-fledge phrases. 
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There are four basic categories of algorithms that can 

be applied to music composition: 

 

• Stochastic processes (probability functions, Markov 

chains.) 

• Iterative (chaos, fractals, non-linear equations, 

number theory.) 

• Rule-based (L-systems, formal grammars.) 

• Genetic algorithms. 

 

Each of these processes has its own unique 

characteristics, and the musical material they generate 

varies accordingly.   

Stochastic processes——which involve the use of 

probability functions——were the first to be explored, by 

Iannis Xenakis in the 1950s7, a time when avant-garde music 

was dominated by the heritage of Shoenberg's twelve-tone 

system. 

The "aesthetic drive" to search for a new direction in 

music composition led Xenakis to formulate a new paradigm 

for music, which he called stochastic music.8 

                                                           
7I. Xenakis, Formalized Music; Thought and Mathematics 

in Music (New York: Pendragon Press, 1992). 
 
 
8Ibid., 8. 
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The use of these new techniques required computers to 

be specially programmed.  Decades ago, when access to a 

computer was relatively difficult and no relevant software 

existed, composers had to write the programs themselves or 

work in conjunction with a programmer.  This presupposed a 

deep knowledge of the algorithm's mathematical structure as 

well as strong programming abilities (the more so in a time 

when most software of this nature was programmed in low-

level languages such as Assembly or machine code.)  It is 

not surprising that composers who used these techniques 

were also fairly well versed in mathematics and computers 

(e.g., Iannis Xenakis, an architect and mathematician; 

Lejaren Hiller, a chemist; et al.) 

Today, fortunately, thanks to the development of high-

level, object-oriented programming languages specifically 

designed for music composition (such as CSound9 and MAX10, 

among many others11) the composer can implement algorithmic 

procedures in a much more intuitive way.  The learning 

curves of these programming environments, although steep, 

                                                           
9R. Boulanger, ed.  The Csound Book: Perspectives in 

Software Synthesis, Sound Design, Signal Processing, and 
Programming, (Cambridge: The MIT press, 2000). 

 
10Opcode MAX, Opcode Systems Inc.; available from 

http://www.opcode.com/products/max; Internet. 
 
11Loy, "Composing with Computers," 318–376. 
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pale when compared to those of standard low- and mid-level 

programming languages such as Assembly or C.  Furthermore, 

because these programming environments are specifically 

designed for music, the composer saves an enormous amount 

of time in the coding process.  The code length of an 

algorithmic process implemented in CSound of MAX is 

typically ten to fifty times shorter than if it were to be 

programmed in C, let alone Assembly language. 

In addition to mastering programming techniques and in 

order to implement and fully exploit the possibilities of 

algorithmic processes, the composer must have a deep 

understanding of their mathematical formulation.  Today, 

there is a panoply of ready-made software programs that 

implement many algorithmic processes.  Many of these 

programs claim that "little or no mathematical knowledge" 

is needed to operate them.  The user just has to plug in a 

few numbers here and there (most of the time without even 

knowing what those numbers apply to) and the computer will 

"do the rest."  This is the kind of one-stop musical 

solution previously denounced.  Although these programs may 

be useful to have a rough estimate of an algorithmic 

process, the only way to get the most out of the process is 

through an understanding of its mathematical formulation 

and through direct experimentation with it.  An algorithm 
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can be mapped in virtually unlimited ways.  Ready-made 

software programs offer at most a few mapping 

possibilities.  In order to fully explore and investigate 

different mappings types as well as mathematical variations 

of the same algorithm, the composer must implement it 

(program it) using relevant software. 

Algorithmic music uncovers a new direction in musical 

composition.  This direction lies along a path that has 

lain dormant throughout the history of music.  The 

aesthetics of mathematics as applied to music was 

discovered and studied by the Pythagorean more than 2,500 

years ago.  Today, with contemporary computer technology, 

we can continue investigating along that path. 
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CHAPTER II 
 
 

A BRIEF HISTORY OF ALGORITHMIC MUSIC. 

 
The Pythagorean 

The main assertion of the Pythagorean doctrine was 

trifold: that all things are numbers, or that all things 

are furnished with numbers, or that all things behave like 

numbers.1  To say that this mathematical thesis is pertinent 

to music is to say that the roof of a house pertains to its 

foundation; the one arises from the other.  Indeed, the 

Pythagorean concept of the ubiquity of numbers evolved from 

the study of musical intervals which sought to obtain the 

"orphic catharsis,"2 in accordance with the belief that 

music "cleansed the soul" as medicine cleanses the body.  

Pythagorism, Greek in origin, was passed on to the 

Byzantine, whence it was transmitted to the Arabs and to 

Western Europe, eventually to permeate all occidental 

thought. 

                                                           
1Xenakis, Formalized Music, 202. 

 
2Ibid., 201. 
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Music theorists from Aristoxenos to Hucbald, Zarlino to 

Rameau, have returned again and again to the same 

assertion, expressed in more or less varied styles.  The 

consensus seems to strike a clear unison of thought: that 

the arts, and conceivably all intellectual activity, are 

immersed in the world of numbers.3 

No first-hand details have survived to tell us how 

Pythagoras discovered the numerical ratios of musical 

intervals.  One legend tells that Pythagoras, a student of 

Thales——the father of Greek mathematics, astronomy and 

philosophy——discovered musical ratios by striking 

blacksmith's hammers4 of various sizes.  Their weights are 

generally translated in contemporary measures as 12, 9, 8, 

and 6 pounds.  When struck in pairs, they produced the 

octave (12:6,) the fifth (12:8 and 9:6,) the fourth (12:9 

and 8:6,) and the whole tone (9:8.)  On cursory hearing the 

story sounds plausible; these numbers correctly represent 

the ratios of frequencies of those intervals.  However, as 

soon as the acoustics of the situation are probed, the myth 

is revealed for what it is.  On the other hand, the notion 

                                                           
3Ibid., 202. 
 
4New Harvard Dictionary of Music, ed. Don Randel, s.v. 

"Pythagorean hammers," (Cambridge, MA: Harvard Univ. Press, 
1986). 
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that Pythagoras discovered these ratios by measuring the 

lengths corresponding to them on the monochord (a single-

stringed instrument with a moveable bridge,) is quite a 

creditable one and incurs no error of acoustics. 

The process of continuos subtraction developed by the 

Greeks (antanairesis) was probably the principal method 

used for establishing several intervals, based on the 

Pythagorean scale.5  This method takes the numerical 

proportions of two intervals and subtracts the smaller from 

the larger, leaving a smaller proportion, which is then 

subtracted from the previous proportion, and so forth.  For 

instance, an octave minus a fifth leaves a fourth (2:1 – 

3:2 = 4:3); a fifth minus a fourth leaves a whole tone (3:2 

– 4:3 = 9:8); this process is repeated, creating smaller 

and smaller intervals: the impure minor third (32:27,) the 

diesis or leimma (256:243,) the apotome (cut-off) 

(2187:2048,) and the Pythagorean comma (531441:524288,) 

which has a frequency difference of only 23.5 cents (a 

tempered semitone is 100 cents.)  These ratios can also be 

represented by arithmetic and harmonic means.  The 

arithmetic mean between two numbers is the sum of the 

numbers divided by two.  If a is the arithmetic mean 

                                                           
5Ibid., s.v. "Pythagorean scale." 
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between x and y then, assuming x > y, x – a = a – y.  The 

harmonic mean between to numbers, h,  has the following 

proportion: 

 

x > y, (h – y)/y = (x – h)/x 

 

or, solving for h: 

 

h = (2xy)/(x + y) 

 

The Pythagorean understood the musical application of these 

means, noting that the arithmetic mean of the octave 

(12:6,) 9, produced the fourth (12:9 = 4:3,) and the fifth 

(9:6 = 3:2.)  Similarly, the harmonic mean of the octave, 

8, produced the fifth (12:8,) and the fourth (8:6.)   

Another important proportion used in antiquity was the 

geometrical mean.  The geometrical mean, g, between two 

numbers x and y is: 

 

x > y, (x / g) = (g / y) 

 

 

or, solving for g: 
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g = √(x*y) 

 

Aristides Quintilianus, one of the first music 

theorists, discovered that whenever arithmetic means (a and 

b) are inserted between the members of a geometric 

proportion (x:g:y,) where a is the arithmetic mean between 

x and g, and b is the arithmetic mean between g and y, then 

g is the harmonic mean between a and b.6 

The discovery of musical ratios by Pythagoras 

flourished into the complex Greek musical theory, of which 

Aristoxenus (born ca. 365 B.C.) was the first and most 

important theorist.7  Later music theorists were largely 

influenced by this mathematical description of music by the 

Greeks.  These include the musical treatises of 

Quintilianus (De musica,) Ptolemy (Harmonics,) Boethius (De 

Institutione musica,) Gaudentius (Harmonic Introduction,) 

Hucbald (De harmonica institutione,) Zarlino (Institutioni 

harmoniche,) Fux (Gradus ad Parnassum,) Rameau (Traité de 

l’harmonie,) to name but a few. 

 

 

                                                           
6Ibid., s.v. "Arithmetic and harmonic mean." 

 
7Xenakis, Formalized Music, 183-189. 
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The Middle Ages 
 

The earliest example known of an algorithmic method 

applied to music composition——and the first example of 

mapping——dates from the 11th century by Italian composer and 

music theorist Guido D'Arezzo.8  His method——developed ca. 

1026——consists of creating a correspondence between the 

vowels of a text and a set of pitches, as follows.   

The pitches of the standard two-octave vocal tesitura 

of the time were first laid out: 

 

Γ A B C D E F G a b c d e f g a 

 

where 'Γ' corresponds to the G below middle C.  Next, three 

iterations of the vowels "a e i o u" were placed below the 

pitches, yielding 

 

Γ A B C D E F G a b c d e f g a 

a e i o u a e i o u a e i o u a 

 

Next, the vowels from the text to be set were extracted.  

Lastly, using the pitch look-up table above, the composer 

generated the melody.  Because every vowel can be mapped to 

                                                           
8Loy, "Composing with Computers," 303. 
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three different pitches (except for the vowel 'a', which 

has four correspondences,) a set of n vowels can generate 

at least 3n different melodies (this number may be even 

larger since the vowel a has four possible mappings.)  The 

choice among those three possible mappings per vowel (four 

in case of a) was decided by the composer.  This allowed 

the composer to make choices so that the melodic outline 

would conform to the stylistic rules of the time.   

Although this method is clearly algorithmic in its 

essence, its definiteness is somehow obscured by the 

exponential grow of possible melodies as the number of 

vowels in the mapped text increases (for a 15 vowel text, 

just a few words, there are at least 315——over 14 million——

possible melodies!) 

Isorhythmic Motets of the 14th and 15th centuries are 

another example were a mathematical process is intermingled 

with music composition.  Isorhythm——the term was coined by 

Fridrich Ludwig in 19049——means the repetition of rhythmic 

and melodic patterns throughout a voice part (mostly the 

tenor part, although in the late 14th – early 15th centuries 

many compositions were isorhythmic in all voices, that is, 

                                                           
9F. Ludwig, "Die 50 Beispiele Coussemakers aus der 

Handschrift von Montpellier," SIMG 5 (1903-4): 177-224. 
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panisorhythmic.)  The rhythmic pattern was called talea and 

the melodic pattern color.  The two patterns can be of 

different length, thus the successive repetition of the 

talea may occur with different pitches.  If the talea 

consisted of (say) 10 durations and the color of 6 pitches, 

we would have 30 (5 X 3 X 2, since both 10 and 6 share the 

common factor 2) possible permutations of talea-color until 

they repeat again.  In panisorhythmic motets, the number of 

possible permutations can grow astronomically.  Naturally, 

of all the possible combinations, only a subset of them 

were allowed by the harmonic rules of the time. 

Isorhythm was discussed in musical treatises of Jehan 

des Murs (Libellus cantus mensurabilis,) and Prosdocimus de 

Bedelmantis (Tractatus pratice de musica mensurabili.)10  

Composers who employed isorhythm include Vitry——who was the 

first to use this technique——, Ciconia, Machaut, Dunstable, 

Dufay, among many others.  After the 15th century, isorhythm 

slowly died away, and we have to wait until the 20th century 

to find similar practices. 

Another procedure developed during the Middle Ages 

which involves the mapping of non-musical material to music 

is soggetto cavato.  Soggetto cavato——the term was coined 

                                                           
10New Harvard Dictionary of Music, s.v. "Isorhythm." 
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by Zarlino11——consists of making a one-to-one correspondence 

between the individual letters of words in text to music.  

For instance, Josquin des Prez' mass dedicated to Hercules 

Dux Ferrarie derives its theme from this dedication by 

employing the six solmization syllables, or the names of 

the pitches of the scale (ut, re, mi, fa, sol, la,) as 

follows: re, ut, re, ut, re, fa, mi, re, corresponding to 

the vowels e-u-e-u-e-a-i-e, yielding the pitches d-c-d-c-d-

f-e-d.  Soggetto cavato has been used by composers 

throughout the history of music.  Well known examples 

include Bach's use of his own name (B A C H: B-flat - A - C 

- B natural) in the final three-subject fugue in The Art of 

the Fugue, Schumman's ABEGG Variations for piano (A - B-

flat - E - G - G,) and many others——the letter B in German 

corresponds to B-flat, the H to B natural.  This procedure 

could be applied to all letters of the alphabet, not only 

to the ones that suggest pitches.  For example, Ravel in 

his Menuet sur le nome de Haydn maps "Haydn" as B – A – D – 

D – G, mapping the 'y' to D and the 'n' to G, as follows: 

 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

            ABCDEFGABCDEFGABCDE 
     

                                                           
11G. Zarlino, Institutioni harmoniche, trans. G. 

Tomlinson, (Ridgewood, NJ: Gregg Press, 1966). 
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The Classical Period 

Another example of a mathematical process applied to 

music before the computer age is found in Mozart's 

Musikalisches Würfelspiel, K 516f (a musical dice game.)  

The idea was to cut and paste pre-written measures of music 

together to create a minuet and trio.  This technique 

appears to have been pioneered by Kirnberger in 1757.12  In 

the late Baroque through Classicism, it was common practice 

for composers——even those of great prestige——to use 

compilations of progressions, cadences, motives, etc., in 

their works, sometimes as a source of inspiration, 

sometimes as the actual music.  This technique became known 

as ars inveniendi.13  

Mozart used a table of 176 possible measures for a 16-

measure Minuet (11 2-dice distinct combinations times 16 

measures) and 96 for the trio section (6 X 16.)  The 

structure of the composition was determined by chance: two 

dice were rolled to determine the measures for the minuet, 

one for those of the trio.  The result of a dice roll was 

checked against the table of measures, in order to 

determine which one to play.   

                                                           
12Loy, "Composing with Computers," 303. 

 
13Ibid. 
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The instructions for the Musikalisches Würfelspiel 

appear on a sheet of sketches in the Bibliothèque Nationale 

de Paris, dating from 1787.14  The compositional procedure 

is as follows: 

 

1. Throw both dice for measure 1 of the minuet; 

2. Match the number shown by the dice (which will 

necessarily be a number between 2 and 12) to the 

corresponding number on the table of the 176 pre-

composed measures; 

3. Repeat until all 16 measures have been determined. 

 

The trio is composed analogously, except using only one 

die.  In theory, there are 1116 * 616 ≈ 1.3 * 1029 possible 

compositions.  Many of them will be related, since there is 

a predetermined amount of musical material, but none of 

them will be exactly the same.  This number is so large (13 

followed by 28 zeroes) that if so many grains of sand were 

to be arranged in a single file (assuming each to be one 

millimeter in length,) they would span a distance of 

                                                           
14E. Smith, liner notes to W. A. Mozart, A musical dice 

game (Phillips Complete Mozart Edition—Rarities and 
Surprises 422 545-2, 1991). 
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roughly 13 billion light years, which is approximately 

130,000 times the diameter of the Milky Way galaxy! 

This process involving chance is an important 

antecessor of the aleatoric procedures used by John Cage 

two centuries later15, with a key difference: in Mozart's 

game, the sequence of measures in the "generated" minuet 

and trio had to conform to the stylistic rules of the time.  

This was possible because each measure in the look-up table 

was selected from a set of possible successor measures, 

arranged in such a way so that all sequences would agree to 

established harmonic and stylistic canons. 

 

The Golden Mean 

Another mathematical model that has been used in the 

arts throughout history is the Golden Mean.16  The golden 

mean——whose mathematical symbol is the Greek letter phi  

(φ)——is defined as the point that divides any segment in two 

sections so that the proportion between the larger section 

and the smaller is equivalent to the proportion between the 

whole segment and the larger section.  Mathematically, if 

                                                           
15Loy, "Composing with Computers," 304. 

 
16J. T. Anderson and C. S. Ogilvy, Excursions in Number 

Theory (New York: Dover, 1988), 139-140. 
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we take a segment of length 1 (for convenience,) the Golden 

Mean is a point x on the segment that satisfies the 

following equation: 

 

1/x = x/(1-x)  or  x2 + x – 1 = 0 

 

Put graphically, 

1 

     

 

x   (1-x)   

 

The Golden Mean is the positive solution of the 

quadratic equation x2 + x – 1 = 0 (the other solution is 

negative and has no physical relevance here.)  Phi is 

exactly equal to (√5 – 1)/2, or approximately 

0.6180339887499.  This number appear everywhere in nature: 

in the branching of trees, sunflowers, seashells, etc.17  

This proportion is known since the Greeks, who used it as a 

structural model in their architecture.  The Parthenon in 

Athens, for instance, is full of golden mean proportions.   

                                                           
17C. C. Clawson, Mathematical Mysteries: the Beauty and 

Magic of Numbers (New York: Plenum Press, 1996), 126. 

φ 
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The Golden Mean is intimately related to the Fibonacci 

series, discovered by Leonardo of Pisa in the 13th century18: 

 

1 1 2 3 5 8 13 21 34 55 89 144 ... 

 

Starting with two ones, each new term of the sequence is 

generated by adding together the last two.  Put 

mathematically, 

Fn = Fn-1 + Fn-2 
 
 

The Fibonacci sequence and the Golden Mean are related 

as follows: if we divide the nth term of the sequence by the 

(n+1)th term, we get: 

 

F(1)/F(2) = 1/1   = 1 
F(2)/F(3) = 1/2   = 0.5 
F(3)/F(4) = 2/3   = 0.666666666 
F(4)/F(5) = 3/5   = 0.6 
F(5)/F(6) = 5/8   = 0.625 
F(6)/F(7) = 8/13  = 0.6153846153846 
F(7)/F(8) = 13/21 = 0.6190476190476 
F(8)/F(9) = 21/34 = 0.6176470588235 

. 

. 
 

As the terms become larger and larger these ratios converge 

to a finite value: φ, the Golden Mean: 

 

                                                           
18Ibid., 123. 
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lim F(n)/F(n+1) = φ 
n→∞  

   

This proportion has fascinated many composers 

throughout history, who have used it mainly as a structural 

device.  If we consider the whole length of a piece, its 

Golden Mean is approximately at 61.8% of its total 

duration.  Composers usually reserve the moment at which 

the Golden Mean happens for something special, such as the 

climax of the piece or a dramatic moment.  One of the 

earliest musical examples of the use of this is Thomas 

Tallis' 40-voice motet Spem in alium: at the Golden Mean 

there is a bar of complete silence, followed by the 

entrance of all 40 voices together.  In the twentieth 

century, Claude Debussy used this proportion in many of his 

pieces19, such as Reflets dans l'eau, where the climax 

occurs at measure 58 of a total of 94 (58/94 ≈ φ.)  Béla 

Bartók also made extensive use of the Golden Mean in his 

music.  Examples include the first movement of his Sonata 

for two Pianos and Percussion, the first movement of Music 

for Strings, Percussion and Celesta——the climax occurs at 

                                                           
19R. Howat, Debussy in Proportion: a Musical Analysis 

(New York: Cambridge Univ. Press, 1983). 
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the Golden Mean, at bar 55 of a total of 89——, among 

others.   

 

The Twentieth Century 

The advances in mathematics and science in general 

since the mid-nineteenth century have allowed composers to 

incorporate ideas and procedures into their music that were 

inconceivable in previous centuries.  In the present day, 

the idea of music as an art-science sparked by the ancient 

Greeks has been rekindled. 

 

The Schillinger System of Musical Composition  

Through the 1920s and 1930s Joseph Schillinger, an 

Ukrainian composer and music theorist, developed a System 

of Musical Composition20 allegedly based on scientific 

principles.  In The Mathematical Basis of the Arts21, his 

magnum opus, he advocates for a formalized theory of 

aesthetic creation.  His efforts, however, were futile.  

Human creativity has eluded so far any type of 

formalization.  This seems to be an intractable problem and 

                                                           
20J. Schillinger, The Schillinger System of Musical 

Composition, (New York: Da Capo Press, 1978). 
 
21J. Schillinger, The Mathematical Basis of the Arts, 

(New York: The Philosophical Library, 1948). 
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some authors have argued against a computable model of 

creativity on the basis that the mental processes that 

govern creativity and intuition are simply not computable.22 

Schillinger's System covers all fundamental aspects of 

musical composition, such as counterpoint, harmony, rhythm, 

etc.  It is essentially geometrical in its basis, 

especially the concept of "phase relationships."  This 

concept encompasses virtually every component of the 

System.  These phase relationships are in essence simple 

periodic motions.  His methodology projects these phase 

relationships into the areas of rhythm and structural 

proportion as well as into the much less obvious ones of 

pitch structures (scales and chords,) counterpoint, 

harmonic progression, etc.  The groundwork underlying much 

of Schillinger’s System is a process by which interference 

with simple regular rhythmic patterns produces more complex 

and irregular rhythmic patterns.  For instance, the 

following rhythmic pattern: 

 

 

Figure 1 

                                                           
22R. Penrose, The Emperor's New Mind: Concerning 

Computers, Minds, and the Laws of Physics (New York: Oxford 
Univ. Press, 1989). 
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can be represented as the union of the following two 

simpler patterns: 

 

 

Figure 2 

 

This process of obtaining complex rhythms from logical 

operations worked upon simpler ones resembles very much the 

way complex sounds are synthesized: by the addition of many 

simpler, pure sine waves. 

The work of Schillinger has been greatly criticized by 

some authors as having absolutely no scientific or 

mathematical foundation whatsoever.23  However, some his 

ideas have shed light on new directions in the 

compositional process.  He presaged many developments of 

algorithmic composition that were not taken up in full 

until many years later.  Schillinger's System contains 

frequent references to music as "natural dynamic."  This 

                                                           
23L. Fichet, Les theories scientifiques de la musique 

(Paris: Librairie philosophique J. Vrin, 1996). 
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attitude is, of course, nothing new: it dates back to 

Zarlino in the early Renaissance, which defended the idea 

of music as an imitation of Nature.24  Schillinger's use of 

the Fibonacci series, with reference to its use in 

describing growth patterns of plants, seashells, etc., is 

one of many examples scattered throughout his System of 

composition.  This is clearly related to the recent 

developments in fractal geometry, particularly the studies 

of chaotic attractors and non-linear dynamics as models of 

natural phenomena. 

  

 

Edgard Varèse  

Another composer who played an important role in the 

consolidation of the view of music as an art-science was 

Edgard Varèse.  He championed the ancient idea that music's 

place is in the company of mathematics and geometry.  But 

he was fully aware that music is not just science.  It 

participates in both science and art.  He insisted that the 

basis of creative work was experimentation, and was 

conscious of the immense creative possibilities that new 

emerging technologies offered to music: " ... liberation 

                                                           
24Loy, "Composing with Computers," 308. 
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from the arbitrary, paralyzing tempered system; the 

possibility of obtaining any number of cycles or, if still 

desired, subdivisions of the octave, and consequently the 

formation of any desired scale; unsuspected range in low 

and high registers; new harmonic splendors obtainable from 

the use of sub-harmonic combinations now impossible..."25 

Varèse, the true father of electronic composition, had 

a tremendous influence on generations of composers after 

him, opening a new path for music composition.  

Stockhausen, Ligeti, Boulez, Xenakis, and many others could 

not have flowered as fully without Varèse as their 

predecessor.  His background in mathematics and science——he 

prepared for a career as an engineer——undoubtedly helped 

him in his search for a new aesthetic of sound.   

Although Varèse was more interested in the new world of 

sound opened by electronic music than with the application 

of specific mathematical procedures to composition——which 

may be realized by electronic means or not——his influence 

and ideas fertilized the ground for composers wishing to 

experiment with these new techniques.  As he puts it, "the 

world is changing, and we change with it.  The more we 

                                                           
25E. Varèse, "The Liberation of Sound," in Source 

Readings in Music History, ed. O. Strunk (New York: Norton, 
1998), 1343. 
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allow our minds the romantic luxury of treasuring the past 

in memory, the less able we become to face the future and 

to determine the new values which can be created in it."26 

 

Iannis Xenakis 

The first composer who adopted a pure mathematical 

approach to music composition——not just as a tool, but as a 

philosophy of composition——was Iannis Xenakis.  Xenakis 

criticized the serial approach.  Himself one of the 

pioneers of modern computer-assisted composition, he 

thought post-serial music posed a fundamental aesthetic 

problem.  He argued that "the completely deterministic 

complexity of the operations of composition and of the 

works themselves produced an auditory and ideological 

nonsense."27  Furthermore, "linear polyphony destroys itself 

by its very complexity; what one hears is in reality 

nothing but a mass of notes in various registers.  The 

enormous complexity prevents the audience from following 

the intertwining of the lines and has as its macroscopic 

                                                           
26Ibid., 1340. 

 
27Xenakis, Formalized Music, 8. 

 



 

 33

effect an irrational and fortuitous dispersion of sounds 

over the whole extent of the sonic spectrum."28   

Xenakis recognized a fundamental contradiction between 

linear polyphony and what one actually hears.  He advocated 

that this contradiction would vanish if the independence of 

sounds were absolute, i.e., when linear combinations of 

sounds and their polyphonic superposition no longer 

function as such.  "What counts will be the statistical 

mean of isolated states and of transformations of sonic 

components at a given moment. The macroscopic effect can 

then be controlled by the mean of the movements of elements 

which we select. The result is the introduction of the 

notion of probability, which implies, in this particular 

case, combinatory calculus."29  Xenakis called this new 

paradigm of music "stochastic music."  Stochastic music is 

concerned with masses of sounds, rather than with the 

linear succession of pitches that conform those masses.  

These "sonic events" may involve thousands of individual 

sounds.  The linear successions of these sounds is "non-

deterministic," or rather, they do not follow any 

discernible patterns and are distributed randomly.  

                                                           
28Ibid. 

 
29Ibid. 
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However, the overall shape they create is well-defined and 

directed.  The way gases behave illustrates this point very 

well: a gas is composed of a large number of gas molecules; 

the position and speed of individual molecules within the 

gas is unpredictable and random, yet the overall shape of 

the gas is not: it has a definite pressure and temperature.  

The individual pitches in these sound masses resemble 

individual molecules in a gas: taken individually, they 

appear randomly distributed, but taken as a whole they 

create a well-defined entity.  Composers can control how 

these sound-masses behave, by manipulating their density, 

rate of change, etc.  By reducing the densities of these 

sound-masses, composers can achieve results that resemble 

linear polyphony.  This new conception of music is 

therefore a superset, or extension, of traditional 

polyphonic models.  Probability theory is indeed needed to 

control the evolution of these sound-masses.  This includes 

probability distribution functions such as the continuous 

probability function, Poison's law, Markovian analysis, 

etc.  With these mathematical tools, the composer can 

manipulate and control how these sound masses evolve and 

are transformed.  This is accomplished macroscopically, 

upon the whole sound-event.  The individual pitches that 

form those sound-events are arranged in a non-deterministic 
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(random) manner; in fact, random number generators are used 

to generate the note-level of the sound-event.   

At the time Xenakis developed stochastic music (the 

1950s,) a composer wishing to incorporate these techniques 

in his music required no small degree of mathematical 

literacy, since the bulk of calculations were done by hand.  

Computers were a luxury, and even if access to one was 

possible, it had to be specially programmed for the task.  

Such a composer had to be a "hybrid"30 between musician and 

mathematician, with almost equal proficiency in both 

fields.  Today, however, thanks to the development of 

computers, composers can acquire readily made programs that 

perform all the necessary calculations, saving them from 

these tedious tasks.  Still, a profound knowledge of the 

abstract mathematical model is necessary for to completely 

exploit its possibilities, even while the composer is 

spared the "dirty work."  

Apart from stochastic techniques, Xenakis employed 

other mathematical models for composition, such as set 

theory31 (Herma)——not to be confused with Allen Forte's 

theory——, which deals with performing logical operations on 

                                                           
30Ibid., vii. 

 
31Ibid., 155-177. 
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sets of pitches; game theory32 (Duel, Stratégie); group 

theory33 (Nomos Alpha); etc. 

Stochastic music has been criticized by some authors 

for the way it may limit the stylistic objectives of the 

composer.34  The composer has control over the way 

probabilistic distributions are applied in order to shape 

the work, but not over the "fine detail" of the sound-

masses.  In the 1960s, Max Mathews together with other 

researchers, investigated ways to overcome this restriction 

by using deterministic algorithms and pitch quantization.35  

In one of their experiments, they created counterpointal 

textures in which intervals between voices were quantized 

to the nearest 3rd, 4th, 5th, or 6th.  The number of voices 

and the method for pitch generation could be changed at 

will.  Different strategies were explored, including 

different levels of pitch quantization, from no 

quantization at all (absolute frequency) to discrete 

quantization into tempered and diatonic scales.  Their 

methods allowed the composer to have control over the note 

                                                           
32Ibid., 110-130. 

 
33Ibid., 219-241. 

 
34Loy, "Composing with Computers," 310. 

 
35Ibid., 311. 
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level of the work, while still retaining the philosophy of 

stochastic procedures. 

 

 

Lejaren Hiller 

One of the first composers who adopted a systematic, 

algorithmic approach for composing——and allegedly the first 

person to compose a piece with the help of a computer——was 

Lejaren Hiller.  His strong scientific and mathematical 

background (he earned a Ph.D. in chemistry) provided him 

with the necessary knowledge to realize his ideas.  

Hiller's musical thinking was greatly influenced by 

information theory.36  Information theory is concerned with 

assimilating, quantifying, and optimizing the efficiency of 

information transfer.  It is central not only to modern 

communication technology, but also to the understanding of 

language, and the transmission of information by other 

processes.  In applying information theory to music, Hiller 

conjectured "fluxes" in the sum of information conveyed by 

a piece of music to the listener to be the essential 

dramatic nature of music.  This premise greatly influenced 

                                                           
36L. Hiller and L. Isaacson, eds., Experimental Music; 

Composing with an Electronic Computer (New York: McGraw-
Hill, 1959). 
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the way in which Hiller composed.  In 1957, he wrote The 

Illiac Suite, also known as The Illiac String Quartet or, 

simply, as String Quartet No. 4.  This piece, generated on 

a Illiac computer at the University of Illinois with the 

help of Leonard Isaacson and Robert Baker is allegedly the 

first example of a composition created with a computer.  In 

1963, together with Robert A. Baker, Hiller created the 

computer composition language program MUSICOMP, which was 

used to create his Computer Cantata.  Several of the 

commands available in this program are designed with ideas 

of these "information fluxes" in mind.  This program was 

also used to create other pieces such as Algorithms I, 

Algorithms II, and Algorithms III.   

Hiller advantaged himself of a great deal of other 

tools besides computers.  The total output of his work 

shows a highly eclectic composer, partaking of all the 

musical currents of his day, from those as popular as jazz 

to those as erudite and abstruse as serialism or 

indeterminacy.  
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Contemporary Techniques 
 

With the emergence chaos theory and the development of 

other scientific disciplines such as cellular automata, 

fractal geometry, etc.——once again, thanks to the 

tremendous increase in computational power——new links 

between mathematics and music have been established.  

 

Chaos Theory 

Chaos Theory37, pioneered by French mathematician Henri 

Poincaré38 at the beginning of the 20th century and 

flourishing in the 1980s, describes the unpredictable 

behavior of systems when influenced by a common condition 

or set of conditions.   

Until recently, scientists believed that random 

influences made systems behave unpredictably.  They 

believed that if they eliminated random influences, they 

could predict behavior.  They now know that many systems 

can exhibit long-term unpredictability without random 

influences.  Such systems are chaotic.  Chaotic systems are 

unpredictable because they are sensitive to their initial 

                                                           
37J. Gleick, Chaos (New York: Penguin Books, 1987); E. 

Ott, Chaos in Dynamical Systems (New York: Cambridge 
University Press, 1993). 

 
38H. Poincaré, Science and Hypothesis (New York: Dover, 

1952). 
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conditions, such as position and velocity.  Two identical 

chaotic systems, set in motion with slightly different 

starting conditions, can quickly produce very different 

motions.  What is so thought-provoking about chaos theory 

is that unstable aperiodic behavior can be found in 

mathematically simple systems.  These systems display 

behaviors so complex and unpredictable so as to merit the 

description "random."  Because of the complexity and number 

of calculations involved in studying chaotic systems, it 

has been only recently, thanks to the increase in 

computational power in the past twenty years, when chaos 

theory has truly flourished. 

The mathematical equations that model chaotic behavior 

are, paradoxically, exceedingly simple.  They are called 

"non-linear" equations.39  Linear equations——those whose 

solution lays on a straight line, having the form f(x) = ax 

+ b, where a and b are constants——exhibit simple, 

predictable behavior: the input is proportional to the 

output, and they have unique solutions.  Non-linear 

equations, on the other hand, have infinite solutions.  The 

key ingredient of non-linear equations is iteration: the 

                                                           
39J. Briggs and F. D. Peat, Turbulent Mirror (New York: 

Harper and Row, 1989), 23-24. 
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solutions are fed back into the equation's variables 

recursively.  Iteration allows these relatively simple 

mathematical systems to model the chaotic behavior of many 

natural processes.  The fashion in which mathematical 

systems are utilized in musical composition is through the 

mapping of their equations' numerical output to musical 

parameters.   

Chaos theory has fascinated composers, and many——such 

as Charles Wuorinen, Gary Lee Nelson, David Clark Little40, 

to name but a few——have adopted it as a tool for 

composition.  

 

 

Cellular Automata 

Another discipline that has recently been proven to 

give very fruitful results in music composition is Cellular 

Automata.41  Cellular automata were originally introduced in 

the mid-1960s by John von Neumann as a model for computer–

simulated biological self-reproduction.42  This model 

                                                           
 40D. C. Little, "Composing With Chaos; Applications of 
a New Science for Music," Interface 22(1) (1993): 23-51. 
 

41S. Wolfram, ed., Theory and Applications of Cellular 
Automata (Singapore: World Scientific, 1986). 
 

42J. von Neumann, Theory of Self-Reproducing Automata 
(Champain, IL: University of Illinois Press, 1966). 
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consisted of a two-dimensional grid of cells, in which each 

cell was allowed a number of different states.  Cells would 

change their states on the grid according to a predefined 

set of rules.  This set of rules takes into account the 

current state of the cells' immediate neighbors.  Starting 

with an initial configuration of cells——generally called 

generation 0——in which each cell may have any of the 

allowed states, the set of rules is applied to all cells on 

the grid, thus producing a new configuration of cells 

(generation 1) to which the set of rules is applied again, 

and so forth.  Depending on the number of allowed cell 

states and the rule set, different cellular automata can be 

generated.  Some of them exhibit great richness, while 

others die out quickly.  Many cellular automata manifest 

pattern propagation, in which a determined configuration of 

cells can move undisturbed throughout the matrix.  Certain 

types of cellular automata also show "self-reproducing" 

capabilities: under certain conditions, some cell 

configurations are able to regenerate themselves generation 

after generation.43  These characteristics, particularly 

pattern propagation, are very interesting from a 

compositional point of view.  Traditionally, composers have 

                                                           
43C. Langton, "Self-Reproduction in Cellular Automata," 

Physica D 10 (1984): 135-144. 
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employed pattern propagation intuitively: sequences are a 

good example of pattern propagation.  However, cellular 

automata algorithmic procedures applied to music allow 

pattern propagation to be formalized at a higher level.   

Cellular automata have already been proven to be a very 

fruitful for algorithmic composition.  Composer Eduardo R. 

Miranda, of SONY CLS, Paris, has developed a computer 

program for the PC, CAMUS, which maps two-dimensional 

cellular automata onto musical parameters.44  His piece 

Entre l’Absurde et le Mystère was composed with this 

program. 

 

L-Systems 

Another field of mathematics who has recently been 

introduced in algorithmic composition is L-Systems.  L-

systems were originally proposed by Aristid Lindenmayer in 

1968 as the basis for an axiomatic theory of development.45  

                                                           
44E. R. Miranda, "Cellular Automata Music: An 

Interdisciplinary Project," Interface 22 (1993): 3-21; E. 
R. Miranda, "Music Composition Using Cellular Automata," 
Languages of Design 2 (1994): 105-117. 
 

45A. Lindenmayer, "Mathematical Models for Cellular 
Interactions in Development, Parts I-II," Journal of 
Theoretical Biology 18 (1968): 280-315. 
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They were subsequently used to model living organisms.46  

Basically, L-Systems consist of a set of "substitution 

rules" recursively applied to an initial string of symbols, 

and interpreting the resulting string of symbols (usually 

more complex) as structural elements of the organism.  The 

substitution rules determine how each symbol in the current 

generation should be replaced.  Because of the very rich 

structures L-Systems generate, they can be a interesting 

source for algorithmic composition.  Some composers have 

already successfully applied L-System to composition, such 

as Gary Lee Nelson in his Summer Song for solo flute. 

                                                           
46A. Lindenmayer and P. Prusinkiewicz, The Algorithmic 

Beauty of Plants (New York: Springer, 1990). 



 

 45

Genetic Algorithms 

Genetic algorithms47 are one of the latest mathematical 

techniques applied to music composition48 as well as to 

sound synthesis.49  A genetic algorithm is a procedure 

which, in effect, searches a potentially vast solution 

space for an optimal solution to a given problem.   

Solutions are encoded as strings over a finite 

alphabet.  A fitness function (or objective function) is 

used to evaluate each string (solution.)  Bits and pieces 

of the fittest strings (solutions) are used to generate new 

strings (solutions.)  Each time step (or generation) of the 

algorithm produces a new population of possible solutions 

based on the population from the previous generation.  

                                                           
47J.R. Koza, Genetic Programming: On the Programming of 

Computers by Means of Natural Selection (Cambridge, MA: The 
MIT Press, 1992). 
 

48D. Goldberg and A. Horner, "Genetic Algorithms and 
Computer-Assisted Music Composition," in Proceedings of the 
1991 International Computer Music Conference (San 
Francisco: International Computer Music Association, 1991), 
479-482; D. Horowitz, "Generating Rhythms with Genetic 
Algorithms," in Proceedings of the 1994 International 
Computer Music Conference (San Francisco: International 
Computer Music Association, 1994), 142-143; J. Biles, 
"GenJam: A Genetic Algorithm for Generating Jazz Solos," in 
Proceedings of the 1994 International Computer Music 
Conference (San Francisco: International Computer Music 
Association, 1994), 131-137. 

 
49J. Beauchamp, A. Horner, and L. Haken, "Genetic 

Algorithms and Their Application to FM Matching Synthesis," 
Computer Music Journal 17(4) (1993): 17-29. 
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Genetic algorithms, when applied to music, follow these 

general procedures.  The strings (or solutions) correspond 

to musical entities, such as motives or even whole phrases.  

The initial population of solutions (generation 0) can be 

supplied by the composer or generated by the computer 

itself through stochastic means.  The fitness tests have to 

be necessarily supplied by the composer.  These determine 

which solutions (musical entities) "survive" and which 

"die."  When an optimal set of solutions is encountered——a 

process whose length depends on the initial population, the 

solution space and the fitness test——the program stops. 

Genetic algorithms incorporate techniques directly from 

natural genetics: 

 

• Natural selection: strings with a good fitness value 

survive from one generation to the next with high 

probability; strings with a poor fitness value fail with 

high probability. 

• Reproduction: two strings chosen via natural selection 

mate (via crossover, which picks a position within the 

strings at random and exchanges the information of the 

two strings) to produce new strings.  Musically, this is 

analogous to constructing a new phrase or motive from 

several others. 
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• Mutation: strings can undergo spontaneous changes (with 

small probability) to produce new strings (new musical 

entities) in a different part——that is, for a small 

subset——of the solution space. 

 

These operations require the use of probability 

functions and are, therefore, stochastic in their nature. 

 
 

Other Techniques 

 Other mathematical models that have been adopted for 

algorithmic composition in recent years include noise 

(specially the so-called 1/f noise or pink noise,) number 

theory (number series, the Morse-Thue sequence, etc.,) and 

fractals.  These will be explored in subsequent chapters.  

The preceding panoply of processes, issuing from the 

latter-day boom in computer science, constitute the most 

important methods used in algorithmic composition today.  

Undoubtedly, as computational power increases and new 

scientific disciplines flourish, existing algorithmic 

procedures will be further explored and new ones will be 

incorporated.  However, these techniques, this writer 

believes, should be always considered a mere tool at the 

composer's disposal.  The material they generate can be 

regarded as musical "prime matter" which can be later 
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modified, transformed and incorporated according to the 

composer's own aesthetic judgement.  Algorithmic methods in 

music should be used primarily as a source of inspiration, 

and not as a one-step musical solution. 
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CHAPTER III 

 
 

TECHNIQUES AND APPLICATION OF  

MATHEMATICAL MODELS IN MUSIC 
 
 

Mapping Techniques 

Transcribing the numerical output of an algorithm to 

musical events is done through a mathematical operation 

known as mapping.  Mapping consists of creating a one-to-

one correspondence between the algorithm's numerical output 

and a set of ordered musical events.  Musical events can be 

single pitches, motives, or even fully-fledge phrases.  For 

simplicity, in most examples we will consider musical 

events associated to pitch only. 

 Two types of mapping techniques will be used throughout 

this text: modulo-based mapping and normalized mapping.   

Although most processes can be applied any of these two 

types of mapping techniques, some are most appropriately 

transcribed using one specific mapping type. 
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Modulo-based Mapping 
 
 A modulo operation is a simple mathematical procedure 

performed between two whole numbers.  It consists of 

dividing the first number by the second and taking the 

reminder.  For instance 

 

10 mod 3 = 1, 

 

since the reminder of 10 divided by 3 is 1.  Put more 

generally, 

 

x mod y = n 

 

When applying this mapping method to a process' 

numerical output set, x represents the process's output and 

y the total number of elements in our ordered musical event 

set.  The result, n, is always a number between 0 and y-1, 

which corresponds to the index of the element in our 

musical event set.  Modulo-based mapping is best suited to 

processes in which the numerical output set grows without 

bound, such as in number series.  For processes in which 

the numerical output is bounded in very small intervals 

(such as the Logistic equation,) the modulo mapping is 

completely unpractical, since it takes into account only 
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the integral part of the process' output.  For these cases 

the best type of mapping is the normalized mapping. 

 

Normalized Mapping 

 This mapping method uses the following formula to make 

the correspondence between the algorithm's data and the 

ordered elements in the musical event set: 

  

 

Figure 1.  Formula used in normalized mapping 

 

where "value" is the current value of the process being 

mapped, "minval" is the minimum value in the process' data 

set, "maxval" is the maximum value, and "numevents" is the 

number of elements of our event set.  The brackets ([]) 

indicate to take only the integral part of the result, 

disregarding any decimals.  The normalized mapping method 

effectively maps the data set onto the interval [0, 1].  

The minimum and maximum values in the process' data set 

must be computed beforehand.  This mapping method is more 

appropriate for processes whose output is bound in small 
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intervals.  In addition, this method maps much more 

faithfully the contour (the way the numerical data behaves) 

onto the musical event set. 

 To show the differences among these two mapping schemes 

an example follows.  First, we will map the Logistic 

equation, ——which will be discussed in more depth later in 

this text——using both mapping techniques.  The mathematical 

formulation of this equation is as follows: 

  

xn+1 = xn*µ*(1-xn) 

 

The output of the Logistic equation is bound in the 

interval [0, 1].  Our musical event space will be the 

pitches of a chromatic scale from C4 to B5 (24 events): 

 

 

Figure 2.  Pitch event space 

 

 

A sequence of ten events is then generated using a value of 

µ = 3.57.   

 

The equation's numerical output is as follows: 
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0.892500        0.342519        0.803963        0.562655        0.878486 

0.381093        0.842024        0.474880        0.890247        0.348814 

 

 Applying the modulo mapping to the above values 

yields the following results: 

 

0       0       0       0       0       0       0       0       0 0 

 

which transcribes as follows: 

 

 

Figure 3.  Modulo-based mapping 

 

 Using the normalized mapping method yields the 

following sequence (we know beforehand that the maximum and 

minimum values of the algorithm are 1 and 0, respectively): 

 

21      8       19      13      21      9       20      11      21 8 

 

which transcribes as follows: 
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Figure 4.  Normalized mapping 

 

As we can readily see, the normalized mapping is more 

appropriate for this process in particular.   

 Because each process behaves differently, one must 

first analyze the numerical output to decide which mapping 

method is more suitable.  Some processes must be mapped 

using only one of the two methods, some others give 

satisfactory results using any of the two.  In the latter 

case, the decision is entirely up to the composer.  

 

 

Stochastic Algorithms 

 
Randomness and Probability Distributions  

Mathematically, a stochastic process is defined as a 

set of quantities randomly distributed.  Stochastic 

formulas are used by statisticians in data in order to 

detect patterns so that a more consistent description for 

that data can be achieved.1  In music, stochastic processes 

are used inversely——that is, to provide a structural 

                                                           
1K. Jones, "Compositional Applications of Stochastic 

Processes," Computer Music Journal 5(2)(1981): 45. 
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framework for the synthesis of collections of musical 

events. 

Stochastic music processes require random strings of 

numbers.  Randomness is something very difficult both to 

define mathematically and to recreate in a computer.  In a 

computer nothing can be truly random; a computer simulates 

randomness through complex mathematical procedures and 

hence the generated strings of random numbers are really 

"pseudo-random."  The process of random number generation 

on a computer is, in fact, totally deterministic.  What 

seems to be strings of random numbers are really small 

portions of a very vast cycle of numbers that repeat after 

a finite number of iterations.  Each new number of the 

sequence is created by applying a mathematical 

transformation to the previous number.  Random seeds are 

used to specify where to start in the sequence.  Identical 

seed values generate identical strings of pseudo-random 

numbers.   

In all forthcoming examples we will use one of the 

best random number generator functions available.2  This 

function generates strings of random numbers with a period 

of repetition larger than 1018.  When called, the function——

                                                           
2W. T. Vetterling, ed., Numerical Recipes in C (New 

York: Cambridge Univ. Press, 1997). 
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which we will call simply R——returns a random number in the 

interval [0,1.) 

Mapping strings of random numbers to musical events is 

a straightforward procedure.  It begins with the 

consideration of an event-set to which the mapping will be 

applied.  The elements of this collection could be any 

musical structure, from individual pitches, to short 

motives, to fully-fledged musical phrases.  For the sake of 

simplicity, the following example will concern only pitch.  

The composer would first decide upon a pitch-space, to be 

the set of pitches to be mapped to the random generator 

function.  This could be any collection of pitches——for 

instance, a two-octave chromatic scale from C4 to B5 (see 

Fig. 2.) 

This set contains 24 pitches, numbered 0 (C4) to 23 

(B5.)  The random number generator function——R——produces 

pseudo-random numbers between [0, 1.)  Since the output of 

the function is bounded in a small interval, the most 

appropriate mapping method is the normalized mapping.   

Because the minimum and maximum values of the function 

are 0 and 1 respectively, the mapping formula is equivalent 

to: 

Event No. = [R*24] 
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The result will always be a number between 0 and 23, which 

is precisely within the range of our pitch set.  Zero 

corresponds to C4, 1 to C#4, 2 to D4, and so forth.  

Applying this procedure 128 times to our example 

pitch-set we get the following sequence of notes 

(arbitrarily assigning sixteenths as note durations): 

 

 

Musical Example 1 
 

Any set of musical parameters would be mapped 

similarly.  In this particular example, all pitches in the 

set are equiprobable, that is to say, they all have the 

same probability of occurring.  This is in effect 

equivalent to using a 24-sided fair die to choose the 

pitches.  If all elements in our set have the same 

probability, we have an aleatoric process, in which all 

elements are equally probable to take place.  In aleatoric 

processes, sufficiently long sequences of generated 
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elements will show no discernible pattern (see Musical 

Example 1.)   

A step further consists in introducing probability for 

each element in our set.  Each element is assigned a 

"probability of being chosen."  This way we obtain a 

"weighed" set, where elements with a higher probability 

will have a greater chance to occur.  An example 

illustrates this point. 

 Two parameters, pitch and duration, will be mapped. 

For simplicity, the pitch set will be a one-octave 

chromatic scale from C4 to B4.  Let our duration set be as 

follows: 

 

{whole, half, quarter, eighth, sixteenth} 

 

Next, we assign the following probabilities to the 

ordered members of our sets: 

 
Element Probability Index 

C 
C# 

D 

D# 

E 

F 

F# 

G 

G# 

A 

A# 

B 

.17 

.02 

.07 

.03 

.15 

.12 

.01 

.16 

.08 

.10 

.02 

.07 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
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and 
 

 
Element Probability Index 

Whole 
Half 

Quarter 
Eighth 

Sixteenth 

.03 

.06 

.11 

.34 

.46 

0 
1 
2 
3 
4 

     
      
    
 

The probabilities can take any value between 0 and 1.  

The sum of the probabilities of all members should always 

equal 1.  An element e with a probability of, say, .20, 

means that 20% of the generated sequence of events is 

likely to be the element e.  In other words, for 

sufficiently large sequences, element e will occur 20% of 

the time.  Adding probability introduces a new step in the 

mapping process, which is as follows: 

 

1. Draw a random number r between [0, 1) 

2. Multiply r by the number of elements of our pitch 

set and take the integral part of the result: 

[r*12].  This gives a value n between 0 and 11, 

which corresponds to one of the elements of the set. 

3. Look up the probability value (Pn) for element n in 

the set. 

3.1 Draw a new random number r2. 
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3.2 Is r2 ≤ Pn ? If the answer is affirmative then 

continue, otherwise go to step 1. 

4. Accept the element. 

5. Follow steps 1 through 4 again for the duration set 

(5 elements in our example) and assign duration to 

previously selected pitch. 

6. Repeat until the desired number of elements have 

been chosen. 

 

Step 3.2 is the key here.  Because all possible values 

generated by the random number generator are equiprobable, 

the probability of any random number being equal or smaller 

to the probability of an element being chosen is the 

equivalent to the probability of that element being chosen, 

put symbolically: 

 

r2 ≤ Pn → n 

 

This process, known as the Monte Carlo method, can be 

used to determine if an element is selected or not.   

Applying it to our choice sets yields the following 

sequence: 
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Musical Example 2 

 

It is clear that the elements with high probabilities 

(such as pitch-classes C, E, and G, and sixteen note 

values) appear more often than elements with a lower 

probability.  For instance, in this sequence of 50 

elements, pitch-class C appears 9 times, or 18%, in 

accordance with its probability.  Likewise, there are 24 

sixteenths (48% of the note values,) which is also in 

accordance with its probability value. 

 Probability functions can be used to distribute 

probability values among the elements of our sets.  

Gaussian distribution, for instance, provides an 

appropriate framework.  Gaussian distribution3 is the most 

commonly observed in nature and the starting point for 

modeling many natural processes.  For instance, the 

                                                           
3Xenakis, Formalized Music, 14-15. 
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distribution of heights among a large population follows 

Gaussian distribution.  Gaussian distribution is defined 

mathematically as follows: 

 

Figure 5.  Formula for Gaussian distribution. 

 

Where µ is the mean of the distribution, σ is the 

variance, and e is the base of natural logarithms (the 

transcendental constant 2.718281828459...)  Gaussian 

probability distributions graphs exhibit a characteristic 

"bell" shape: 

 

Figure 6.  Gaussian distribution bell-shaped curve 

 

In musical Example 2 (above,) the probabilities were 

calculated——with the help of a computer program——according 

to Gaussian distribution: 
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Figure 7.  Pitch-class distribution in Musical Example 2 

 
 

Note how the distribution of probabilities resembles 

the bell shape characteristic of Gaussian distributions.   

In Musical Example 2, the highest probabilities were 

deliberately assigned to specific pitches——C, G, F, and E——

to give the feeling of a tonal center.   

Although Gaussian probability distribution is by far 

the most important, there are other types of probability 

distribution that can be incorporated in stochastic music.   

One of such is Poisson's probability distribution.4  

Many natural processes follow Poisson's law of probability 

distribution, such as radioactive decay, the number of 

failures in an electronic device——such as a hard drive——

                                                           
4Ibid., 12-13. 
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over a given time period.  In stochastic music, Poisson's 

law is useful to control the density (the number of 

sounds/events per a given unit of time.)  Given a mean 

density, λ, the probability of a particular density n is 

derived from Poisson's law, defined as follows: 

 

 

Figure 8.  Poisson distribution formula 

 

where λ is the mean density, n is any particular 

density and n! is n factorial (the product of all integers 

from 1 to n.) 

 Poisson's probability distribution is specially useful 

when dealing with large masses of sounds.  A typically 

applicable problem would be thus: given a sounds mass with 

a mean density of 3 sounds per second, what is the 

probability of a particular density of, say, 5 sounds per 

second?  Applying Poisson's law affords the following 

solution: 
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or approximately 0.1. 

 Applying probability distribution to sound events can 

provide them a with coherent structure, a structure which 

is, quite literally, borrowed directly from the laws of 

nature. 

 
Markov Chains 

Markov analysis studies a sequence of events and 

examines the propensity of one event to be followed by 

another.  Using this analysis, sequences of random but 

interrelated events can be generated.5 

In the processes studied so far, the probabilities for 

the occurrence of an event remained unchanged.  Each event 

of our set had a fixed, stationary probability.  Markov 

chains provide a more refined mechanism to control 

probabilities.   

Using Markov chains allows the composer to control 

sequences of events by making the probability of any 

particular event depend on the previous.  A Markov chain 

requires a matrix of probabilities, where the row of 

probabilities for one event is used to generate the next, 

                                                           
5Ibid., 43-109. 
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the row of probabilities of this new event is used to 

generate the next, and so forth. 

 The relationship between events in a Markov chain 

exhibit different properties according to how their 

probabilities are arranged in the matrix.  What follows is 

a brief description of these properties6: 

 

• Accessibility (ex→ey): An event ey is accessible to 

another event ex, if ex can be followed by ey. 

• Communicability (ex↔ey): Two events communicate if they 

are both mutually accessible.  Communication between 

events can be reflexive (if an event is accessible to 

itself,) symmetric (reciprocal accessibility between any 

two events,) or transitive (if event ex communicates with 

event ey, and ey communicates with event ez, then ex 

communicates with ez.) 

Events can be further structured into equivalence 

classes of communicating events.  Events in one equivalence 

class can not communicate with events in another 

equivalence classes, but events in one equivalence class 

may be accessible from other events in a different 

equivalence class.  Events in equivalence classes may be 

                                                           
6Jones, "Compositional Applications of Stochastic 

Processes," 47-48. 
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divided into to groups: recurrent events, which are events 

that are certain to occur at some point after they have 

occurred once; and transient events: events that have a 

probability of not recurring.  If an event is recurrent, 

all events with which it communicates within its class are 

also recurrent.  Analogously, all events that communicate 

with a transient event, are also transient.  Two types of 

equivalence classes can therefore be defined: recurrent 

classes, which contain recurrent events, and transient 

classes, which contain transient events.  Events in a 

recurrent class cannot access events in other classes.  

Because events can not communicate between classes, once 

the sequence of events has left a transient class, it can 

never return to it.  For the same reason, if a sequence 

enters a recurring class, it can no longer leave it.  

Recurrent classes form confined sets.  Markov chains must 

contain at least one recurrent class, they can not consist 

of only transient classes.  Several types of Markov chains 

can be defined according to the types of classes it 

contains:  

 

• Irreducible: Markov chains containing only one recurrent 

class, and no transient classes. 
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• Ergodic: Markov chains containing only one recurrent 

class and several transient classes. 

 

 To further clarify all this theory and to show how 

Markov analysis is applied in music composition, a 

practical example follows: 

 A Markov chain with 10 musical events creates an order 

10 matrix.  The event-relation diagram is as follows: 

 

 

Figure 9.  Diagram of classes 

 

Events are grouped in 5 classes: four transient 

(classes 1, 2, 3, and 4,) and one recurrent (class 5.)  The 

example, therefore, is an ergodic Markov chain.  Note also 
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how events 2, 3, 4, 6, and 7 show reflective communication.  

The correspondent probability matrix is as follows: 

Next Events 
Current  
Events 1 2 3 4 5 6 7 8 9 10 

1 0 1 0 0 0 0 0 0 0 0 

2 .45 .55 0 0 0 0 0 0 0 0 

3 0 .28 .16 0 .28 0 0 .28 0 0 

4 .16 0 0 .52 0 .16 0 0 .16 0 

5 0 0 0 0 0 .50 .50 0 0 0 

6 0 0 0 0 .66 .34 0 0 0 0 

7 0 .20 0 0 0 .70 .10 0 0 0 

8 .25 0 0 0 0 0 0 0 .75 0 

9 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 .70 .30 0 

 

The event space remains to be defined.  For this 

example, we will use events to construct a solo violin 

composition: 

Event 1  Event 2  

Event 3 Event 4  

Event 5 Event 6  

Event 7 Event 8  



 70

Event 9 Event 10  

 

The procedure to obtain a sequence of events according 

to the probability matrix is as follows: 

 

1. Randomly select a first event from the event list 

by drawing a number between 1 and the number of 

events. 

2. Draw a number randomly between 1 and the maximum 

number of events, r. 

3. In the matrix, check the probability setting of 

current event at column r, Pr. 

4. If Pr is nonzero, then: 

4.1 Draw a random number n between 0 and 1. 

4.2 if n ≤ Pr select event in column r as the next 

event (Monte Carlo method.) 

4.3 if Pr = 0 or n > Pr then to back to step 2 (no 

next event selected yet.) 

5. Repeat from step 2 until the desired number of 

events in the sequence has been reached. 
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Applying this process to our event space, three possible 

sequences of 20 events each were generated: 

 

s1 = e7,e6,e5,e6,e6,e6,e6,e5,e6,e5,e7,e6,e5,e7,e6,e6,e5,e7,e2,e1 

s2 = e3,e3,e8,e9,e10,e8,e9,e10,e9,e10,e8,e9,e10,e8,e1,e2,e2,e2,e2,e1 

s3 = e4,e4,e4,e4,e4,e6,e6,e5,e7,e2,e2,e2,e2,e1,e2,e2,e1,e2,e2,e1 

 

Transcribed to music, they become: 

 

 

Musical Example 3.  Music from sequence s1 
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Musical Example 4.  Music from sequence s2 

 

 

Musical Example 5.  Music from sequence s3 

 

Comparing these generated sequences with the event 

diagram of the Markov chain clearly shows how the different 

classes affect the musical output.  For instance, once a 
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process enters a recurrent class (in this case class 5, 

with contains events 1 and 2,) it never leaves it. 

Musically, this yields a repetition of events 1 and 2. 

 A very interesting kind of Markov chain is the so-

called random-walk procedure.  An event ex in a random-walk 

procedure can only by followed by one of its neighboring 

events, ex-1 or ex+1.  The matrix for this kind of procedure 

has nonzero probability entries on either side of its main 

diagonal and zeroes everywhere else.  Using our example, 

the matrix would be as follows: 

 

Next Events 
Current 
Events 1 2 3 4 5 6 7 8 9 10 

1 0 .50 0 0 0 0 0 0 0 .50 

2 .50 0 .50 0 0 0 0 0 0 0 

3 0 .50 0 .50 0 0 0 0 0 0 

4 0 0 .50 0 .50 0 0 0 0 0 

5 0 0 0 .50 0 .50 0 0 0 0 

6 0 0 0 0 .50 0 .50 0 0 0 

7 0 0 0 0 0 .50 0 .50 0 0 

8 0 0 0 0 0 0 .50 0 .50 0 

9 0 0 0 0 0 0 0 .50 0 .50 

10 .50 0 0 0 0 0 0 0 .50 0 

 

 

In this case, a 50% probability has been assigned to 

each event.  Note also how event 1 can be preceded by event 

10, and event 10 can be followed by event 1, thus creating 
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a circular random-walk.  If we apply this new process to 

our event space, we get the following sequences: 

 

s4 = e6,e7,e6,e5,e4,e3,e4,e3,e2,e3,e2,e3,e2,e1,e10,e9,e10,e1,e2,e3 

s5 = e2,e3,e2,e1,e2,e1,e10,e9,e8,e7,e6,e7,e8,e9,e10,e9,e10,e1,e10,e9 

 

which transcribe musically as follows: 

 

 

Musical Example 6.  Music from sequence s4 
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Musical Example 7.  Music from sequence s5 

 

Markov chain stochastic processes can be extended in a 

number of interesting ways.  One is to increase the order 

of the Markov chain.  For instance, three-dimensional 

Markov chains can be used to control the probability of 

occurrence of an event depending on the two preceding 

events.  This increase of dependence between events allows 

the composer to construct more sophisticated structure 

patterns.  Furthermore, we could use a four-dimensional 

Markov chain to make events depend on the three preceding 

ones.  In general, events in a nth-dimensional Markov chain 

depend on their n-1 preceding events.  Needless to say, 

very high-order Markov chains can become extremely complex 

and will require more computational power. 
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 Another way in which Markov chains could be extended is 

to consider events not as single, predetermined entities, 

but to control them by a set of parameters which can 

themselves be structured stochastically with Markov chains.7  

For instance, events could be sound clouds where their 

density, pitch range, dynamic, etc. are controlled by a set 

of Markov chains.  This allows the composer to create 

super-structures of great coherence. 

 

 

Music from Chaos 

 Chaotic systems can be broadly categorized in two 

classes: conservative, in which energy is preserved, and 

dissipative in, in which energy radiated to the 

environment.8  The great majority of natural phenomena 

represented by these systems are dissipative.  Because 

dissipative systems loose energy continuously, their phase 

space——that is, the spatial location where the system 

evolves——is transformed towards a definite state (usually 

going first through an initial transitory stage) known as 

                                                           
7Ibid., 49-50. 
 

 8R. Bidlack, "Chaotic Systems as Simple (but Complex) 
Compositional Algorithms," Computer Music Journal 16(3) 
(1992): 33. 
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the attractor of the system.  The attractor of a system can 

be a single point (limit-point attractor,) such as in 

pendulum motion; a set of points (cycle attractor,) among 

which the orbits of the system oscillate; or a complex 

shape, usually of fractal dimension (chaotic or strange 

attractor.)  The phase space of conservative systems, 

however, is always constant. 

 The mathematical systems which model chaos are either 

iterated systems, formulated with non-linear difference 

equations, in which the orbits on the attractors consist of 

discrete points, or continuous flows, formulated with non-

linear differential equations, in which the orbits are 

continuous, unbroken curves.9 

 In subsequent sections we will study the mapping onto 

musical event sets of a one-dimensional iterated map: the 

Logistic equation; three two-dimensional, dissipative 

iterated maps: the Hénon map, Martin's attractor, and 

Gingerbread Man attractor; and two tree-dimensional chaotic 

systems: an iterated map, Pickover attractor, and a 

continuous flow, Rössler attractor. 

 

 
 

 
                                                           

9Ibid., 34. 
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One-dimensional Chaotic Systems 
 

Transcribing chaotic systems to music implies 

constructing a mapping process between the system's 

mathematical description and musical parameters.  Since 

chaotic systems are modeled with non-linear equations, the 

process consists in mapping the numerical output of these 

equations onto a musical event space. 

 
The Logistic Equation 

The logistic Equation was first derived by Belgian 

sociologist and mathematician Pierre-François Verhulst in 

1845 as he was trying to model population growth 

mathematically.10  More than a century later, in 1976, R. 

May discussed its mathematical implications.11  The Logistic 

Equation is formulated as follows: 

 

xn+1 = xn*µ*(1-xn) 

 

The key parameter is µ.  This parameter, which can take 

any value in the interval [0, 4] determines the behavior of 

the equation in the long run, and thus, the type of musical 

                                                           
10Briggs, Turbulent Mirror, 56-57. 

 
11R. May, "Simple Mathematical Models with very 

Complicated Dynamics," Nature 261 (1976): 459-467. 
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material that can be obtained from it.  The numerical 

output of this equation is always a value in the interval 

[0, 1].   

To map the logistic equation to musical parameters we 

must first define an event space onto which the numerical 

output of the equation will be mapped.  This musical event-

space is an ordered set of musical entities, which could be 

a collection pitches, durations, motives, etc.  Let L be 

the numerical output of the equation and n0 the number of 

elements in our event space.  Since L is always a number in 

the interval [0, 1], then the mapping is performed using 

the normalized mapping method, as follows: 

 

E = INT(L*n0) 

 
The result (E) will be the index of the element in out 

ordered event set.   

The output of the Logistic Equation depends on the 

value chosen for µ.  For values of µ < 3, the output quickly 

stabilizes to one value.  As we increase the value of µ, the 

output stabilizes in 2 values, then 4, 8, 16...until we 

reach the critical point at µ = 3.569946, where the output 

first becomes unpredictable.  For values of µ between 3.57 

and 4 (the maximum allowed value) the output is most of the 



 80

time chaotic, but within this chaos, "islands of order" 

emerge, where the output oscillates between a specific 

number of values.  Such a value of µ is 3.83, where the 

output oscillates between 3 values.12   

To illustrate this, we will map several µ values of the 

Logistic Equation.  For simplicity, our event space will be 

the pitches in a two-octave chromatic scale from C4 to B5 

(see Fig. 2) ordered from 0 (C4) to 23 (B5.) 

 For µ = 3.3, the equation output settles oscillating 

between two values: 0.479427 and 0.823603, which transcribe 

musically to 

 

 

Musical Example 8 

 

For µ = 3.5 it oscillates between 4 values: 0.382820, 

0.500884, 0.826941 and 0.847977: 

 

 

Musical Example 9 

                                                           
12Briggs, Turbulent Mirror, 56-57. 
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Finally, for µ = 4, it wanders chaotically between all 

possible values between 0 and 1.  The musical transcription 

shows no discernible pattern: 

 

 

 

Musical Example 10 

 

In fact, the output of the logistic equation for a 

value of µ = 4 is indistinguishable from a randomly 

generated sequence of numbers, although it is completely 

deterministic.  Note the resemblance of the musical output 

of Musical Example 10 and that of Musical Example 1, 

generated from a sequence of random numbers.  

So far we have been working with specific values of µ.  

We can have a more general sense of the chaotic and orderly 

behavior of the logistic equation by making a "map" of 

continuos values of µ.  When plotted, it looks as follows: 
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Figure 10.  Bifurcation diagram of the Logistic 
equation for continuous values of µ. 

 

 

This map shows how the output of the equation behaves 

for increasing values of µ.  The dark regions in the picture 

correspond to the chaotic regions where the equation's 

output fluctuate wildly.  Note how among these regions 

there are small windows of order (white bands.)  The map 

also shows something common to many chaotic attractors and 

fractals: self-similarity at all scales. 

A musical rendition of the logistic equation 

bifurcation diagram can be achieved by mapping sequences of 

increasing values of µ  and adding then sequentially.  The 

following musical example was constructed by mapping 30 
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sequences of 16 values each for increasing values of µ (2.9 

to 4.0): 

 

 
Musical Example 11 

 
 
 

Observe how the features of the map are reflected 

musically: it starts orderly with several 2-note cycles, 

little by little it departs from order until it reaches 

total chaos (at measure 7.)  It wanders chaotically for a 

while, but suddenly there is an outburst of order at 
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measure 11: a 3-note cycle.  This corresponds to a 3-cycle 

value for µ = 3.83 (it is clearly seen in the map as a white 

vertical band towards to right, see Fig. 10.)  Another 

chaotic region follows this 3-note cycle, followed by 

another window of order at the end of measure 14 (a 4-note 

cycle,) followed by chaos once again (µ = 4.) 

 Aside from the logistic map, there are many other 

nonlinear equations that can be mapped to musical events in 

a similar way.  Another of such equations which produces 

interesting results⎯with a  behavior similar to that of the 

Logistic equation⎯is 

 

Xn = µ(3Xn-1-(4Xn-1)3) 

 

This equation was derived by E. Lorenz as part of his 

research in climatology.13  The parameter µ can take any 

value between [0, 1] and determines the behavior of the 

equation's output. 

Each of these has its own characteristic 

"fingerprint," which transcribes musically when mapped. 

                                                           
13E. N. Lorenz, "Deterministic Nonperiodic Flow," 

Journal of the Atmospheric Sciences 20 (1963): 130-141. 
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Attractors from Two-dimensional Chaotic Maps 

In this section we will study three two-dimensional 

iterated maps and how they are mapped to musical event 

sets.  These attractors are Hénon Map, the Gingerbread Man 

attractor and Barry Martin attractor. 

The Hénon map is named after its discoverer, Michel 

Hénon, an astronomer at the Nice Observatory in France.14  

It is a chaotic orbit in two dimensions.  Although it is 

made entirely of lines, orbits on this attractor do not 

flow continuously, but jump from one location to another in 

the attractor.  The Hénon attractor has an infinite amount 

of structure.  Successive magnifications prove an ever 

increasing degree of detail.  It is defined mathematically 

by the following iterated equations: 

 

Xn+1 = 1 + Yn - a*Xn2 

Yn+1 = b*Xn, 

X0 = Y0 = 0, a = 1.4, b = 0.3 

 

When plotted, this chaotic attractor looks as follows: 

 

                                                           
14M. Hénon, "A two-dimensional Mapping with a Strange 

Attractor," Communications in Mathematical Physics 50 
(1976): 69-77.  
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Figure 11.  Hénon attractor 

 

The Gingerbread Man attractor is another two-

dimensional iterated map.  It was proposed by R. Devaney in 

1988.15  It is defined by the following set of equations: 

 

Xn+1 = 1 - Yn + |Xn| 

Yn+1 = Xn 

 

where |Xn| is the absolute value of Xn and X0 = -0.1, Y0 = 0.  

When plotted, this attractors looks as follows: 

 

                                                           
15H. O. Peitgen and D. Saupe, eds., The Science of 

Fractal Images (Berlin: Springer, 1988), 149. 
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Figure 12. Gingerbread Man attractor 

 

Lastly, the Martin attractor, proposed by Barry Martin 

of Aston University in Birmingham, England, and first 

discussed by A. K. Dewdney in 198616, is a two-dimensional 

orbit defined by the following iterated equations: 

 

Xn+1 = Yn- sin(Xn) 

Yn+1 = a - Xn 

Y0 = X0 = 0 

 

where a is the controlling parameter.  We will use a value 

of a = π (3.1415926...)  Barry Martin attractor looks as 

follows: 

                                                           
16A. K. Dewdney, "Computer Recreations," Scientific 

American (September 1986): 78-80. 
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Figure 13.  Martin attractor 

 

For consistency, all mappings will use the same event 

space: a one-octave chromatic scale from C5 to B5. 

Because these are two-dimensional iterated maps, from 

each iteration of the equations, we get a new value for Xn 

and Yn.  This allows for different mapping alternatives.  

One possibility is to combine both coordinates in one 

value: the distance from the origin of coordinates to the 

point (Xn, Yn) on the attractor.  This value is given by the 

following formula: 

 

√(Xn2 + Yn2) 
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In the final transcription to music, the repeating 

pitches are tied.  Modulo-based mapping was used in all 

subsequent examples. 

 A sequence of 160 events (pitches) were generated from 

each attractor (sixteenths were chosen arbitrarily for the 

duration of the pitches in this case):  

 

 

 

Musical Example 12.  Music from Hénon attractor 
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Musical Example 13.  Music from Gingerbread Man attractor 

 

 

 

 

Musical Example 14.  Music from Martin attractor 
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The following study of these melodies will reveal they 

are not as random as they may seem at first.  First, we 

calculate the frequency of each pitch: 

 

Music from Hénon attractor: 

Pitch Class  Number of occurrences Deviation from mean (13) 

C   15    +2 
C#   8    -5 

D   12    -1 
D#    18    +5 
E   20    +7 
F   13     0 
F#   8    -5 
G   23    +10 
G#   13     0 
A   7    -6 
A#   5    -8 
B   18    +5 
 
 
Music from Gingerbread man attractor: 

Pitch Class  Number of occurrences Deviation from mean (13) 

C   6    -7 
C#   11    -2 

D   9    -4 
D#    13     0 
E   16    +3 
F   19    +6 
F#   20    +7 
G   17    +4 
G#   16    +3 
A   11    -2 
A#   11    -2 
B   11    -2 
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Music from Martin attractor: 

Pitch Class  Number of occurrences Deviation from mean (13) 

C   26    +13 
C#   20    +7 

D   13     0 
D#    22    +9 
E   12    -1 
F   15    +3 
F#   4    -9 
G   11    -2 
G#   9    -4 
A   4    -9 
A#   12    -1 
B   12    -1 
 

 

It is evident from these tables that some pitches 

predominate over others.  In a truly random collection of 

pitches, all pitches would have the same frequency.  Does 

this frequency of occurrence tell us anything about their 

probability distribution? Let us rearrange them another 

way: 

Hénon sequence: 

Frequency 5 8 12 13 15 18 23 20 18 13 8 7 
Pitch Class A# C# D G# C B G E D# F F# A 
 

Gingerbread Man sequence: 

Frequency 6 11 11 13 16 19 20 17 16 11 11 9 
Pitch Class C C# A D# E F F# G G# A# B D 
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Martin sequence: 

Frequency 4 11 12 15 20 26 22 13 12 12 9 4 
Pitch Class F# G B F C# C D# D A# E G# A 
 

We have seen this type of probability distribution 

before: it is the Gaussian distribution.  It is remarkable 

that all three sequences exhibit this type of probability 

distribution.  

Observe also that the collection of predominating 

pitches (the ones with a high probability of occurrence) is 

different in each of the sequences (and will be, in fact, 

in any sequence derived from a different attractor.)  This 

gives unique characteristics to each sequence.   

Pitch content is not the only remarkable quality of 

these sequences.  After all, we could easily construct 

random sequences with Gaussian distribution (see Musical 

Example 2) in which the pitch probability is weighed.  The 

attractors from which these sequences are derived reveal a 

high degree structure, which must, in some way, be 

transferred to their musical transcription.  Looking at the 

sequence from Hénon attractor, we discover that certain 

patterns of pitches recur: 
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 (End of measure 9, beginning of 10) 

 (End of m. 6, beginning of 7) 

 (End of m. 4, beginning of 5) 

 

 

(End of m. 4, beginning of 5) 

(m. 10) 

 

 

(m. 1, beginning of m. 2) 

(End of m. 5, beginning of 6) 

 

Observe that patterns are not repeated exactly the 

same.  A few pitches may change, but their contour similar. 

The sequence derived from Martin attractor also shows 

patterns of repeating pitches: 
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(mm. 1 and 2) 

(mm. 9 and 10) 

 

 

(end of m. 6) 

(end of m. 8 and beginning of 9) 

 

 

And so does the Gingerbread man attractor sequence: 

       

(mm. 9, 2, 3, 4, end of 3 and beginning of m. 4) 

 

Note how these small cells appear in inversion, 

retrograde, augmentation, etc.  There is even an instance 

of a non-retrogradable sequence of pitches! 

 

(end of m. 5 and m. 6) 
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The intervalic relationship between pitches is also 

different in all three examples.  In the sequence derived 

from Hénon attractor there seems to be a intertwining 

between small and large intervals (seconds and thirds and 

fourths and up.)  This, in fact, resembles some of the 

visual representation of the attractor, which consists of 

lines separated at different distances.  In Martin 

attractor there seems to be a predominance of larger 

intervals (fourths and sixths specially) creating thus a 

more disjunct melodic outline.  In Gingerbread Man sequence 

the opposite holds true: smaller intervals predominate 

(minor and major seconds and minor thirds) and the melodic 

contour is more conjunct.  In a purely random sequence all 

pitches, intervalic relationships would have the same 

probability of occurrence and no patterns will be evident.  

On the contrary, sequences derived from these chaotic 

attractors show structure and recognizable patterns.   

Another way of mapping two-dimensional maps is to map 

each coordinate to a different musical parameter (such as 

pitch and rhythm.)  We can map, for instance, the X 

coordinate to a pitch event space and the Y coordinate to a 

rhythmic set, or use the same coordinate to map both event 

sets.   
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To demonstrate these alternative mappings, we will map 

the same three iterated maps onto two distinct event spaces 

(pitch and rhythm) using the values of the X and Y 

coordinates.  Our pitch space will be a two-octave 

chromatic scale from C4 to B5 (24 elements)  The rhythmic 

event space will consist of 5 values: {16th, 8th, dotted 8th, 

quarter, and quarter tied to 16th}.  Normalized mapping was 

used this time.  In order to apply this mapping type, the 

maximum and minimum values of X and Y were computed 

beforehand within a set of ten million iterations of the 

equations.  The generated sequences follow: 
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Musical Example 15.  Music from the Hénon attractor.  Pitch 

mapped to X coordinate.  Duration to Y coordinate. 
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Musical Example 16.  Music from Hénon attractor.  Pitch 

mapped to Y coordinate.  Duration to X coordinate. 
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Musical Example 17.  Music from Martin attractor.  Pitch 

mapped to X coordinate.  Duration to Y coordinate. 
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Musical Example 18.  Music from Martin attractor. Pitch 

mapped to Y coordinate.  Duration to X coordinate. 
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Musical Example 19.  Music from Gingerbread attractor. 

Pitch mapped to X coordinate.  Duration to Y coordinate. 
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Musical Example 20.  Music from Gingerbread attractor. 

Pitch mapped to X coordinate.  Duration to Y coordinate. 

 

Each attractor generates different sequences even 

though they are all mapped to the same event spaces.  It is 

interesting to note that, within the same attractor, the 

two different mapping schemes (pitch mapped to X, duration 

to Y, and viceversa) generate very similar sequences.  This 

is particularly evident in the sequences generated from 

Hénon attractor (Musical examples 15 and 16.)  This 

attractor generates almost the same pitches and durations 

from both coordinates.  Starting from the second pitch, 

Musical Example 16 has the same sequence of pitches than 
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Musical Example 15.  Similarly, the durations are identical 

starting from the third value in Musical Example 15 and the 

second value in Musical Example 16.  This is a consequence 

of the formulation of the equations, in which coordinate Y 

is just the previous value of X scaled by parameter b. 

The following table of values from the Hénon attractor 

clarifies this point: 

 

 
Figure 14.  Table of iteration values for Hénon attractor 

 

The first two columns show the values of X and Y from 

ten successive iterations (from 100 to 109.)  The next two 

columns show the result of dividing the absolute values of 

two successive iterations from each coordinate (iterations 

100/101, 101/102, and so forth.)  Note that the values 

connected by the arrows are almost identical.  They differ 

by only one part in a thousand in average.  This difference 

is a consequence of the rounding-off errors that inevitably 
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accumulate from iteration to iteration in the computer 

calculations. 

Mathematically speaking, the values of both X and Y 

have the same amount of scaling.  A simpler example 

elucidates this concept further: 

 

1 2 4 8 16 32 64 128 256 512 ... 

1.5 3 6 12 24 48 96 192 384 768 ... 

 

 The above two series, although different at first 

sight, have the same amount of scaling.  If we divide the 

nth term by the n+1th term in both series, we get the same 

values: 

 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 ... 

 

 The same is true for Martin and Gingerbread Man 

attractors, although the amount of scaling between X and Y 

coordinates differs from that of Hénon's. 

A study of the number of occurrences of the elements in 

our event spaces (pitch and duration) reveals more about 

the structure of these sequences.  The following tables 

were computed from a set of ten million iterations of the 

equations. 
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 Hénon Attractor 

 Pitch mapped to X 
coordinate.  Duration to Y 
coordinate 

Pitch mapped to Y 
coordinate.  Duration to X 
coordinate 

Pitch 
class 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

C4  
C#4 
D4  
D#4  
E4  
F4  
F#4  
G4  
G#4  
A4  
A#4  
B4  
C5  
C#5  
D5  
D#5  
E5  
F5  
F#5  
G5  
G#5  
A5  
A#5  
B5   

290370 
225702 
224906 
306453 
245163 
201591 
289693 
395089 
359682 
278250 
290170 
254934 
235108 
341939 
444934 
670898 
570592 
629198 
817871 
448353 
464978 
579705 
621368 
813051 

2.90 
2.26 
2.25 
3.06 
2.45 
2.02 
2.90 
3.95 
3.60 
2.78 
2.90 
2.55 
2.35 
3.42 
4.45 
6.71 
5.71 
6.29 
8.18 
4.48 
4.65 
5.80 
6.21 
8.13 

290370 
225702 
224906 
306453 
245163 
201591 
289693 
395089 
359682 
278250 
290170 
254934 
235108 
341939 
444934 
670898 
570592 
629198 
817871 
448353 
464978 
579705 
621368 
813051 

2.90 
2.26 
2.25 
3.06 
2.45 
2.02 
2.90 
3.95 
3.60 
2.78 
2.90 
2.55 
2.35 
3.42 
4.45 
6.71 
5.71 
6.29 
8.18 
4.48 
4.65 
5.80 
6.21 
8.13 

Duration No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

 
 
 
 
+ 

1250714 
 
1465888 
 
1351970 
 
3100786 
 
2830639 

12.51 
 
14.66 
 
13.52 
 
31.01 
 
28.31 

1250714 
 
1465888 
 
1351970 
 
3100786 
 
2830639 

12.51 
 
14.66 
 
13.52 
 
31.01 
 
28.31 
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  Martin Attractor 

 Pitch mapped to X 
coordinate.  Duration to Y 
coordinate 

Pitch mapped to Y 
coordinate.  Duration to X 
coordinate 

Pitch 
class 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

C4  
C#4 
D4  
D#4  
E4  
F4  
F#4  
G4  
G#4  
A4  
A#4  
B4  
C5  
C#5  
D5  
D#5  
E5  
F5  
F#5  
G5  
G#5  
A5  
A#5  
B5   

30738 
79252 
71072 
65800 
273136 
376221 
380298 
815178 
964800 
829554 
593017 
520917 
521173 
591235 
830851 
965123 
814963 
380502 
376152 
273143 
65853 
71065 
79231 
30724 

0.31 
0.79 
0.71 
0.66 
2.73 
3.76 
3.80 
8.15 
9.65 
8.30 
5.93 
5.21 
5.21 
5.91 
8.31 
9.65 
8.15 
3.81 
3.76 
2.73 
0.66 
0.71 
0.79 
0.31 

30725 
79230 
71065 
65853 
273143 
376152 
380502 
814963 
965123 
830851 
591235 
521173 
520918 
593017 
829554 
964800 
815178 
380298 
376221 
273136 
65800  
71072 
79252 
30737 

0.31 
0.79 
0.71 
0.66 
2.73 
3.76 
3.81 
8.15 
9.65 
8.31 
5.91 
5.21 
5.21 
5.93 
8.30 
9.65 
8.15 
3.80 
3.76 
2.73 
0.66 
0.71 
0.79 
0.31 

Duration No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

 
 
 
 
+ 

455818 
 
3152943 
 
2782698 
 
3152779 
 
455760 

4.56 

31.53 

27.83 

31.53 

4.56 

455761 
 
3152779 
 
2782697 
 
3152943 
 
455818 

4.56 

31.53 

27.83 

31.53 

4.56 

  
 

 

 

 



 108

 Gingerbread Man Attractor 

 Pitch mapped to X 
coordinate.  Duration to Y 
coordinate 

Pitch mapped to Y 
coordinate.  Duration to X 
coordinate 

Pitch 
class 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

C4  
C#4 
D4  
D#4  
E4  
F4  
F#4  
G4  
G#4  
A4  
A#4  
B4  
C5  
C#5  
D5  
D#5  
E5  
F5  
F#5  
G5  
G#5  
A5  
A#5  
B5   

160810 
474314 
555051 
433238 
372033 
463095 
598465 
583230 
489283 
538638 
631876 
570111 
571833 
637424 
799149 
812399 
467700 
149945 
96399 
82186 
106832 
140480 
140680 
124663 

1.61 
4.74 
5.55 
4.33 
3.72 
4.63 
5.98 
5.83 
4.89 
5.39 
6.32 
5.70 
5.72 
6.37 
7.99 
8.12 
4.68 
1.50 
0.96 
0.82 
1.07 
1.40 
1.41 
1.25 

160810 
474314 
555051 
433238 
372033 
463095 
598465 
583230 
489283 
538638 
631876 
570111 
571833 
637424 
799149 
812399 
467700 
149945 
96399 
82186 
106832 
140480 
140680 
124663 

1.61 
4.74 
5.55 
4.33 
3.72 
4.63 
5.98 
5.83 
4.89 
5.39 
6.32 
5.70 
5.72 
6.37 
7.99 
8.12 
4.68 
1.50 
0.96 
0.82 
1.07 
1.40 
1.41 
1.25 

Duration No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

 
 
 
 
+ 

1915379 

2525412 

2937546 

2043623 

577874 

19.15 

25.25 

29.38 

20.44 

5.78 

1915379 

2525412 

2937546 

2043623 

577874 

19.15 

25.25 

29.38 

20.44 

5.78 

  
 

It is obvious from these tables that some events 

(pitches and durations) predominate over others.  In Hénon 

attractor, for instance, pitch-classes F#5 and B5, followed 

by D#5, F5, and A#5 have a much higher rate of occurrence 
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than, say, C4 or F4.  Likewise, quarters and quarters tied 

to sixteenths occur more often than the rest of durations.  

Note that both mapping schemes (pitch mapped to X, duration 

to Y, and viceversa) generate the same occurrence values.  

This is a consequence of the scaling between the values of 

X and Y, as explained earlier. 

The differences in event occurrence is even more 

dramatic in Martin attractor.  Here, pitch-classes G4, G#4, 

A4, D5, D#5, and E5 account for 52.21% of all values.  

Furthermore, the distribution of values is structured with 

striking symmetry, as is evident in the following graph 

(percentage values were rounded to the nearest integer): 

 

 

Figure 15.  Pitch distribution in Martin attractor 

 

This is a reflection of the attractor's perfectly 

symmetrical shape (see Fig. 13.)  The same is true for 
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durations.  As with Hénon attractor, both mapping schemes 

generate the same occurrence values. 

Lastly, Gingerbread Man attractor's occurrence values 

also differ from those of Martin and Hénon attractors.  The 

bulk of pitch occurrence is distributed between pitch 

classes C#4-D#5, with a much lower frequency of occurrence 

for pitch-classes C4 and F5-B5.  Duration occurrence also 

shows the same pattern: eighths, dotted eighths and 

quarters have a higher frequency of occurrence than 

sixteenths and quarters tied to sixteenths.  The 

Gingerbread Man attractor also produces the same occurrence 

values from both mappings, again a consequence of the 

scaling of the values of successive iterations of the X and 

Y coordinates. 

A rearrangement of the occurrence values reveals they 

are arranged according to the Gaussian probability 

distribution, as in Musical Examples 12-14: 
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Figure 16.  Pitch distribution in Hénon attractor 

 
 
 
 

 
Figure 17. Pitch distribution in Martin attractor 

 

 
Figure 18. Pitch distribution in Gingerbread Man attractor 
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The percentage values in the above graphs were rounded 

to the nearest integer.  This makes the contour of graphs 

seem more bumpy than they really are.  Although only pitch 

occurrence values are shown, duration values also follow 

the same distribution. 

It is important to realize that these event occurrences 

values may not be immediately obvious in the generated 

sequences (Musical Examples 15-20.)  The reason is that 

only 200 iterations of the equations were mapped.  This 

sample space is to small to show the overall behavior of 

the attractors.  However, they are sufficient to 

demonstrate the structures these attractors yield, as well 

as the differences among them. 

 

 

Attractors from Three-dimensional Chaotic Maps 

Three-dimensional attractors exist in three-dimensional 

space.  Their equations have, consequently, three 

variables.  Each point in the attractor is expressed by 

three coordinates (X, Y, Z.)  Each of these coordinates can 

be mapped to a different musical event space (such as 

pitch, rhythm and dynamic) in the same manner as with two-

dimensional attractors.  As an example, we will study two 
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three-dimensional attractors: Rössler attractor, and 

Pickover attractor. 

 Pickover attractor is an iterated map in three-

dimensions proposed by Clifford A. Pickover.17  It is 

formulated by the following equations: 

 

xn+1 = sin(a*yn) - zn*cos(b*xn) 

yn+1 = zn*sin(c*xn) - cos(d*yn) 

zn+1 = sin(xn) 

 

where a, b, c and d are the controlling parameters.  

Default values for these parameters are 

 

a = 2.24;  b = 0.43;  c = -0.65;  d = -2.43 

 

When plotted, this function generates the following 

attractor: 

                                                           
17C. A. Pickover, "Million-Point Sculptures," Computer 

Graphics Forum 10(4) (1991): 333-336. 
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Figure 19.  Pickover attractor 

 

Unfortunately, one dimension is lost as the image is 

printed in the two-dimensional surface of paper. 

We will map each coordinate X, Y, Z to three different 

musical event sets:  a pitch set (a two-octave chromatic 

scale from C4 to B5,) a rhythmic set, {16th, 8th, dotted 8th, 

quarter, and quarter dotted to 16th}, and a dynamic set, 

{ff, mf, mp, pp}.  In the following mapping scheme, pitch 

was mapped to the Y coordinate, rhythm to the X coordinate 

and dynamic to the Z coordinate.  Normalized mapping was 

employed.  As with two-dimensional attractors, the maximum 

and minimum values of X, Y, and Z were precomputed from a 

set of ten million iterations of the equations.  The 

resulting sequence is as follow: 
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Musical Example 21.  Music from Pickover attractor.  Pitch 

mapped to Y coordinate, duration to Y coordinate, dynamic 

to Z coordinate. 

 

Dynamics are represented by four lines of varying 

length, shown immediately below the notes.  The longest 

corresponds to ff, the shortest to pp. 
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By assigning different coordinates to the event spaces, 

different mappings can be applied to the same attractor.  

In the following mapping of the same attractor, pitch was 

assigned to the X coordinate, rhythm to Z, and dynamic to 

Y: 

 

Musical Example 22.  Music from Pickover attractor.  Pitch 
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mapped to X coordinate, duration to Z coordinate, dynamic 

to Y coordinate. 

What follows is a table of event occurrence values of 

both mapping schemes. 

 

 Pickover Attractor 

 Pitch mapped to Y 
coordinate.  Duration to X 
coordinate.  Dynamic to Z 
coordinate 

Pitch mapped to X 
coordinate.  Duration to Z 
coordinate.  Dynamic to Y 
coordinate 

Pitch 
class 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

C4  
C#4 
D4  
D#4  
E4  
F4  
F#4  
G4  
G#4  
A4  
A#4  
B4  
C5  
C#5  
D5  
D#5  
E5  
F5  
F#5  
G5  
G#5  
A5  
A#5  
B5   

241536 
297092 
246241 
212484 
267236 
442227 
367935 
325578 
312117 
289991 
286410 
293875 
310055 
324552 
372221 
339170 
392788 
428800 
469714 
633861 
905144 
1067178 
893675 
280118 

2.42 
2.97 
2.46 
2.12 
2.67 
4.42 
3.68 
3.26 
3.12 
2.90 
2.86 
2.94 
3.10 
3.25 
3.72 
3.39 
3.93 
4.29 
4.70 
6.34 
9.05 
10.67 
8.94 
2.80 

911628 
449760 
392659 
295560 
310222 
256252 
239589 
230758 
256644 
249634 
222981 
216693 
230890 
230738 
228202 
247993 
257538 
273819 
313475 
397912 
574074 
989102 
750991 
1472884 

9.12 
4.50 
3.93 
2.96 
3.10 
2.56 
2.40 
2.31 
2.57 
2.50 
2.23 
2.17 
2.31 
2.31 
2.28 
2.48 
2.58 
2.74 
3.13 
3.98 
5.74 
9.89 
7.51 
14.73 

Duration No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 
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 
 
 
 
+ 

2303250 

1188484 

1094888 

1313511 

4099865 

23.03 

11.88 

10.95 

13.14 

41.00 

2530043 
 
1055368 
 
915281 
 
1098845 
 
4400461 

25.30 

10.55 

9.15 

10.99 

44.00 

Dynamic No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

No. of 
occurrences 

Percentage 
(rounded to 2 
decimals) 

ff 
mf 
p 
pp 

2806789 
1225591 
1253313 
4714305 

28.07 
12.26 
12.53 
47.14 

1706816 
1875906 
2167586 
4249690 

17.07 
18.76 
21.68 
42.50 

  
 

 Note that, as opposed to the mappings from Hénon, 

Martin, and Gingerbread attractors discussed earlier, in 

Pickover attractor different coordinates do not produce the 

same occurrence values.  Pickover attractor also lacks the 

symmetry that these attractors have (see Fig. 19.)  This 

does not mean that the musical mappings from Pickover 

attractor are devoid of structure.  It is clear from 

Musical Examples 21 and 22 that Pickover attractor yields 

highly organized sequences.  Pitch in Musical Example 21, 

for instance, appears to be structured by repetitions of 

the following descending pattern: 

 

 

Figure 20.  Detail from measure 1 in Musical Example 21 
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These patterns, however, never repeat exactly the same. 

 The following two graphs reveal that the distribution 

of event occurrence values in Pickover attractor——like in 

Hénon, Martin and Gingerbread Man attractors——is also 

Gaussian (only pitch occurrence distribution is shown): 

 

 

 

Figure 21.  Pitch distribution in Pickover attractor (Y 
coordinate) 
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Figure 22.  Pitch distribution in Pickover attractor (X 
coordinate) 

 

 

The Rössler attractor, proposed by Otto E. Rössler18, 

is a continuous flow in three dimensions.  It is closely 

related to the Lorenz attractor, a mathematical model of a 

weather system developed by Edward Lorenz at the MIT.19  The 

Rössler attractor is defined by the following differential 

equations: 

 

xn+1 = xn - yn*dt - zn*dt 

yn+1 = yn + xn*dt + a*yn*dt 

zn+1 = zn + b*dt + xn*zn*dt - c*zn*dt 

                                                           
18H. O. Peitgen, ed., Chaos and Fractals: New Frontiers 

of Science (New York: Springer, 1992), 686-696. 
19Lorenz, "Deterministic non-periodic flow," 130-141. 
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x0 = y0 = z0 = 1; 

dt = 0.04; a = 0.2; b = 0.2; c = 5.7 

 

Although continuous flow systems like this one are 

characterized by continuous, unbroken orbits, this fact 

must be approximated in the computer by orbits of discrete 

points separated in time by a small amount, dt.  This is 

achieved by solving the difference equations (actually 

transforming them into difference equations) by a method 

known as numerical integration.20 

When plotted, Rössler attractor looks as follows: 

 

Figure 23.  Rössler attractor 

 
 

                                                           
20Bidlack, "Chaotic Systems as Simple (but Complex) 

Compositional Algorithms," 40. 
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So far, we have been mapping all parameters to a single 

voice.  We can also map each coordinate to a different 

voice, thus creating a polyphonic texture (this technique 

can also be applied to two-dimensional attractors.)  The 

musical transcription of the Rössler attractor maps each 

coordinate (X, Y, Z) to three different event sets (as in 

the Pickover attractor above) in three different voices.  

In voice one, pitch is mapped to the X coordinate, rhythm 

to Y and dynamic to Z; in voice two, pitch is mapped Y, 

rhythm to Z and dynamic to X;  voice three maps pitch to Z, 

rhythm to X and dynamic to Y.   

The outcome is as follows: 
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Musical Example 23.  Music from Rössler attractor 
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Musical Example 23 (continued) 

 

Note how the continuous nature of the orbits of the 

attractor are realized musically as scales going up and 

down at various speeds and dynamics.  Polyphonic mappings 

produce an aural sensation, which reflects more closely the 

spatial nature of these attractors. 

Higher dimensional systems offer more degrees of 

freedom in the mapping process.  A four-dimensional chaotic 
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system, such as the Hénon-Heiles system21, provides four 

variables which can be mapped, for instance, onto four 

different event sets, such as pitch, duration, dynamic, and 

timbre.  The manner in which these higher-dimensional 

systems are mapped does not differ from their lower-

dimensional siblings. 

Another kind of dynamical systems, called iterated 

function systems (IFS,) developed by M. Barnsley22, has also 

been proven to be a very fruitful source for algorithmic 

composition.23 

 The music generated by the mapping of dynamical 

systems can be varied by changing their equations' 

controlling parameters.  Two mappings generated from the 

same system but with a tiny difference in one parameter, 

will in the long run generate different sequences, since 

the system is very sensible to its initial condition: that 

is the essence of chaos.  Even differences in the computer 

implementation (programming) of the system's equations 

(using single-precision floating-point variables instead 

                                                           
21Ibid., 41. 

 
22M. Barnsley, Fractals Everywhere (New York: Academic 

Press, 1988). 
 
23M. Gogins, "Iterated Function Systems Music,"  

Computer Music Journal 15(1) (1991): 40-48. 
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double-precision, for instance) will generate different 

sequences from the same initial conditions.  

 

 

Fractals 

 The word "fractal" was coined by the Polish 

mathematician Benoit Mandelbrot24, from the Latin word 

fractus, meaning fractional, or fragmented.  Fractals and 

fractal geometry25 were born in an effort towards developing 

a mathematical framework to understand the way the Nature 

uses and reuses the same forms redundantly in both living 

and non-living things.  Traditional geometry has always 

dealt with regular forms and smooth curves (those that can 

be differentiated.)  Forms in nature, however, can not be 

described faithfully with traditional geometry.  As 

Mandelbrot puts it, "clouds are not spheres, mountains are 

not cones, coastlines are not circles and bark is not 

smooth, nor does lightning travel in a straight line."26 

                                                           
24Briggs, Turbulent Mirror, 90. 

 
25B. Mandelbrot, The Fractal Geometry of Nature (San 

Francisco: W.H. Freeman, 1982). 
 
26Briggs, Turbulent Mirror, 90. 
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An essential characteristic of many fractals objects 

is that they manifest self-similarity at all scales: a 

smaller portion of the whole object looks like the whole.   

Self-similarity comes in two types: exact, in which 

magnified small parts of the object in question are 

identical to the whole; and statistical, in which a 

magnified portion of the object has the same statistical 

properties as the whole.  Some fractal objects, however, 

such as the famous Mandelbrot Set, are not self-similar.   

Fractals are both natural and mathematical objects.  

Fractals abound in nature; for instance, the branching of a 

tree has fractal structure: individual branches look like 

scaled-down versions of the whole tree; the same is true 

for the heads of cruciferous vegetables such as broccoli 

and cauliflower, to say for the vascular systems and lung 

structures of animals.  Self-similarity in natural fractals 

is always statistical: there is no exact self-similarity in 

nature. 

Mathematical fractals——the only ones suitable for 

algorithmic composition——are also governed by nonlinear 

equations.  One would expect that the generation of such 

complex shapes would require complex equations as well, but 

in reality, they are extraordinarily simple.  Since the 

discovery of fractals and the birth of chaos science, 
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thousands of fractal equations have been proposed, all with 

their own peculiarities and characteristics.  Of these, we 

will concentrate in the first and most famous of all: the 

Mandelbrot Set. 

The Mandelbrot Set fractal, dubbed "the most complex 

object in mathematics,"27 is formulated by this exceedingly 

simple iterated map: 

 

Zn+1 = (Zn)2 + C, 

 

where both Z and C are complex28 variables.  For each C in 

the complex plane, Z0 is set to 0 and the equation is 

iterated.  There are two possible outcomes for Z: 

 
1. Zn→∞ as n→∞ 

2. Zn remains bounded (finite) as n→∞. 
 
 

To create the fractal image, each point C is assigned 

a color according to the number of iterations required to 

send the point to infinity, or a default color (generally 

black) if the point remains fixed.  For practical purposes, 

a threshold value t and maximum number of iterations m are 

                                                           
27Ibid. 

 
28A complex number has the form a + bi, where a and b 

are any real numbers and i is the imaginary unit (√-1). 
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defined.  The iterative process is stopped when ⏐Zn⏐ ≥ t, or 

n > m.  The Mandelbrot set is defined as the set of all 

values of Z which do not escape to infinity. 

Here is a plotting of the Mandelbrot Set: 

 

 

Figure 24.  The Mandelbrot Set 

 

Because between any to complex numbers there is always 

another complex number, we can perform mathematical "zooms" 

on the fractal, revealing its complexity and infinitely 

detailed structure.  What follows are six successive zooms 

on the Mandelbrot Set: 
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Figure 25.  Mandelbrot Set zooms 

  

 It is an arresting thought to realize that these 

images, so aesthetically pleasing, are derived from such a 

simple procedure, and are, in essence, just a set of 

numbers. 

Mapping the Mandelbrot Set to music turns out to be 

more complicated than mapping chaotic attractors.  Each 

iteration of the equations defining a chaotic system 

corresponds to a point in the corresponding system's 

chaotic attractor.  It is generally sufficient to plot a 

few hundred iterations to perceive the shape of the 

attractor.  Mapping chaotic attractors onto music consists 

in mapping each iteration of the equations to a musical 

event space.  On the other hand, in a fractal image, for 

every point of the image, its generating equation must be 

iterated a number of times (usually thousands) to decide 

whether the point escapes to infinity or not.  Calculations 

in fractals are therefore increased a thousandfold.   

A method to map fractals is to calculate the iteration 

values of the set of points in a one-dimensional slice 
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within the two-dimensional structure of the fractal, and 

map those values onto a musical event space.  This is 

performed as follows: 

 

• Take any two points within the fractal image, a 

starting point (x, y) and an end point (∆x, ∆y.) 

• Calculate the iteration values for points that lay 

in the segment from (x, y) to (∆x, ∆y,) linearly 

(the more points we take, the higher the 

"resolution" of the slice.) 

• Map the iteration values of these set of points onto 

a musical event space. 

 

As an example, we will map a slice from the Mandelbrot 

set.  Our event space, for simplicity, will be a four 

octave chromatic scale (from C2 to B5——48 pitches——, ordered 

from 0 to 47) plus silence for the points that do not 

escape to infinity (the black regions on the Set.)  We will 

choose sixteenths as note values.  Additionally, if two 

consecutive points have the same iteration value, their 

mapped pitches are tied.  Iteration limit is set to 1000.  

The segment will be divided in 600 points.  Visually, we 

will map the following segment on the Mandelbrot set: 
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Figure 26.  Mandelbrot Set mapped section 

 

The mapped segment goes from (-1.8, 0) to (-1.67, 0.)  

Iteration values are mapped to our 48-element event set 

using the normalized mapping method.  This assures that the 

behavior of the iteration values is faithfully transcribed 

to our event space.  The generated sequence goes as 

follows: 
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Musical Example 24.  Music from the Mandelbrot Set 

 

Comparing both the segment on the Mandelbrot Set and 

its musical transcription, one can readily see how features 

on the mapped slice are realized musically.  For instance, 

we observe sections of silence in measures 4-5, 6-15, and 

37.  These correspond to sections on the segment for points 

that do not escape to infinity, just as we decided on our 
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mapping scheme.  These sections on the segment (see Fig. 

26) are: 

 

,  and , respectively. 

 

Note that most of the time the music is in the low 

register, this is a because the iteration values at those 

points remain low.  

This technique could be extended by mapping a large 

number adjacent segments and superimpose then 

polyphonically.  This would effectively perform a "scan" of 

the surface of the fractal.  This method would undoubtedly 

map more faithfully the structure of the whole fractal than 

just a single one-dimensional slice.  Of course, we are not 

restricted to pitch only, the same mapping method can be 

applied simultaneously to duration, dynamic, timbre, etc. 

The Mandelbrot Set is just one among the thousands of 

fractal equations that are known today.  This mapping 

technique can be applied to those equations in a similar 

way. 
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Noise 
 

Paradoxically, noise can also be a source for 

algorithmic composition.  Noise can be categorized into 

three basic types: white, pink and Brownian.  These are 

differentiated on how their power spectrum (measured in 

dB) varies as a function of the frequency (measured in 

Hz.)  The power of white noise is distributed evenly over 

all frequencies.  In technical terms, its power spectra 

P(f) as a function of the frequency f behaves like: P(f) 

= 1/fa, where the exponent a is 0.  For instance, white 

noise at a sampling rate of 44,100 Hz has as much power 

between 100 and 600 Hz as between 20,100 and 20,600 Hz.  

Frequencies are completely uncorrelated in white noise.  

White noise is what we hear as static on a radio.   

Brownian noise——also known as "brown" noise——is 

quite the opposite; its frequency spectrum is highly 

correlated, resembling a random-walk in three dimensions, 

since the frequency fluctuations at a point in time 

depend on previous fluctuations; its power spectra P(f) 

is close to 1/f2.   

1/f noise——also known as flicker noise, or "pink" 

noise——whose power spectra is 1/f (the exponent a in this 

case is very close to 1)——is somewhat middle ground 
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between white and brown noises.  1/f noise has an even 

distribution of power when the frequency is mapped in a 

logarithmic scale.  There is the same amount of power 

between 100 and 500 Hz than between 1000 and 5000 Hz.  

Frequencies in 1/f noise are not as correlated as in 

Brownian noise nor random as in white noise.  To our ears 

it sounds like a "natural," even pleasant noise.  In 

fact, 1/f noise appears everywhere in nature: the sound 

of a waterfall, the sound of rain, the sound of bees in a 

honey comb, are all 1/f noises.   

A graphic of the frequency density of these noises 

help visualize the differences among them: 

 

      

White noise   1/f noise   Brownian noise 

Figure 27.  Spectra of white, Brownian, and 1/f noises 

 

In 1975, Richard F. Voss and John Clarke at the 

University of California analyzed several recordings of 

music and speech.29  They concluded that the audio power of 

                                                           
29J. Clarke and R. F. Voss, "1/f noise in music and 

speech," Nature 258 (1975): 317-318. 
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the music, e.g. the power delivered to the speakers, was 

very close to that of 1/f noise.  Their research examined 

very different types of music, from Bach's Brandenburg 

Concerti to Scott Joplin's piano rags. 

 However, Voss and Clarke's results sparked controversy 

among other researches.  Their main concern was that Voss 

and Clarke used long stretches of recorded material, some 

of which exceeded twelve hours in duration.  These 

recordings were amalgamations of pieces by different 

composers, of greatly contrasting styles, edited together 

in sequence and interspersed with spoken announcements and 

comments.  The argument posed against this study was simply 

that these "medleys" of different musics and sounds did not 

truly represent music in its essential manifestation, as a 

single, uninterrupted piece.  The contenders argued that a 

single musical piece, being the largest unit of artistic 

significance, should have been the study model, instead of 

an arbitrary series of disparate excerpts. 

Jean-Pierre Boon and other researchers formulated a 

different technique for the quantitative analysis of 

music.30  Instead of analyzing recordings of music, a 

synthesizer was interfaced with a computer, and the 

                                                           
30J. P. Boon and O. Decroly, "Dynamical Systems Theory 

for Music Dynamics," Chaos 5(3) (1995): 501-508. 
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composition was played on the synthesizer by a performer.  

The pieces were digitally stored in the computer; this 

involved discretization of the pitch and duration.  Data 

processing was then used to construct a phase portrait of 

the music.  Nineteen classical pieces from all musical eras 

and four jazz pieces were used.  Two other types of 

sequences were tested as well for comparison with the 

pieces: repeated ascending and descending scales and a 

sequence of 5000 notes based on a white noise algorithm.  

The analysis of these pieces in this manner produced 

interesting results.  When the values a for the spectral 

densities of the pieces (1/fa) were computed, the results 

differed significantly from the results obtained by Voss 

and Clarke.  This time, a seemed to vary between 1.79 and 

1.97, which is closer to Brownian noise than 1/f noise.  

The difference was explained by the use of single pieces of 

music rather than long stretches.  As Boon puts it, "if 

musical dynamics analysis is meant as a procedure to 

identify and characterize elements of musical significance, 

the single piece is the commonly recognized object to be 

studied.  In this respect the meaning of long stretches of 

blended musical pieces is unclear."31 

                                                           
31Ibid., 507. 
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Algorithms for deriving music from white and brown 

noises are remarkably simple.  "White" music can be easily 

created by simply mapping the output of a random number 

generator to an equiprobable collection of events in an 

ordered event space.  Musical Example 1 is, in fact, an 

example of music derived from white noise.  We have also 

encountered an algorithm which simulates Brownian noise: 

the random-walk Markov chain.  We recall that this type of 

Markov chain (whose probability matrix has nonzero entries 

on either side of its main diagonal and zeroes everywhere 

else,) creates correlated sequences of events, which 

simulates the Brownian noise.  1/f noise, however, turns 

out to be more difficult to generate and hence be mapped 

into musical event spaces. 

Naturally, Voss and Clarke were the first to 

experiment generating music from 1/f noise.32  The first 

method consisted in generating 1/f noise through electronic 

means.  The electrical voltages generated through this 

procedure were sampled, quantized, and converted to series 

of numbers whose spectral density was that of 1/f noise.  

These numbers were then mapped (using the normalized 

                                                           
 32J. Clarke and R. F. Voss, "'1/f noise' in Music: 
Music from 1/f Noise" Journal of the Acoustic Society of 
America 63 (1978): 258-263. 
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mapping method) to event sets of pitch (a two octave 

chromatic scale,) and duration.  They also devised an 

algorithmic method to simulate the spectral density of 1/f 

noise.   

In a 1978 issue of Scientific American, Martin Gardner 

describes a simple algorithm involving three dice that 

emulates the spectral density 1/f noise.33 

A non-linear equation whose output resembles 1/f 

noise, proposed by M. Schroeder34, is 

 

Xn+1 = Xn∗λ + √(1-λ2) ∗ r 

 

where λ is any number in the interval (0, 1) and r is a 

random value chosen for every iteration of the equation.  

The value of λ determines the "quality" of the output in 

relation to real 1/f noise.  Chapter V on this thesis 

provides the source code of a C++ implementation of Voss' 

algorithm for producing 1/f noise. 

                                                           
33M. Gardner, "White and Brown Music, Fractal Curves 

and 1/f Fluctuations," Scientific American (April 1978): 
16-32. 

 
 34M. Schroeder, Fractals, Chaos, Power Laws: Minutes 
from an Infinite Paradise (New York: W. H. Freeman, 1991), 
178. 
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 What follows are three musical examples derived from 

white, Brownian, and 1/f noises.  The event space is the 

same for all: a two-octave chromatic scale from C4 to B5. 

 

 

Musical Example 25.  Music from white noise 

 

 

Musical Example 26.  Music from 1/f noise 

 

 

Musical Example 27.  Music from Brownian noise 

 

The white noise music (Musical Example 25) was 

generated by mapping the output of a random number 

generator function (normalized mapping.)   

The Brownian noise music (Musical Example 27) was 

created by mapping the output of a first-order Markov chain 
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in which each pitch has an equal probability of being 

followed by its two immediate or preceding pitches: for 

instance, G4 can be followed by F4, F#4, G#, or A4.  This 

simulates the characteristic three-dimensional random-walk 

spectrum of Brownian noise.   

Lastly, 1/f noise music (Musical Example 26) was 

generated by mapping the output of the non-linear equation 

proposed by Schroeder (above), with a value of λ = 0.5 

(normalized mapping.) 

Notice how the note-to-note relationship dramatically 

resembles the spectral density of the corresponding noises 

from which they are derived.   

1/f noise is especially useful for the generation of 

sequences of musical events whose correlation is halfway 

between an aleatoric process and a random-walk Markov chain 

process. 

 

Number theory algorithms 

Number theory is one of the oldest branches of pure 

mathematics, as well as one of the most extensive.  It 

concerns questions about whole numbers or rational numbers 

(fractions in which numerator and denominator are both 

whole numbers.)  
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Number theory has existed since the Pythagorean, which 

believed everything in reality could be explained with 

whole numbers.  Their discovery of the square root of 2——an 

irrational number, meaning that it can never be described 

as the ratio between two whole numbers——provocated a crisis 

among them; they kept this discovery a secret, believing 

that it would be dangerous for the common people to know 

it. 

There are many sources from number theory which can be 

used in algorithmic composition.  We will study three of 

these sources:  the Morse-Thue sequence; the "3n+1" number 

sequences; and the prime number series. 

 

The Morse-Thue Sequence. 

01101001100101101001011001101001... 

 

This number sequence was first discovered by Axel Thue 

1912 in his study of formal languages and rediscovered in 

1917 by Marston Morse while studying the dynamics of  

surfaces geodesics.35  

                                                           
35M. Morse, "Recurrent Geodesics on a Surface of 

Negative Curvature," Trans. Amer. Math. Soc. 22 (1921): 84-
110.  
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 The Morse-Thue sequence (above) can be constructed 

both recursively and non-recursively.  The recursive method 

uses the following substitution map: 

 

 

1 -> 10 

0 -> 01 

 

Starting with a single 0, we get: 

 

0 → 01 → 0110 → 01101001 → 0110100110010110, etc. 

 

It can also be constructed non-recursively from the set 

of the natural numbers {0, 1, 2, 3, 4...} expressed in base 

2 and taking the "digital root" (the sum of the ones modulo 

2,) as follows: 

 

 

 

 

 

One of the most striking characteristics of this 

sequence is that it exhibits self-similarity:  removing all 

the even terms of the sequence leaves it unchanged: 

0 1 2 3 4 5 6 7 8 9 10...  
↓ 

0 1 10 11 100 101 110 111 1000 1001 1010... 
↓ 

0 1 1 0 1 0 0 1 1 0 0... 
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01101001100101101001011001101001... 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 ... 

 

Also, removing every other pair of numbers leaves it 

unchanged: 

 

01101001100101101001011001101001... 

01 10  10  01  10  01  01  10  ... 

 

We will use the non-recursive method to map the Morse-

Thue sequence to musical events, as follows. 

 Consider the sequence of natural numbers expressed in 

binary form (base 2): 

 

 

 

 

 

Next, add the digits (in decimal base) of each member 

of the sequence, as follows: 

 

 

 

0 1 2 3 4 5 6 7 8 9 10...  
↓ 

0 1 10 11 100 101 110 111 1000 1001 1010... 

0 1 10 11 100 101 110 111 1000 1001 1010... 
↓ 

0 1 1 2 1 2 2 3 1 2 2... 
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This transformed sequence is the one we will map to 

our musical event space.  As with previous examples, we 

will choose a two-octave chromatic scale from C4 to B5 (24 

pitches.)  Mapping is applied performing a modulo 24 

operation on each term of the sequence.  For simplicity, 

the duration of the pitches has been fixed to sixteenths.   

The generated sequence is as follows: 

 

 

... 

Musical Example 28.  Music from the Morse-Thue sequence 

 

Below the music there is a graphical representation of 

the sequence.  Notice the contour resemblance between the 

music and the graphic. 

 To show how the self-similarity of the sequence is 

maintained in the musical transcription, we will perform 
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the same transformations on the music than we did on the 

sequence before.  Removing every other note leaves the 

sequence unchanged: 

 

 

 

Performing the same operation on this already 

truncated sequence, still leaves the sequence unchanged: 
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Removing every other couple of notes also leaves the 

sequence invariable: 

 

 

 

We can extend the musical potential of the Morse-Thue 

sequence in several ways.  First, we can multiply every 

term in the natural number sequence by a constant value.  

This produces surprising results.  For instance, we can 

choose the constant value 31: 
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The resulting sequence is as follows (pitches that 

repeat consecutively are tied on all forthcoming examples): 

 

 

... 
Musical Example 29, base 2 multiplier 31 

 
 

Observe how the very long note at the beginning 

corresponds to the series of 5s that repeat in the 

sequence.  There are exactly 32 repeating fives.  In our 

0 1 2 3 4 5 6 7 8 9 10... 
multiply every term by 31  

↓ 
 

0 31 62 93 124 155 186 217 248 279 310... 
express in base 2 

↓ 
 

0 11111 111110 1011101 1111100 10011011 10111010
 11011001 11111000 100010111 100110110... 

add the ones (in base 10) 
↓ 

 
0 5 5 5 5 5 5 5 5 5  5... 
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music event space element number 5 is mapped to an F4.  The 

sequence then evolves in more interesting ways.  Note the 

structure of expanding and contracting patterns that are 

generated. 

 Changing the constant generates different sequences.  

The following was generated multiplying every term by 33: 

 

 

... 

Musical Example 30, base 2 multiplier 33 

 

We can extend this technique by expressing the natural 

numbers in bases other than binary base.  The following two 

examples were generated choosing base 3 and multipliers 8 

and 10, respectively: 
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... 

Musical Example 31, base 3 multiplier 8 

 

... 

Musical Example 32, base 3 multiplier 10 

 

Notice how each base-multiplier pair generates a 

unique sequence.  In general, higher basses generate 

sequences with elements more spread out in the musical 

event space: 
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... 

Musical Example 33, base 29 multiplier 311 

 

Some combinations of base-multiplier gives 

particularly interesting results, some of such combinations 

are 

• Base n and multiplier nk ± 1, where k = {1, 2, 3, 

4...) 

• Base n and multiplier n! ± k, k close to n (this is 

practical for small bases only) 

 

By extending our musical event space and our mapping 

schemes, Morse-Thue sequences offer virtually infinite 

ground for musical exploration.   
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3n+1 numbers 

Also known as the hailstone problem36, these number 

sequences are generated starting with an integer n and 

recursively performing the following operations: 

 

If n is even, divide n by 2 (n/2.) 

If odd, multiply n by 3 and add 1 (3*n + 1) 

 

For instance, starting with n = 15, we get the 

following cycle: 

 

15, 46, 23, 70, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1... 

 

Although it has never been proven, it is conjectured 

that all numbers eventually "fall" to 1 after a finite 

number of iterations, entering a never ending 4-2-1 loop.  

Before entering this loop, the numbers go up and down, like 

hailstones do in a cloud, hence their name.  Note that the 

series for the number 15 (above) encompasses the series for 

all numbers in between (46, 23, 70, etc..)  This can be 

generalized to any number n.   

                                                           
36J. Lagarias, "The 3x+1 Problem and its 

Generalizations," American Mathematical Monthly 92 (1985): 
3-23.  
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The number of steps required to hit the number 1 

(including the starting number itself) and hence enter the 

4-2-1 cycle is the size of the cycle for any particular 

number n.  This can be symbolized as: 

 

Hs(n) 

 

Another interesting factor concerning this series is 

the maximum number reached in the sequence generated by n, 

 

Hmax(n) 

 

The number 9,232 seems to be the highest point reached 

by many numbers and a preferred track down to 1.  The 

reason still remains a mystery.  Among the first 10,000,000 

numbers, around 38% of them hit this value before falling 

to 1. 

 The seemingly chaotic behavior of these sequences 

yields, however, patterns when mapped to musical events.   

Mapping hailstone sequences to musical events is a 

straightforward procedure.  Considering a musical event 

space of n ordered elements, we simply perform a modulo n 

operation to the particular number in the sequence to be 

mapped: 
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event number = (number in the sequence) mod n 

 

For instance, the number 27 (Hs(27) = 112) produces the 

following sequence (our event space will be, as usual, a 

two-octave chromatic scale from C4 to B5, with sixteenth 

note values chosen arbitrarily): 

 

 

Musical Example 34.  Music from number 27 

 

A close inspection of this sequence reveals it is far 

from random.  There are many patterns, such as the 

repeating A#5 - B5 - A#5 - B5, and B4 - Bb4 — F4 - E5.  The 

sequence seems to be highly disjunct except for small 

clumps around A#5 - B5, and E4 - D4 - C#4.   

It is interesting to notice that some pitch classes, 

such as F#4, F#5, A4, and A5, do not occur. 
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 Two other example will reveal more about this number 

sequences.  This time we will map numbers 666, HS(666) = 

114; and 65535 (216-1,) HS(65535) = 131: 

 

 

 

Musical Example 35.  Music from number 666 

 

 

 

Musical Example 36.  Music from number 65535 
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There is something altogether questionable about these 

sequences, which seem to generate similar patterns for all 

given numbers.  We observe, for example, that pitch class E4 

can only be followed by pitch classes D4 or D5.  Pitch class 

A#5 can only be followed by pitch classes B5 and B4.  

Similarly, pitch class A#4 can only be followed by F4 and F5.  

Furthermore, F4 can only be followed by E5 and F5 only by E4.  

There seems to be a very rigid scheme on what elements can 

follow others.  It becomes evident that one element can 

only be followed at most by two others.  This is indeed 

very interesting, because we could construct a Markov chain 

that simulates this process, where some events have a two 

0.5 probability entries and others a single 1.   

The number of elements of the mapped event space, that 

is, the modulo operation applied, determines what kind of 

patterns arise.  To illustrate this, let us map number 

65535 again, this time to a two-octave major scale from C4 

to B5, which has 14 elements as opposed to 24, therefore 

performing a modulo 24 operation: 
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Musical Example 37.  Music from number 65535, major scale. 

 

The patterns are now different, but similar 

restrictions as to what events can be followed by others 

still apply.   

Different hailstone numbers could be used, for 

instance, to structure sequences of musical events where 

events can only be followed by a certain number of other 

events in the event space.  This would be analogous to 

generating different event sequences from the same Markov 

chain. 

3n + 1 numbers could be extended easily to 5n + 1, 7n 

+ 1, or, more generally, an + k, where both a and k are 

whole numbers.  One of these cases, 3n - 1, generates 

sequences that end in one of three possible loops (instead 

of a single 4,2,1 loop): 

 

1,2,1,2,1,2... 
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5,14,7,20,10... 

17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 

68, 34, ... 

 

These extended hailstone processes can be mapped in a 

similar way to musical event spaces, each of them 

generating sequences with particular characteristics. 

 

 

The Prime Number Series 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37... 

 

Prime numbers are one of most important and most 

studied subjects in number theory mathematics.37  A prime 

number is a whole number that can only be divided evenly by 

itself and 1.   

Prime numbers are the building blocks of all numbers.  

Every whole number has a unique factorization into prime 

numbers.  Take the number 429, for instance; its unique 

factorization is 13*11*3.  The distribution of prime 

numbers on the number line is one of the unsolved mysteries 

of mathematics.  They do not seem to follow any 

recognizable pattern.  A feasible formula for producing the 

                                                           
37Clawson, Mathematical Mysteries, 145-162. 
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prime numbers series has never been discovered.  We know, 

however, that an infinity of prime numbers exist, that all 

prime numbers except 2 are odd, and that all prime numbers 

after 5 end in either 1, 3, 7, or 9.  We also know that 

their density in the number line decreases as numbers get 

larger and larger. 

There are many ways to map the prime number series to 

a musical event space.  A simple procedure consists on 

mapping directly the series to a event space of n ordered 

members, performing a modulo n operation on the series: 

 

event space member index = (prime factor) mod n 

 

Considering the series of the first 64 prime numbers 

and applying this mapping to our usual event space of a 

two-octave chromatic scale, we get the following: 

 

 

Musical Example 38.  Music from prime numbers 
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Except for the two beginning pitches, the whole 

sequence maps to only 8 notes (C#4, F4, G4, B4, C#5, F5, G5, 

and B5.)  This arises from the particular distribution of 

prime numbers among n columns (in this case 24): 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

    x x   x   x        x     x           x     x           x 

          x   x              x           x     x           x 

          x            x     x                 x           x 

                             x  

              x        x                 x 

  x       x   x        x     x           x 

. 

. 

 

Only columns 1, 5, 7, 11, 13, 17, 19, and 23 (except 

the particular case of primes 2 and 3) correspond with 

prime values.  These columns correspond to pitches C#4, F4, 

G4, B4, C#5, F5, and G5, B5 in the event space.  Note also 

that while the same pitches appear over and over again, 

they never produce a stable pattern.  This is a consequence 

of the quasi-random distribution of primes in the number 

line.   
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 A different mapping scheme, proposed by Armand Turpel 

in his computer program Make Prime Music38, shows the prime 

number series from a different perspective.  Beginning with 

prime number 7, triplets of consecutive prime numbers are 

performed a modulo 5 operation and subtracted 1 (since no 

prime after 5 ends in 5, this operations always yields a 

number between 0 and 3.)  This triplet of transformed 

numbers is then interpreted as a base 4 number, which is 

then converted to base 10 and mapped to our event space: 

 

7 mod 5 = 2; 2-1 = 1 \ 
11 mod 5 = 1; 1-1 = 0  > 102 in base 4 is 18 in base 10 
13 mod 5 = 3; 3-1 = 2 / 

` 

17 mod 5 = 2; 2-1 = 1 \ 
19 mod 5 = 4; 4-1 = 3  > 132 in base 4 is 30 in base 10 
23 mod 5 = 3; 3-1 = 2 / 
 
 

The resulting sequence 18, 30... is mapped to the 

members of the event space via another modulo operation: 

 

event number = (number in sequence) mod (number of events) 

 

This mapping scheme performed in our two-octave 

chromatic scale event space, yields the following sequence: 

                                                           
38Make Prime Music, Armand Turpel; available from 

http://www2.vo.lu/homepages/armand/index.html; Internet. 
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Musical Example 39.  Music from prime numbers, alternate 

mapping. 

 

The same sequence mapped to a two-octave major scale 

becomes: 

 

 

Musical Example 40.  Music from prime numbers, major scale. 

 

These two sequences involve 288 consecutive prime 

numbers (each note represents 3 prime numbers.)  It is 

apparent from these sequences that the event-to-event 

relationship in these sequences is highly unpredictable.  
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Nevertheless they are not random.  This unpredictability 

arises, once again, from the mysterious distribution of 

primes along the number line. 

 For instance, in Musical Example 39, there seems to be 

an excess of pitch classes F#4, A4, B4, and F#5 (events 6, 9, 

11, and 18, respectively,) and a deficiency of pitch 

classes E5, A5, and B5 (events 16, 19, and 23.)   

In a truly random sequence of events, all events would 

have the same probability of occurrence, and the event-to-

event relationship would be absolutely uncorrelated. 

 The application of different mappings schemes to the 

same process shows that, although the generated sequences 

differ, there is an underlying structure common to all of 

them. 
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Cellular Automata 

 Cellular automata are a very rich source for 

algorithmic composition.  Compositional applications of 

cellular automata have been explored in the work of Hunt, 

Kirk, and Orton39, Millen40, and Miranda.41   

Cellular Automata theory42 was introduced by John von 

Neumann in the 1960s as a model of biological self-

reproduction.43  Cellular automata are discrete dynamical 

systems, which is to say that the space, time and 

properties of the systems can only have a finite number of 

states.   

Cellular automata have two fundamental characteristics: 

 

                                                           
39A. Hunt, R. Kirk, and R. Orton, "Musical Applications 

of a Cellular Automata Workstation," in Proceedings of the 
1991 International Computer Music Conference (San 
Francisco: International Computer Music Association, 1991), 
165-168. 

 
40D. Millen, "Cellular Automata Music," in Proceedings 

of the 1990 International Computer Music Conference (San 
Francisco: International Computer Music Association, 1990), 
314-316. 

 
41Miranda, "Music Composition Using Cellular Automata," 

105-117. 
 

42Wolfram, Theory and Applications of Cellular 
Automata. 
 

43von Neumann, Theory of Self-Reproducing Automata. 
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1. A regular, n-dimensional lattice, where each cell in 

this lattice has a discrete state at a given time. 

2. A dynamical behavior, controlled by a set of rules.  

These rules decide the state of the cells for 

subsequent time steps (generations,) depending on the 

state of neighboring cells.  

 

Cells in a cellular automata are like memory devices, 

which store the automata's states.  The simplest case 

involves only two possible states for each cell, usually 0, 

"dead", or 1, "alive."  In more complex cellular automata, 

cells can have many more states.  Cells are arranged in a 

n-dimensional lattice.  In the case of one-dimensional 

cellular automata——the simplest types——cells are arranged 

on a single line; two-dimensional automata cells are 

arranged on a flat grid (a two-dimensional matrix); three-

dimensional automata in a cubic matrix; and so forth.   

Theoretically, cellular automata can exist in any 

dimension, however, cellular automata in more than two 

dimensions are exceedingly difficult to visualize. 

The rules that control the dynamical behavior of the 

cellular automata act upon each cell in the lattice having 

into account the states of each cell's neighboring cells.  
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These rules will decide the state of each cell in 

subsequent time steps (generations.) 

There are three basic types of cell neighborhoods to 

be considered when defining a set of rules (here we will 

consider a two-dimensional cellular automaton): 

 

1. The so-called von Neumann neighborhood, where 

each cell has four neighbors (North, South, East, 

and West cells,) the radius of this neighborhood 

is 1, since only adjacent cells are considered: 

n 
n c n 
n 

 

2. The Moore neighborhood, where each cell has eight 

neighbors (N, NE, NW, S, SE, SW, E, and W cells.)  

The radius is also 1: 

n n n 
n c n 
n n n 

 

3. The extended Moore neighborhood, where cells 

beyond the radius of the Moore neighborhood are 

considered.  The radius can be 2 or larger: 

n n n n n 
n n n n n  
n n c n n 
n n n n n   
n n n n n 
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For a one-dimensional automata, the von Neumann and 

Moore neighborhoods are identical: 

 

n c n 

 

The extended Moore neighborhood for a one-dimensional 

automata would be: 

n n c n n 

 

The rules that determine the dynamical behavior of the 

system can be categorized into two classes: 

 

1. The state of a given cell is determined by examining 

the state of all neighboring cells individually 

(including the given cell itself.) 

2. Totalistic rules, where the state of any given cell is 

determined by the sum of the states of its neighboring 

cells. 

 

The number of possible rules in a given cellular 

automaton depends on the number of states per cell and the 

number of neighbors per cells.  The set of possible rules 

grows exponentially as more states and neighbors are 

allowed.   
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According to S. Wolfram, cellular automata behavior 

can be classified into four basic classes44: 

 

• Class I.  Limit point.  After a finite number of 

generations, a stable, unchanging configuration is 

achieved by the system. 

• Class II.  Limit cycle.  These types of automata evolves 

to a stable state where patterns repeat periodically. 

• Class III.  The system generates aperiodic, chaotic 

patterns from nearly all starting conditions.  Patterns 

can resemble self-similar fractal curves. 

• Class IV.  The behavior of the system is complex but not 

chaotic.  This class is the only one capable of 

performing universal computation, meaning that it is able 

to carry out any finite algorithm. 

 

One-dimensional Cellular Automata 

We will consider a simple, one-dimensional cellular 

automaton proposed in 1982 by S. Wolfram.45  This type of 

cellular automaton, because of its simplicity, has been 

                                                           
44S. Wolfram, "Universality and Complexity in Cellular 

Automata," Physica D 10 (1984): 1-35. 
 
45S. Wolfram, "Statistical Mechanics of Cellular 

Automata," Caltech preprint CALT-68-915 (May 1982). 
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extensively studied.  It has been proved that even one-

dimensional cellular automata are able to perform universal 

computation.46 

Each cell is allowed two state possible states (0, 

dead, or 1, alive.)  The neighborhood is of the Moore type: 

each cell has two neighbors, the cells to the immediate 

left and right.  This type of cellular automaton allows for 

256 possible rules: all three cells in the neighborhood are 

allowed two-states, which gives 8 (23) possible combinations 

of cell states, and each of these can decide upon two 

possible states for the core cell in the next generation.  

The total number of possible rules is thus 28 = 256, as 

follows: 

 

possible cell configurations: 111 110 101 100 011 010 001 000 
     ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
     1   1   1   1   1   1   1   1 
     or  or  or  or  or  or  or  or 
     0   0   0   0   0   0   0   0 

 

Rules are encoded in an 8-bit string.  For instance, 

rule 30 is encoded as 00011110: 

 

                                                           
46K. Lindgren and M. G. Nordahl, "Universal Computation 

in Simple One-dimensional Cellular Automata," Complex 
Systems 4 (1990): 299-318. 
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111 110 101 100 011 010 001 000 
    ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
    0   0   0   1   1   1   1   0 

 

Rules decide the state of each cell in the next 

generation depending on the state of itself and its 

neighbors in the current generation.   

One-dimensional automata evolve on a single line of 

cells.  To better appreciate the development of the whole 

system, subsequent generations (time steps) are presented 

one after the other, like an unfolding rug.  Each "thread" 

of this rug represents one time step, or generation, of the 

cellular automaton.  What follows shows the dynamical 

development of this one-dimensional automaton for four 

different rules.  Nine hundred generations were computed 

for each system.  The lattice is 300 cells wide.  Cells at 

the borders of the lattice neighbor each other (the lattice 

has a circular geometry.) 
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Rule 1, Class I: 111 110 101 100 011 010 001 000 
    ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
    0   0   0   0   0   0   0   1 

 

   Gens. 0-299     Gens. 300-599      Gens. 600-899 

 
 
 
Rule 73, Class II: 111 110 101 100 011 010 001 000 
     ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
     0   1   0   0   1   0   0   1 

 

    Gens. 0-299    Gens. 300-599     Gens. 600-899 

 
 
 
Rule 120, Class III:  111 110 101 100 011 010 001 000 
     ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
     0   1   1   1   1   0   0   0 

 

    Gens. 0-299     Gens. 300-599      Gens. 600-899 
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Rule 110, Class IV: 111 110 101 100 011 010 001 000 
     ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
     0   1   1   0   1   1   1   0 

 

    Gens. 0-299     Gens. 300-599      Gens. 600-899 

 

For generation 0, the cells' states were initialized 

randomly. 

 Mapping one-dimensional cellular automata to music 

involves transcribing the automata's evolution to a musical 

event space.  The following mapping scheme is proposed by 

this writer.   

Each generation will be mapped to the members of our 

choice musical event space.  Since each generation involves 

a collection of cells, a direct correspondence must be made 

between each possible configuration of cells in the lattice 

and the event space.  To achieve this, we must encode each 

possible combination of cells in the lattice with a unique 

number.  Let s be the number of possible states for a cell, 

n the number of cells on the lattice (ordered from 0 to n-

1,) and tp the state of a cell in position p (p ranges from 
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0 to n-1.)  Next, each possible configuration of cells in a 

generation is uniquely encoded numerically as follows: 

 

u = t0*s0 + t1*s1 + t2*s2 + ... + tn-1*sn-1 

 

This ensures each configuration of cells is assigned a 

unique number or "tag."  This number is then mapped to our 

musical event space via a modulo operation, as follows: 

 

event number = u mod (number of elements in event space) 

 

Following this scheme, four configurations 

corresponding to rules 172 (Class I,) 73 (Class II,) 30 

(Class III,) and 54 (Class IV) were mapped to a musical 

event space consisting of a two-octave chromatic scale from 

C4 to B5.  The lattice has 64 cells.  The number of possible 

cell configurations is therefore 264.   

Rules were chosen to show how the characteristics of 

the different classes are transcribed into music.  Three 

hundred and twenty generations were mapped from each 

configuration (for these examples, note values were chosen 

arbitrarily.)  The musical transcription is as follows: 
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Musical Example 41.  Music from rule 172, Class I. 

 

 

 

 

Musical Example 42.  Music from rule 73, Class II. 
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Musical Example 43.  Music from rule 30, Class III. 

 

 

 

Musical Example 44.  Music from rule 54, Class IV. 
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The similitude of this sequences to the 

characteristics of the corresponding automata class is 

extraordinary.  Note how Musical Example 41 quickly 

stabilizes to a unique member of the event space (Ab4.)  

This is characteristic of Class I automata, which have 

single-point attractors. 

Musical Example 42 shows how the limit cycle 

characteristic of Class II is transcribed into music.  Note 

the repeating 60-note cycle starting with the third beat of 

m. 4.   

The chaotic behavior of Class III is demonstrated in 

Musical Example 43.  This music is very similar to the 

"white noise" music (Musical Example 25,) as well as to the 

Logistic equation mapping for a value of µ = 4 (Musical 

Example 10.)  No discernible patterns can be found.  It 

resembles a randomly chosen collection of pitches, 

although, of course, the procedure is completely 

deterministic. 

Musical Example 44 is by far the most interesting and, 

this writer believes, the most musically pleasing.  This 

example shows the behavior of Class IV automata.  The music 

is highly patterned, in direct correspondence with the 

automata's capacity of information propagation.  It does 

not have the predictability of Musical Examples 41 and 42 
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(Classes I and II,) nor the random-like character of 

Musical Example 43 (Class III.)  It must be stressed that 

each pitch (or event) in the example sequences represents 

one generation in the development of the automata, and 

thus, a definite configuration of cells.  This mapping 

scheme preserves the automata's characteristics when mapped 

to musical event spaces. 

By increasing the number of states per cell, the 

possible set of rules grows exponentially, and thus the 

type of cellular automata that can be generated——allowing 3 

states per cell instead of two increases the number of 

possible rules from 256 to 7,625,597,484,987 (327.)  The 

possibilities for musical experimentation are endless.  

 

 

Two-dimensional cellular automata 

Two-dimensional cellular automata evolve in a two-

dimensional matrix or grid of cells.  The behavior of two-

dimensional automata is much more complex and offers even 

more possibilities for experimentation.  Like one-

dimensional automata, 2-D automata are governed by a set of 

rules that ultimately determine the behavior of the system. 

We will consider here the most studied 2-D cellular 

automata: the so-called Game of Life. 
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The Game of life is a Class IV automata invented in 

1970 by mathematician John Conway.  It has been extensively 

studied since it was first presented in a 1970 issue of 

Scientific American.47  It is a two-state cellular 

automaton, that is, cells in the grid have only to possible 

states: 0 (or dead,) and 1 (alive.)  Each cell in the 

lattice has eight neighbors (Moore type neighborhood.)  The 

rules that determine the dynamical behavior of the automata 

are exceedingly simple: 

 

• Rule of birth: if a cell is in state 0 (dead) and has 

exactly 3 neighbors in state 1 it changes its state to 1 

(comes to life) in the next time step. 

• Rule of survival: if a cell is in state 1 and has 2 or 3 

neighbors in state 1 it remains in state 1 in the next 

time step, otherwise it changes to state 0 (dies.) 

 

Many persistent structures, some propagating, have 

been discovered in this cellular automaton48 (the simplest 

one is known as the glider.)  In addition, it has been 

                                                           
47M. Gardner, "Mathematical Games: the Fantastic 

Combinations of John Conway's new Solitary Game 'Life'," 
Scientific American 223 (April 1970): 120-123. 

 
48Ibid., 122. 
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shown that these structures can be combined to perform 

arbitrary information processing.  This means that the 

automata is capable of universal computation.  Among the 

persistent structures, the simplest one is known as the 

block.  It consists of for cells grouped as follow: 

 

 
Figure 28.  Block. 

 
 

Another very common structure is the blinker.  This 

structure is not static, but has a period-2 oscillation: 

 
Figure 29.  Blinker. 

       
 

The glider is the simplest propagating structure.  It 

is a 5-cell structure that propagates diagonally (not 

shown) every 4 generations, or time steps. 

 

 
Figure 30.  Glider. 
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The Game of life Cellular Automaton can be a good 

source for musical experimentation, since it allows 

universal computation and pattern propagation. 

See the Appendix for a complete discussion of the 

proposed mapping process and an analysis of a piece 

generated by this cellular automaton. 



 182

Genetic Algorithms 

Almost a century and a half ago, Charles Darwin 

discovered that organisms that remained immutable in a 

changing environment would be unable to adapt to the new 

circumstances and therefore die.49  Darwin observed that, as 

environmental conditions changed, organisms that were 

better adapted to the new environment survived and gave 

birth to offspring that inherited those beneficial traits, 

while the non-adapted ones died.  Darwin called this 

process "natural selection," and considered it to be the 

manner by which species evolved in nature.  This process is 

also known as "survival of the fittest."  Fitness is never 

a fixed quantity.  An individual's fitness depends on many 

factors: a changing ecosystem, competing species and 

competing members of the population, etc.  As the 

environment changes, the fitness of an individual is also 

affected. 

 Darwin did not know the process by which the parents' 

characteristics were inherited by their offspring.  He 

merely observed it.  Almost a century passed until, in 

1953, Francis Crick and James Watson discovered the 

                                                           
49C. Darwin, On the Origin of Species (Cambridge, MA: 

Harvard University Press, 1964). 
 

 



 183

deoxyribonucleic acid molecule (DNA,) responsible for the 

process of biological inheritance.50  Every bit of 

information concerning an individual is encoded in this 

tiny double helix, from hair color to potential illnesses.   

Simple organisms such as bacteria and fungi reproduce 

asexually by duplicating themselves.  This creates 

individuals that differ very little from their progenitors.  

Most higher forms of life, however, reproduce sexually, 

where offspring inherit characteristics of both father and 

mother.  Sexual reproduction increases variation within a 

species.   

The DNA molecule is a sequence of four basic building 

blocks called nucleotides.  The human DNA molecule, for 

instance, consists of over 3 billion of these nucleotides.  

These nucleotides are grouped to form genes.  Genes encode 

the information to build the proteins and enzymes that 

determine all characteristics of an individual.  Genetic 

information from both father and mother are mixed at the 

time of reproduction to form a new individual. 

Natural selection changes the frequency of genetic 

information within a population, but it can not produce new 

                                                           
50F. H. C. Crick and J. D. Watson, "Molecular Structure 

of Nucleic Acids.  A Structure for Deoxyribose Nucleic 
Acid," Nature 171 (1953): 737-738. 
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genes: mutation provides a way.  Mutation is a random 

change in an organism's genes.  The mechanisms that provoke 

mutations are many, such as radiation and cosmic rays.  

While it is unlikely that a random mutation will improve an 

organism that is well-adapted to the environment, in the 

long run mutation provides a way through which genetic 

information evolves. 

Genetic algorithms in a computer emulate the way 

organisms reproduce and evolve in nature.  It has been only 

recently that researches have started to simulate 

biological structures in software.51  Fortunately, genetic 

algorithms need not to have into account as many variables 

as exist in real life.  Whereas nature shows tremendous 

flexibility, the purpose of a computer algorithm is 

basically to find a specific answer to a specific problem.   

A genetic algorithm must implement three basic 

ingredients: competition, survival, and reproduction.52  The 

process involves four basic steps: 

 

1. Initialization:  A starting population of random 

"solutions" (called chromosomes) is created.  Each 

                                                           
51S. R. Ladd, C++ Simulations and Cellular Automata 

(New York: M&T Books, 1995), 192. 
 
52Ibid., 193. 
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bit of information which forms the chromosomes is 

known as an allele. 

2. Fitness testing: Each chromosome in the population 

is assigned a fitness value based upon its 

evaluation against the problem. 

3. Reproduction: Chromosomes are selected from the 

population to became parents of new solutions.  

Chromosomes with higher fitness values are more 

likely to be chosen.  Reproduction is achieved by 

mixing information from parents chromosomes.  

Mutation can be introduced to the new solutions. 

4. Next generation:  A new generation of solutions is 

created.  The process iterates back to step 2 until 

a population of solutions is created which satisfies 

the original problem. 

 

Steps 2 and 3 are crucial.  The reproductive success 

of chromosomes is directly linked to their fitness value.  

Chromosomes with a higher fitness value have a higher 

probability to be chosen as parents.  This is a stochastic 

process; the outcome of a genetic algorithm is based on 

probability. 

 The most common technique for reproduction in a genetic 

algorithm is known as crossover.  Crossover combines the 
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information of both parents by randomly selecting a point 

(or several if the crossover is multiple) at which pieces 

of both parents chromosomes are combined to form an 

offspring: 

 

Father chromosome Mother chromosome Offspring 

abd|bcbag bdd|cbabc abd|cbabc 

 

The simbol "|" denotes the point of crossover.  Multiple 

cross over would be as follows: 

 

Father chromosome Mother chromosome Offspring 

ab|db|cb|ag bd|dc|ba|bc ab|dc|cb|bc 

 

Mutation can and should be part of the reproduction 

process.  It is introduced in the newly formed offspring by 

randomly changing one of its alleles.  The primary purpose 

of mutation is to introduce variation into the population.  

However, it should be used judiciously: too little or no 

mutation limits diversity on populations, which end up not 

evolving at all; too much mutation, on the other hand, 

destroys the value of selection by fitness. 

 Genetic algorithms take full meaning in algorithmic 

music when one considers alleles as musical events and 
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chromosomes formed by alleles as event spaces.  By using a 

genetic algorithm on event sets (which can be predefined or 

generated by other algorithmic means,) the evolution of the 

event sets can be modeled according to a predefined scheme 

(the problem to be solved) decided by the composer.   

Genetic algorithms turn out to be a great way to create 

sets of variations on a given event set.  They have been 

successfully applied to both sound synthesis53 and 

composition.54 

The following examples illustrate how genetic 

algorithms can be used in music composition. 

 For simplicity and clarity, we will use only small 

population consisting of 10 individuals (chromosomes) per 

generation.  Each "couple" will be allowed only one 

offspring.  In addition, chromosomes (event spaces) are 

limited to 4 alleles (events): A, B, C, D.  The total 

number of possible chromosomes is then 44 = 256.  These 

restrictions are imposed only for demonstration purposes.  

A truly functional example would use a much larger set of 

alleles and longer chromosomes.  Our limited example, 

                                                           
53Beauchamp, Horner, and Haken, "Genetic Algorithms and 

Their Application to FM Matching Synthesis," 17-29. 
 
54Goldberg and Horner, "Genetic Algorithms and 

Computer-Assisted Music Composition," 479-482. 
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however, is sufficient to demonstrate the power of this 

technique. 

 Our "alleles" are defined as follows: 

A: , B: , C: , D:  

 

Our genetic algorithm has the following 

characteristics: 

 

1. Initialization: A starting population of ten four-

allele chromosomes will be generated randomly.  A 

possible chromosome may be, for instance, ABBC. 

2. One-point crossover reproduction technique will be 

employed. 

3. The probability of mutation in offspring is set to 

0.10 (one chance in ten.) 

4. The fitness value is assigned according to the 

following scheme: 

4.1 Chromosomes consisting of four different 

alleles have the highest fitness value (0.30.) 

4.2 Chromosomes which contain alleles A and B are 

assigned a fitness value of 0.20. 
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4.3 Chromosomes consisting of four identical 

alleles are assigned the lowest fitness value 

(0.05.) 

4.4 Chromosomes containing three identical alleles 

are assigned a fitness value of 0.08. 

4.5 Chromosomes containing two identical alleles 

are assigned a fitness value of 0.10. 

4.6 Other possible combinations are assigned a 

fitness value of 0.12. 

 

The purpose of this fitness scheme is to promote 

populations (or sets of event spaces, musically speaking) 

that are very varied (containing chromosomes with different 

alleles.) 

The genetic algorithms performs as follows: 

 

1. Each chromosome in the initial population is 

evaluated according to the fitness scheme above 

and assigned a fitness value. 

2. Ten couples of chromosomes from the current 

generation are selected stochastically according 

to their fitness values.  Parents with a higher 

fitness value will be more likely to be selected. 
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3. Each couple reproduces to generate a single 

offspring.  The point of crossover is generated 

randomly. 

4. Chance of mutation is applied stochastically to 

each offspring. 

5. Each offspring is evaluated against the fitness 

scheme and assigned a fitness value.  This is 

generation 1. 

6. The process is iterated from step 2 until we get a 

population that satisfies our fitness scheme. 

 

This genetic algorithm was applied to our event sets 

of four-allele chromosomes, creating 10 generations with 

the following results: 

 

Generation 0 (randomly generated): 

BCAB CDBC ACAC ABDC ACCB ADAB ACCB CADB CADB BBDB 

Generation Chromosomes 

1 ABDB ADAC ACCB BBDB ABDC CDBB CADB BCAC ADAC ABDC 

2 BCAC CADB ABDB CADB CDBC CADC ABDC ABDB ABDC ABDC 

3 ABDC ABDC ABDC CDBB ABDB CADC ABDC CADB ABDC BCAB 
4 ABDC ABDC ABDC ABDB ABDC CADC CADB ABDB CADC CADC 
5 CADB CADC ABDC ABDB ABDC ABDB ABDC CADC ABDC ABDC 
6 ABDC CADC ABDC ABDC CADC CADB CADC ABDB CADC ABDC 
7 CADB ABDB CADC ABDC ABDA ABDC ABDC ABDC CADB ABDC 
8 ABDB CADC ABDB ABDC CADC ABDB CADC ABDC ABDB ABDC 
9 ABDC ABDB ABDC CADB ADDC ABDB CADC CADC ABDC ABDC 
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Note that because the genetic information and 

population were very limited (only four alleles per 

chromosome, and ten individuals per generation,) variation 

in individuals is severely limited too.  Too little genetic 

variety and small populations cause inbreeding, just as in 

real life.  However, these examples are sufficient to show 

how a genetic algorithm works.   

 What follows is a musical transcription of generations 

0, 4 and 9: 

 

 

Musical Example 45.  Generation 0 
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Musical Example 46.  Generation 4 

 

Musical Example 47.  Generation 9 

 

Each measure represents a chromosome.  Observe how 

generations evolve according to our fitness testing.  For 

this example, chromosomes with a larger number of different 
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alleles had more chance of surviving.  For instance, 

chromosomes ACAC and BBDB in the initial population did not 

have a very high probability of reproducing and died.  

However, by generation 10 the population is dominated by 

chromosome ABDC, which has the highest fitness value. 

 Changing the fitness scheme allows us to create 

different variations on populations.  As an example, we 

will now use the following fitness scheme on the same types 

of chromosomes. 

 

1.  Chromosomes which contain allele A two or more times get 

a fitness value of 0.30. 

2.  All other combinations get a value of 0.10. 

 

Since allele A in our musical event space is a rest, 

we want to promote sequences in which silence is a dominant 

factor. 

   The generated populations are as follows: 

 

Generation 0 (randomly generated): 

CAAA DAAB BACB BACB CCDD DAAC BCBB BDDC BCBB CADC 

 

 



 194

Generation Chromosomes 

1 BCBD CADB DAAB CAAB CCDC BACB CAAB BDDB CCDB CCDB 

2 CAAB CCDB CAAB CCDB CCDB CCDB DAAB BACB BDDB DAAB 

3 CCDB CCDB DAAB DAAB CAAB BACB CAAB DAAB CCDB CCDB 
4 CAAB DAAB BACB DAAB CAAB CCDB CCDB CAAB BACB CAAB 
5 BACB BACA DAAB CAAB DAAB DAAB DAAB CAAB CCDB DAAB 
6 CAAB DAAB CAAB DAAB BACA DAAB DAAB DAAB DAAB CAAB 
7 DAAB CAAB CAAB DAAB DAAB CAAB BAAB CAAB CAAB CAAD 
8 DAAB CAAB CAAB DAAB CAAD CAAB CAAC DAAB CAAC CAAB 
9 CAAB CAAC CAAC CAAC CAAB DAAB CAAB CAAD CAAD CAAB 

 

 

The musical transcription of generations 0, 4 and 9 

follow: 

 

 

Musical Example 48.  Generation 0 
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Musical Example 49.  Generation 4 

 

 

Musical Example 50.  Generation 9 

 

It is evident how the music evolves according to our 

determined scheme.  Once again, because of our limited 
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resources, the population became very inbred by generation 

ten. 

 The true power of genetic algorithms only manifests 

itself when we deal with large populations of chromosomes, 

in which the genetic information (the variety of alleles) 

is large, too.  Musically, this means larger event spaces 

with many members. 
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L-systems 

L-systems belong to a branch of mathematics known as 

"formal grammars."  They were first studied in 1968 by 

Aristid Lindenmayer——hence their name——as the basis for an 

axiomatic theory of development and as a tool for a 

realistic modeling of living organisms.55  L-systems can be 

categorized in two basic types: deterministic context-free 

and context-sensitive.  The basic formulation of a 

deterministic, context-free L-grammar is as follows: 

 

G = {A, P, α} 

 

where A is the alphabet of the system (the set of all 

symbols, including the empty symbol or null, ε,) P is the 

finite set of substitution rules.  A substitution rule (i, 

j) ⊂ P is symbolized as i → j, where i ⊂ A and j ⊂ A; i is 

called the predecessor of the substitution rule and j the 

successor of the substitution rule.   α, α ⊂ A, is the 

axiom of the system, which can not be the null symbol ε.  

The substitution rules are applied to the axiom 

                                                           
55Lindenmayer, "Mathematical Models for Cellular 

Interactions," 280. 
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recursively, thus generating new sets of symbols——called 

production strings.  The number of times the rules are 

applied to the subsequent production strings is known as 

the recursion level. 

This process is best illustrated by a concrete example: 

 

variables: X, Y 
Axiom: X 

Substitution Rules:  
X→Y, Y→XY 

Production strings (recursion level: 7) 
(0) X (Axiom) 
(1) Y 
(2) YX 
(3) YXY 
(4) XYYXY  
(5) YXYXYYXY  
(6) XYYXYYXYXYYXY 
(7) YXYXYYXYXYYXYYXYXYYXY  

 

Counting the number of symbols in each production 

string yields the following number series: 

 

1,1,2,3,5,8,13,21... 

 

which is the well-known Fibonacci series. 

Context-sensitive L-systems include stochastic and 

hierarchical grammars, and parametric extensions.  In these 

types of implementations the substitution rules take into 

account the state of surrounding, neighboring symbols when 

they are applied.  This allows for a much more realistic 

and flexible modeling of organisms. 
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Stochastic techniques were introduced in L-systems to 

emulate Natures' non-deterministic, random growth patterns.   

This implementation of L-systems maps a set of 

probabilities {p1, p2, p3, ... pn} with a set of substitution 

rules {P1, P2, P3, ... Pn}, including a symbol s, s ⊂ A, as 

the predecessor.  For example, 

 

P1: s →(1/4) a 
 →(3/4) b 

 

means the symbol s has .25 (25%) probability of being 

substituted by a and .75 (75%) probability of being 

substituted by b.  The sum of probabilities for any given 

symbol should always equal 1.  Markovian processes can be 

represented by stochastic grammars.  For instance, the same 

probability matrix for the Markov process discussed in the 

section Markov Chains (page 69) can be represented by the 

following stochastic grammar: 
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P1:  Event 1  → (1)   Event 2  P6:  Event 6   → (.66) Event 5 
P2:  Event 2  → (.45) Event 1      → (.34) Event 6 

  → (.55) Event 2  P7:  Event 7   → (.20) Event 2 
P3:  Event 3  → (.28) Event 2      → (.70) Event 6 

  → (.16) Event 3      → (.10) Event 7 
  → (.28) Event 5  P8:  Event 8  → (.25) Event 1 
  → (.28) Event 8      → (.75) Event 9 

P4:  Event 4  → (.16) Event 1  P9:  Event 9   → (1)   Event 10 
  → (.52) Event 4  P10: Event 10 → (.70) Event 8 
  → (.16) Event 6      → (.30) Event 9  
  → (.16) Event 9   

P5:  Event 5  → (.50) Event 6   
  → (.50) Event 7   

 

The selection of the axiom α is arbitrary and can be 

decided stochastically as well. 

 Parametric extensions involve the association of 

numerical parameters and mathematical expressions to the 

process of applying the substitution rules to symbols.  

This allows the incorporation of conditional statements 

that determine the application of a substitution rule over 

another based on numerical parameters.  For instance: 

 

P1: a: x < 0 , a → b 
     x = 0 , a → c 
     x > 0 , a → d 
 

 
the symbol a is replaced by b if parameter x is less than 

0, by c if x is 0, or by d if x is greater than 0.  The 

following example generates the famous Fibonacci series: 

 

P1: F(i, j) → F(j, i+j) 
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α: F(1,1) 

Production string: F(1,1)→F(1,2)→F(2,3)→F(3,5)→ F(5,8)... 

 

 The formulation of hierarchical grammars is similar to  

that of deterministic, context-free grammars, with the key 

difference that the successors of substitution rules, 

instead of being symbols, may be entire grammars, with 

their corresponding sets of symbols and production rules.  

The use of hierarchical grammars, together with stochastic 

and parametric techniques allows the representation of very 

complex structures. 

 Because of their recursive nature——a task perfectly 

suited to the computer——L-systems were extensively studied 

by computer scientists soon after Lindenmayer proposed 

them, although mainly from the abstract mathematical point 

of view of formal grammar theory.  However, the true power 

of L-systems manifests when a specific meaning is assigned 

to the symbols in the production strings.   

The first concrete application of L-systems was in the 

field of computer graphics, as an aid in the representation 

of a wide variety of fractals and the in simulation of 

plant growth.56 

                                                           
56Lindenmayer and Prusinkiewicz, The Algorithmic Beauty 

of Plants. 
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 The graphical interpretation of L-systems borrows the 

concept of "turtle graphics" from the LOGO programming 

language.57  LOGO (based on the LISP programming language) 

was developed at the MIT and first appeared in 1967.  LOGO 

was primarily designed as a learning tool.  Turtle graphics 

(also known as turtle geometry58) became the most popular of 

LOGO environments.  Turtle graphics is the computer screen 

version of a small robot that can move around on the floor 

according to directives sent to it from a computer.  Turtle 

graphics in the computer screen are used to draw lines, 

shapes, pictures, etc.  

The state of a turtle is represented mathematically by 

three numbers (i, j, α,) where (i, j) is the position of 

the turtle in the plane (in Cartesian coordinates,) and α 

is the angle determining the direction of the turtle.  

The most basic implementation of turtle geometry in the 

computer screen has the following elements: 

 

                                                           
57The LOGO Foundation; available from 

http://el.www.media.mit.edu/logo-foundation/index.html; 
Internet; accessed 17 November 2000. 
 

58H. Abelson and A. diSessa, Turtle Geometry.  The 
Computer as a Medium for Exploring Mathematics (Cambridge, 
MA: The MIT Press, 1986). 
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• Angle α: the angle determining the turtle's 

direction. 

• Angle increment ν. 

• Step size δ: the distance (usually in screen pixels) 

the turtle travels in the screen when executing a 

drawing command. 

• The Forward command (F): instructs the turtle to 

move forward a step of length δ.  The position of 

the turtle changes to from (i, j) to (i', j'), where 

i' = i + δ*cos(ν) and j' = j + δ*sin(ν).  A segment 

is drawn between coordinates (i, j) and (i', j'). 

• f:  Like the F command, it moves the turtle to the 

new position (i', j'), but without drawing a line. 

• +: Changes the state of the turtle to (i, j, α+ν).  

• -: Changes the state of the turtle to (i, j, α-ν). 

 

Assuming an initial state (i0, j0, α), where ν and δ 

are constant, then the picture set of lines drawn by the 

turtle according to a production string S is called the 

turtle interpretation of S.  To illustrate this process an 

example follows:  
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Axiom: F 
Basic Angle α: 90° 
Angle Increment ν: 23° 

Substitution Rules: 
 
F=FF-[-F+F+F]+[+F-F-F] 

Graphical Representation 

                
(Recursion Level 1)    (Recursion Level 2) 

 

             
(Recursion Level 3)   (Recursion Level 4) 

 

 

Recursion level zero starts with the axiom as the 

current production string.  Each successive iteration 

produces longer and more complicated production strings, 

which are then read sequentially as set of drawing commands 

to produce the image. 

The production strings corresponding to the recursion 

levels in the above example have 8, 172, 1,388, and 11,116 

symbols, respectively.  It is evident the resemblance these 

graphics have with plants.  They also manifest fractal 

structure and self-similarity at all scales. 
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Hierarchical, stochastic, and parametric L-systems have 

become an indispensable tool for modeling the complexity of 

plant morphology as closely as possible.   

 A musical interpretation of L-systems consists in 

assigning musical meaning to the symbols in the production 

strings. 

The following discussion is based on David Sharp's 

program LMUSe59, which interprets L-system symbols as 

musical parameters. 

LMUSe, written for MS-DOS and Java, implements both 

context-free and context-sensitive as well as stochastic 

models of L-systems.  LMUSe is a three-dimensional 

implementation of L-systems.  In LMUSe, the turtle's state 

consists of the turtle's spatial position (i, j, and k 

coordinates,) a forward vector (fi, fj, fz) that holds the 

direction the turtle is facing, an up vector (ui, uj, uz) 

that holds the direction the "top" of the turtle's head is 

pointing to, and a left vector (li, lj, lz) that points to 

the direction to the turtle's left.   

The turtle's state also holds the current length (δ,) 

line thickness, and basic turning angle (α.) 

                                                           
59LMUSe Ver. 0.7b, Released 24 December 1995, David 

Sharp; Available from 
http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.ht
ml; Internet. 
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In addition to the basic commands F, f, +, and -.  

LMUSe implements many others that affect the state and 

direction of the turtle.  Here is a summary of LMUSe's 

direction and movement commands: 

 

Direction commands: 

Command Effect 
+ Turn left around up vector 
+(x) Turn x degrees left around up vector 
- Turn right around up vector  
-(x) Turn x degrees right around up vector 
& Pitch down around left vector 
&(x) Pitch x degrees down around left vector 
^ Pitch up around left vector 
^(x) Pitch x degrees up around left vector 
< Roll counterclockwise around forward vector 
<(x) Roll x degrees left around forward vector 
> Roll clockwise around forward vector 
>(x) Roll x degrees clockwise around forward vector 
| Turn 180 degrees around up vector 
% Roll 180 degrees around i vector 
$ Roll until horizontal 
~ Turn/pitch/roll in a random direction  
~(x) Turn/pitch/roll in random direction to a 

maximum of x degrees 
 
 

 
Movement/Play commands:  

 
Command Effect 
F Draw full length (δ) forward (Play)
F(x) Draw x length forward (Play) 
f Move forward full length (Rest) 
f(x) Move forward x (Rest) 
Z Draw half length forward (Play) 
Z(x) Draw x length forward (Play) 
z Move forward half length (Rest) 
z(x) Move forward x (Rest)  
g Move forward full length (Rest) 
g(x) Move forward x (Rest) 
. Do not move 
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Increment/Decrement commands:  
 
Command Effect 

" Increment length (δ) (times 1.1) 
' Decrement length (times 1/1.1) 
"(x) Multiply length (times x) 
'(x) Multiply length (times 1/x) 
; Increment angle (α) (times 1.1) 
: Decrement angle (times 1/1.1) 
:(x) Multiply angle (times x) 
;(x) Multiply angle (times 1/x) 
? Increment thickness (times 1.4) 
! Decrement thickness (times 1/1.4) 
?(x) Multiply thickness (times x) 
!(x) Multiply thickness (times 1/x) 

 
 
 In addition to these commands LMUSe implements a 

"state stack" which serves as a kind of memory device 

preserving the turtle's state at any given time.  The stack 

is a necessary structure so that the turtle can go back to 

a previous state, thus allowing for branching structures.  

Musically, the stack plays a key role for creating 

polyphonic textures.  The stack commands are as follows: 

 

Command Effect 
[ Push current state but not event time 
] Pop current state but not event time 
{ Push current state and time 
} Pop current state and time 
\ Push event time 
/ Pop event time 

 

 
 In LMUSe, pitch, duration and volume (dynamics) can 

be mapped independently to the components of the position, 

forward, up, and left vectors as well as to the values of 
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the line-thickness, state-length (δ), and draw length 

(length affected by modifiers.)  LMUSe also implements 

commands specific to musical parameters only: 

 

Command Effect 
t(x) Transpose up (+x) or down (-x) by x semitones 
t Do not transpose 
d(x) Multiply note durations by x 
d Multiply note durations by 1.0(cancels d(x)) 
v(x) Multiply note velocities (dynamics) by x 
v Multiply note velocities by 1.0 (cancels 

v(x)) 
Stack commands Effect 
T(x) Push pitch transposition multiplier x onto 

pitch transposition stack 
T Pop transposition amount from pitch 

transposition stack 
D(x) Push duration multiplier x onto the duration 

multiplier stack 
D Pop duration multiplier from duration 

multiplier stack 
V(x) Push velocity multiplier x onto the velocity 

multiplier stack 
V Pop velocity multiplier from velocity 

multiplier stack 
  
 
 Pitch is mapped from predefined scales, which can be 

determined by the composer.  Durations are mapped from a 

continuos scale, thus allowing very complex rhythms.  MIDI 

velocities (dynamics) are also mapped from a continuous 

scale. 

 To illustrate the whole process an example follows. 
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Basic Parameters: 

Recursion Level 5 
Basic Angle 23° 
Axiom X 
Substitution rules X=F[+X]F[-X]+<&X 

F=F{F} 
Line Thickness 50 

 
 
Mapping scheme: 
 
Parameter Mapped to 
Pitch State Position (i component) 
Duration Drawn length 
Dynamic Forward vector (fi component) 
Scale Chromatic 
Instrumentation 2 Flutes, Oboe, Clarinet, Cello 

 
 
Production string to be mapped (recursion level 5): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

F{F}{F{F}}{F{F}{F{F}}}{F{F}{F{F}}{F{F}{F{F}}}}[+F{F}{F{F}}{F{F}{F{F}}}[+F{F}{F{F}}[
+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-
F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-
X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}{F{F}{F{F}}}[-
F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}{F{F}{F{F}}}{F{F}{F{F}}{F{F}{F{F}}}}[-
F{F}{F{F}}{F{F}{F{F}}}[+F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}{F{F}{F{F}}}[-F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}{F{F}{F{F}}}[+F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}{F{F}{F{F}}}[-F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X 
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 The graphical representation of the above production 

string is as follows: 

 

       

(front)   (side)   (back) 

Figure 31.  L-system graphical rendition. 

 

 Three different viewpoints are shown in order to 

appreciate the three-dimensional structure.  Note the self-

similar branching. 

 The musical rendition of this production string, 

according to our mapping scheme is as follows: 
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Musical Example 51.  Music from L-systems 
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Musical Example 51 (continued) 

 

 Note how the five levels of branching in the 

graphical rendition are mapped to five-voice polyphony.  

The first level of branching is mapped to the cello, the 

second to the oboe, the third to the flute II, the fourth 

to the clarinet and the fifth to the flute I.  The choice 

of instruments was the composer's (this writer) decision.  

The rhythmic structure was kept simple because duration was 
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mapped to a parameter (drawn length) that remained constant 

in the production string.  Consecutively equal pitches are 

tied. 

 It is remarkable how the structure of the graphical 

rendition is preserved also in the musical mapping.  For 

instance, note how the graphical interpretation has three 

main structures (labeled 1, 2, and 3): 

 

 

Figure 32.  Structure of L-system model. 

 

 Each of these structures are constituted, in turn, of 

three sub-structures which are, in fact, scaled down copies 

of the whole.  This process of structures within structures 

continues until the fifth level of recursion.   

 The three main structures correspond exactly to mm. 
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1-10, 11-20, and 21-30 in the score, respectively.  The 

second level of structure is also evident in the musical 

transcription.  Each of the three main sections can also be 

structured into three subsections.  The following examples 

show the three sub-structures of the first section (mm. 1-

10.) 

 

 
(sub-structure 1; mm. 1-3 and first half of m. 4) 
 

 
(sub-structure 2; second half of m. 4, mm. 5-6 and first 

half of m. 7) 
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(sub-structure 3; second half of m. 7 and mm. 8-10) 

 

 An even closer inspection of these sub-structures 

reveals yet smaller layers of structure, which go down 

almost to the note-to-note level.  The self-similarity of 

these structures (both in the graphical image and in the 

musical rendering) are not exact, but only approximate.  

For this particular example, this is a consequence of the 

substitution rules and angle chosen.  In a more elaborate 

example, statistical self-similarity can be achieved on a 

much higher level by using stochastic rules.  Statistical 

self-similarity plays an important role in the musical 

rendition of L-systems, because it yields more variation 

and makes the music less monotonous and expected. 

 L-systems are a vast field for musical 

experimentation.  S. Mason and M. Saffle have studied their 

application to music composition.60  Some composers, such as 

Gary Lee Nelson in his Summer Song for solo flute, have 

                                                           
60S. Mason and M. Saffle, "L-Systems, Melodies and 

Musical Structure," Leonardo Music Journal 4 (1994): 53-58. 
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already utilized L-systems in their work.  By manipulating 

production rules and mapping schemes, the composer is given 

an almost inexhaustible source for musical inspiration. 
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CHAPTER IV 

 
 

Software and computer resources for  

algorithmic composition. 

The following are software programs, many available in 

the Internet, that implement most of the algorithmic 

procedures discussed in previous chapters.  The great 

majority of these programs write MIDI files from the 

algorithmic processes they perform, which can be later 

loaded in notation and sequencer programs for further 

refinement of the musical material.  MIDI (an acronym for 

Musical Instrument Digital Interface) is a communications 

protocol of the music industry that allows instruments and 

sequencers (or computers running sequencer software) to 

communicate with each other to play and record music.  Each 

MIDI interface has 16 multitimbral channels to which all 

MIDI information (pitch, duration, dynamic, instrument, 

etc.) is directed.  In addition, each channel is 

polyphonic, the number of voices depending on the quality 

of the MIDI board.  A MIDI file is a computer file format 

that stores MIDI information (pitches, tempo, durations, 
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instruments, etc.) in a very compact manner.  These files 

can be loaded into music notation or sequencing programs 

for manipulation and editing. 

 

FractMus 2000 

Author: Gustavo Diaz-Jerez. 

Freeware. 

Platform: Windows 

Availability: http://www.geocities.com/fractmus 

MIDI file support: YES 
 
Description: 

This program uses twelve algorithms from chaotic 

dynamics (Logistic map, Gingerbread man attractor, Hènon 

attractor, Lorenz attractor, Hopalong and Martin 

attractors,) noise (1/f noise,) cellular automata (Wolfram 

Cellular Automata) and number theory (Morse-Thue sequence, 

Earthworm sequence, 3n+1 numbers.)  It also includes a 

linear random number generator which can be useful for 

stochastic processes.  Algorithms can be assigned to all 

MIDI voices independently.  All musical parameters can be 

controlled by the user (scales, durations, dynamics, 

instruments, etc.,) which allow a wide variety of mappings.  

Independent sections (events,) each including their own set 
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of algorithms, musical parameters and mappings, can be 

defined within the program. 

 

A Musical Generator 

Author: MuSoft Builders. 

Shareware. 

Platform: Windows 

Availability: http://www.musoft-builders.com 

MIDI file support: YES 

Description: 

Musical material is drawn from a great number of 

sources, including chaotic maps (Hopalong, Lorenz, Martin, 

Gingerbread man, Henon, and Polar attractors); fractals 

(Mandelbrot, Julia, Barnsley, Lambda, Newton, and Spider 

sets); noise (white, Brownian, fractional Brownian); 

Lindenmayer L-systems, mathematical constants (such as π and 

e); images, text, and numerical data provided by the user 

as well as mathematical functions defined by the user.  

Algorithms can be assigned independently to each MIDI 

voice.  Only one event is allowed per composition (one set 

of algorithms mapped to musical parameters.) 
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Art Song and MusicLab I - Music from Chaos 

Author: David Strohbeen. 

Shareware. 

Platform: Windows 

Availability: http://www.fractalmusiclab.com 

MIDI file support: YES 

Description: 

 Strange attractors from chaotic dynamics using Iterated 

Function Systems (fractals) and Quadratic Equations as well 

as images provided by the user.  The user has control over 

all musical parameters, such as durations, dynamics, range 

of pitches, etc.  Parameters can be changed in real time 

while playing.  In addition, new functions can be defined 

by the user within the program. 

 

Gingerbread 
 
Author: Phil Thompson. 

Freeware. 

Platform: Windows 

Availability: http://www.organised-

chaos.com/oc/ginger/ginger.html 

MIDI file support: YES 
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Description: 

 This program maps Mandelbrot and Julia Set fractals 

functions to musical parameters.  Each MIDI voice has its 

own graphical window where the user can manipulate and zoom 

the fractal image.  The user can then click on a particular 

section of the image from where the music is then 

generated.  The program allows the composer complete 

control of musical parameters such as scales, dynamics, 

note durations, tempo, etc.  

 
 
Mandelbrot music program 
 
Author: Yo Kubota. 

Freeware. 

Platform: Windows 

Availability: http://www.fin.ne.jp/~yokubota/ 

MIDI file support: YES 

Description:  

 Based in the Mandelbrot set exclusively.  The program 

maps iteration values to user defined musical parameters. 
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Chaos von Eschenbach 
 
Freeware. 

Platform: Windows 

Availability: http://www.cisnet.or.jp/home/magari/ 

MIDI file support: YES 

Description: 

The Mandelbrot set, Julia sets, white noise and 

logistic equation.  Wide variety of mappings available. 

 
 
 
FMusic 
 
Author: David H. Singer. 

Freeware. 

Platform: Windows 

Availability: http://members.aol.com/dsinger594/caman 

MIDI file support: YES 

Description: 

 This program maps Lindenmayer L-Systems and one-

dimensional cellular automata to musical parameters defined 

by the user.  It generates five-voice polyphony only.  The 

user has complete control on how the mapping is performed. 
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Tangent and QuasiFractalComposer 

Author: Paul Whally. 

Shareware/Freeware. 

Platform: Windows 

Availability: http://www.randomtunes.com  

MIDI file support: YES 

Description:  

 Stochastic and deterministic methods.  Parameters for 

these processes are decided by the user.  Instrumentation, 

scales, note durations, dynamics, and other musical 

parameters can also be set by the user. 

 

Lorenz 

Author: Jose Navarro. 

Shareware. 

Platform: Windows 

Availability: http://globalia.net/janc/ 

MIDI file support: YES 

Description: 

 This program employs the Lorenz attractor function to 

generate sequences. 
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CAMUS and CAMUS 3D 

Author: E. Miranda, Kenny McAlpine and Stuart Hoggar 

(CAMUS,) Glasgow University, Centre for Music Technology 

(CAMUS 3D.)  

Freeware. 

Platform: Windows 

Availability: http://www.maths.gla.ac.uk/~km/dsysmus.htm 

MIDI file support: YES 

Description: 

 Two- and three-dimensional cellular automata.  

 

MusiNum – The music in the numbers. 

Author: Lars Kindermann. 

Freeware. 

Platform: Windows 

Availability: http://www.forwiss.uni-

erlangen.de/~kinderma/musinum 

MIDI file support: YES 

Description: 

Morse-Thue number sequence and numerical data provided 

by the user.   
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Make Prime Music 

Author: Armand Turpel. 

Freeware. 

Platform: MS-DOS 

Availability: http://www2.vo.lu/homepages/armand/index.html  

MIDI file support: YES 

Description: 

 Prime number series.  Three different mappings of the 

series are allowed.  Four-part counterpoint is generated. 

 

Genetic Spectrum Modeling Program 

Author: Ray Jurgens. 

Freeware. 

Platform: MS-DOS 

Availability: http://autoinfo.smartlink.net/ray/ 

MIDI file support: YES 

Description: 

 This program combines cellular automata, genetic 

algorithms and 1/f noise to generate fractal melodies.  The 

user has control over the scales used, number of cells (for 

cellular automata processes,) number of generations to run, 

different probability settings such as mutation rate, etc.  

The program randomly generates a series of notes that are 

completely uncorrelated.   The series of notes represent a 
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group of cells that obey Cellular Automata rules. Each 

generation is genetically  modified to turn the cells into 

a specific spectral shape which mimics 1/f noise.  This 

process involves random mutation of the cells.  This 

program generates only one voice per set of parameters.   

 

The Well Tempered Fractal 

Author: Robert Greenhouse. 

Shareware. 

Platform: MS-DOS 

Availability: http://www-ks.rus.uni-

stuttgart.de/people/schulz/fmusic/wtf  

MIDI file support: YES, but non-standard 

Description: 

 Chaotic attractors (Hopalong, KAM torus, Mira, 

Chebychev functions, Julia maps, etc.)  The user controls 

musical parameters such as scale, range of pitches, 

durations, etc.  

 

 

 

 

LMuse 

Author: David Sharp. 
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Freeware. 

Platform: MS-DOS, Java (All platforms) 

Availability: 

http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.ht

ml 

MIDI file support: YES 

Description: 

 Lindenmayer L-Systems.  The program generates a 

graphical representation of the l-system rule set from 

which the music is derived.  The user can define many 

different types of mapping.  One composition per rule set 

is generated.  The user can only decide the scale from 

which the notes are drawn.  Other parameters are decided by 

the program according to the l-system rule set. 

 

LoShuMusic and FibonacciBlues 

Shareware. 

Platform: Macintosh 

Availability: ftp://mirror.apple.com/mirrors/Info-

Mac.Archive/art/fibonacci-blues-02.hqx and 

ftp://mirror.apple.com/mirrors/Info-Mac.Archive/art/loshu-

music-02.hqx 

MIDI file support: YES 

 



 228

Description:  

 Fibonacci number sequence and aleatoric (random) 

procedures. 

 

SoftStep 

Author: Algorithmic Arts. 

Commercial. 

Platform: Windows 

Availability: http://www.algoart.com/software/index.htm 

MIDI file support: YES 

Description: 

 Fractals (Mandelbrot and Julia sets,) chaotic 

attractors (Mira, Martin, Henon, Chebychev, Hopalong, 

etc.,) stochastic processes, number-theory, user defined 

numerical data, etc.  

 

Symbolic Composer 

Author: Tonality Systems. 

Commercial. 

Platform: Macintosh 

Availability: http://symcom.hypermart.net 

MIDI file support: YES 

Description: 
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 Stochastic processes, chaotic maps, fractals, number-

theory, etc.  Many algorithmic processes not included 

within the program can be implemented (programmed) using 

its own proprietary language. 

 

Random Phase Music Generator 

Author: Tak-Shing Chan. 

Freeware. 

Platform: Linux. 

Availability: 

http://www.engr.newpaltz.edu/~chan12/phase.html 

MIDI file support: YES 

Description: 

 Music is generated through phasing of randomly 

generated patterns——the process of looping the same pattern 

at slightly different speeds——, so they will slowly shift 

out of synchronization.  The user has control over musical 

parameters such as scales, note durations, tempo, as well 

as the length of the repeating pattern.  
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Csound 

Freeware. 

Platform: All  

Availability: http://mitpress.mit.edu/e-

books/csound/fpage/getCs/getCs.html 

MIDI file support: YES 

Description: 

 Csound is a open computer language dedicated to music 

composition and sound design.  It is so versatile that it 

allows the implementation (programming) of any algorithmic 

process one can think.  In addition to the possibility of 

programming user-defined algorithms, there are hundreds of 

third-party plug-ins (finished programs) available to 

everyone.  These include stochastic processes, fractals, 

number-theory, etc. 

 

Silence 

Author: Michael Gogins 

Freeware. 

Platform: All  

Availability: http://www.pipeline.com/~gogins/ 

MIDI file support: YES 

Description: 
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 Lindenmayer L-systems, iterated function systems, 

chaotic attractors.  This programs requires the 

installation of the CSound program. 

 

AC Toolbox 

Author: Paul Berg  

Freeware. 

Platform: Windows 

Availability: http://www.koncon.nl/ACToolbox/ 

MIDI file support: YES 

Description:  

 Creation of musical event spaces through stochastic 

functions, chaotic systems, recursion, etc.  This program 

also generates CSound and Opcode MAX files. 

 

Common Music 

Author: Rick Taube 

Freeware. 

Platform: Mac, DOS, Windows, SGI. 

Availability: http://www-

ccrma.stanford.edu/CCRMA/Software/cm/cm.html 

MIDI file support: YES 

Description: 
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 Common Music is an object-oriented music composition 

environment.  Many algorithmic procedures can be 

implemented in Common Music: stochastic processes, chaotic 

systems, number theory, etc.  

 

Nyquist 

Freeware. 

Platform: Mac, Windows, Amiga. 

Availability: 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/musi

c.software.html 

MIDI file support: YES 

Description: 

 

 Nyquist is a sound synthesis and composition language.  

All kinds of algorithmic processes can be implemented in 

Nyquist. 
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KeyIt 

Freeware. 

Platform: Windows, Linux. 

Availability: http://thompsonresidence.com/keykit/ 

MIDI file support: YES 

Description: 

 KeyIt is a programming language and graphical user 

interface for MIDI.  The user can implement many 

algorithmic processes, including stochastic processes, 

fractals, chaotic maps, etc. 

 

ArborRhythms 

Author: Alec Rogers 

Shareware. 

Platform: Windows 

Availability: http://www.arborrhythms.com 

MIDI file support: YES 

Description: 

 Random processes and numerical algorithms. 
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Real Time Composition Library 

Author: Karlheinz Essl 

Freeware. 

Platform: Mac. 

Availability: http://www.essl.at/works/rtc.html 

MIDI file support: YES 

Description: 

 RTC-Lib is a collection of plug-ins for Opcode's MAX 

system.  It implements algorithmic procedures such as 

stochastic processes, numerical functions, etc. 

 

The Hierarchical Music Specification Language 

Author: Phil Burk, Larry Polansky and David Rosenboom 

Commercial. 

Platform: Mac. 

Availability: http://www.softsynth.com/hmsl/ 

MIDI file support: YES 

Description: 

 HMSL is a programming language for experimental music 

composition.  It allows the user to implement custom 

algorithmic processes such as stochastic, fractal, 

numerical, etc. 

 

 



 235

MAX 

Author: Miller Puckette, ported by D. Zicarelli. 

Commercial, Opcode Systems, Inc., IRCAM, and Cycling '74. 

Platform: Mac. 

Availability: http://www.opcode.com/products/max/ 

MIDI file support: YES 

Description: 

 MAX is programming environment for music.  Its object-

oriented programming environment can create an infinite 

variety of customized applications.  Any imaginable 

algorithmic process can be implemented in MAX. 

 

Cmix and RTcmix (Real Time Cmix) 

Author: Paul Lansky, Lance Graf, Dave Madole, Brad Garton, 

Doug Scott, and Eric Lyon. 

Freeware. 

Platform: IRIX (Silicon Graphics,) Linux. 

Availability: http://music.columbia.edu/cmix/ 

MIDI file support: YES 

Description:  

 Cmix is a computer language designed for sound 

synthesis as well as music composition.  It is basically a 

library of C routines.  RTcmix is the "real time" version 

of Cmix, where control of instruments can be done in real 
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time.  Any algorithmic procedure can be implemented using 

the RTcmix language. 

 

Rubato 

Author: Chris Tham 
 
Freeware. 

Platform: MS-DOS. 

Availability: 

http://members.value.com.au/christie/rub_full.html 

MIDI file support: YES 

Description: 

 Rubato is a programming, notation, and performing 

environment for music.  It allows the implementation of 

algorithmic procedures. 

 

LScore 

Author: Senast Andrad:  
 
Freeware. 

Platform: All 

Availability: http://listen.to/algo-comp 

MIDI file support: YES 

Description: 

 LScore is an implementation of L-systems for Csound.  

Requires the installation of the CSound package. 
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The above list, although exhaustive at the time of this 

writing, is by no means complete.  Every day new programs 

and updates of existing ones become available in the 

Internet.  Most of the URLs provided for the above programs 

contain links to related sites of interest.  They should be 

consulted from time to time for new programs and updates of 

existing ones.  Some of these URLs may change in the 

future.  In this case, it is generally sufficient to search 

the program with one of the standard Internet search 

engines (Hotbot, Lycos, Altavista, etc.) with the program's 

name as the search query. 
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CHAPTER V 
 
 

Source Code Listings. 
 

The following are ANSI C and C++ routines that 

implement specific routines valuable for algorithmic 

composition. 

 

Random Number Generator 

The following source code implements a linear random 

number generator function.  It has a period greater than 

1018.  It is useful for many algorithmic processes that 

require strings of random numbers.  The function RanDev() 

returns a pseudo-random number between 0 and 1.  The 

variable "Seed" value should be initialized——using for 

instance the time() function, Seed = time(NULL)——every time 

the function is called. 

 

/*** Start of code ***/  

const long IM1 = 2147483563L; 
const long IM2 = 2147483399L; 
const long IMM1 = IM1 - 1L; 
const long IA1 = 40014L; 
const long IA2 = 40692L; 
const long IQ1 = 53668L; 
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const long IQ2 = 52774L; 
const long IR1 = 12211L; 
const long IR2 = 3791L; 
const long NTAB = 32L; 
const long NDIV = 1L+IMM1/long(NTAB); 
 
const float RNMX = 1.0f - 0.0000001f; 
const float AM = 1.0f/2147483563.0f; 
long Seed; 
 
 
float RanDev(); /* function prototype */ 
 
/* Returns a psuedo-random number between 0 and 1 every 

time it is called  
*/ 
 
float RanDev() 
{ 
 long j,k; 
 static long idum2 = 123456789l; 
 static long iy = 0l; 
 static long iv[32L]; 
 float temp; 
 
 if (Seed<=0L) 
 { 
  if(-Seed<1L) 
   Seed = 1L; 
  else 
   Seed = -Seed; 
 
  idum2 = Seed; 
 
  for(j = NTAB+7; j>=0; --j) 
  { 
   k = Seed/IQ1; 
   Seed = IA1*(Seed-k*IQ1) - k * IR1; 
 
   if(Seed<0L) 
    Seed += IM1; 
   if(j<NTAB) 
    iv[size_t(j)] = Seed; 
  } 
 
  iy = iv[0]; 
 } 
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 k = Seed/IQ1; 
 
 Seed = IA1*(Seed-k*IQ1)-k*IR1; 
 
 if(Seed<0L) 
  Seed +=IM1; 
 
 k = idum2/IQ2; 
 
 idum2 = IA2*(idum2-k*IQ2)-k*IR2; 
 
 if(idum2<0L) 
  idum2 +=IM2; 
 
 j = iy/NDIV; 
 iy = iv[size_t(j)] - idum2; 
 iv[size_t(j)] = Seed; 
 
 if(iy<1L) 
  iy += IMM1; 
 
 temp = AM*float(iy); 
 
 if(temp>RNMX) 
  return RNMX; 
 else 
  return temp; 
} 
 

/********* end of RanDev() function code *********/ 
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Gaussian Random Number Generator  

The following source code implements a Gaussian pseudo-

random number generator.  When called, the function 

gaussrand() returns pseudo-random numbers whose probability 

distribution is Gaussian: 

 

/******* Start of code ***********/ 

#include <stdlib.h> 
#include <math.h> 
 
double gaussrand(); 
 
 
double gaussrand() 
{ 
 static double V1, V2, S; 
 static int phase = 0; 
 double X; 
 
 if(phase == 0) { 
  do { 
   double U1 = (double)rand() / RAND_MAX; 
   double U2 = (double)rand() / RAND_MAX; 
 
   V1 = 2 * U1 - 1; 
   V2 = 2 * U2 - 1; 
   S = V1 * V1 + V2 * V2; 
   } while(S >= 1 || S == 0); 
 
  X = V1 * sqrt(-2 * log(S) / S); 
 } else 
  X = V2 * sqrt(-2 * log(S) / S); 
 
 phase = 1 - phase; 
 
 return X; 
} 
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1/f Noise 

The following C++ class implements the Voss algorithm 

for the generation of 1/f noise.1  It is invaluable for 

using 1/f noise in algorithmic composition. 

Once an object of the class PinkNumber is created, 

calling the member function GetNextValue() returns values 

that resemble the spectral density of 1/f noise. 

 

/******* Start of code *********/ 

#include <iostream>  
#include <stdlib.h>  
class PinkNumber  
{  
private:  
  int max_key;  
  int key;  
  unsigned int white_values[5];  
  unsigned int range;  
public:  
  PinkNumber(unsigned int range = 128)  
    {  
      max_key = 0x1f; // Five bits set  
      this->range = range;  
      key = 0;  
      for (int i = 0; i < 5; i++)  
 white_values[i] = rand() % (range/5);  
    }  
  int GetNextValue()  
    {  
      int last_key = key;  
      unsigned int sum;  

                                                           
1An improved version of this algorithm——not included 

here because of its length——can be found at 
http://www.firstpr.com.au/dsp/pink-
noise/phil_burk_19990905_patest_pink.c; Internet.  Accessed 
February 10, 2001. 
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      key++;  
      if (key > max_key)  
 key = 0;  
      /* Exclusive-Or previous value with current 
value. This gives a list of bits that have 
changed. */ 

 
      int diff = last_key ^ key;  
      sum = 0;  
      for (int i = 0; i < 5; i++)  
 {  
   // If bit changed get new random number for 
corresponding  
   // white_value  
   if (diff & (1 << i))  
     white_values[i] = rand() % (range/5);  
   sum += white_values[i];  
 }  
      return sum;  
    }  
};  
 

/****** end of code *******/ 
 
 
 
 



 244

 
 
 
 
 

APPENDIX 
 

 
This appendix is a description of the mapping process 

and an analysis of the music generated from The Game of 

Life, a two-dimensional cellular automaton described in the 

section Two-dimensional Cellular Automata in CHAPTER III. 

The cellular automaton will evolve in a square matrix 

of 40 by 40 cells.  The matrix has a toroidal geometry, 

that is, cells in the top row neighbor cells in the bottom 

row, and cells in the rightmost column neighbor cells in 

the leftmost column.  The initial cell configuration 

(generation 0) is as follows: 

 

 

Figure 1.  Initial cell configuration 
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This particular cell configuration was chosen because 

it demonstrates clearly pattern propagation and other 

characteristics of the cellular automaton.  It contains two 

gliders (top left and bottom left, see Fig. 1) and a line 

of ten cells (middle right,) which is a parent (or 

predecessor) of a well-known object called the 

pentadecathlon.  The pentadecathlon is a period-15 

oscillator: 

 

 

Figure 2.  Pentadecathlon (period 15) 

 
 

Other objects which will be important in the analysis 

are the block, loaf, and toad: 

 

 

Figure 3.  Block (stable or still life) 

 
 



 246

 

Figure 4.  Loaf (stable) 

 
 

 

Figure 5.  Toad (period-2 oscillator) 

 

 

Three hundred generations in total were computed and 

mapped.  The system achieves a stable, unchanging state 

after generation 289. 

What follows are snapshots of the evolution of the 

cellular automaton every five generations. 
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Figure 6.  Evolution of the Automaton.  Generations 0-145 
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Figure 6 (Continued.) Generations 150-299 

 

 The two initial gliders, moving toward each other 

(generation 0,) eventually collide and get destroyed 

(generation 75,) disrupting the pentadecathlon in the 
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process, which gets destroyed as well (generation 80.)  

From this point the automaton continues to evolve somehow 

chaotically.  At about generation 125 a block and a loaf 

are created in the middle right of the matrix (see Fig. 6.)  

These two stable cell configurations stay undisrupted until 

the end (generation 299.)  From generation 125, cell 

density increases, reaching a maximum at generation 170.  

At about generation 160, a new glider is created in the 

lower left corner of the matrix, and starts to move 

diagonally.  From generation 212 the automaton stabilizes 

with three blocks, a toad, a loaf, and the moving glider.  

The glider moves towards the toad, colliding with it at 

generation 279.  This interaction destroys both the glider 

and the toad, leaving the system with a stable 

configuration (three blocks and a loaf, generation 289.)  

The evolution of the automaton was mapped to a 

polyphonic ensemble of ten instruments: wind quintet 

(flute, oboe, clarinet in B-flat, bassoon, and French 

horn,) string quartet (two violins, viola, and 

violoncello,) and harp.   

Each generation of the automaton was mapped——using the 

normalized mapping method——onto event sets of durations, 

dynamics, and scales.   
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The mapping process is based upon cell density in the 

current generation (the number of cells in state 1.)  The 

mapped scale, duration, and dynamic in the current 

generation are assigned to all instruments globally. 

The durations event set is as follows: 

 

Durations:  index value (normalized mapping) 
 

0 16th 
1 16th 
2 8th 
3 quarter 
4 dotted quarter 

 
 

The dynamics event set is as follows: 

 

Dynamics:  index value (normalized mapping) 
 

0 p 
1 mf 
2 p 
3 f 
4 p 
5 mf 
6 p 
7 ff 

 
 

The arrangement of dynamic values employs the numerical 

fractal sequence 12131214..., where 1 is p, 2 is mf, 3 is 

f, and 4 is ff. 

Polyphony is achieved by assigning 4 rows of the matrix 

to every instrument, sequentially from row 0 to row 39.   
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The flute is assigned rows 0-3, the oboe rows 4-7, and 

so on, as follows: 

 

 Instrument Assigned Rows 

 Flute  0-3 
 Oboe   4-7 
 Clarinet  8-11 
 Violin I  12-15 
 Violin II  16-19 
 Viola  20-23 
 Violoncello 24-27 
 French Horn 28-31 
 Bassoon  32-35 
 Harp   36-39 

 
 

graphically: 

 

Figure 7.  Polyphonic arrangement of rows 
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In every generation of the automaton, the cell 

configuration of each row is mapped to a pitch and assigned 

to its corresponding instrument.  Consequently, every 

generation produces four pitches per instrument.  The pitch 

event set is the actual scale previously mapped from the 

cell density of the current generation.  The set of scales 

is as follows: 

 

Index Scale  Index Scale 

0  Dorian  8  Dorian 
1  Acoustic  9  Acoustic 
2  Dorian  10  Dorian 
3  Scale3*  11  Scale3 
4  Dorian  12  Dorian 
5  Acoustic  13  Acoustic 
6  Dorian  14  Dorian 
7  Acoustic  15  Lydian 

 
 
*The scale3 mode is the Locrian mode but with a lowered 

third degree: 

{0, 1, 2, 5, 6, 8, 10} 

 

The order of scales is based on the fractal sequence:  

 

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5... 

 

where 1 represents the Dorian Greek mode, 2 and 4 the 

Acoustic scale, 3 the Scale3, and 5 the Lydian mode.   



 253

The pitch is computed as follows.  A number n is 

generated from each row, through the following operation: 

 

Figure 8.  Formula for computing the pitch 

 

where si is the state of the cell at position i (ranging 

from 0, the leftmost cell in the row, to 39, the rightmost 

cell in the row,) and φ is the golden mean constant 

1.618033...  

Next, a modulo operation is performed between the 

integral part of n and the number of notes of the scale 

previously decided: 

  

pitch index in scale = [n] mod number of notes in the scale 

 

This yields a number between 0 and the number of notes in 

the scale minus one.  This number will be the index of the 

pitch in the mapped scale.   

The last step is to decide the starting note of the 

scale.  This pitch is mapped independently for every 

instrument from the cell density of the current generation, 

using the following table of values:  
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Index of normalized cell density (0-
7) 

 

0 1 2 3 4 5 6 7 
Instrument Scale starting note event sets 

(pitches shown as MIDI note numbers) 
Flute 60 62 63 64 71 76 81 86 
Oboe 60 62 63 64 59 64 69 74 
Clarinet 60 62 51 76 71 52 57 62 
Violin I 72 62 75 76 71 76 81 86 
Violin II 60 62 63 64 59 64 69 74 
Viola 48 50 51 52 59 52 57 62 
Violoncello 36 50 51 40 59 52 45 38 
Horn 48 50 51 52 59 52 57 62 
Bassoon 48 38 51 52 47 52 57 62 
Harp 84 74 63 76 83 64 57 38 

 

 

Pitches are represented as MIDI note numbers.  MIDI 

note 60 is middle C (C4,) 61 is the C-sharp above, 59 is the 

B below, and so forth.  From the scale, pitch index, and 

scale starting note, the specific pitch is drawn and 

assigned to its corresponding instrument.  For example, if 

the scale is the Major scale, the pitch index is 4 (event 

number 5 in the set,) and the start note is, say, 71 (B4,) 

the corresponding pitch would be F#5, that is, the 5th pitch 

of a major scale starting on B4. 

If a row contains no cells in state 1, it is mapped to 

a rest.  In addition, consecutive equal pitches are tied.   

The choice of instrumentation, scales, range of 

instruments, dynamics and durations were all decided by 

this writer. 
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In sum, each generation of the automaton generates four 

pitches per instrument.  Duration, dynamic and scales are 

global in every generation (the same for all instruments) 

and are mapped based on the cell density of the current 

generation.  Pitches are mapped independently for every 

instrument, based on the cell configuration of the four 

rows assigned to them.  To further clarify this process, a 

detailed explanation of the mapping of generation 0 (see 

Fig. 6) follows. 

The maximum cell density of the system is 83, reached 

at generation 170.  This was computed beforehand in order 

to apply the normalized mapping method.   

First, we compute the global parameters: scale, 

duration and dynamic. 

Cell density in generation 0 is 20.  Our scale event 

set has 16 members (ordered from 0 to 15): 

 

Event No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Scale 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 

 

where 1 represents the Dorian Greek mode, 2 and 4 the 

Acoustic scale, 3 the Scale3 mode, and 5 the Lydian mode. 

Next, we apply the formula for the normalized mapping, 

 



 256

 

where "value" is the current generation's cell density, 20, 

"minval" is the minimum possible density, 0, and "maxval" 

is the maximum density reached, 83.  Since minval is 0 in 

this case, the formula reduces to 

 

Event No. = [(current density/maximum density)*16] 

 

that is, 

Event No. = [(20/83)*16] = 3 

 

Event No. 3 is scale No. 3: the Scale3 mode (see table 

above.) 

 The dynamic is mapped from the following event set, 

 

Event No. 0 1 2 3 4 5 6 7 
Dynamic 1 2 1 3 1 2 1 4 

 

where 1 is p, 2 is mf, 3 is f, and 4 is ff.  This event set 

has 8 members, thus  

 

Event No. = [(20/83)*8] = 1 
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Event No. 1 is dynamic No. 2, that is, mf. 

The duration is mapped from the following event set: 

 

Event No. 0 1 2 3 4 
Dynamic 16th 16th 8th quarter dotted quarter 

 

Applying the formula yields (this event set has 5 members): 

 

Event No. = [(20/83)*5] = 1 = 16th note values 

 

The global parameters, therefore, Scale3, sixteenth note 

values, and a mf dynamic intensity. 

Next, we compute the pitch from each of the four rows 

assigned to every instrument.  The flute rows have the 

following cell configuration: 

 

 

 

Applying the pitch formula (see Fig. 8) to each of the 

four rows produces the following results (note that the 

fourth row has no cells in it, and therefore it is mapped 

to a rest): 

2.61803, 3.61803, 4.236063, rest 
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Next, we perform a modulo 7 operation on the integral 

part of the above values (since Scale3 has 7 notes,) 

yielding the following results: 

 

2, 3, 4, rest 

 

Lastly, we get the starting note of the scale, mapped 

from the following table of values: 

 

Index of normalized cell density (0-
7) 

       Event 
No. 

0 1 2 3 4 5 6 7 
Instrument Scale starting note event sets 

(pitches shown as MIDI note numbers) 
Flute 60 62 63 64 71 76 81 86 

 

 

Event No. = [(20/83)*8] = 1 = MIDI Note 62 = D4 

 

Therefore, the starting pitch for the mapped scale 

(Scale3) is D4.  The scale from which the pitches are drawn 

is, thus 

D4, D#4, E4, G4, G#4, A#4, C5 

 

The indexes of the mapped pitches are 2, 3, 4, and a 

rest, which correspond to E4, G4, G#4, and rest.  Putting 
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everything together (dynamic, note value, and pitches) 

yields the following passage for the flute in Generation 0: 

 

 

 

The same process is then applied to the rest of the 

instruments.   

Applying this mapping scheme to all instruments in all 

300 generations, produces the following score: 
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    

                    
       

     

                                                            

    

     


      


     


      


     


      


     


  

                                                

105

Fr. Hrn.

Vl. I

Vl. II

Vla.

cllo.





                                    

        
     

    

                                                         

    

     


           


       


     


       

         

                     

267

                          


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Fr. Hrn.

Vl. II

Vla.

cllo.





                        
f

 
p

          

                                                

    
     


      

                               

                                             

113

Fr. Hrn.

Vl. II

Vla.

cllo.





          
mf

                          

                                                    

                               

   
       
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 
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Duration and dynamic changes are marked at the top of 

systems in the score.  Duration changes are boxed along 

with the generation number were they occur.  Since each 

generation produces four identical rhythmic values, these 

markers can be used to locate any particular generation by 

simply counting groups of four values from the marked 

generation.   

The generated scales in each generation are as follows: 
 
 
 

Generation Scale Generation Scale Generation Scale Generation Scale 
0 
1 

2-9 
10 
11 
12 

13-14 
15-16 
17-24 

25 
26 
27 

28-29 
30-31 
32-39 

40 
41 
42 

43-44 
45-46 
47-54 

55 
56 
57 

58-59 
60-61 
62-69 

scale3 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 

70 
71 
72 

73-74 
75 

76-79 
80 
81 

82-83 
84-87 
88-91 

92 
93-94 

95 
96-97 
98-100 

101 
102 

103-104 
105 
106 
107 
108 
109 

110-112 
113-120 

121 

dorian 
acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 
scale3 
dorian 
scale3 
dorian 
scale3 
dorian 
scale3 

acoustic 
dorian 

acoustic 
dorian 

acoustic 

122-123 
124 

125-131 
132 
133 

134-136 
137 

138-141 
142-144 

145 
146-148 
149-152 
153-154 

155 
156-157 

158 
159-161 
162-163 
164-168 

169 
170 
171 
172 
173 
174 

175-176 
177-178 

dorian 
acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 
scale3 
dorian 

acoustic 
dorian 
scale3 
dorian 
scale3 
lydian 
dorian 
lydian 
scale3 

acoustic 
scale3 
dorian 

179 
180-184 

185 
186-187 

188 
189 

190-191 
192-194 
195-196 

197 
198 

199-203 
204 
205 
206 

207-209 
210 
211 

212-278 
279 
280 
281 
282 

283-288 
289-299 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 

acoustic 
dorian 
scale3 
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 What follows is an analysis of the generated score and 

an explanation of how it relates to the structure of the 

cellular automaton.   

The first 23 measures in the score correspond to the 

first 70 generations of the automaton.  The two gliders at 

generation 0 start to move diagonally in opposite direction 

toward each other until they coalesce at about generation 

70.  Since they propagate through the matrix, their 

structure is mapped to several instruments.  The glider at 

the top of the matrix in generation 0 moves through the 

rows assigned to the flute (mm. 1-5,) oboe (mm. 3-10,) 

clarinet (mm. 9-15,) and violin I (mm. 13 and following.)  

Simultaneously, the second glider at the bottom of the 

matrix moves through the rows assigned to the harp (mm. 1-

5,) bassoon (mm. 4-10,) horn (mm. 9-15,) and cello (mm. 14 

and following.)  At the same time, the oscillating 

pentadecathlon affects the rows assigned to violin I, 

violin II, and viola.  The pentadecathlon is a non-

propagating, period-15 oscillator.  Its cell structure is 

musically transcribed as a repeating passage between violin 

I, violin II, and viola (mm. 1-6, 6-11, 11-15, 16-18.)  

From m. 18 (generation 52,) although the pentadecathlon is 

still undisrupted, the two gliders have already entered the 

rows assigned to violin I, violin II and viola, thus 
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generating different pitches.  From mm. 16-37 (generations 

47-111,) the automaton evolves in the rows assigned to the 

string quartet.  There is an increase in cell density from 

generation 85 to 95, thus the longer values in mm. 28 to 

33.  From generation 97 to 111 a block stays undisrupted in 

the two middle rows assigned to the violin I (see figure 

6.)  This transcribes musically to the pitches of mm. 34-

37.  Although the block is a stable structure, the pitches 

generated from it change because the scales and scale 

start-note, which are mapped to the overall cell density, 

change within this passage as well.   

From m. 37 (generation 112,) cells start to occupy the 

rows assigned to other instruments.  The horn enters at m. 

37, then the bassoon (m. 49, generation 145,) harp (m. 54, 

generation 153,) flute (m. 61, generation 161,) oboe (m. 

70, generation 169,) etc.   

From generation 123, a block and loaf are created and 

remain undisrupted until the end (see Fig. 6, middle right 

of the matrix.)  These configurations occupy all four rows 

assigned to the violin II and the first of the viola (see 

Fig. 6, generations 125 and following.)  This creates a 

four-note pattern that repeats in the violin II from m. 43 

to the end of the piece (see score.)  The pitches change 

because the scales (as well as the scale start-note) from 
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which they are drawn, are mapped to the overall cell 

density and change as well; however, the intervalic contour 

of the pattern is always the same.  From generation 143 the 

cell density of the automaton starts to increase, reaching 

a maximum at generation 170.  This transcribes musically as 

longer note values, just as decided in the mapping scheme 

(mm. 48-71.)  From generation 170, cell density decreases 

until the end, reaching a minimum at generation 289, the 

point were the automaton achieves an unchanging state.  

Musically, note values start to get shorter (mm. 81 and 

following.)   

At generation 157 a glider is created in the lower 

right part of the matrix.  This glider starts to travel 

through it until it gets destroyed at generation 279, 

occupying in its journey the rows assigned to the horn, 

bassoon, harp, flute, oboe, clarinet, violin I, violin II, 

and viola (see Fig. 6, generations 160-280.)  The effect of 

the glider is more evident in the music from generation 173 

(m. 75,) since the cell density has started to decrease.  

At this point the glider passes through the rows assigned 

to the harp, then the flute (generation 185, m. 83,) oboe 

(generation 201, m. 90,) clarinet (generation 217, m. 96,) 

violin I (generation 233, m. 100,) violin II (generation 

249, m. 104,) and viola (generation 265, m. 109.)  From 
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generation 212 (m. 95) the automaton contains only four 

types of objects: the moving glider, the block and loaf——

which remain since generation 123——, in the rows of violin 

I and viola a toad (a period-2 oscillator,) in the rows of 

the cello, and two more blocks in the rows of the horn (see 

Fig. 6, generations 210 and following.)  These structures 

yield orderly patterns in the above instruments (see mm. 95 

and following,) only to be disrupted when the glider passes 

through their assigned rows.  At generation 279 the glider 

hits the toad and both get destroyed, leaving the system 

unchanged from generation 289 to the end, creating a 

repeating texture between the horn, violin II, and viola 

(mm. 114-116) 

 The overall dynamical behavior of the automaton is 

also transcribed to the music through the mapping process.  

It yields a recognizable "form" in the music.   

This dynamical behavior may be broadly structured into 

four sections.  The first section, which goes from 

generation 0 to 75 (mm. 1-24,) corresponds to the evolution 

of the two gliders and the pentadecathlon.  These two 

gliders move throughout the matrix, creating "duos" between 

the instruments as they pass through their assigned rows.  

At the same time, a patterned texture between violin I, 
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violin II, and viola is created by the evolution of the 

pentadecathlon. 

The second section, more unpredictable and chaotic, 

corresponds to generations 75-210 (mm. 24-82.)  Within this 

section, cell density starts to increases, and hence 

instrumental texture.  We may think of this as a kind of 

developmental section, with instruments slowly being 

incorporated to the texture, and reaching a fortissimo 

climax at generation 170 (m. 71.)  Incidentally, this 

climax occurs at the golden section of the piece! (116 mm. 

x 0.618033 = m. 71.)  However, this is only an unexpected 

(and unprepared) coincidence derived from the particular 

initial cell configuration, matrix size, and number of 

mapped generations.   

From generation 170 cell density starts to decrease, 

yielding a thinner instrumental texture.  The third section 

includes generations 212 to 279 (mm. 95-113.)  Here, the 

system is stabilized with a moving glider, three blocks, a 

loaf, and a toad.  The moving glider yields "solos" from 

the instruments as it passes through their assigned rows, 

against a patterned texture between the horn, violin II, 

viola and cello, derived from the blocks, loaf, and toad.   

Finally, from generation 279 to the end (mm. 114-116,) 

the music settles to a repeating pattern between horn, 
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violin II, and viola, determined by the remaining three 

blocks and loaf. 

 The particular scale, duration, and dynamic event sets 

chosen for the mapping process dictate the modal "feeling" 

as well as the relatively simple rhythmic complexity of the 

generated music.  These event sets were chosen only for the 

sake of simplicity and for demonstration purposes.  

Different, more elaborate event sets, such as increasing 

the number of scales, perhaps including microtonality or 

even absolute frequency; continuous duration and dynamic 

values (not quantized,) etc., would undoubtedly affect the 

character of the generated music.  However, the underlying 

musical structure would still be the same, since it is 

yielded by the structure and evolution of the automaton.   

Furthermore, different starting cell configurations 

will generate a different evolution of the automaton and 

hence, different musical structures.  Other configurations 

may lead to static and unchanging structures, highly 

dynamical and orderly, or even chaotic and unpredictable.  

This incorporates in the generated music elements of 

pattern, variation, and development, elements which are, 

this writer believes, an essential part of music. 
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