

ALGORITHMIC MUSIC:

USING MATHEMATICAL MODELS

IN MUSIC COMPOSITION

by GUSTAVO DIAZ-JEREZ

Submitted to

The Manhattan School of Music

in partial fulfillment of the requirements

for the degree of

Doctor of Musical Arts

and approved by

August 2000

 ii

ABSTRACT OF THE THESIS

Algorithmic Music:

Using Mathematical Models

in Music Composition

by GUSTAVO DIAZ-JEREZ

Thesis advisor: Nils Vigeland

The intimate connection between music and mathematics
has been acknowledged throughout history. This paper is a
survey of the most relevant methods employed today in
algorithmic composition. It covers stochastic processes
(randomness, probability functions, Markov chains); one-,
two-, and three-dimensional chaotic systems; fractals;
algorithms derived from noise spectra (1/f noise); number
theory (Morse-Thue sequence, 3n+1/Hailstone numbers, prime
numbers); cellular automata (one- and two-dimensional
cellular automata); genetic algorithms; formal grammars (L-
systems.) It includes a brief historical survey, an
exhaustive list of available computer programs which
implement most of the processes discussed, and C++ source
code listings of routines valuable for algorithmic
composition. Numerous musical examples are provided to
demonstrate each process. These examples are included in
an accompanying audio CD.

 iii

CONTENTS

ACKNOWLEDGMENTS . vi

PREFACE . vii

Chapter

 I. INTRODUCTION 1

 II. A BRIEF HISTORY OF ALGORITHMIC MUSIC 12

 The Pythagorean 12

 The Middle Ages 17

 The Classical Period 21

 The Golden Mean 23

 The Twentieth Century 27

 The Schillinger System of

 Musical Composition 27

 Edgard Varèse 30

 Iannis Xenakis 32

 Lejaren Hiller 37

 Contemporary Techniques 39

 Chaos Theory 39

 Cellular Automata 41

 L-Systems 43

 iv

 Genetic Algorithms 45

 Other Techniques 47

 III. TECHNIQUES AND APPLICATION OF MATHEMATICAL

 MODELS IN MUSIC 49

 Mapping Techniques 49

 Modulo-based Mapping 50

 Normalized Mapping 51

Stochastic Algorithms 54

 Randomness and Probability

 Distributions 54

 Markov Chains 65

Music from Chaos 76

 One-dimensional Chaotic Systems 78

 The Logistic Equation 78

 Attractors of Two-dimensional

 Chaotic Maps 85

 Attractors of Three-dimensional

 Chaotic Maps 112

 Fractals 126

Noise . 135

Number-Theory Algorithms 142

 The Morse-Thue Sequence 143

 3n + 1 Numbers 153

 The Prime Number Series 152

 v

Cellular Automata 165

 One-dimensional Cellular Automata 169

 Two-dimensional Cellular Automata 178

Genetic Algorithms 182

L-Systems 197

 IV. SOFTWARE AND COMPUTER RESOURCES FOR ALGORITHMIC

 COMPOSITION 217

 V. SOURCE CODE LISTINGS 238

APPENDIX . 244

BIBLIOGRAPHY . 276

VITA . 284

 vi

ACKNOWLEDGMENTS

 I wish to thank Dr. Erik Oña for his help in the

preparation of this thesis; Jeremy Cavaterra for his

invaluable comments; Mario Gosálvez Blanco, for his help in

the preparation of the CD of the Musical Examples; and last

but not least, Belinda Sánchez, for her patience and

support.

 vii

PREFACE

Throughout its history, western music has been based

largely on four paradigms. First, the diatonic model was

dominant until the sixteenth century. Gradually, this

model gave birth to a second paradigm, the tonal system,

which evolved, increasing in chromaticism, until its

"breakdown" at the beginning of the twentieth century.

Free atonality followed, in which the rules of tonal

harmony no longer hold and in which both pitch relationship

and formal structure are created anew in each piece. The

fourth paradigm, Shoenberg’s twelve tone system, a logical

step (according to him) in the evolution of the tonal

system, was an attempt to put all twelve pitches in the

chromatic scale on an equal footing. Free atonality and

the twelve-tone system have altered western music most

dramatically on the twentieth century. It is worth noting

that rhythmic evolution has evolved at a much slower pace

than pitch and formal evolution. It has been only in the

twentieth century that rhythmic complexity has increased

greatly.

 viii

These paradigms provide outside-of-time structures,

serving as scaffolds which the composer manipulates until

the moment of their temporal inscription (that is, when a

composition is created.) These outside-of-time structures

are the tetrachords, Greek modes, scales, rhythmic values,

dynamics, the row and magic square of twelve-tone music,

harmonic rules, formal schemes such as sonata form.

Composers have used them over and over again. They are, in

a manner of speaking, the prime matter of music. These

outside-of-time structures provide a means through which

composers are able to create variation and development.

Aesthetic and value judgements, I believe, are not

applicable to these outside-of-time structures, since they

are mere abstract constructs from which actual works of art

are engendered. They are comparable to the marble stone

out of which Michelangelo carved La pietà or David. Marble

(the sculptor's prime matter) is moot to any aesthetic or

value judgements, while the artist's work upon it, or the

product, is subject.

The development of computer technology in recent years

has offered composers a way to incorporate new outside-of-

time structures to the compositional process. These

structures are drawn from a discipline as old as mankind:

mathematics.

 ix

Mathematics and music has been intermingled since the

times of Pythagoras (ca. 500 B.C.) Throughout the history

of music, many composers have used mathematical models as a

source for compositional creativeness. However, it has

been only recently (thanks to the digital computer) that

the composer can incorporate complex mathematical models in

composition without having to make the tedious and

monotonous calculations they require.

The goal of this thesis is to demonstrate that

mathematical models provide for music outside-of-time

structures which yield variation and development.

The connection between music and mathematical models is

made through a process known as mapping. Mapping consists

of establishing a correspondence between the mathematical

model's data (usually numerical) and a set (or sets) of

musical outside-of-time structures (such as scales,

rhythmic values, dynamics, etc.) Mapping thus creates an

intimate link between a new process (the mathematical

model) and established musical structures. The choice of

those outside-of-time musical structures for the mapping

process is ultimately determined by the composer.

For the mapping process in the musical examples that

demonstrate the various mathematical models discussed in

this thesis, I have chosen to use only simple sets: scales,

 x

usually chromatic, and simple rhythmic values and dynamics.

The main reason is clarity: simplicity allows the

structures yielded by the mathematical models to be

recognized much more easily. Instead of scales and simple

rhythms, I could have used continuos (that is, not

discrete) frequency, rhythmic and dynamic sets——thus

allowing microtonality and limitless rhythmic complexity——

without affecting the intrinsic structure yielded by the

mathematical model. Furthermore, the musical examples

included are not fully-fledge compositions by themselves.

They serve only to demonstrate that mathematical models

offer the composer a new path for variation and musical

development.

All musical examples were generated by the author

through the implementation of their corresponding algorithm

in the C++ programming language. Because of the length of

these programs, they could not be included in the body of

the thesis. However, some valuable routines are provided

in Chapter V.

It is presupposed that the reader has the necessary

mathematical and programming proficiency to implement the

algorithms by himself/herself.

 1

CHAPTER I

INTRODUCTION

Music and mathematics have been intermingled since the

dawn of history. In antiquity, music was considered a

branch of mathematics. Flavius Cassiodorus (ca. 485-ca.

575,) a man who played a pivotal role in the transmission

of ancient culture to the Latin Middle Ages, describes

mathematics as the union of four disciplines: arithmetic,

music, geometry and astronomy. "Mathematical science ...

is that which considers abstract quantity ... It has these

divisions: arithmetic, music, geometry, astronomy ... Music

is the discipline which treats of numbers in their relation

to those things which are found in sounds."1

As early as the sixth century B.C., the Greek

philosopher and mathematician Pythagoras developed the

1F. Cassiodorus, "Fundamentals of Sacred and Secular

Learning," in Strunk's Source Readings in Music History,
ed. O. Strunk (New York: Norton, 1998), 144-145, footnote
7.

 2

concept of "music of the spheres"2 as part of his theory of

the functional significance of numbers in the objective

world and in music. The principles of perfect proportion

that the ancients held to govern the natural universe were

applied to their organization of musical pitches into fixed

interval schemes known today as the Greek Modes.

To our knowledge, the ancients went no further in

their provisions to organize the act of musical composition

than to systematize pitch into fixed patterns; no evidence

exists to suggest that they might have evolved procedures

whereby these pitches were combined into principled forms.

It was not until almost 1500 years after Pythagoras, in the

Medieval period, that composers began to formulate rules by

which pitch relations and combinations were governed.

In more recent times, music and mathematics——the one

art, the other science, linked together by the common

factor of logic——have found true conjugality in our age of

the computer, by whose agency the two fields have been

consciously and practically integrated. The recent advent

of software programs developed for algorithmic composition

2A. Boethius, "Fundamentals of Music," in Strunk's

Source Readings in Music History, ed. O. Strunk (New York:
Norton, 1998), 140.

 3

reflects man's ancient endeavor to furnish himself ever

more proficient tools.

The custom of borrowing systems of organization from

outside the musical realm has been firmly established in

compositional practice.3 However, as computer-assisted

composers have begun to appropriate highly specific

technical terms from disciplines once thought to be

completely unrelated to music, the definitions of these

terms have become clouded and convoluted. The term

algorithm has been adopted from the fields of mathematics

and computer science; however, in some cases its

misappropriation has caused confusion in meaning. It is

therefore necessary to clarify the underlying

misconceptions that have accompanied the term "algorithmic

composition" in order to dissolve the growing sense of

ambiguity.

The word algorithm has been in use for over a

millennium; still, in order to clarify its use in reference

to musical composition, a cursory glance at its etymology

is useful. The word comes to us from the ninth century,

3G. Loy, "Composing with computers: a Survey of some

Compositional Formalisms and Music Programming Languages,"
in Current Directions in Computer Music Research, eds. M.
Mathews and J. R. Pierce (Cambridge: MIT Press, 1989), 292–
396.

 4

from the work of the Arabic mathematician and writer Abu

'Abdullah Muhammad ibn Musa of Khwarizmi.4 His most

distinguished book, entitled al-Kitab al-mukhtasar fi hisab

al-jabr wa'l-muqabala (Rules of Reintegration and

Reduction,) was the basis for the standardization of Arabic

numerals in European mathematics. Indeed the word algebra

is a Medieval latinization of the Arabic word al-jabr,

which means literally "the reduction." The Latin stem of

the word algorithm was most likely inherited from this

mathematician's homeland, al-Khwarizm (The Khwarizm) and

termed, "algorismus." The Anglicized form, "algorism," was

used to mean "the Arabic or decimal system of numerals."

This archaic word appears in literature even before 1200,

and little philological argument is needed to deduce that

it can only be the forerunner of the modern term algorithm.

An algorithm in contemporary terms is characterized by

the following properties:

• An algorithm consists of a finite sequence of actions.

• The sequence of actions has a unique initial action.

• Each action in the sequence has a unique successor.

4K. H. Parshall, "The Art of Algebra from Al-khwarizmi

to Viète: a Study in the Natural Selection of Ideas,"
History of Science (June 1988): 129-164.

 5

• The sequence terminates with either a solution to the

problem, or a statement that the problem is

unsolvable.

In simplified terms, an algorithm is a process that

solves a problem in a step-by-step fashion through either

redistribution, recursion, or branching. The solution must

be found in a finite number of steps. In application to

music, algorithms may be thought of as procedures that test

potential compositional material for its appropriateness

within a given context. Pitch, duration, intensity, and

other sound and structural constituents may be chosen

according to a set of questions and answers. Needless to

say, the computer is the indispensable tool for the

incorporation of algorithmic processes into musical

composition. The use of algorithms, by reasons of both

quantity and complexity, is a task perfectly suited to the

computer. Best used in this capacity as a labor-saving

device——to free the composer from carrying out such tedious

calculations by hand——the computer is nothing more and

nothing less than a utensil for the realization of abstract

design constructs, which then may be applied to music-

making according to the composer's own creativity and

imagination. Used judiciously and according to the natural

 6

parameters of its faculties, the computer enables, for

instance, the composer to experiment with the musical

properties of many different algorithmic procedures and to

judge their potential development into fully-fledged

compositional systems. The computer in algorithmic music,

like the "magic square" in dodecaphonic composition, is

most usefully employed as a compositional implement rather

than as a one-stop musical solution.

Within the young history of algorithmic composition

with computers, three major approaches have emerged: (1)

algorithms for sound synthesis; (2) algorithms for

compositional structure; (3) algorithms for the correlation

of sound synthesis with structure.

Sound synthesis algorithms have been used in a variety

of ways, from the generation of complex waveforms5 (building

sounds,) to the evolution of timbre development over time.6

Some of the algorithmic programs and compositions

specify score information only. Score information includes

5B. Truax, "Chaotic Non-Linear Systems and Digital

Synthesis: An Exploratory Study," in Proceedings of the
1990 International Computer Music Conference, ed. Stephen
Arnold (San Francisco: International Computer Music
Association, 1990), 100-103.

6A. Kurepa and R. Waschka, "Using Fractals in Timbre

Construction: an Exploratory Study," in Proceedings of the
1989 International Computer Music Conference, eds. David
Butler and Thomas Wells (San Francisco: International
Computer Music Association, 1989), 332-335.

 7

pitch, duration, and dynamic material, written for acoustic

and/or electronic instruments: e.g., there are instances in

which a composer makes use of a computer program to

generate the score while the instrumental selection has

been predetermined as either an electronic orchestra or a

realization for acoustic instruments.

Other algorithmic programs specify both score and

electronic sound synthesis. In this instance, the program

is used not only to generate the score, but also the

electronic timbres to be used in performance.

One of the primary concepts involved in algorithmic

composition is mapping. Mapping consists of creating

direct relationships between an algorithm's output

(generally numerical) and musical parameters. Mapping can

be also understood as the translation of the algorithm's

extra-musical material into music. How the mapping is

performed is entirely the composer's choice. It must be

emphasized that there are conceivably infinite ways to map

an algorithm's numerical output to musical parameters; the

same algorithm will yield totally different music given the

application of different mappings. In addition to pitch,

mapping can be applied to any musical parameter (rhythm,

dynamics, etc.,) and to higher-order musical events, such

as motives or even fully-fledge phrases.

 8

There are four basic categories of algorithms that can

be applied to music composition:

• Stochastic processes (probability functions, Markov

chains.)

• Iterative (chaos, fractals, non-linear equations,

number theory.)

• Rule-based (L-systems, formal grammars.)

• Genetic algorithms.

Each of these processes has its own unique

characteristics, and the musical material they generate

varies accordingly.

Stochastic processes——which involve the use of

probability functions——were the first to be explored, by

Iannis Xenakis in the 1950s7, a time when avant-garde music

was dominated by the heritage of Shoenberg's twelve-tone

system.

The "aesthetic drive" to search for a new direction in

music composition led Xenakis to formulate a new paradigm

for music, which he called stochastic music.8

7I. Xenakis, Formalized Music; Thought and Mathematics

in Music (New York: Pendragon Press, 1992).

8Ibid., 8.

 9

The use of these new techniques required computers to

be specially programmed. Decades ago, when access to a

computer was relatively difficult and no relevant software

existed, composers had to write the programs themselves or

work in conjunction with a programmer. This presupposed a

deep knowledge of the algorithm's mathematical structure as

well as strong programming abilities (the more so in a time

when most software of this nature was programmed in low-

level languages such as Assembly or machine code.) It is

not surprising that composers who used these techniques

were also fairly well versed in mathematics and computers

(e.g., Iannis Xenakis, an architect and mathematician;

Lejaren Hiller, a chemist; et al.)

Today, fortunately, thanks to the development of high-

level, object-oriented programming languages specifically

designed for music composition (such as CSound9 and MAX10,

among many others11) the composer can implement algorithmic

procedures in a much more intuitive way. The learning

curves of these programming environments, although steep,

9R. Boulanger, ed. The Csound Book: Perspectives in

Software Synthesis, Sound Design, Signal Processing, and
Programming, (Cambridge: The MIT press, 2000).

10Opcode MAX, Opcode Systems Inc.; available from

http://www.opcode.com/products/max; Internet.

11Loy, "Composing with Computers," 318–376.

 10

pale when compared to those of standard low- and mid-level

programming languages such as Assembly or C. Furthermore,

because these programming environments are specifically

designed for music, the composer saves an enormous amount

of time in the coding process. The code length of an

algorithmic process implemented in CSound of MAX is

typically ten to fifty times shorter than if it were to be

programmed in C, let alone Assembly language.

In addition to mastering programming techniques and in

order to implement and fully exploit the possibilities of

algorithmic processes, the composer must have a deep

understanding of their mathematical formulation. Today,

there is a panoply of ready-made software programs that

implement many algorithmic processes. Many of these

programs claim that "little or no mathematical knowledge"

is needed to operate them. The user just has to plug in a

few numbers here and there (most of the time without even

knowing what those numbers apply to) and the computer will

"do the rest." This is the kind of one-stop musical

solution previously denounced. Although these programs may

be useful to have a rough estimate of an algorithmic

process, the only way to get the most out of the process is

through an understanding of its mathematical formulation

and through direct experimentation with it. An algorithm

 11

can be mapped in virtually unlimited ways. Ready-made

software programs offer at most a few mapping

possibilities. In order to fully explore and investigate

different mappings types as well as mathematical variations

of the same algorithm, the composer must implement it

(program it) using relevant software.

Algorithmic music uncovers a new direction in musical

composition. This direction lies along a path that has

lain dormant throughout the history of music. The

aesthetics of mathematics as applied to music was

discovered and studied by the Pythagorean more than 2,500

years ago. Today, with contemporary computer technology,

we can continue investigating along that path.

 12

CHAPTER II

A BRIEF HISTORY OF ALGORITHMIC MUSIC.

The Pythagorean

The main assertion of the Pythagorean doctrine was

trifold: that all things are numbers, or that all things

are furnished with numbers, or that all things behave like

numbers.1 To say that this mathematical thesis is pertinent

to music is to say that the roof of a house pertains to its

foundation; the one arises from the other. Indeed, the

Pythagorean concept of the ubiquity of numbers evolved from

the study of musical intervals which sought to obtain the

"orphic catharsis,"2 in accordance with the belief that

music "cleansed the soul" as medicine cleanses the body.

Pythagorism, Greek in origin, was passed on to the

Byzantine, whence it was transmitted to the Arabs and to

Western Europe, eventually to permeate all occidental

thought.

1Xenakis, Formalized Music, 202.

2Ibid., 201.

 13

Music theorists from Aristoxenos to Hucbald, Zarlino to

Rameau, have returned again and again to the same

assertion, expressed in more or less varied styles. The

consensus seems to strike a clear unison of thought: that

the arts, and conceivably all intellectual activity, are

immersed in the world of numbers.3

No first-hand details have survived to tell us how

Pythagoras discovered the numerical ratios of musical

intervals. One legend tells that Pythagoras, a student of

Thales——the father of Greek mathematics, astronomy and

philosophy——discovered musical ratios by striking

blacksmith's hammers4 of various sizes. Their weights are

generally translated in contemporary measures as 12, 9, 8,

and 6 pounds. When struck in pairs, they produced the

octave (12:6,) the fifth (12:8 and 9:6,) the fourth (12:9

and 8:6,) and the whole tone (9:8.) On cursory hearing the

story sounds plausible; these numbers correctly represent

the ratios of frequencies of those intervals. However, as

soon as the acoustics of the situation are probed, the myth

is revealed for what it is. On the other hand, the notion

3Ibid., 202.

4New Harvard Dictionary of Music, ed. Don Randel, s.v.

"Pythagorean hammers," (Cambridge, MA: Harvard Univ. Press,
1986).

 14

that Pythagoras discovered these ratios by measuring the

lengths corresponding to them on the monochord (a single-

stringed instrument with a moveable bridge,) is quite a

creditable one and incurs no error of acoustics.

The process of continuos subtraction developed by the

Greeks (antanairesis) was probably the principal method

used for establishing several intervals, based on the

Pythagorean scale.5 This method takes the numerical

proportions of two intervals and subtracts the smaller from

the larger, leaving a smaller proportion, which is then

subtracted from the previous proportion, and so forth. For

instance, an octave minus a fifth leaves a fourth (2:1 –

3:2 = 4:3); a fifth minus a fourth leaves a whole tone (3:2

– 4:3 = 9:8); this process is repeated, creating smaller

and smaller intervals: the impure minor third (32:27,) the

diesis or leimma (256:243,) the apotome (cut-off)

(2187:2048,) and the Pythagorean comma (531441:524288,)

which has a frequency difference of only 23.5 cents (a

tempered semitone is 100 cents.) These ratios can also be

represented by arithmetic and harmonic means. The

arithmetic mean between two numbers is the sum of the

numbers divided by two. If a is the arithmetic mean

5Ibid., s.v. "Pythagorean scale."

 15

between x and y then, assuming x > y, x – a = a – y. The

harmonic mean between to numbers, h, has the following

proportion:

x > y, (h – y)/y = (x – h)/x

or, solving for h:

h = (2xy)/(x + y)

The Pythagorean understood the musical application of these

means, noting that the arithmetic mean of the octave

(12:6,) 9, produced the fourth (12:9 = 4:3,) and the fifth

(9:6 = 3:2.) Similarly, the harmonic mean of the octave,

8, produced the fifth (12:8,) and the fourth (8:6.)

Another important proportion used in antiquity was the

geometrical mean. The geometrical mean, g, between two

numbers x and y is:

x > y, (x / g) = (g / y)

or, solving for g:

 16

g = √(x*y)

Aristides Quintilianus, one of the first music

theorists, discovered that whenever arithmetic means (a and

b) are inserted between the members of a geometric

proportion (x:g:y,) where a is the arithmetic mean between

x and g, and b is the arithmetic mean between g and y, then

g is the harmonic mean between a and b.6

The discovery of musical ratios by Pythagoras

flourished into the complex Greek musical theory, of which

Aristoxenus (born ca. 365 B.C.) was the first and most

important theorist.7 Later music theorists were largely

influenced by this mathematical description of music by the

Greeks. These include the musical treatises of

Quintilianus (De musica,) Ptolemy (Harmonics,) Boethius (De

Institutione musica,) Gaudentius (Harmonic Introduction,)

Hucbald (De harmonica institutione,) Zarlino (Institutioni

harmoniche,) Fux (Gradus ad Parnassum,) Rameau (Traité de

l’harmonie,) to name but a few.

6Ibid., s.v. "Arithmetic and harmonic mean."

7Xenakis, Formalized Music, 183-189.

 17

The Middle Ages

The earliest example known of an algorithmic method

applied to music composition——and the first example of

mapping——dates from the 11th century by Italian composer and

music theorist Guido D'Arezzo.8 His method——developed ca.

1026——consists of creating a correspondence between the

vowels of a text and a set of pitches, as follows.

The pitches of the standard two-octave vocal tesitura

of the time were first laid out:

Γ A B C D E F G a b c d e f g a

where 'Γ' corresponds to the G below middle C. Next, three

iterations of the vowels "a e i o u" were placed below the

pitches, yielding

Γ A B C D E F G a b c d e f g a

a e i o u a e i o u a e i o u a

Next, the vowels from the text to be set were extracted.

Lastly, using the pitch look-up table above, the composer

generated the melody. Because every vowel can be mapped to

8Loy, "Composing with Computers," 303.

 18

three different pitches (except for the vowel 'a', which

has four correspondences,) a set of n vowels can generate

at least 3n different melodies (this number may be even

larger since the vowel a has four possible mappings.) The

choice among those three possible mappings per vowel (four

in case of a) was decided by the composer. This allowed

the composer to make choices so that the melodic outline

would conform to the stylistic rules of the time.

Although this method is clearly algorithmic in its

essence, its definiteness is somehow obscured by the

exponential grow of possible melodies as the number of

vowels in the mapped text increases (for a 15 vowel text,

just a few words, there are at least 315——over 14 million——

possible melodies!)

Isorhythmic Motets of the 14th and 15th centuries are

another example were a mathematical process is intermingled

with music composition. Isorhythm——the term was coined by

Fridrich Ludwig in 19049——means the repetition of rhythmic

and melodic patterns throughout a voice part (mostly the

tenor part, although in the late 14th – early 15th centuries

many compositions were isorhythmic in all voices, that is,

9F. Ludwig, "Die 50 Beispiele Coussemakers aus der

Handschrift von Montpellier," SIMG 5 (1903-4): 177-224.

 19

panisorhythmic.) The rhythmic pattern was called talea and

the melodic pattern color. The two patterns can be of

different length, thus the successive repetition of the

talea may occur with different pitches. If the talea

consisted of (say) 10 durations and the color of 6 pitches,

we would have 30 (5 X 3 X 2, since both 10 and 6 share the

common factor 2) possible permutations of talea-color until

they repeat again. In panisorhythmic motets, the number of

possible permutations can grow astronomically. Naturally,

of all the possible combinations, only a subset of them

were allowed by the harmonic rules of the time.

Isorhythm was discussed in musical treatises of Jehan

des Murs (Libellus cantus mensurabilis,) and Prosdocimus de

Bedelmantis (Tractatus pratice de musica mensurabili.)10

Composers who employed isorhythm include Vitry——who was the

first to use this technique——, Ciconia, Machaut, Dunstable,

Dufay, among many others. After the 15th century, isorhythm

slowly died away, and we have to wait until the 20th century

to find similar practices.

Another procedure developed during the Middle Ages

which involves the mapping of non-musical material to music

is soggetto cavato. Soggetto cavato——the term was coined

10New Harvard Dictionary of Music, s.v. "Isorhythm."

 20

by Zarlino11——consists of making a one-to-one correspondence

between the individual letters of words in text to music.

For instance, Josquin des Prez' mass dedicated to Hercules

Dux Ferrarie derives its theme from this dedication by

employing the six solmization syllables, or the names of

the pitches of the scale (ut, re, mi, fa, sol, la,) as

follows: re, ut, re, ut, re, fa, mi, re, corresponding to

the vowels e-u-e-u-e-a-i-e, yielding the pitches d-c-d-c-d-

f-e-d. Soggetto cavato has been used by composers

throughout the history of music. Well known examples

include Bach's use of his own name (B A C H: B-flat - A - C

- B natural) in the final three-subject fugue in The Art of

the Fugue, Schumman's ABEGG Variations for piano (A - B-

flat - E - G - G,) and many others——the letter B in German

corresponds to B-flat, the H to B natural. This procedure

could be applied to all letters of the alphabet, not only

to the ones that suggest pitches. For example, Ravel in

his Menuet sur le nome de Haydn maps "Haydn" as B – A – D –

D – G, mapping the 'y' to D and the 'n' to G, as follows:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

 ABCDEFGABCDEFGABCDE

11G. Zarlino, Institutioni harmoniche, trans. G.

Tomlinson, (Ridgewood, NJ: Gregg Press, 1966).

 21

The Classical Period

Another example of a mathematical process applied to

music before the computer age is found in Mozart's

Musikalisches Würfelspiel, K 516f (a musical dice game.)

The idea was to cut and paste pre-written measures of music

together to create a minuet and trio. This technique

appears to have been pioneered by Kirnberger in 1757.12 In

the late Baroque through Classicism, it was common practice

for composers——even those of great prestige——to use

compilations of progressions, cadences, motives, etc., in

their works, sometimes as a source of inspiration,

sometimes as the actual music. This technique became known

as ars inveniendi.13

Mozart used a table of 176 possible measures for a 16-

measure Minuet (11 2-dice distinct combinations times 16

measures) and 96 for the trio section (6 X 16.) The

structure of the composition was determined by chance: two

dice were rolled to determine the measures for the minuet,

one for those of the trio. The result of a dice roll was

checked against the table of measures, in order to

determine which one to play.

12Loy, "Composing with Computers," 303.

13Ibid.

 22

The instructions for the Musikalisches Würfelspiel

appear on a sheet of sketches in the Bibliothèque Nationale

de Paris, dating from 1787.14 The compositional procedure

is as follows:

1. Throw both dice for measure 1 of the minuet;

2. Match the number shown by the dice (which will

necessarily be a number between 2 and 12) to the

corresponding number on the table of the 176 pre-

composed measures;

3. Repeat until all 16 measures have been determined.

The trio is composed analogously, except using only one

die. In theory, there are 1116 * 616 ≈ 1.3 * 1029 possible

compositions. Many of them will be related, since there is

a predetermined amount of musical material, but none of

them will be exactly the same. This number is so large (13

followed by 28 zeroes) that if so many grains of sand were

to be arranged in a single file (assuming each to be one

millimeter in length,) they would span a distance of

14E. Smith, liner notes to W. A. Mozart, A musical dice

game (Phillips Complete Mozart Edition—Rarities and
Surprises 422 545-2, 1991).

 23

roughly 13 billion light years, which is approximately

130,000 times the diameter of the Milky Way galaxy!

This process involving chance is an important

antecessor of the aleatoric procedures used by John Cage

two centuries later15, with a key difference: in Mozart's

game, the sequence of measures in the "generated" minuet

and trio had to conform to the stylistic rules of the time.

This was possible because each measure in the look-up table

was selected from a set of possible successor measures,

arranged in such a way so that all sequences would agree to

established harmonic and stylistic canons.

The Golden Mean

Another mathematical model that has been used in the

arts throughout history is the Golden Mean.16 The golden

mean——whose mathematical symbol is the Greek letter phi

(φ)——is defined as the point that divides any segment in two

sections so that the proportion between the larger section

and the smaller is equivalent to the proportion between the

whole segment and the larger section. Mathematically, if

15Loy, "Composing with Computers," 304.

16J. T. Anderson and C. S. Ogilvy, Excursions in Number

Theory (New York: Dover, 1988), 139-140.

 24

we take a segment of length 1 (for convenience,) the Golden

Mean is a point x on the segment that satisfies the

following equation:

1/x = x/(1-x) or x2 + x – 1 = 0

Put graphically,

1

x (1-x)

The Golden Mean is the positive solution of the

quadratic equation x2 + x – 1 = 0 (the other solution is

negative and has no physical relevance here.) Phi is

exactly equal to (√5 – 1)/2, or approximately

0.6180339887499. This number appear everywhere in nature:

in the branching of trees, sunflowers, seashells, etc.17

This proportion is known since the Greeks, who used it as a

structural model in their architecture. The Parthenon in

Athens, for instance, is full of golden mean proportions.

17C. C. Clawson, Mathematical Mysteries: the Beauty and

Magic of Numbers (New York: Plenum Press, 1996), 126.

φ

 25

The Golden Mean is intimately related to the Fibonacci

series, discovered by Leonardo of Pisa in the 13th century18:

1 1 2 3 5 8 13 21 34 55 89 144 ...

Starting with two ones, each new term of the sequence is

generated by adding together the last two. Put

mathematically,

Fn = Fn-1 + Fn-2

The Fibonacci sequence and the Golden Mean are related

as follows: if we divide the nth term of the sequence by the

(n+1)th term, we get:

F(1)/F(2) = 1/1 = 1
F(2)/F(3) = 1/2 = 0.5
F(3)/F(4) = 2/3 = 0.666666666
F(4)/F(5) = 3/5 = 0.6
F(5)/F(6) = 5/8 = 0.625
F(6)/F(7) = 8/13 = 0.6153846153846
F(7)/F(8) = 13/21 = 0.6190476190476
F(8)/F(9) = 21/34 = 0.6176470588235

.

.

As the terms become larger and larger these ratios converge

to a finite value: φ, the Golden Mean:

18Ibid., 123.

 26

lim F(n)/F(n+1) = φ
n→∞

This proportion has fascinated many composers

throughout history, who have used it mainly as a structural

device. If we consider the whole length of a piece, its

Golden Mean is approximately at 61.8% of its total

duration. Composers usually reserve the moment at which

the Golden Mean happens for something special, such as the

climax of the piece or a dramatic moment. One of the

earliest musical examples of the use of this is Thomas

Tallis' 40-voice motet Spem in alium: at the Golden Mean

there is a bar of complete silence, followed by the

entrance of all 40 voices together. In the twentieth

century, Claude Debussy used this proportion in many of his

pieces19, such as Reflets dans l'eau, where the climax

occurs at measure 58 of a total of 94 (58/94 ≈ φ.) Béla

Bartók also made extensive use of the Golden Mean in his

music. Examples include the first movement of his Sonata

for two Pianos and Percussion, the first movement of Music

for Strings, Percussion and Celesta——the climax occurs at

19R. Howat, Debussy in Proportion: a Musical Analysis

(New York: Cambridge Univ. Press, 1983).

 27

the Golden Mean, at bar 55 of a total of 89——, among

others.

The Twentieth Century

The advances in mathematics and science in general

since the mid-nineteenth century have allowed composers to

incorporate ideas and procedures into their music that were

inconceivable in previous centuries. In the present day,

the idea of music as an art-science sparked by the ancient

Greeks has been rekindled.

The Schillinger System of Musical Composition

Through the 1920s and 1930s Joseph Schillinger, an

Ukrainian composer and music theorist, developed a System

of Musical Composition20 allegedly based on scientific

principles. In The Mathematical Basis of the Arts21, his

magnum opus, he advocates for a formalized theory of

aesthetic creation. His efforts, however, were futile.

Human creativity has eluded so far any type of

formalization. This seems to be an intractable problem and

20J. Schillinger, The Schillinger System of Musical

Composition, (New York: Da Capo Press, 1978).

21J. Schillinger, The Mathematical Basis of the Arts,

(New York: The Philosophical Library, 1948).

 28

some authors have argued against a computable model of

creativity on the basis that the mental processes that

govern creativity and intuition are simply not computable.22

Schillinger's System covers all fundamental aspects of

musical composition, such as counterpoint, harmony, rhythm,

etc. It is essentially geometrical in its basis,

especially the concept of "phase relationships." This

concept encompasses virtually every component of the

System. These phase relationships are in essence simple

periodic motions. His methodology projects these phase

relationships into the areas of rhythm and structural

proportion as well as into the much less obvious ones of

pitch structures (scales and chords,) counterpoint,

harmonic progression, etc. The groundwork underlying much

of Schillinger’s System is a process by which interference

with simple regular rhythmic patterns produces more complex

and irregular rhythmic patterns. For instance, the

following rhythmic pattern:

Figure 1

22R. Penrose, The Emperor's New Mind: Concerning

Computers, Minds, and the Laws of Physics (New York: Oxford
Univ. Press, 1989).

 29

can be represented as the union of the following two

simpler patterns:

Figure 2

This process of obtaining complex rhythms from logical

operations worked upon simpler ones resembles very much the

way complex sounds are synthesized: by the addition of many

simpler, pure sine waves.

The work of Schillinger has been greatly criticized by

some authors as having absolutely no scientific or

mathematical foundation whatsoever.23 However, some his

ideas have shed light on new directions in the

compositional process. He presaged many developments of

algorithmic composition that were not taken up in full

until many years later. Schillinger's System contains

frequent references to music as "natural dynamic." This

23L. Fichet, Les theories scientifiques de la musique

(Paris: Librairie philosophique J. Vrin, 1996).

 30

attitude is, of course, nothing new: it dates back to

Zarlino in the early Renaissance, which defended the idea

of music as an imitation of Nature.24 Schillinger's use of

the Fibonacci series, with reference to its use in

describing growth patterns of plants, seashells, etc., is

one of many examples scattered throughout his System of

composition. This is clearly related to the recent

developments in fractal geometry, particularly the studies

of chaotic attractors and non-linear dynamics as models of

natural phenomena.

Edgard Varèse

Another composer who played an important role in the

consolidation of the view of music as an art-science was

Edgard Varèse. He championed the ancient idea that music's

place is in the company of mathematics and geometry. But

he was fully aware that music is not just science. It

participates in both science and art. He insisted that the

basis of creative work was experimentation, and was

conscious of the immense creative possibilities that new

emerging technologies offered to music: " ... liberation

24Loy, "Composing with Computers," 308.

 31

from the arbitrary, paralyzing tempered system; the

possibility of obtaining any number of cycles or, if still

desired, subdivisions of the octave, and consequently the

formation of any desired scale; unsuspected range in low

and high registers; new harmonic splendors obtainable from

the use of sub-harmonic combinations now impossible..."25

Varèse, the true father of electronic composition, had

a tremendous influence on generations of composers after

him, opening a new path for music composition.

Stockhausen, Ligeti, Boulez, Xenakis, and many others could

not have flowered as fully without Varèse as their

predecessor. His background in mathematics and science——he

prepared for a career as an engineer——undoubtedly helped

him in his search for a new aesthetic of sound.

Although Varèse was more interested in the new world of

sound opened by electronic music than with the application

of specific mathematical procedures to composition——which

may be realized by electronic means or not——his influence

and ideas fertilized the ground for composers wishing to

experiment with these new techniques. As he puts it, "the

world is changing, and we change with it. The more we

25E. Varèse, "The Liberation of Sound," in Source

Readings in Music History, ed. O. Strunk (New York: Norton,
1998), 1343.

 32

allow our minds the romantic luxury of treasuring the past

in memory, the less able we become to face the future and

to determine the new values which can be created in it."26

Iannis Xenakis

The first composer who adopted a pure mathematical

approach to music composition——not just as a tool, but as a

philosophy of composition——was Iannis Xenakis. Xenakis

criticized the serial approach. Himself one of the

pioneers of modern computer-assisted composition, he

thought post-serial music posed a fundamental aesthetic

problem. He argued that "the completely deterministic

complexity of the operations of composition and of the

works themselves produced an auditory and ideological

nonsense."27 Furthermore, "linear polyphony destroys itself

by its very complexity; what one hears is in reality

nothing but a mass of notes in various registers. The

enormous complexity prevents the audience from following

the intertwining of the lines and has as its macroscopic

26Ibid., 1340.

27Xenakis, Formalized Music, 8.

 33

effect an irrational and fortuitous dispersion of sounds

over the whole extent of the sonic spectrum."28

Xenakis recognized a fundamental contradiction between

linear polyphony and what one actually hears. He advocated

that this contradiction would vanish if the independence of

sounds were absolute, i.e., when linear combinations of

sounds and their polyphonic superposition no longer

function as such. "What counts will be the statistical

mean of isolated states and of transformations of sonic

components at a given moment. The macroscopic effect can

then be controlled by the mean of the movements of elements

which we select. The result is the introduction of the

notion of probability, which implies, in this particular

case, combinatory calculus."29 Xenakis called this new

paradigm of music "stochastic music." Stochastic music is

concerned with masses of sounds, rather than with the

linear succession of pitches that conform those masses.

These "sonic events" may involve thousands of individual

sounds. The linear successions of these sounds is "non-

deterministic," or rather, they do not follow any

discernible patterns and are distributed randomly.

28Ibid.

29Ibid.

 34

However, the overall shape they create is well-defined and

directed. The way gases behave illustrates this point very

well: a gas is composed of a large number of gas molecules;

the position and speed of individual molecules within the

gas is unpredictable and random, yet the overall shape of

the gas is not: it has a definite pressure and temperature.

The individual pitches in these sound masses resemble

individual molecules in a gas: taken individually, they

appear randomly distributed, but taken as a whole they

create a well-defined entity. Composers can control how

these sound-masses behave, by manipulating their density,

rate of change, etc. By reducing the densities of these

sound-masses, composers can achieve results that resemble

linear polyphony. This new conception of music is

therefore a superset, or extension, of traditional

polyphonic models. Probability theory is indeed needed to

control the evolution of these sound-masses. This includes

probability distribution functions such as the continuous

probability function, Poison's law, Markovian analysis,

etc. With these mathematical tools, the composer can

manipulate and control how these sound masses evolve and

are transformed. This is accomplished macroscopically,

upon the whole sound-event. The individual pitches that

form those sound-events are arranged in a non-deterministic

 35

(random) manner; in fact, random number generators are used

to generate the note-level of the sound-event.

At the time Xenakis developed stochastic music (the

1950s,) a composer wishing to incorporate these techniques

in his music required no small degree of mathematical

literacy, since the bulk of calculations were done by hand.

Computers were a luxury, and even if access to one was

possible, it had to be specially programmed for the task.

Such a composer had to be a "hybrid"30 between musician and

mathematician, with almost equal proficiency in both

fields. Today, however, thanks to the development of

computers, composers can acquire readily made programs that

perform all the necessary calculations, saving them from

these tedious tasks. Still, a profound knowledge of the

abstract mathematical model is necessary for to completely

exploit its possibilities, even while the composer is

spared the "dirty work."

Apart from stochastic techniques, Xenakis employed

other mathematical models for composition, such as set

theory31 (Herma)——not to be confused with Allen Forte's

theory——, which deals with performing logical operations on

30Ibid., vii.

31Ibid., 155-177.

 36

sets of pitches; game theory32 (Duel, Stratégie); group

theory33 (Nomos Alpha); etc.

Stochastic music has been criticized by some authors

for the way it may limit the stylistic objectives of the

composer.34 The composer has control over the way

probabilistic distributions are applied in order to shape

the work, but not over the "fine detail" of the sound-

masses. In the 1960s, Max Mathews together with other

researchers, investigated ways to overcome this restriction

by using deterministic algorithms and pitch quantization.35

In one of their experiments, they created counterpointal

textures in which intervals between voices were quantized

to the nearest 3rd, 4th, 5th, or 6th. The number of voices

and the method for pitch generation could be changed at

will. Different strategies were explored, including

different levels of pitch quantization, from no

quantization at all (absolute frequency) to discrete

quantization into tempered and diatonic scales. Their

methods allowed the composer to have control over the note

32Ibid., 110-130.

33Ibid., 219-241.

34Loy, "Composing with Computers," 310.

35Ibid., 311.

 37

level of the work, while still retaining the philosophy of

stochastic procedures.

Lejaren Hiller

One of the first composers who adopted a systematic,

algorithmic approach for composing——and allegedly the first

person to compose a piece with the help of a computer——was

Lejaren Hiller. His strong scientific and mathematical

background (he earned a Ph.D. in chemistry) provided him

with the necessary knowledge to realize his ideas.

Hiller's musical thinking was greatly influenced by

information theory.36 Information theory is concerned with

assimilating, quantifying, and optimizing the efficiency of

information transfer. It is central not only to modern

communication technology, but also to the understanding of

language, and the transmission of information by other

processes. In applying information theory to music, Hiller

conjectured "fluxes" in the sum of information conveyed by

a piece of music to the listener to be the essential

dramatic nature of music. This premise greatly influenced

36L. Hiller and L. Isaacson, eds., Experimental Music;

Composing with an Electronic Computer (New York: McGraw-
Hill, 1959).

 38

the way in which Hiller composed. In 1957, he wrote The

Illiac Suite, also known as The Illiac String Quartet or,

simply, as String Quartet No. 4. This piece, generated on

a Illiac computer at the University of Illinois with the

help of Leonard Isaacson and Robert Baker is allegedly the

first example of a composition created with a computer. In

1963, together with Robert A. Baker, Hiller created the

computer composition language program MUSICOMP, which was

used to create his Computer Cantata. Several of the

commands available in this program are designed with ideas

of these "information fluxes" in mind. This program was

also used to create other pieces such as Algorithms I,

Algorithms II, and Algorithms III.

Hiller advantaged himself of a great deal of other

tools besides computers. The total output of his work

shows a highly eclectic composer, partaking of all the

musical currents of his day, from those as popular as jazz

to those as erudite and abstruse as serialism or

indeterminacy.

 39

Contemporary Techniques

With the emergence chaos theory and the development of

other scientific disciplines such as cellular automata,

fractal geometry, etc.——once again, thanks to the

tremendous increase in computational power——new links

between mathematics and music have been established.

Chaos Theory

Chaos Theory37, pioneered by French mathematician Henri

Poincaré38 at the beginning of the 20th century and

flourishing in the 1980s, describes the unpredictable

behavior of systems when influenced by a common condition

or set of conditions.

Until recently, scientists believed that random

influences made systems behave unpredictably. They

believed that if they eliminated random influences, they

could predict behavior. They now know that many systems

can exhibit long-term unpredictability without random

influences. Such systems are chaotic. Chaotic systems are

unpredictable because they are sensitive to their initial

37J. Gleick, Chaos (New York: Penguin Books, 1987); E.

Ott, Chaos in Dynamical Systems (New York: Cambridge
University Press, 1993).

38H. Poincaré, Science and Hypothesis (New York: Dover,

1952).

 40

conditions, such as position and velocity. Two identical

chaotic systems, set in motion with slightly different

starting conditions, can quickly produce very different

motions. What is so thought-provoking about chaos theory

is that unstable aperiodic behavior can be found in

mathematically simple systems. These systems display

behaviors so complex and unpredictable so as to merit the

description "random." Because of the complexity and number

of calculations involved in studying chaotic systems, it

has been only recently, thanks to the increase in

computational power in the past twenty years, when chaos

theory has truly flourished.

The mathematical equations that model chaotic behavior

are, paradoxically, exceedingly simple. They are called

"non-linear" equations.39 Linear equations——those whose

solution lays on a straight line, having the form f(x) = ax

+ b, where a and b are constants——exhibit simple,

predictable behavior: the input is proportional to the

output, and they have unique solutions. Non-linear

equations, on the other hand, have infinite solutions. The

key ingredient of non-linear equations is iteration: the

39J. Briggs and F. D. Peat, Turbulent Mirror (New York:

Harper and Row, 1989), 23-24.

 41

solutions are fed back into the equation's variables

recursively. Iteration allows these relatively simple

mathematical systems to model the chaotic behavior of many

natural processes. The fashion in which mathematical

systems are utilized in musical composition is through the

mapping of their equations' numerical output to musical

parameters.

Chaos theory has fascinated composers, and many——such

as Charles Wuorinen, Gary Lee Nelson, David Clark Little40,

to name but a few——have adopted it as a tool for

composition.

Cellular Automata

Another discipline that has recently been proven to

give very fruitful results in music composition is Cellular

Automata.41 Cellular automata were originally introduced in

the mid-1960s by John von Neumann as a model for computer–

simulated biological self-reproduction.42 This model

 40D. C. Little, "Composing With Chaos; Applications of
a New Science for Music," Interface 22(1) (1993): 23-51.

41S. Wolfram, ed., Theory and Applications of Cellular
Automata (Singapore: World Scientific, 1986).

42J. von Neumann, Theory of Self-Reproducing Automata
(Champain, IL: University of Illinois Press, 1966).

 42

consisted of a two-dimensional grid of cells, in which each

cell was allowed a number of different states. Cells would

change their states on the grid according to a predefined

set of rules. This set of rules takes into account the

current state of the cells' immediate neighbors. Starting

with an initial configuration of cells——generally called

generation 0——in which each cell may have any of the

allowed states, the set of rules is applied to all cells on

the grid, thus producing a new configuration of cells

(generation 1) to which the set of rules is applied again,

and so forth. Depending on the number of allowed cell

states and the rule set, different cellular automata can be

generated. Some of them exhibit great richness, while

others die out quickly. Many cellular automata manifest

pattern propagation, in which a determined configuration of

cells can move undisturbed throughout the matrix. Certain

types of cellular automata also show "self-reproducing"

capabilities: under certain conditions, some cell

configurations are able to regenerate themselves generation

after generation.43 These characteristics, particularly

pattern propagation, are very interesting from a

compositional point of view. Traditionally, composers have

43C. Langton, "Self-Reproduction in Cellular Automata,"

Physica D 10 (1984): 135-144.

 43

employed pattern propagation intuitively: sequences are a

good example of pattern propagation. However, cellular

automata algorithmic procedures applied to music allow

pattern propagation to be formalized at a higher level.

Cellular automata have already been proven to be a very

fruitful for algorithmic composition. Composer Eduardo R.

Miranda, of SONY CLS, Paris, has developed a computer

program for the PC, CAMUS, which maps two-dimensional

cellular automata onto musical parameters.44 His piece

Entre l’Absurde et le Mystère was composed with this

program.

L-Systems

Another field of mathematics who has recently been

introduced in algorithmic composition is L-Systems. L-

systems were originally proposed by Aristid Lindenmayer in

1968 as the basis for an axiomatic theory of development.45

44E. R. Miranda, "Cellular Automata Music: An

Interdisciplinary Project," Interface 22 (1993): 3-21; E.
R. Miranda, "Music Composition Using Cellular Automata,"
Languages of Design 2 (1994): 105-117.

45A. Lindenmayer, "Mathematical Models for Cellular
Interactions in Development, Parts I-II," Journal of
Theoretical Biology 18 (1968): 280-315.

 44

They were subsequently used to model living organisms.46

Basically, L-Systems consist of a set of "substitution

rules" recursively applied to an initial string of symbols,

and interpreting the resulting string of symbols (usually

more complex) as structural elements of the organism. The

substitution rules determine how each symbol in the current

generation should be replaced. Because of the very rich

structures L-Systems generate, they can be a interesting

source for algorithmic composition. Some composers have

already successfully applied L-System to composition, such

as Gary Lee Nelson in his Summer Song for solo flute.

46A. Lindenmayer and P. Prusinkiewicz, The Algorithmic

Beauty of Plants (New York: Springer, 1990).

 45

Genetic Algorithms

Genetic algorithms47 are one of the latest mathematical

techniques applied to music composition48 as well as to

sound synthesis.49 A genetic algorithm is a procedure

which, in effect, searches a potentially vast solution

space for an optimal solution to a given problem.

Solutions are encoded as strings over a finite

alphabet. A fitness function (or objective function) is

used to evaluate each string (solution.) Bits and pieces

of the fittest strings (solutions) are used to generate new

strings (solutions.) Each time step (or generation) of the

algorithm produces a new population of possible solutions

based on the population from the previous generation.

47J.R. Koza, Genetic Programming: On the Programming of

Computers by Means of Natural Selection (Cambridge, MA: The
MIT Press, 1992).

48D. Goldberg and A. Horner, "Genetic Algorithms and
Computer-Assisted Music Composition," in Proceedings of the
1991 International Computer Music Conference (San
Francisco: International Computer Music Association, 1991),
479-482; D. Horowitz, "Generating Rhythms with Genetic
Algorithms," in Proceedings of the 1994 International
Computer Music Conference (San Francisco: International
Computer Music Association, 1994), 142-143; J. Biles,
"GenJam: A Genetic Algorithm for Generating Jazz Solos," in
Proceedings of the 1994 International Computer Music
Conference (San Francisco: International Computer Music
Association, 1994), 131-137.

49J. Beauchamp, A. Horner, and L. Haken, "Genetic

Algorithms and Their Application to FM Matching Synthesis,"
Computer Music Journal 17(4) (1993): 17-29.

 46

Genetic algorithms, when applied to music, follow these

general procedures. The strings (or solutions) correspond

to musical entities, such as motives or even whole phrases.

The initial population of solutions (generation 0) can be

supplied by the composer or generated by the computer

itself through stochastic means. The fitness tests have to

be necessarily supplied by the composer. These determine

which solutions (musical entities) "survive" and which

"die." When an optimal set of solutions is encountered——a

process whose length depends on the initial population, the

solution space and the fitness test——the program stops.

Genetic algorithms incorporate techniques directly from

natural genetics:

• Natural selection: strings with a good fitness value

survive from one generation to the next with high

probability; strings with a poor fitness value fail with

high probability.

• Reproduction: two strings chosen via natural selection

mate (via crossover, which picks a position within the

strings at random and exchanges the information of the

two strings) to produce new strings. Musically, this is

analogous to constructing a new phrase or motive from

several others.

 47

• Mutation: strings can undergo spontaneous changes (with

small probability) to produce new strings (new musical

entities) in a different part——that is, for a small

subset——of the solution space.

These operations require the use of probability

functions and are, therefore, stochastic in their nature.

Other Techniques

 Other mathematical models that have been adopted for

algorithmic composition in recent years include noise

(specially the so-called 1/f noise or pink noise,) number

theory (number series, the Morse-Thue sequence, etc.,) and

fractals. These will be explored in subsequent chapters.

The preceding panoply of processes, issuing from the

latter-day boom in computer science, constitute the most

important methods used in algorithmic composition today.

Undoubtedly, as computational power increases and new

scientific disciplines flourish, existing algorithmic

procedures will be further explored and new ones will be

incorporated. However, these techniques, this writer

believes, should be always considered a mere tool at the

composer's disposal. The material they generate can be

regarded as musical "prime matter" which can be later

 48

modified, transformed and incorporated according to the

composer's own aesthetic judgement. Algorithmic methods in

music should be used primarily as a source of inspiration,

and not as a one-step musical solution.

 49

CHAPTER III

TECHNIQUES AND APPLICATION OF

MATHEMATICAL MODELS IN MUSIC

Mapping Techniques

Transcribing the numerical output of an algorithm to

musical events is done through a mathematical operation

known as mapping. Mapping consists of creating a one-to-

one correspondence between the algorithm's numerical output

and a set of ordered musical events. Musical events can be

single pitches, motives, or even fully-fledge phrases. For

simplicity, in most examples we will consider musical

events associated to pitch only.

 Two types of mapping techniques will be used throughout

this text: modulo-based mapping and normalized mapping.

Although most processes can be applied any of these two

types of mapping techniques, some are most appropriately

transcribed using one specific mapping type.

 50

Modulo-based Mapping

 A modulo operation is a simple mathematical procedure

performed between two whole numbers. It consists of

dividing the first number by the second and taking the

reminder. For instance

10 mod 3 = 1,

since the reminder of 10 divided by 3 is 1. Put more

generally,

x mod y = n

When applying this mapping method to a process'

numerical output set, x represents the process's output and

y the total number of elements in our ordered musical event

set. The result, n, is always a number between 0 and y-1,

which corresponds to the index of the element in our

musical event set. Modulo-based mapping is best suited to

processes in which the numerical output set grows without

bound, such as in number series. For processes in which

the numerical output is bounded in very small intervals

(such as the Logistic equation,) the modulo mapping is

completely unpractical, since it takes into account only

 51

the integral part of the process' output. For these cases

the best type of mapping is the normalized mapping.

Normalized Mapping

 This mapping method uses the following formula to make

the correspondence between the algorithm's data and the

ordered elements in the musical event set:

Figure 1. Formula used in normalized mapping

where "value" is the current value of the process being

mapped, "minval" is the minimum value in the process' data

set, "maxval" is the maximum value, and "numevents" is the

number of elements of our event set. The brackets ([])

indicate to take only the integral part of the result,

disregarding any decimals. The normalized mapping method

effectively maps the data set onto the interval [0, 1].

The minimum and maximum values in the process' data set

must be computed beforehand. This mapping method is more

appropriate for processes whose output is bound in small

 52

intervals. In addition, this method maps much more

faithfully the contour (the way the numerical data behaves)

onto the musical event set.

 To show the differences among these two mapping schemes

an example follows. First, we will map the Logistic

equation, ——which will be discussed in more depth later in

this text——using both mapping techniques. The mathematical

formulation of this equation is as follows:

xn+1 = xn*µ*(1-xn)

The output of the Logistic equation is bound in the

interval [0, 1]. Our musical event space will be the

pitches of a chromatic scale from C4 to B5 (24 events):

Figure 2. Pitch event space

A sequence of ten events is then generated using a value of

µ = 3.57.

The equation's numerical output is as follows:

 53

0.892500 0.342519 0.803963 0.562655 0.878486

0.381093 0.842024 0.474880 0.890247 0.348814

 Applying the modulo mapping to the above values

yields the following results:

0 0 0 0 0 0 0 0 0 0

which transcribes as follows:

Figure 3. Modulo-based mapping

 Using the normalized mapping method yields the

following sequence (we know beforehand that the maximum and

minimum values of the algorithm are 1 and 0, respectively):

21 8 19 13 21 9 20 11 21 8

which transcribes as follows:

 54

Figure 4. Normalized mapping

As we can readily see, the normalized mapping is more

appropriate for this process in particular.

 Because each process behaves differently, one must

first analyze the numerical output to decide which mapping

method is more suitable. Some processes must be mapped

using only one of the two methods, some others give

satisfactory results using any of the two. In the latter

case, the decision is entirely up to the composer.

Stochastic Algorithms

Randomness and Probability Distributions

Mathematically, a stochastic process is defined as a

set of quantities randomly distributed. Stochastic

formulas are used by statisticians in data in order to

detect patterns so that a more consistent description for

that data can be achieved.1 In music, stochastic processes

are used inversely——that is, to provide a structural

1K. Jones, "Compositional Applications of Stochastic

Processes," Computer Music Journal 5(2)(1981): 45.

 55

framework for the synthesis of collections of musical

events.

Stochastic music processes require random strings of

numbers. Randomness is something very difficult both to

define mathematically and to recreate in a computer. In a

computer nothing can be truly random; a computer simulates

randomness through complex mathematical procedures and

hence the generated strings of random numbers are really

"pseudo-random." The process of random number generation

on a computer is, in fact, totally deterministic. What

seems to be strings of random numbers are really small

portions of a very vast cycle of numbers that repeat after

a finite number of iterations. Each new number of the

sequence is created by applying a mathematical

transformation to the previous number. Random seeds are

used to specify where to start in the sequence. Identical

seed values generate identical strings of pseudo-random

numbers.

In all forthcoming examples we will use one of the

best random number generator functions available.2 This

function generates strings of random numbers with a period

of repetition larger than 1018. When called, the function——

2W. T. Vetterling, ed., Numerical Recipes in C (New

York: Cambridge Univ. Press, 1997).

 56

which we will call simply R——returns a random number in the

interval [0,1.)

Mapping strings of random numbers to musical events is

a straightforward procedure. It begins with the

consideration of an event-set to which the mapping will be

applied. The elements of this collection could be any

musical structure, from individual pitches, to short

motives, to fully-fledged musical phrases. For the sake of

simplicity, the following example will concern only pitch.

The composer would first decide upon a pitch-space, to be

the set of pitches to be mapped to the random generator

function. This could be any collection of pitches——for

instance, a two-octave chromatic scale from C4 to B5 (see

Fig. 2.)

This set contains 24 pitches, numbered 0 (C4) to 23

(B5.) The random number generator function——R——produces

pseudo-random numbers between [0, 1.) Since the output of

the function is bounded in a small interval, the most

appropriate mapping method is the normalized mapping.

Because the minimum and maximum values of the function

are 0 and 1 respectively, the mapping formula is equivalent

to:

Event No. = [R*24]

 57

The result will always be a number between 0 and 23, which

is precisely within the range of our pitch set. Zero

corresponds to C4, 1 to C#4, 2 to D4, and so forth.

Applying this procedure 128 times to our example

pitch-set we get the following sequence of notes

(arbitrarily assigning sixteenths as note durations):

Musical Example 1

Any set of musical parameters would be mapped

similarly. In this particular example, all pitches in the

set are equiprobable, that is to say, they all have the

same probability of occurring. This is in effect

equivalent to using a 24-sided fair die to choose the

pitches. If all elements in our set have the same

probability, we have an aleatoric process, in which all

elements are equally probable to take place. In aleatoric

processes, sufficiently long sequences of generated

 58

elements will show no discernible pattern (see Musical

Example 1.)

A step further consists in introducing probability for

each element in our set. Each element is assigned a

"probability of being chosen." This way we obtain a

"weighed" set, where elements with a higher probability

will have a greater chance to occur. An example

illustrates this point.

 Two parameters, pitch and duration, will be mapped.

For simplicity, the pitch set will be a one-octave

chromatic scale from C4 to B4. Let our duration set be as

follows:

{whole, half, quarter, eighth, sixteenth}

Next, we assign the following probabilities to the

ordered members of our sets:

Element Probability Index

C
C#

D

D#

E

F

F#

G

G#

A

A#

B

.17

.02

.07

.03

.15

.12

.01

.16

.08

.10

.02

.07

0
1
2
3
4
5
6
7
8
9
10
11

 59

and

Element Probability Index

Whole
Half

Quarter
Eighth

Sixteenth

.03

.06

.11

.34

.46

0
1
2
3
4

The probabilities can take any value between 0 and 1.

The sum of the probabilities of all members should always

equal 1. An element e with a probability of, say, .20,

means that 20% of the generated sequence of events is

likely to be the element e. In other words, for

sufficiently large sequences, element e will occur 20% of

the time. Adding probability introduces a new step in the

mapping process, which is as follows:

1. Draw a random number r between [0, 1)

2. Multiply r by the number of elements of our pitch

set and take the integral part of the result:

[r*12]. This gives a value n between 0 and 11,

which corresponds to one of the elements of the set.

3. Look up the probability value (Pn) for element n in

the set.

3.1 Draw a new random number r2.

 60

3.2 Is r2 ≤ Pn ? If the answer is affirmative then

continue, otherwise go to step 1.

4. Accept the element.

5. Follow steps 1 through 4 again for the duration set

(5 elements in our example) and assign duration to

previously selected pitch.

6. Repeat until the desired number of elements have

been chosen.

Step 3.2 is the key here. Because all possible values

generated by the random number generator are equiprobable,

the probability of any random number being equal or smaller

to the probability of an element being chosen is the

equivalent to the probability of that element being chosen,

put symbolically:

r2 ≤ Pn → n

This process, known as the Monte Carlo method, can be

used to determine if an element is selected or not.

Applying it to our choice sets yields the following

sequence:

 61

Musical Example 2

It is clear that the elements with high probabilities

(such as pitch-classes C, E, and G, and sixteen note

values) appear more often than elements with a lower

probability. For instance, in this sequence of 50

elements, pitch-class C appears 9 times, or 18%, in

accordance with its probability. Likewise, there are 24

sixteenths (48% of the note values,) which is also in

accordance with its probability value.

 Probability functions can be used to distribute

probability values among the elements of our sets.

Gaussian distribution, for instance, provides an

appropriate framework. Gaussian distribution3 is the most

commonly observed in nature and the starting point for

modeling many natural processes. For instance, the

3Xenakis, Formalized Music, 14-15.

 62

distribution of heights among a large population follows

Gaussian distribution. Gaussian distribution is defined

mathematically as follows:

Figure 5. Formula for Gaussian distribution.

Where µ is the mean of the distribution, σ is the

variance, and e is the base of natural logarithms (the

transcendental constant 2.718281828459...) Gaussian

probability distributions graphs exhibit a characteristic

"bell" shape:

Figure 6. Gaussian distribution bell-shaped curve

In musical Example 2 (above,) the probabilities were

calculated——with the help of a computer program——according

to Gaussian distribution:

 63

Figure 7. Pitch-class distribution in Musical Example 2

Note how the distribution of probabilities resembles

the bell shape characteristic of Gaussian distributions.

In Musical Example 2, the highest probabilities were

deliberately assigned to specific pitches——C, G, F, and E——

to give the feeling of a tonal center.

Although Gaussian probability distribution is by far

the most important, there are other types of probability

distribution that can be incorporated in stochastic music.

One of such is Poisson's probability distribution.4

Many natural processes follow Poisson's law of probability

distribution, such as radioactive decay, the number of

failures in an electronic device——such as a hard drive——

4Ibid., 12-13.

 64

over a given time period. In stochastic music, Poisson's

law is useful to control the density (the number of

sounds/events per a given unit of time.) Given a mean

density, λ, the probability of a particular density n is

derived from Poisson's law, defined as follows:

Figure 8. Poisson distribution formula

where λ is the mean density, n is any particular

density and n! is n factorial (the product of all integers

from 1 to n.)

 Poisson's probability distribution is specially useful

when dealing with large masses of sounds. A typically

applicable problem would be thus: given a sounds mass with

a mean density of 3 sounds per second, what is the

probability of a particular density of, say, 5 sounds per

second? Applying Poisson's law affords the following

solution:

 65

or approximately 0.1.

 Applying probability distribution to sound events can

provide them a with coherent structure, a structure which

is, quite literally, borrowed directly from the laws of

nature.

Markov Chains

Markov analysis studies a sequence of events and

examines the propensity of one event to be followed by

another. Using this analysis, sequences of random but

interrelated events can be generated.5

In the processes studied so far, the probabilities for

the occurrence of an event remained unchanged. Each event

of our set had a fixed, stationary probability. Markov

chains provide a more refined mechanism to control

probabilities.

Using Markov chains allows the composer to control

sequences of events by making the probability of any

particular event depend on the previous. A Markov chain

requires a matrix of probabilities, where the row of

probabilities for one event is used to generate the next,

5Ibid., 43-109.

 66

the row of probabilities of this new event is used to

generate the next, and so forth.

 The relationship between events in a Markov chain

exhibit different properties according to how their

probabilities are arranged in the matrix. What follows is

a brief description of these properties6:

• Accessibility (ex→ey): An event ey is accessible to

another event ex, if ex can be followed by ey.

• Communicability (ex↔ey): Two events communicate if they

are both mutually accessible. Communication between

events can be reflexive (if an event is accessible to

itself,) symmetric (reciprocal accessibility between any

two events,) or transitive (if event ex communicates with

event ey, and ey communicates with event ez, then ex

communicates with ez.)

Events can be further structured into equivalence

classes of communicating events. Events in one equivalence

class can not communicate with events in another

equivalence classes, but events in one equivalence class

may be accessible from other events in a different

equivalence class. Events in equivalence classes may be

6Jones, "Compositional Applications of Stochastic

Processes," 47-48.

 67

divided into to groups: recurrent events, which are events

that are certain to occur at some point after they have

occurred once; and transient events: events that have a

probability of not recurring. If an event is recurrent,

all events with which it communicates within its class are

also recurrent. Analogously, all events that communicate

with a transient event, are also transient. Two types of

equivalence classes can therefore be defined: recurrent

classes, which contain recurrent events, and transient

classes, which contain transient events. Events in a

recurrent class cannot access events in other classes.

Because events can not communicate between classes, once

the sequence of events has left a transient class, it can

never return to it. For the same reason, if a sequence

enters a recurring class, it can no longer leave it.

Recurrent classes form confined sets. Markov chains must

contain at least one recurrent class, they can not consist

of only transient classes. Several types of Markov chains

can be defined according to the types of classes it

contains:

• Irreducible: Markov chains containing only one recurrent

class, and no transient classes.

 68

• Ergodic: Markov chains containing only one recurrent

class and several transient classes.

 To further clarify all this theory and to show how

Markov analysis is applied in music composition, a

practical example follows:

 A Markov chain with 10 musical events creates an order

10 matrix. The event-relation diagram is as follows:

Figure 9. Diagram of classes

Events are grouped in 5 classes: four transient

(classes 1, 2, 3, and 4,) and one recurrent (class 5.) The

example, therefore, is an ergodic Markov chain. Note also

 69

how events 2, 3, 4, 6, and 7 show reflective communication.

The correspondent probability matrix is as follows:

Next Events
Current
Events 1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 0 0 0 0 0

2 .45 .55 0 0 0 0 0 0 0 0

3 0 .28 .16 0 .28 0 0 .28 0 0

4 .16 0 0 .52 0 .16 0 0 .16 0

5 0 0 0 0 0 .50 .50 0 0 0

6 0 0 0 0 .66 .34 0 0 0 0

7 0 .20 0 0 0 .70 .10 0 0 0

8 .25 0 0 0 0 0 0 0 .75 0

9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 .70 .30 0

The event space remains to be defined. For this

example, we will use events to construct a solo violin

composition:

Event 1 Event 2

Event 3 Event 4

Event 5 Event 6

Event 7 Event 8

 70

Event 9 Event 10

The procedure to obtain a sequence of events according

to the probability matrix is as follows:

1. Randomly select a first event from the event list

by drawing a number between 1 and the number of

events.

2. Draw a number randomly between 1 and the maximum

number of events, r.

3. In the matrix, check the probability setting of

current event at column r, Pr.

4. If Pr is nonzero, then:

4.1 Draw a random number n between 0 and 1.

4.2 if n ≤ Pr select event in column r as the next

event (Monte Carlo method.)

4.3 if Pr = 0 or n > Pr then to back to step 2 (no

next event selected yet.)

5. Repeat from step 2 until the desired number of

events in the sequence has been reached.

 71

Applying this process to our event space, three possible

sequences of 20 events each were generated:

s1 = e7,e6,e5,e6,e6,e6,e6,e5,e6,e5,e7,e6,e5,e7,e6,e6,e5,e7,e2,e1

s2 = e3,e3,e8,e9,e10,e8,e9,e10,e9,e10,e8,e9,e10,e8,e1,e2,e2,e2,e2,e1

s3 = e4,e4,e4,e4,e4,e6,e6,e5,e7,e2,e2,e2,e2,e1,e2,e2,e1,e2,e2,e1

Transcribed to music, they become:

Musical Example 3. Music from sequence s1

 72

Musical Example 4. Music from sequence s2

Musical Example 5. Music from sequence s3

Comparing these generated sequences with the event

diagram of the Markov chain clearly shows how the different

classes affect the musical output. For instance, once a

 73

process enters a recurrent class (in this case class 5,

with contains events 1 and 2,) it never leaves it.

Musically, this yields a repetition of events 1 and 2.

 A very interesting kind of Markov chain is the so-

called random-walk procedure. An event ex in a random-walk

procedure can only by followed by one of its neighboring

events, ex-1 or ex+1. The matrix for this kind of procedure

has nonzero probability entries on either side of its main

diagonal and zeroes everywhere else. Using our example,

the matrix would be as follows:

Next Events
Current
Events 1 2 3 4 5 6 7 8 9 10

1 0 .50 0 0 0 0 0 0 0 .50

2 .50 0 .50 0 0 0 0 0 0 0

3 0 .50 0 .50 0 0 0 0 0 0

4 0 0 .50 0 .50 0 0 0 0 0

5 0 0 0 .50 0 .50 0 0 0 0

6 0 0 0 0 .50 0 .50 0 0 0

7 0 0 0 0 0 .50 0 .50 0 0

8 0 0 0 0 0 0 .50 0 .50 0

9 0 0 0 0 0 0 0 .50 0 .50

10 .50 0 0 0 0 0 0 0 .50 0

In this case, a 50% probability has been assigned to

each event. Note also how event 1 can be preceded by event

10, and event 10 can be followed by event 1, thus creating

 74

a circular random-walk. If we apply this new process to

our event space, we get the following sequences:

s4 = e6,e7,e6,e5,e4,e3,e4,e3,e2,e3,e2,e3,e2,e1,e10,e9,e10,e1,e2,e3

s5 = e2,e3,e2,e1,e2,e1,e10,e9,e8,e7,e6,e7,e8,e9,e10,e9,e10,e1,e10,e9

which transcribe musically as follows:

Musical Example 6. Music from sequence s4

 75

Musical Example 7. Music from sequence s5

Markov chain stochastic processes can be extended in a

number of interesting ways. One is to increase the order

of the Markov chain. For instance, three-dimensional

Markov chains can be used to control the probability of

occurrence of an event depending on the two preceding

events. This increase of dependence between events allows

the composer to construct more sophisticated structure

patterns. Furthermore, we could use a four-dimensional

Markov chain to make events depend on the three preceding

ones. In general, events in a nth-dimensional Markov chain

depend on their n-1 preceding events. Needless to say,

very high-order Markov chains can become extremely complex

and will require more computational power.

 76

 Another way in which Markov chains could be extended is

to consider events not as single, predetermined entities,

but to control them by a set of parameters which can

themselves be structured stochastically with Markov chains.7

For instance, events could be sound clouds where their

density, pitch range, dynamic, etc. are controlled by a set

of Markov chains. This allows the composer to create

super-structures of great coherence.

Music from Chaos

 Chaotic systems can be broadly categorized in two

classes: conservative, in which energy is preserved, and

dissipative in, in which energy radiated to the

environment.8 The great majority of natural phenomena

represented by these systems are dissipative. Because

dissipative systems loose energy continuously, their phase

space——that is, the spatial location where the system

evolves——is transformed towards a definite state (usually

going first through an initial transitory stage) known as

7Ibid., 49-50.

 8R. Bidlack, "Chaotic Systems as Simple (but Complex)
Compositional Algorithms," Computer Music Journal 16(3)
(1992): 33.

 77

the attractor of the system. The attractor of a system can

be a single point (limit-point attractor,) such as in

pendulum motion; a set of points (cycle attractor,) among

which the orbits of the system oscillate; or a complex

shape, usually of fractal dimension (chaotic or strange

attractor.) The phase space of conservative systems,

however, is always constant.

 The mathematical systems which model chaos are either

iterated systems, formulated with non-linear difference

equations, in which the orbits on the attractors consist of

discrete points, or continuous flows, formulated with non-

linear differential equations, in which the orbits are

continuous, unbroken curves.9

 In subsequent sections we will study the mapping onto

musical event sets of a one-dimensional iterated map: the

Logistic equation; three two-dimensional, dissipative

iterated maps: the Hénon map, Martin's attractor, and

Gingerbread Man attractor; and two tree-dimensional chaotic

systems: an iterated map, Pickover attractor, and a

continuous flow, Rössler attractor.

9Ibid., 34.

 78

One-dimensional Chaotic Systems

Transcribing chaotic systems to music implies

constructing a mapping process between the system's

mathematical description and musical parameters. Since

chaotic systems are modeled with non-linear equations, the

process consists in mapping the numerical output of these

equations onto a musical event space.

The Logistic Equation

The logistic Equation was first derived by Belgian

sociologist and mathematician Pierre-François Verhulst in

1845 as he was trying to model population growth

mathematically.10 More than a century later, in 1976, R.

May discussed its mathematical implications.11 The Logistic

Equation is formulated as follows:

xn+1 = xn*µ*(1-xn)

The key parameter is µ. This parameter, which can take

any value in the interval [0, 4] determines the behavior of

the equation in the long run, and thus, the type of musical

10Briggs, Turbulent Mirror, 56-57.

11R. May, "Simple Mathematical Models with very

Complicated Dynamics," Nature 261 (1976): 459-467.

 79

material that can be obtained from it. The numerical

output of this equation is always a value in the interval

[0, 1].

To map the logistic equation to musical parameters we

must first define an event space onto which the numerical

output of the equation will be mapped. This musical event-

space is an ordered set of musical entities, which could be

a collection pitches, durations, motives, etc. Let L be

the numerical output of the equation and n0 the number of

elements in our event space. Since L is always a number in

the interval [0, 1], then the mapping is performed using

the normalized mapping method, as follows:

E = INT(L*n0)

The result (E) will be the index of the element in out

ordered event set.

The output of the Logistic Equation depends on the

value chosen for µ. For values of µ < 3, the output quickly

stabilizes to one value. As we increase the value of µ, the

output stabilizes in 2 values, then 4, 8, 16...until we

reach the critical point at µ = 3.569946, where the output

first becomes unpredictable. For values of µ between 3.57

and 4 (the maximum allowed value) the output is most of the

 80

time chaotic, but within this chaos, "islands of order"

emerge, where the output oscillates between a specific

number of values. Such a value of µ is 3.83, where the

output oscillates between 3 values.12

To illustrate this, we will map several µ values of the

Logistic Equation. For simplicity, our event space will be

the pitches in a two-octave chromatic scale from C4 to B5

(see Fig. 2) ordered from 0 (C4) to 23 (B5.)

 For µ = 3.3, the equation output settles oscillating

between two values: 0.479427 and 0.823603, which transcribe

musically to

Musical Example 8

For µ = 3.5 it oscillates between 4 values: 0.382820,

0.500884, 0.826941 and 0.847977:

Musical Example 9

12Briggs, Turbulent Mirror, 56-57.

 81

Finally, for µ = 4, it wanders chaotically between all

possible values between 0 and 1. The musical transcription

shows no discernible pattern:

Musical Example 10

In fact, the output of the logistic equation for a

value of µ = 4 is indistinguishable from a randomly

generated sequence of numbers, although it is completely

deterministic. Note the resemblance of the musical output

of Musical Example 10 and that of Musical Example 1,

generated from a sequence of random numbers.

So far we have been working with specific values of µ.

We can have a more general sense of the chaotic and orderly

behavior of the logistic equation by making a "map" of

continuos values of µ. When plotted, it looks as follows:

 82

Figure 10. Bifurcation diagram of the Logistic
equation for continuous values of µ.

This map shows how the output of the equation behaves

for increasing values of µ. The dark regions in the picture

correspond to the chaotic regions where the equation's

output fluctuate wildly. Note how among these regions

there are small windows of order (white bands.) The map

also shows something common to many chaotic attractors and

fractals: self-similarity at all scales.

A musical rendition of the logistic equation

bifurcation diagram can be achieved by mapping sequences of

increasing values of µ and adding then sequentially. The

following musical example was constructed by mapping 30

 83

sequences of 16 values each for increasing values of µ (2.9

to 4.0):

Musical Example 11

Observe how the features of the map are reflected

musically: it starts orderly with several 2-note cycles,

little by little it departs from order until it reaches

total chaos (at measure 7.) It wanders chaotically for a

while, but suddenly there is an outburst of order at

 84

measure 11: a 3-note cycle. This corresponds to a 3-cycle

value for µ = 3.83 (it is clearly seen in the map as a white

vertical band towards to right, see Fig. 10.) Another

chaotic region follows this 3-note cycle, followed by

another window of order at the end of measure 14 (a 4-note

cycle,) followed by chaos once again (µ = 4.)

 Aside from the logistic map, there are many other

nonlinear equations that can be mapped to musical events in

a similar way. Another of such equations which produces

interesting results⎯with a behavior similar to that of the

Logistic equation⎯is

Xn = µ(3Xn-1-(4Xn-1)3)

This equation was derived by E. Lorenz as part of his

research in climatology.13 The parameter µ can take any

value between [0, 1] and determines the behavior of the

equation's output.

Each of these has its own characteristic

"fingerprint," which transcribes musically when mapped.

13E. N. Lorenz, "Deterministic Nonperiodic Flow,"

Journal of the Atmospheric Sciences 20 (1963): 130-141.

 85

Attractors from Two-dimensional Chaotic Maps

In this section we will study three two-dimensional

iterated maps and how they are mapped to musical event

sets. These attractors are Hénon Map, the Gingerbread Man

attractor and Barry Martin attractor.

The Hénon map is named after its discoverer, Michel

Hénon, an astronomer at the Nice Observatory in France.14

It is a chaotic orbit in two dimensions. Although it is

made entirely of lines, orbits on this attractor do not

flow continuously, but jump from one location to another in

the attractor. The Hénon attractor has an infinite amount

of structure. Successive magnifications prove an ever

increasing degree of detail. It is defined mathematically

by the following iterated equations:

Xn+1 = 1 + Yn - a*Xn2

Yn+1 = b*Xn,

X0 = Y0 = 0, a = 1.4, b = 0.3

When plotted, this chaotic attractor looks as follows:

14M. Hénon, "A two-dimensional Mapping with a Strange

Attractor," Communications in Mathematical Physics 50
(1976): 69-77.

 86

Figure 11. Hénon attractor

The Gingerbread Man attractor is another two-

dimensional iterated map. It was proposed by R. Devaney in

1988.15 It is defined by the following set of equations:

Xn+1 = 1 - Yn + |Xn|

Yn+1 = Xn

where |Xn| is the absolute value of Xn and X0 = -0.1, Y0 = 0.

When plotted, this attractors looks as follows:

15H. O. Peitgen and D. Saupe, eds., The Science of

Fractal Images (Berlin: Springer, 1988), 149.

 87

Figure 12. Gingerbread Man attractor

Lastly, the Martin attractor, proposed by Barry Martin

of Aston University in Birmingham, England, and first

discussed by A. K. Dewdney in 198616, is a two-dimensional

orbit defined by the following iterated equations:

Xn+1 = Yn- sin(Xn)

Yn+1 = a - Xn

Y0 = X0 = 0

where a is the controlling parameter. We will use a value

of a = π (3.1415926...) Barry Martin attractor looks as

follows:

16A. K. Dewdney, "Computer Recreations," Scientific

American (September 1986): 78-80.

 88

Figure 13. Martin attractor

For consistency, all mappings will use the same event

space: a one-octave chromatic scale from C5 to B5.

Because these are two-dimensional iterated maps, from

each iteration of the equations, we get a new value for Xn

and Yn. This allows for different mapping alternatives.

One possibility is to combine both coordinates in one

value: the distance from the origin of coordinates to the

point (Xn, Yn) on the attractor. This value is given by the

following formula:

√(Xn2 + Yn2)

 89

In the final transcription to music, the repeating

pitches are tied. Modulo-based mapping was used in all

subsequent examples.

 A sequence of 160 events (pitches) were generated from

each attractor (sixteenths were chosen arbitrarily for the

duration of the pitches in this case):

Musical Example 12. Music from Hénon attractor

 90

Musical Example 13. Music from Gingerbread Man attractor

Musical Example 14. Music from Martin attractor

 91

The following study of these melodies will reveal they

are not as random as they may seem at first. First, we

calculate the frequency of each pitch:

Music from Hénon attractor:

Pitch Class Number of occurrences Deviation from mean (13)

C 15 +2
C# 8 -5

D 12 -1
D# 18 +5
E 20 +7
F 13 0
F# 8 -5
G 23 +10
G# 13 0
A 7 -6
A# 5 -8
B 18 +5

Music from Gingerbread man attractor:

Pitch Class Number of occurrences Deviation from mean (13)

C 6 -7
C# 11 -2

D 9 -4
D# 13 0
E 16 +3
F 19 +6
F# 20 +7
G 17 +4
G# 16 +3
A 11 -2
A# 11 -2
B 11 -2

 92

Music from Martin attractor:

Pitch Class Number of occurrences Deviation from mean (13)

C 26 +13
C# 20 +7

D 13 0
D# 22 +9
E 12 -1
F 15 +3
F# 4 -9
G 11 -2
G# 9 -4
A 4 -9
A# 12 -1
B 12 -1

It is evident from these tables that some pitches

predominate over others. In a truly random collection of

pitches, all pitches would have the same frequency. Does

this frequency of occurrence tell us anything about their

probability distribution? Let us rearrange them another

way:

Hénon sequence:

Frequency 5 8 12 13 15 18 23 20 18 13 8 7
Pitch Class A# C# D G# C B G E D# F F# A

Gingerbread Man sequence:

Frequency 6 11 11 13 16 19 20 17 16 11 11 9
Pitch Class C C# A D# E F F# G G# A# B D

 93

Martin sequence:

Frequency 4 11 12 15 20 26 22 13 12 12 9 4
Pitch Class F# G B F C# C D# D A# E G# A

We have seen this type of probability distribution

before: it is the Gaussian distribution. It is remarkable

that all three sequences exhibit this type of probability

distribution.

Observe also that the collection of predominating

pitches (the ones with a high probability of occurrence) is

different in each of the sequences (and will be, in fact,

in any sequence derived from a different attractor.) This

gives unique characteristics to each sequence.

Pitch content is not the only remarkable quality of

these sequences. After all, we could easily construct

random sequences with Gaussian distribution (see Musical

Example 2) in which the pitch probability is weighed. The

attractors from which these sequences are derived reveal a

high degree structure, which must, in some way, be

transferred to their musical transcription. Looking at the

sequence from Hénon attractor, we discover that certain

patterns of pitches recur:

 94

 (End of measure 9, beginning of 10)

 (End of m. 6, beginning of 7)

 (End of m. 4, beginning of 5)

(End of m. 4, beginning of 5)

(m. 10)

(m. 1, beginning of m. 2)

(End of m. 5, beginning of 6)

Observe that patterns are not repeated exactly the

same. A few pitches may change, but their contour similar.

The sequence derived from Martin attractor also shows

patterns of repeating pitches:

 95

(mm. 1 and 2)

(mm. 9 and 10)

(end of m. 6)

(end of m. 8 and beginning of 9)

And so does the Gingerbread man attractor sequence:

(mm. 9, 2, 3, 4, end of 3 and beginning of m. 4)

Note how these small cells appear in inversion,

retrograde, augmentation, etc. There is even an instance

of a non-retrogradable sequence of pitches!

(end of m. 5 and m. 6)

 96

The intervalic relationship between pitches is also

different in all three examples. In the sequence derived

from Hénon attractor there seems to be a intertwining

between small and large intervals (seconds and thirds and

fourths and up.) This, in fact, resembles some of the

visual representation of the attractor, which consists of

lines separated at different distances. In Martin

attractor there seems to be a predominance of larger

intervals (fourths and sixths specially) creating thus a

more disjunct melodic outline. In Gingerbread Man sequence

the opposite holds true: smaller intervals predominate

(minor and major seconds and minor thirds) and the melodic

contour is more conjunct. In a purely random sequence all

pitches, intervalic relationships would have the same

probability of occurrence and no patterns will be evident.

On the contrary, sequences derived from these chaotic

attractors show structure and recognizable patterns.

Another way of mapping two-dimensional maps is to map

each coordinate to a different musical parameter (such as

pitch and rhythm.) We can map, for instance, the X

coordinate to a pitch event space and the Y coordinate to a

rhythmic set, or use the same coordinate to map both event

sets.

 97

To demonstrate these alternative mappings, we will map

the same three iterated maps onto two distinct event spaces

(pitch and rhythm) using the values of the X and Y

coordinates. Our pitch space will be a two-octave

chromatic scale from C4 to B5 (24 elements) The rhythmic

event space will consist of 5 values: {16th, 8th, dotted 8th,

quarter, and quarter tied to 16th}. Normalized mapping was

used this time. In order to apply this mapping type, the

maximum and minimum values of X and Y were computed

beforehand within a set of ten million iterations of the

equations. The generated sequences follow:

 98

Musical Example 15. Music from the Hénon attractor. Pitch

mapped to X coordinate. Duration to Y coordinate.

 99

Musical Example 16. Music from Hénon attractor. Pitch

mapped to Y coordinate. Duration to X coordinate.

 100

Musical Example 17. Music from Martin attractor. Pitch

mapped to X coordinate. Duration to Y coordinate.

 101

Musical Example 18. Music from Martin attractor. Pitch

mapped to Y coordinate. Duration to X coordinate.

 102

Musical Example 19. Music from Gingerbread attractor.

Pitch mapped to X coordinate. Duration to Y coordinate.

 103

Musical Example 20. Music from Gingerbread attractor.

Pitch mapped to X coordinate. Duration to Y coordinate.

Each attractor generates different sequences even

though they are all mapped to the same event spaces. It is

interesting to note that, within the same attractor, the

two different mapping schemes (pitch mapped to X, duration

to Y, and viceversa) generate very similar sequences. This

is particularly evident in the sequences generated from

Hénon attractor (Musical examples 15 and 16.) This

attractor generates almost the same pitches and durations

from both coordinates. Starting from the second pitch,

Musical Example 16 has the same sequence of pitches than

 104

Musical Example 15. Similarly, the durations are identical

starting from the third value in Musical Example 15 and the

second value in Musical Example 16. This is a consequence

of the formulation of the equations, in which coordinate Y

is just the previous value of X scaled by parameter b.

The following table of values from the Hénon attractor

clarifies this point:

Figure 14. Table of iteration values for Hénon attractor

The first two columns show the values of X and Y from

ten successive iterations (from 100 to 109.) The next two

columns show the result of dividing the absolute values of

two successive iterations from each coordinate (iterations

100/101, 101/102, and so forth.) Note that the values

connected by the arrows are almost identical. They differ

by only one part in a thousand in average. This difference

is a consequence of the rounding-off errors that inevitably

 105

accumulate from iteration to iteration in the computer

calculations.

Mathematically speaking, the values of both X and Y

have the same amount of scaling. A simpler example

elucidates this concept further:

1 2 4 8 16 32 64 128 256 512 ...

1.5 3 6 12 24 48 96 192 384 768 ...

 The above two series, although different at first

sight, have the same amount of scaling. If we divide the

nth term by the n+1th term in both series, we get the same

values:

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 ...

 The same is true for Martin and Gingerbread Man

attractors, although the amount of scaling between X and Y

coordinates differs from that of Hénon's.

A study of the number of occurrences of the elements in

our event spaces (pitch and duration) reveals more about

the structure of these sequences. The following tables

were computed from a set of ten million iterations of the

equations.

 106

 Hénon Attractor

 Pitch mapped to X
coordinate. Duration to Y
coordinate

Pitch mapped to Y
coordinate. Duration to X
coordinate

Pitch
class

No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)

C4
C#4
D4
D#4
E4
F4
F#4
G4
G#4
A4
A#4
B4
C5
C#5
D5
D#5
E5
F5
F#5
G5
G#5
A5
A#5
B5

290370
225702
224906
306453
245163
201591
289693
395089
359682
278250
290170
254934
235108
341939
444934
670898
570592
629198
817871
448353
464978
579705
621368
813051

2.90
2.26
2.25
3.06
2.45
2.02
2.90
3.95
3.60
2.78
2.90
2.55
2.35
3.42
4.45
6.71
5.71
6.29
8.18
4.48
4.65
5.80
6.21
8.13

290370
225702
224906
306453
245163
201591
289693
395089
359682
278250
290170
254934
235108
341939
444934
670898
570592
629198
817871
448353
464978
579705
621368
813051

2.90
2.26
2.25
3.06
2.45
2.02
2.90
3.95
3.60
2.78
2.90
2.55
2.35
3.42
4.45
6.71
5.71
6.29
8.18
4.48
4.65
5.80
6.21
8.13

Duration No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)





+

1250714

1465888

1351970

3100786

2830639

12.51

14.66

13.52

31.01

28.31

1250714

1465888

1351970

3100786

2830639

12.51

14.66

13.52

31.01

28.31

 107

 Martin Attractor

 Pitch mapped to X
coordinate. Duration to Y
coordinate

Pitch mapped to Y
coordinate. Duration to X
coordinate

Pitch
class

No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)

C4
C#4
D4
D#4
E4
F4
F#4
G4
G#4
A4
A#4
B4
C5
C#5
D5
D#5
E5
F5
F#5
G5
G#5
A5
A#5
B5

30738
79252
71072
65800
273136
376221
380298
815178
964800
829554
593017
520917
521173
591235
830851
965123
814963
380502
376152
273143
65853
71065
79231
30724

0.31
0.79
0.71
0.66
2.73
3.76
3.80
8.15
9.65
8.30
5.93
5.21
5.21
5.91
8.31
9.65
8.15
3.81
3.76
2.73
0.66
0.71
0.79
0.31

30725
79230
71065
65853
273143
376152
380502
814963
965123
830851
591235
521173
520918
593017
829554
964800
815178
380298
376221
273136
65800
71072
79252
30737

0.31
0.79
0.71
0.66
2.73
3.76
3.81
8.15
9.65
8.31
5.91
5.21
5.21
5.93
8.30
9.65
8.15
3.80
3.76
2.73
0.66
0.71
0.79
0.31

Duration No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)





+

455818

3152943

2782698

3152779

455760

4.56

31.53

27.83

31.53

4.56

455761

3152779

2782697

3152943

455818

4.56

31.53

27.83

31.53

4.56

 108

 Gingerbread Man Attractor

 Pitch mapped to X
coordinate. Duration to Y
coordinate

Pitch mapped to Y
coordinate. Duration to X
coordinate

Pitch
class

No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)

C4
C#4
D4
D#4
E4
F4
F#4
G4
G#4
A4
A#4
B4
C5
C#5
D5
D#5
E5
F5
F#5
G5
G#5
A5
A#5
B5

160810
474314
555051
433238
372033
463095
598465
583230
489283
538638
631876
570111
571833
637424
799149
812399
467700
149945
96399
82186
106832
140480
140680
124663

1.61
4.74
5.55
4.33
3.72
4.63
5.98
5.83
4.89
5.39
6.32
5.70
5.72
6.37
7.99
8.12
4.68
1.50
0.96
0.82
1.07
1.40
1.41
1.25

160810
474314
555051
433238
372033
463095
598465
583230
489283
538638
631876
570111
571833
637424
799149
812399
467700
149945
96399
82186
106832
140480
140680
124663

1.61
4.74
5.55
4.33
3.72
4.63
5.98
5.83
4.89
5.39
6.32
5.70
5.72
6.37
7.99
8.12
4.68
1.50
0.96
0.82
1.07
1.40
1.41
1.25

Duration No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)





+

1915379

2525412

2937546

2043623

577874

19.15

25.25

29.38

20.44

5.78

1915379

2525412

2937546

2043623

577874

19.15

25.25

29.38

20.44

5.78

It is obvious from these tables that some events

(pitches and durations) predominate over others. In Hénon

attractor, for instance, pitch-classes F#5 and B5, followed

by D#5, F5, and A#5 have a much higher rate of occurrence

 109

than, say, C4 or F4. Likewise, quarters and quarters tied

to sixteenths occur more often than the rest of durations.

Note that both mapping schemes (pitch mapped to X, duration

to Y, and viceversa) generate the same occurrence values.

This is a consequence of the scaling between the values of

X and Y, as explained earlier.

The differences in event occurrence is even more

dramatic in Martin attractor. Here, pitch-classes G4, G#4,

A4, D5, D#5, and E5 account for 52.21% of all values.

Furthermore, the distribution of values is structured with

striking symmetry, as is evident in the following graph

(percentage values were rounded to the nearest integer):

Figure 15. Pitch distribution in Martin attractor

This is a reflection of the attractor's perfectly

symmetrical shape (see Fig. 13.) The same is true for

 110

durations. As with Hénon attractor, both mapping schemes

generate the same occurrence values.

Lastly, Gingerbread Man attractor's occurrence values

also differ from those of Martin and Hénon attractors. The

bulk of pitch occurrence is distributed between pitch

classes C#4-D#5, with a much lower frequency of occurrence

for pitch-classes C4 and F5-B5. Duration occurrence also

shows the same pattern: eighths, dotted eighths and

quarters have a higher frequency of occurrence than

sixteenths and quarters tied to sixteenths. The

Gingerbread Man attractor also produces the same occurrence

values from both mappings, again a consequence of the

scaling of the values of successive iterations of the X and

Y coordinates.

A rearrangement of the occurrence values reveals they

are arranged according to the Gaussian probability

distribution, as in Musical Examples 12-14:

 111

Figure 16. Pitch distribution in Hénon attractor

Figure 17. Pitch distribution in Martin attractor

Figure 18. Pitch distribution in Gingerbread Man attractor

 112

The percentage values in the above graphs were rounded

to the nearest integer. This makes the contour of graphs

seem more bumpy than they really are. Although only pitch

occurrence values are shown, duration values also follow

the same distribution.

It is important to realize that these event occurrences

values may not be immediately obvious in the generated

sequences (Musical Examples 15-20.) The reason is that

only 200 iterations of the equations were mapped. This

sample space is to small to show the overall behavior of

the attractors. However, they are sufficient to

demonstrate the structures these attractors yield, as well

as the differences among them.

Attractors from Three-dimensional Chaotic Maps

Three-dimensional attractors exist in three-dimensional

space. Their equations have, consequently, three

variables. Each point in the attractor is expressed by

three coordinates (X, Y, Z.) Each of these coordinates can

be mapped to a different musical event space (such as

pitch, rhythm and dynamic) in the same manner as with two-

dimensional attractors. As an example, we will study two

 113

three-dimensional attractors: Rössler attractor, and

Pickover attractor.

 Pickover attractor is an iterated map in three-

dimensions proposed by Clifford A. Pickover.17 It is

formulated by the following equations:

xn+1 = sin(a*yn) - zn*cos(b*xn)

yn+1 = zn*sin(c*xn) - cos(d*yn)

zn+1 = sin(xn)

where a, b, c and d are the controlling parameters.

Default values for these parameters are

a = 2.24; b = 0.43; c = -0.65; d = -2.43

When plotted, this function generates the following

attractor:

17C. A. Pickover, "Million-Point Sculptures," Computer

Graphics Forum 10(4) (1991): 333-336.

 114

Figure 19. Pickover attractor

Unfortunately, one dimension is lost as the image is

printed in the two-dimensional surface of paper.

We will map each coordinate X, Y, Z to three different

musical event sets: a pitch set (a two-octave chromatic

scale from C4 to B5,) a rhythmic set, {16th, 8th, dotted 8th,

quarter, and quarter dotted to 16th}, and a dynamic set,

{ff, mf, mp, pp}. In the following mapping scheme, pitch

was mapped to the Y coordinate, rhythm to the X coordinate

and dynamic to the Z coordinate. Normalized mapping was

employed. As with two-dimensional attractors, the maximum

and minimum values of X, Y, and Z were precomputed from a

set of ten million iterations of the equations. The

resulting sequence is as follow:

 115

Musical Example 21. Music from Pickover attractor. Pitch

mapped to Y coordinate, duration to Y coordinate, dynamic

to Z coordinate.

Dynamics are represented by four lines of varying

length, shown immediately below the notes. The longest

corresponds to ff, the shortest to pp.

 116

By assigning different coordinates to the event spaces,

different mappings can be applied to the same attractor.

In the following mapping of the same attractor, pitch was

assigned to the X coordinate, rhythm to Z, and dynamic to

Y:

Musical Example 22. Music from Pickover attractor. Pitch

 117

mapped to X coordinate, duration to Z coordinate, dynamic

to Y coordinate.

What follows is a table of event occurrence values of

both mapping schemes.

 Pickover Attractor

 Pitch mapped to Y
coordinate. Duration to X
coordinate. Dynamic to Z
coordinate

Pitch mapped to X
coordinate. Duration to Z
coordinate. Dynamic to Y
coordinate

Pitch
class

No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)

C4
C#4
D4
D#4
E4
F4
F#4
G4
G#4
A4
A#4
B4
C5
C#5
D5
D#5
E5
F5
F#5
G5
G#5
A5
A#5
B5

241536
297092
246241
212484
267236
442227
367935
325578
312117
289991
286410
293875
310055
324552
372221
339170
392788
428800
469714
633861
905144
1067178
893675
280118

2.42
2.97
2.46
2.12
2.67
4.42
3.68
3.26
3.12
2.90
2.86
2.94
3.10
3.25
3.72
3.39
3.93
4.29
4.70
6.34
9.05
10.67
8.94
2.80

911628
449760
392659
295560
310222
256252
239589
230758
256644
249634
222981
216693
230890
230738
228202
247993
257538
273819
313475
397912
574074
989102
750991
1472884

9.12
4.50
3.93
2.96
3.10
2.56
2.40
2.31
2.57
2.50
2.23
2.17
2.31
2.31
2.28
2.48
2.58
2.74
3.13
3.98
5.74
9.89
7.51
14.73

Duration No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)

 118





+

2303250

1188484

1094888

1313511

4099865

23.03

11.88

10.95

13.14

41.00

2530043

1055368

915281

1098845

4400461

25.30

10.55

9.15

10.99

44.00

Dynamic No. of
occurrences

Percentage
(rounded to 2
decimals)

No. of
occurrences

Percentage
(rounded to 2
decimals)

ff
mf
p
pp

2806789
1225591
1253313
4714305

28.07
12.26
12.53
47.14

1706816
1875906
2167586
4249690

17.07
18.76
21.68
42.50

 Note that, as opposed to the mappings from Hénon,

Martin, and Gingerbread attractors discussed earlier, in

Pickover attractor different coordinates do not produce the

same occurrence values. Pickover attractor also lacks the

symmetry that these attractors have (see Fig. 19.) This

does not mean that the musical mappings from Pickover

attractor are devoid of structure. It is clear from

Musical Examples 21 and 22 that Pickover attractor yields

highly organized sequences. Pitch in Musical Example 21,

for instance, appears to be structured by repetitions of

the following descending pattern:

Figure 20. Detail from measure 1 in Musical Example 21

 119

These patterns, however, never repeat exactly the same.

 The following two graphs reveal that the distribution

of event occurrence values in Pickover attractor——like in

Hénon, Martin and Gingerbread Man attractors——is also

Gaussian (only pitch occurrence distribution is shown):

Figure 21. Pitch distribution in Pickover attractor (Y
coordinate)

 120

Figure 22. Pitch distribution in Pickover attractor (X
coordinate)

The Rössler attractor, proposed by Otto E. Rössler18,

is a continuous flow in three dimensions. It is closely

related to the Lorenz attractor, a mathematical model of a

weather system developed by Edward Lorenz at the MIT.19 The

Rössler attractor is defined by the following differential

equations:

xn+1 = xn - yn*dt - zn*dt

yn+1 = yn + xn*dt + a*yn*dt

zn+1 = zn + b*dt + xn*zn*dt - c*zn*dt

18H. O. Peitgen, ed., Chaos and Fractals: New Frontiers

of Science (New York: Springer, 1992), 686-696.
19Lorenz, "Deterministic non-periodic flow," 130-141.

 121

x0 = y0 = z0 = 1;

dt = 0.04; a = 0.2; b = 0.2; c = 5.7

Although continuous flow systems like this one are

characterized by continuous, unbroken orbits, this fact

must be approximated in the computer by orbits of discrete

points separated in time by a small amount, dt. This is

achieved by solving the difference equations (actually

transforming them into difference equations) by a method

known as numerical integration.20

When plotted, Rössler attractor looks as follows:

Figure 23. Rössler attractor

20Bidlack, "Chaotic Systems as Simple (but Complex)

Compositional Algorithms," 40.

 122

So far, we have been mapping all parameters to a single

voice. We can also map each coordinate to a different

voice, thus creating a polyphonic texture (this technique

can also be applied to two-dimensional attractors.) The

musical transcription of the Rössler attractor maps each

coordinate (X, Y, Z) to three different event sets (as in

the Pickover attractor above) in three different voices.

In voice one, pitch is mapped to the X coordinate, rhythm

to Y and dynamic to Z; in voice two, pitch is mapped Y,

rhythm to Z and dynamic to X; voice three maps pitch to Z,

rhythm to X and dynamic to Y.

The outcome is as follows:

 123

Musical Example 23. Music from Rössler attractor

 124

Musical Example 23 (continued)

Note how the continuous nature of the orbits of the

attractor are realized musically as scales going up and

down at various speeds and dynamics. Polyphonic mappings

produce an aural sensation, which reflects more closely the

spatial nature of these attractors.

Higher dimensional systems offer more degrees of

freedom in the mapping process. A four-dimensional chaotic

 125

system, such as the Hénon-Heiles system21, provides four

variables which can be mapped, for instance, onto four

different event sets, such as pitch, duration, dynamic, and

timbre. The manner in which these higher-dimensional

systems are mapped does not differ from their lower-

dimensional siblings.

Another kind of dynamical systems, called iterated

function systems (IFS,) developed by M. Barnsley22, has also

been proven to be a very fruitful source for algorithmic

composition.23

 The music generated by the mapping of dynamical

systems can be varied by changing their equations'

controlling parameters. Two mappings generated from the

same system but with a tiny difference in one parameter,

will in the long run generate different sequences, since

the system is very sensible to its initial condition: that

is the essence of chaos. Even differences in the computer

implementation (programming) of the system's equations

(using single-precision floating-point variables instead

21Ibid., 41.

22M. Barnsley, Fractals Everywhere (New York: Academic

Press, 1988).

23M. Gogins, "Iterated Function Systems Music,"

Computer Music Journal 15(1) (1991): 40-48.

 126

double-precision, for instance) will generate different

sequences from the same initial conditions.

Fractals

 The word "fractal" was coined by the Polish

mathematician Benoit Mandelbrot24, from the Latin word

fractus, meaning fractional, or fragmented. Fractals and

fractal geometry25 were born in an effort towards developing

a mathematical framework to understand the way the Nature

uses and reuses the same forms redundantly in both living

and non-living things. Traditional geometry has always

dealt with regular forms and smooth curves (those that can

be differentiated.) Forms in nature, however, can not be

described faithfully with traditional geometry. As

Mandelbrot puts it, "clouds are not spheres, mountains are

not cones, coastlines are not circles and bark is not

smooth, nor does lightning travel in a straight line."26

24Briggs, Turbulent Mirror, 90.

25B. Mandelbrot, The Fractal Geometry of Nature (San

Francisco: W.H. Freeman, 1982).

26Briggs, Turbulent Mirror, 90.

 127

An essential characteristic of many fractals objects

is that they manifest self-similarity at all scales: a

smaller portion of the whole object looks like the whole.

Self-similarity comes in two types: exact, in which

magnified small parts of the object in question are

identical to the whole; and statistical, in which a

magnified portion of the object has the same statistical

properties as the whole. Some fractal objects, however,

such as the famous Mandelbrot Set, are not self-similar.

Fractals are both natural and mathematical objects.

Fractals abound in nature; for instance, the branching of a

tree has fractal structure: individual branches look like

scaled-down versions of the whole tree; the same is true

for the heads of cruciferous vegetables such as broccoli

and cauliflower, to say for the vascular systems and lung

structures of animals. Self-similarity in natural fractals

is always statistical: there is no exact self-similarity in

nature.

Mathematical fractals——the only ones suitable for

algorithmic composition——are also governed by nonlinear

equations. One would expect that the generation of such

complex shapes would require complex equations as well, but

in reality, they are extraordinarily simple. Since the

discovery of fractals and the birth of chaos science,

 128

thousands of fractal equations have been proposed, all with

their own peculiarities and characteristics. Of these, we

will concentrate in the first and most famous of all: the

Mandelbrot Set.

The Mandelbrot Set fractal, dubbed "the most complex

object in mathematics,"27 is formulated by this exceedingly

simple iterated map:

Zn+1 = (Zn)2 + C,

where both Z and C are complex28 variables. For each C in

the complex plane, Z0 is set to 0 and the equation is

iterated. There are two possible outcomes for Z:

1. Zn→∞ as n→∞

2. Zn remains bounded (finite) as n→∞.

To create the fractal image, each point C is assigned

a color according to the number of iterations required to

send the point to infinity, or a default color (generally

black) if the point remains fixed. For practical purposes,

a threshold value t and maximum number of iterations m are

27Ibid.

28A complex number has the form a + bi, where a and b

are any real numbers and i is the imaginary unit (√-1).

 129

defined. The iterative process is stopped when ⏐Zn⏐ ≥ t, or

n > m. The Mandelbrot set is defined as the set of all

values of Z which do not escape to infinity.

Here is a plotting of the Mandelbrot Set:

Figure 24. The Mandelbrot Set

Because between any to complex numbers there is always

another complex number, we can perform mathematical "zooms"

on the fractal, revealing its complexity and infinitely

detailed structure. What follows are six successive zooms

on the Mandelbrot Set:

 130

Figure 25. Mandelbrot Set zooms

 It is an arresting thought to realize that these

images, so aesthetically pleasing, are derived from such a

simple procedure, and are, in essence, just a set of

numbers.

Mapping the Mandelbrot Set to music turns out to be

more complicated than mapping chaotic attractors. Each

iteration of the equations defining a chaotic system

corresponds to a point in the corresponding system's

chaotic attractor. It is generally sufficient to plot a

few hundred iterations to perceive the shape of the

attractor. Mapping chaotic attractors onto music consists

in mapping each iteration of the equations to a musical

event space. On the other hand, in a fractal image, for

every point of the image, its generating equation must be

iterated a number of times (usually thousands) to decide

whether the point escapes to infinity or not. Calculations

in fractals are therefore increased a thousandfold.

A method to map fractals is to calculate the iteration

values of the set of points in a one-dimensional slice

 131

within the two-dimensional structure of the fractal, and

map those values onto a musical event space. This is

performed as follows:

• Take any two points within the fractal image, a

starting point (x, y) and an end point (∆x, ∆y.)

• Calculate the iteration values for points that lay

in the segment from (x, y) to (∆x, ∆y,) linearly

(the more points we take, the higher the

"resolution" of the slice.)

• Map the iteration values of these set of points onto

a musical event space.

As an example, we will map a slice from the Mandelbrot

set. Our event space, for simplicity, will be a four

octave chromatic scale (from C2 to B5——48 pitches——, ordered

from 0 to 47) plus silence for the points that do not

escape to infinity (the black regions on the Set.) We will

choose sixteenths as note values. Additionally, if two

consecutive points have the same iteration value, their

mapped pitches are tied. Iteration limit is set to 1000.

The segment will be divided in 600 points. Visually, we

will map the following segment on the Mandelbrot set:

 132

Figure 26. Mandelbrot Set mapped section

The mapped segment goes from (-1.8, 0) to (-1.67, 0.)

Iteration values are mapped to our 48-element event set

using the normalized mapping method. This assures that the

behavior of the iteration values is faithfully transcribed

to our event space. The generated sequence goes as

follows:

 133

Musical Example 24. Music from the Mandelbrot Set

Comparing both the segment on the Mandelbrot Set and

its musical transcription, one can readily see how features

on the mapped slice are realized musically. For instance,

we observe sections of silence in measures 4-5, 6-15, and

37. These correspond to sections on the segment for points

that do not escape to infinity, just as we decided on our

 134

mapping scheme. These sections on the segment (see Fig.

26) are:

, and , respectively.

Note that most of the time the music is in the low

register, this is a because the iteration values at those

points remain low.

This technique could be extended by mapping a large

number adjacent segments and superimpose then

polyphonically. This would effectively perform a "scan" of

the surface of the fractal. This method would undoubtedly

map more faithfully the structure of the whole fractal than

just a single one-dimensional slice. Of course, we are not

restricted to pitch only, the same mapping method can be

applied simultaneously to duration, dynamic, timbre, etc.

The Mandelbrot Set is just one among the thousands of

fractal equations that are known today. This mapping

technique can be applied to those equations in a similar

way.

 135

Noise

Paradoxically, noise can also be a source for

algorithmic composition. Noise can be categorized into

three basic types: white, pink and Brownian. These are

differentiated on how their power spectrum (measured in

dB) varies as a function of the frequency (measured in

Hz.) The power of white noise is distributed evenly over

all frequencies. In technical terms, its power spectra

P(f) as a function of the frequency f behaves like: P(f)

= 1/fa, where the exponent a is 0. For instance, white

noise at a sampling rate of 44,100 Hz has as much power

between 100 and 600 Hz as between 20,100 and 20,600 Hz.

Frequencies are completely uncorrelated in white noise.

White noise is what we hear as static on a radio.

Brownian noise——also known as "brown" noise——is

quite the opposite; its frequency spectrum is highly

correlated, resembling a random-walk in three dimensions,

since the frequency fluctuations at a point in time

depend on previous fluctuations; its power spectra P(f)

is close to 1/f2.

1/f noise——also known as flicker noise, or "pink"

noise——whose power spectra is 1/f (the exponent a in this

case is very close to 1)——is somewhat middle ground

 136

between white and brown noises. 1/f noise has an even

distribution of power when the frequency is mapped in a

logarithmic scale. There is the same amount of power

between 100 and 500 Hz than between 1000 and 5000 Hz.

Frequencies in 1/f noise are not as correlated as in

Brownian noise nor random as in white noise. To our ears

it sounds like a "natural," even pleasant noise. In

fact, 1/f noise appears everywhere in nature: the sound

of a waterfall, the sound of rain, the sound of bees in a

honey comb, are all 1/f noises.

A graphic of the frequency density of these noises

help visualize the differences among them:

White noise 1/f noise Brownian noise

Figure 27. Spectra of white, Brownian, and 1/f noises

In 1975, Richard F. Voss and John Clarke at the

University of California analyzed several recordings of

music and speech.29 They concluded that the audio power of

29J. Clarke and R. F. Voss, "1/f noise in music and

speech," Nature 258 (1975): 317-318.

 137

the music, e.g. the power delivered to the speakers, was

very close to that of 1/f noise. Their research examined

very different types of music, from Bach's Brandenburg

Concerti to Scott Joplin's piano rags.

 However, Voss and Clarke's results sparked controversy

among other researches. Their main concern was that Voss

and Clarke used long stretches of recorded material, some

of which exceeded twelve hours in duration. These

recordings were amalgamations of pieces by different

composers, of greatly contrasting styles, edited together

in sequence and interspersed with spoken announcements and

comments. The argument posed against this study was simply

that these "medleys" of different musics and sounds did not

truly represent music in its essential manifestation, as a

single, uninterrupted piece. The contenders argued that a

single musical piece, being the largest unit of artistic

significance, should have been the study model, instead of

an arbitrary series of disparate excerpts.

Jean-Pierre Boon and other researchers formulated a

different technique for the quantitative analysis of

music.30 Instead of analyzing recordings of music, a

synthesizer was interfaced with a computer, and the

30J. P. Boon and O. Decroly, "Dynamical Systems Theory

for Music Dynamics," Chaos 5(3) (1995): 501-508.

 138

composition was played on the synthesizer by a performer.

The pieces were digitally stored in the computer; this

involved discretization of the pitch and duration. Data

processing was then used to construct a phase portrait of

the music. Nineteen classical pieces from all musical eras

and four jazz pieces were used. Two other types of

sequences were tested as well for comparison with the

pieces: repeated ascending and descending scales and a

sequence of 5000 notes based on a white noise algorithm.

The analysis of these pieces in this manner produced

interesting results. When the values a for the spectral

densities of the pieces (1/fa) were computed, the results

differed significantly from the results obtained by Voss

and Clarke. This time, a seemed to vary between 1.79 and

1.97, which is closer to Brownian noise than 1/f noise.

The difference was explained by the use of single pieces of

music rather than long stretches. As Boon puts it, "if

musical dynamics analysis is meant as a procedure to

identify and characterize elements of musical significance,

the single piece is the commonly recognized object to be

studied. In this respect the meaning of long stretches of

blended musical pieces is unclear."31

31Ibid., 507.

 139

Algorithms for deriving music from white and brown

noises are remarkably simple. "White" music can be easily

created by simply mapping the output of a random number

generator to an equiprobable collection of events in an

ordered event space. Musical Example 1 is, in fact, an

example of music derived from white noise. We have also

encountered an algorithm which simulates Brownian noise:

the random-walk Markov chain. We recall that this type of

Markov chain (whose probability matrix has nonzero entries

on either side of its main diagonal and zeroes everywhere

else,) creates correlated sequences of events, which

simulates the Brownian noise. 1/f noise, however, turns

out to be more difficult to generate and hence be mapped

into musical event spaces.

Naturally, Voss and Clarke were the first to

experiment generating music from 1/f noise.32 The first

method consisted in generating 1/f noise through electronic

means. The electrical voltages generated through this

procedure were sampled, quantized, and converted to series

of numbers whose spectral density was that of 1/f noise.

These numbers were then mapped (using the normalized

 32J. Clarke and R. F. Voss, "'1/f noise' in Music:
Music from 1/f Noise" Journal of the Acoustic Society of
America 63 (1978): 258-263.

 140

mapping method) to event sets of pitch (a two octave

chromatic scale,) and duration. They also devised an

algorithmic method to simulate the spectral density of 1/f

noise.

In a 1978 issue of Scientific American, Martin Gardner

describes a simple algorithm involving three dice that

emulates the spectral density 1/f noise.33

A non-linear equation whose output resembles 1/f

noise, proposed by M. Schroeder34, is

Xn+1 = Xn∗λ + √(1-λ2) ∗ r

where λ is any number in the interval (0, 1) and r is a

random value chosen for every iteration of the equation.

The value of λ determines the "quality" of the output in

relation to real 1/f noise. Chapter V on this thesis

provides the source code of a C++ implementation of Voss'

algorithm for producing 1/f noise.

33M. Gardner, "White and Brown Music, Fractal Curves

and 1/f Fluctuations," Scientific American (April 1978):
16-32.

 34M. Schroeder, Fractals, Chaos, Power Laws: Minutes
from an Infinite Paradise (New York: W. H. Freeman, 1991),
178.

 141

 What follows are three musical examples derived from

white, Brownian, and 1/f noises. The event space is the

same for all: a two-octave chromatic scale from C4 to B5.

Musical Example 25. Music from white noise

Musical Example 26. Music from 1/f noise

Musical Example 27. Music from Brownian noise

The white noise music (Musical Example 25) was

generated by mapping the output of a random number

generator function (normalized mapping.)

The Brownian noise music (Musical Example 27) was

created by mapping the output of a first-order Markov chain

 142

in which each pitch has an equal probability of being

followed by its two immediate or preceding pitches: for

instance, G4 can be followed by F4, F#4, G#, or A4. This

simulates the characteristic three-dimensional random-walk

spectrum of Brownian noise.

Lastly, 1/f noise music (Musical Example 26) was

generated by mapping the output of the non-linear equation

proposed by Schroeder (above), with a value of λ = 0.5

(normalized mapping.)

Notice how the note-to-note relationship dramatically

resembles the spectral density of the corresponding noises

from which they are derived.

1/f noise is especially useful for the generation of

sequences of musical events whose correlation is halfway

between an aleatoric process and a random-walk Markov chain

process.

Number theory algorithms

Number theory is one of the oldest branches of pure

mathematics, as well as one of the most extensive. It

concerns questions about whole numbers or rational numbers

(fractions in which numerator and denominator are both

whole numbers.)

 143

Number theory has existed since the Pythagorean, which

believed everything in reality could be explained with

whole numbers. Their discovery of the square root of 2——an

irrational number, meaning that it can never be described

as the ratio between two whole numbers——provocated a crisis

among them; they kept this discovery a secret, believing

that it would be dangerous for the common people to know

it.

There are many sources from number theory which can be

used in algorithmic composition. We will study three of

these sources: the Morse-Thue sequence; the "3n+1" number

sequences; and the prime number series.

The Morse-Thue Sequence.

01101001100101101001011001101001...

This number sequence was first discovered by Axel Thue

1912 in his study of formal languages and rediscovered in

1917 by Marston Morse while studying the dynamics of

surfaces geodesics.35

35M. Morse, "Recurrent Geodesics on a Surface of

Negative Curvature," Trans. Amer. Math. Soc. 22 (1921): 84-
110.

 144

 The Morse-Thue sequence (above) can be constructed

both recursively and non-recursively. The recursive method

uses the following substitution map:

1 -> 10

0 -> 01

Starting with a single 0, we get:

0 → 01 → 0110 → 01101001 → 0110100110010110, etc.

It can also be constructed non-recursively from the set

of the natural numbers {0, 1, 2, 3, 4...} expressed in base

2 and taking the "digital root" (the sum of the ones modulo

2,) as follows:

One of the most striking characteristics of this

sequence is that it exhibits self-similarity: removing all

the even terms of the sequence leaves it unchanged:

0 1 2 3 4 5 6 7 8 9 10...
↓

0 1 10 11 100 101 110 111 1000 1001 1010...
↓

0 1 1 0 1 0 0 1 1 0 0...

 145

01101001100101101001011001101001...

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 ...

Also, removing every other pair of numbers leaves it

unchanged:

01101001100101101001011001101001...

01 10 10 01 10 01 01 10 ...

We will use the non-recursive method to map the Morse-

Thue sequence to musical events, as follows.

 Consider the sequence of natural numbers expressed in

binary form (base 2):

Next, add the digits (in decimal base) of each member

of the sequence, as follows:

0 1 2 3 4 5 6 7 8 9 10...
↓

0 1 10 11 100 101 110 111 1000 1001 1010...

0 1 10 11 100 101 110 111 1000 1001 1010...
↓

0 1 1 2 1 2 2 3 1 2 2...

 146

This transformed sequence is the one we will map to

our musical event space. As with previous examples, we

will choose a two-octave chromatic scale from C4 to B5 (24

pitches.) Mapping is applied performing a modulo 24

operation on each term of the sequence. For simplicity,

the duration of the pitches has been fixed to sixteenths.

The generated sequence is as follows:

...

Musical Example 28. Music from the Morse-Thue sequence

Below the music there is a graphical representation of

the sequence. Notice the contour resemblance between the

music and the graphic.

 To show how the self-similarity of the sequence is

maintained in the musical transcription, we will perform

 147

the same transformations on the music than we did on the

sequence before. Removing every other note leaves the

sequence unchanged:

Performing the same operation on this already

truncated sequence, still leaves the sequence unchanged:

 148

Removing every other couple of notes also leaves the

sequence invariable:

We can extend the musical potential of the Morse-Thue

sequence in several ways. First, we can multiply every

term in the natural number sequence by a constant value.

This produces surprising results. For instance, we can

choose the constant value 31:

 149

The resulting sequence is as follows (pitches that

repeat consecutively are tied on all forthcoming examples):

...
Musical Example 29, base 2 multiplier 31

Observe how the very long note at the beginning

corresponds to the series of 5s that repeat in the

sequence. There are exactly 32 repeating fives. In our

0 1 2 3 4 5 6 7 8 9 10...
multiply every term by 31

↓

0 31 62 93 124 155 186 217 248 279 310...
express in base 2

↓

0 11111 111110 1011101 1111100 10011011 10111010
 11011001 11111000 100010111 100110110...

add the ones (in base 10)
↓

0 5 5 5 5 5 5 5 5 5 5...

 150

music event space element number 5 is mapped to an F4. The

sequence then evolves in more interesting ways. Note the

structure of expanding and contracting patterns that are

generated.

 Changing the constant generates different sequences.

The following was generated multiplying every term by 33:

...

Musical Example 30, base 2 multiplier 33

We can extend this technique by expressing the natural

numbers in bases other than binary base. The following two

examples were generated choosing base 3 and multipliers 8

and 10, respectively:

 151

...

Musical Example 31, base 3 multiplier 8

...

Musical Example 32, base 3 multiplier 10

Notice how each base-multiplier pair generates a

unique sequence. In general, higher basses generate

sequences with elements more spread out in the musical

event space:

 152

...

Musical Example 33, base 29 multiplier 311

Some combinations of base-multiplier gives

particularly interesting results, some of such combinations

are

• Base n and multiplier nk ± 1, where k = {1, 2, 3,

4...)

• Base n and multiplier n! ± k, k close to n (this is

practical for small bases only)

By extending our musical event space and our mapping

schemes, Morse-Thue sequences offer virtually infinite

ground for musical exploration.

 153

3n+1 numbers

Also known as the hailstone problem36, these number

sequences are generated starting with an integer n and

recursively performing the following operations:

If n is even, divide n by 2 (n/2.)

If odd, multiply n by 3 and add 1 (3*n + 1)

For instance, starting with n = 15, we get the

following cycle:

15, 46, 23, 70, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1...

Although it has never been proven, it is conjectured

that all numbers eventually "fall" to 1 after a finite

number of iterations, entering a never ending 4-2-1 loop.

Before entering this loop, the numbers go up and down, like

hailstones do in a cloud, hence their name. Note that the

series for the number 15 (above) encompasses the series for

all numbers in between (46, 23, 70, etc..) This can be

generalized to any number n.

36J. Lagarias, "The 3x+1 Problem and its

Generalizations," American Mathematical Monthly 92 (1985):
3-23.

 154

The number of steps required to hit the number 1

(including the starting number itself) and hence enter the

4-2-1 cycle is the size of the cycle for any particular

number n. This can be symbolized as:

Hs(n)

Another interesting factor concerning this series is

the maximum number reached in the sequence generated by n,

Hmax(n)

The number 9,232 seems to be the highest point reached

by many numbers and a preferred track down to 1. The

reason still remains a mystery. Among the first 10,000,000

numbers, around 38% of them hit this value before falling

to 1.

 The seemingly chaotic behavior of these sequences

yields, however, patterns when mapped to musical events.

Mapping hailstone sequences to musical events is a

straightforward procedure. Considering a musical event

space of n ordered elements, we simply perform a modulo n

operation to the particular number in the sequence to be

mapped:

 155

event number = (number in the sequence) mod n

For instance, the number 27 (Hs(27) = 112) produces the

following sequence (our event space will be, as usual, a

two-octave chromatic scale from C4 to B5, with sixteenth

note values chosen arbitrarily):

Musical Example 34. Music from number 27

A close inspection of this sequence reveals it is far

from random. There are many patterns, such as the

repeating A#5 - B5 - A#5 - B5, and B4 - Bb4 — F4 - E5. The

sequence seems to be highly disjunct except for small

clumps around A#5 - B5, and E4 - D4 - C#4.

It is interesting to notice that some pitch classes,

such as F#4, F#5, A4, and A5, do not occur.

 156

 Two other example will reveal more about this number

sequences. This time we will map numbers 666, HS(666) =

114; and 65535 (216-1,) HS(65535) = 131:

Musical Example 35. Music from number 666

Musical Example 36. Music from number 65535

 157

There is something altogether questionable about these

sequences, which seem to generate similar patterns for all

given numbers. We observe, for example, that pitch class E4

can only be followed by pitch classes D4 or D5. Pitch class

A#5 can only be followed by pitch classes B5 and B4.

Similarly, pitch class A#4 can only be followed by F4 and F5.

Furthermore, F4 can only be followed by E5 and F5 only by E4.

There seems to be a very rigid scheme on what elements can

follow others. It becomes evident that one element can

only be followed at most by two others. This is indeed

very interesting, because we could construct a Markov chain

that simulates this process, where some events have a two

0.5 probability entries and others a single 1.

The number of elements of the mapped event space, that

is, the modulo operation applied, determines what kind of

patterns arise. To illustrate this, let us map number

65535 again, this time to a two-octave major scale from C4

to B5, which has 14 elements as opposed to 24, therefore

performing a modulo 24 operation:

 158

Musical Example 37. Music from number 65535, major scale.

The patterns are now different, but similar

restrictions as to what events can be followed by others

still apply.

Different hailstone numbers could be used, for

instance, to structure sequences of musical events where

events can only be followed by a certain number of other

events in the event space. This would be analogous to

generating different event sequences from the same Markov

chain.

3n + 1 numbers could be extended easily to 5n + 1, 7n

+ 1, or, more generally, an + k, where both a and k are

whole numbers. One of these cases, 3n - 1, generates

sequences that end in one of three possible loops (instead

of a single 4,2,1 loop):

1,2,1,2,1,2...

 159

5,14,7,20,10...

17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136,

68, 34, ...

These extended hailstone processes can be mapped in a

similar way to musical event spaces, each of them

generating sequences with particular characteristics.

The Prime Number Series

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37...

Prime numbers are one of most important and most

studied subjects in number theory mathematics.37 A prime

number is a whole number that can only be divided evenly by

itself and 1.

Prime numbers are the building blocks of all numbers.

Every whole number has a unique factorization into prime

numbers. Take the number 429, for instance; its unique

factorization is 13*11*3. The distribution of prime

numbers on the number line is one of the unsolved mysteries

of mathematics. They do not seem to follow any

recognizable pattern. A feasible formula for producing the

37Clawson, Mathematical Mysteries, 145-162.

 160

prime numbers series has never been discovered. We know,

however, that an infinity of prime numbers exist, that all

prime numbers except 2 are odd, and that all prime numbers

after 5 end in either 1, 3, 7, or 9. We also know that

their density in the number line decreases as numbers get

larger and larger.

There are many ways to map the prime number series to

a musical event space. A simple procedure consists on

mapping directly the series to a event space of n ordered

members, performing a modulo n operation on the series:

event space member index = (prime factor) mod n

Considering the series of the first 64 prime numbers

and applying this mapping to our usual event space of a

two-octave chromatic scale, we get the following:

Musical Example 38. Music from prime numbers

 161

Except for the two beginning pitches, the whole

sequence maps to only 8 notes (C#4, F4, G4, B4, C#5, F5, G5,

and B5.) This arises from the particular distribution of

prime numbers among n columns (in this case 24):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 x x x x x x x x x

 x x x x x x

 x x x x x

 x

 x x x

 x x x x x x

.

.

Only columns 1, 5, 7, 11, 13, 17, 19, and 23 (except

the particular case of primes 2 and 3) correspond with

prime values. These columns correspond to pitches C#4, F4,

G4, B4, C#5, F5, and G5, B5 in the event space. Note also

that while the same pitches appear over and over again,

they never produce a stable pattern. This is a consequence

of the quasi-random distribution of primes in the number

line.

 162

 A different mapping scheme, proposed by Armand Turpel

in his computer program Make Prime Music38, shows the prime

number series from a different perspective. Beginning with

prime number 7, triplets of consecutive prime numbers are

performed a modulo 5 operation and subtracted 1 (since no

prime after 5 ends in 5, this operations always yields a

number between 0 and 3.) This triplet of transformed

numbers is then interpreted as a base 4 number, which is

then converted to base 10 and mapped to our event space:

7 mod 5 = 2; 2-1 = 1 \
11 mod 5 = 1; 1-1 = 0 > 102 in base 4 is 18 in base 10
13 mod 5 = 3; 3-1 = 2 /

`

17 mod 5 = 2; 2-1 = 1 \
19 mod 5 = 4; 4-1 = 3 > 132 in base 4 is 30 in base 10
23 mod 5 = 3; 3-1 = 2 /

The resulting sequence 18, 30... is mapped to the

members of the event space via another modulo operation:

event number = (number in sequence) mod (number of events)

This mapping scheme performed in our two-octave

chromatic scale event space, yields the following sequence:

38Make Prime Music, Armand Turpel; available from

http://www2.vo.lu/homepages/armand/index.html; Internet.

 163

Musical Example 39. Music from prime numbers, alternate

mapping.

The same sequence mapped to a two-octave major scale

becomes:

Musical Example 40. Music from prime numbers, major scale.

These two sequences involve 288 consecutive prime

numbers (each note represents 3 prime numbers.) It is

apparent from these sequences that the event-to-event

relationship in these sequences is highly unpredictable.

 164

Nevertheless they are not random. This unpredictability

arises, once again, from the mysterious distribution of

primes along the number line.

 For instance, in Musical Example 39, there seems to be

an excess of pitch classes F#4, A4, B4, and F#5 (events 6, 9,

11, and 18, respectively,) and a deficiency of pitch

classes E5, A5, and B5 (events 16, 19, and 23.)

In a truly random sequence of events, all events would

have the same probability of occurrence, and the event-to-

event relationship would be absolutely uncorrelated.

 The application of different mappings schemes to the

same process shows that, although the generated sequences

differ, there is an underlying structure common to all of

them.

 165

Cellular Automata

 Cellular automata are a very rich source for

algorithmic composition. Compositional applications of

cellular automata have been explored in the work of Hunt,

Kirk, and Orton39, Millen40, and Miranda.41

Cellular Automata theory42 was introduced by John von

Neumann in the 1960s as a model of biological self-

reproduction.43 Cellular automata are discrete dynamical

systems, which is to say that the space, time and

properties of the systems can only have a finite number of

states.

Cellular automata have two fundamental characteristics:

39A. Hunt, R. Kirk, and R. Orton, "Musical Applications

of a Cellular Automata Workstation," in Proceedings of the
1991 International Computer Music Conference (San
Francisco: International Computer Music Association, 1991),
165-168.

40D. Millen, "Cellular Automata Music," in Proceedings

of the 1990 International Computer Music Conference (San
Francisco: International Computer Music Association, 1990),
314-316.

41Miranda, "Music Composition Using Cellular Automata,"

105-117.

42Wolfram, Theory and Applications of Cellular
Automata.

43von Neumann, Theory of Self-Reproducing Automata.

 166

1. A regular, n-dimensional lattice, where each cell in

this lattice has a discrete state at a given time.

2. A dynamical behavior, controlled by a set of rules.

These rules decide the state of the cells for

subsequent time steps (generations,) depending on the

state of neighboring cells.

Cells in a cellular automata are like memory devices,

which store the automata's states. The simplest case

involves only two possible states for each cell, usually 0,

"dead", or 1, "alive." In more complex cellular automata,

cells can have many more states. Cells are arranged in a

n-dimensional lattice. In the case of one-dimensional

cellular automata——the simplest types——cells are arranged

on a single line; two-dimensional automata cells are

arranged on a flat grid (a two-dimensional matrix); three-

dimensional automata in a cubic matrix; and so forth.

Theoretically, cellular automata can exist in any

dimension, however, cellular automata in more than two

dimensions are exceedingly difficult to visualize.

The rules that control the dynamical behavior of the

cellular automata act upon each cell in the lattice having

into account the states of each cell's neighboring cells.

 167

These rules will decide the state of each cell in

subsequent time steps (generations.)

There are three basic types of cell neighborhoods to

be considered when defining a set of rules (here we will

consider a two-dimensional cellular automaton):

1. The so-called von Neumann neighborhood, where

each cell has four neighbors (North, South, East,

and West cells,) the radius of this neighborhood

is 1, since only adjacent cells are considered:

n
n c n
n

2. The Moore neighborhood, where each cell has eight

neighbors (N, NE, NW, S, SE, SW, E, and W cells.)

The radius is also 1:

n n n
n c n
n n n

3. The extended Moore neighborhood, where cells

beyond the radius of the Moore neighborhood are

considered. The radius can be 2 or larger:

n n n n n
n n n n n
n n c n n
n n n n n
n n n n n

 168

For a one-dimensional automata, the von Neumann and

Moore neighborhoods are identical:

n c n

The extended Moore neighborhood for a one-dimensional

automata would be:

n n c n n

The rules that determine the dynamical behavior of the

system can be categorized into two classes:

1. The state of a given cell is determined by examining

the state of all neighboring cells individually

(including the given cell itself.)

2. Totalistic rules, where the state of any given cell is

determined by the sum of the states of its neighboring

cells.

The number of possible rules in a given cellular

automaton depends on the number of states per cell and the

number of neighbors per cells. The set of possible rules

grows exponentially as more states and neighbors are

allowed.

 169

According to S. Wolfram, cellular automata behavior

can be classified into four basic classes44:

• Class I. Limit point. After a finite number of

generations, a stable, unchanging configuration is

achieved by the system.

• Class II. Limit cycle. These types of automata evolves

to a stable state where patterns repeat periodically.

• Class III. The system generates aperiodic, chaotic

patterns from nearly all starting conditions. Patterns

can resemble self-similar fractal curves.

• Class IV. The behavior of the system is complex but not

chaotic. This class is the only one capable of

performing universal computation, meaning that it is able

to carry out any finite algorithm.

One-dimensional Cellular Automata

We will consider a simple, one-dimensional cellular

automaton proposed in 1982 by S. Wolfram.45 This type of

cellular automaton, because of its simplicity, has been

44S. Wolfram, "Universality and Complexity in Cellular

Automata," Physica D 10 (1984): 1-35.

45S. Wolfram, "Statistical Mechanics of Cellular

Automata," Caltech preprint CALT-68-915 (May 1982).

 170

extensively studied. It has been proved that even one-

dimensional cellular automata are able to perform universal

computation.46

Each cell is allowed two state possible states (0,

dead, or 1, alive.) The neighborhood is of the Moore type:

each cell has two neighbors, the cells to the immediate

left and right. This type of cellular automaton allows for

256 possible rules: all three cells in the neighborhood are

allowed two-states, which gives 8 (23) possible combinations

of cell states, and each of these can decide upon two

possible states for the core cell in the next generation.

The total number of possible rules is thus 28 = 256, as

follows:

possible cell configurations: 111 110 101 100 011 010 001 000
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 1 1 1 1 1 1 1 1
 or or or or or or or or
 0 0 0 0 0 0 0 0

Rules are encoded in an 8-bit string. For instance,

rule 30 is encoded as 00011110:

46K. Lindgren and M. G. Nordahl, "Universal Computation

in Simple One-dimensional Cellular Automata," Complex
Systems 4 (1990): 299-318.

 171

111 110 101 100 011 010 001 000
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 0 0 1 1 1 1 0

Rules decide the state of each cell in the next

generation depending on the state of itself and its

neighbors in the current generation.

One-dimensional automata evolve on a single line of

cells. To better appreciate the development of the whole

system, subsequent generations (time steps) are presented

one after the other, like an unfolding rug. Each "thread"

of this rug represents one time step, or generation, of the

cellular automaton. What follows shows the dynamical

development of this one-dimensional automaton for four

different rules. Nine hundred generations were computed

for each system. The lattice is 300 cells wide. Cells at

the borders of the lattice neighbor each other (the lattice

has a circular geometry.)

 172

Rule 1, Class I: 111 110 101 100 011 010 001 000
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 0 0 0 0 0 0 1

 Gens. 0-299 Gens. 300-599 Gens. 600-899

Rule 73, Class II: 111 110 101 100 011 010 001 000
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 0 0 1 0 0 1

 Gens. 0-299 Gens. 300-599 Gens. 600-899

Rule 120, Class III: 111 110 101 100 011 010 001 000
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 1 1 1 0 0 0

 Gens. 0-299 Gens. 300-599 Gens. 600-899

 173

Rule 110, Class IV: 111 110 101 100 011 010 001 000
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 1 0 1 1 1 0

 Gens. 0-299 Gens. 300-599 Gens. 600-899

For generation 0, the cells' states were initialized

randomly.

 Mapping one-dimensional cellular automata to music

involves transcribing the automata's evolution to a musical

event space. The following mapping scheme is proposed by

this writer.

Each generation will be mapped to the members of our

choice musical event space. Since each generation involves

a collection of cells, a direct correspondence must be made

between each possible configuration of cells in the lattice

and the event space. To achieve this, we must encode each

possible combination of cells in the lattice with a unique

number. Let s be the number of possible states for a cell,

n the number of cells on the lattice (ordered from 0 to n-

1,) and tp the state of a cell in position p (p ranges from

 174

0 to n-1.) Next, each possible configuration of cells in a

generation is uniquely encoded numerically as follows:

u = t0*s0 + t1*s1 + t2*s2 + ... + tn-1*sn-1

This ensures each configuration of cells is assigned a

unique number or "tag." This number is then mapped to our

musical event space via a modulo operation, as follows:

event number = u mod (number of elements in event space)

Following this scheme, four configurations

corresponding to rules 172 (Class I,) 73 (Class II,) 30

(Class III,) and 54 (Class IV) were mapped to a musical

event space consisting of a two-octave chromatic scale from

C4 to B5. The lattice has 64 cells. The number of possible

cell configurations is therefore 264.

Rules were chosen to show how the characteristics of

the different classes are transcribed into music. Three

hundred and twenty generations were mapped from each

configuration (for these examples, note values were chosen

arbitrarily.) The musical transcription is as follows:

 175

Musical Example 41. Music from rule 172, Class I.

Musical Example 42. Music from rule 73, Class II.

 176

Musical Example 43. Music from rule 30, Class III.

Musical Example 44. Music from rule 54, Class IV.

 177

The similitude of this sequences to the

characteristics of the corresponding automata class is

extraordinary. Note how Musical Example 41 quickly

stabilizes to a unique member of the event space (Ab4.)

This is characteristic of Class I automata, which have

single-point attractors.

Musical Example 42 shows how the limit cycle

characteristic of Class II is transcribed into music. Note

the repeating 60-note cycle starting with the third beat of

m. 4.

The chaotic behavior of Class III is demonstrated in

Musical Example 43. This music is very similar to the

"white noise" music (Musical Example 25,) as well as to the

Logistic equation mapping for a value of µ = 4 (Musical

Example 10.) No discernible patterns can be found. It

resembles a randomly chosen collection of pitches,

although, of course, the procedure is completely

deterministic.

Musical Example 44 is by far the most interesting and,

this writer believes, the most musically pleasing. This

example shows the behavior of Class IV automata. The music

is highly patterned, in direct correspondence with the

automata's capacity of information propagation. It does

not have the predictability of Musical Examples 41 and 42

 178

(Classes I and II,) nor the random-like character of

Musical Example 43 (Class III.) It must be stressed that

each pitch (or event) in the example sequences represents

one generation in the development of the automata, and

thus, a definite configuration of cells. This mapping

scheme preserves the automata's characteristics when mapped

to musical event spaces.

By increasing the number of states per cell, the

possible set of rules grows exponentially, and thus the

type of cellular automata that can be generated——allowing 3

states per cell instead of two increases the number of

possible rules from 256 to 7,625,597,484,987 (327.) The

possibilities for musical experimentation are endless.

Two-dimensional cellular automata

Two-dimensional cellular automata evolve in a two-

dimensional matrix or grid of cells. The behavior of two-

dimensional automata is much more complex and offers even

more possibilities for experimentation. Like one-

dimensional automata, 2-D automata are governed by a set of

rules that ultimately determine the behavior of the system.

We will consider here the most studied 2-D cellular

automata: the so-called Game of Life.

 179

The Game of life is a Class IV automata invented in

1970 by mathematician John Conway. It has been extensively

studied since it was first presented in a 1970 issue of

Scientific American.47 It is a two-state cellular

automaton, that is, cells in the grid have only to possible

states: 0 (or dead,) and 1 (alive.) Each cell in the

lattice has eight neighbors (Moore type neighborhood.) The

rules that determine the dynamical behavior of the automata

are exceedingly simple:

• Rule of birth: if a cell is in state 0 (dead) and has

exactly 3 neighbors in state 1 it changes its state to 1

(comes to life) in the next time step.

• Rule of survival: if a cell is in state 1 and has 2 or 3

neighbors in state 1 it remains in state 1 in the next

time step, otherwise it changes to state 0 (dies.)

Many persistent structures, some propagating, have

been discovered in this cellular automaton48 (the simplest

one is known as the glider.) In addition, it has been

47M. Gardner, "Mathematical Games: the Fantastic

Combinations of John Conway's new Solitary Game 'Life',"
Scientific American 223 (April 1970): 120-123.

48Ibid., 122.

 180

shown that these structures can be combined to perform

arbitrary information processing. This means that the

automata is capable of universal computation. Among the

persistent structures, the simplest one is known as the

block. It consists of for cells grouped as follow:

Figure 28. Block.

Another very common structure is the blinker. This

structure is not static, but has a period-2 oscillation:

Figure 29. Blinker.

The glider is the simplest propagating structure. It

is a 5-cell structure that propagates diagonally (not

shown) every 4 generations, or time steps.

Figure 30. Glider.

 181

The Game of life Cellular Automaton can be a good

source for musical experimentation, since it allows

universal computation and pattern propagation.

See the Appendix for a complete discussion of the

proposed mapping process and an analysis of a piece

generated by this cellular automaton.

 182

Genetic Algorithms

Almost a century and a half ago, Charles Darwin

discovered that organisms that remained immutable in a

changing environment would be unable to adapt to the new

circumstances and therefore die.49 Darwin observed that, as

environmental conditions changed, organisms that were

better adapted to the new environment survived and gave

birth to offspring that inherited those beneficial traits,

while the non-adapted ones died. Darwin called this

process "natural selection," and considered it to be the

manner by which species evolved in nature. This process is

also known as "survival of the fittest." Fitness is never

a fixed quantity. An individual's fitness depends on many

factors: a changing ecosystem, competing species and

competing members of the population, etc. As the

environment changes, the fitness of an individual is also

affected.

 Darwin did not know the process by which the parents'

characteristics were inherited by their offspring. He

merely observed it. Almost a century passed until, in

1953, Francis Crick and James Watson discovered the

49C. Darwin, On the Origin of Species (Cambridge, MA:

Harvard University Press, 1964).

 183

deoxyribonucleic acid molecule (DNA,) responsible for the

process of biological inheritance.50 Every bit of

information concerning an individual is encoded in this

tiny double helix, from hair color to potential illnesses.

Simple organisms such as bacteria and fungi reproduce

asexually by duplicating themselves. This creates

individuals that differ very little from their progenitors.

Most higher forms of life, however, reproduce sexually,

where offspring inherit characteristics of both father and

mother. Sexual reproduction increases variation within a

species.

The DNA molecule is a sequence of four basic building

blocks called nucleotides. The human DNA molecule, for

instance, consists of over 3 billion of these nucleotides.

These nucleotides are grouped to form genes. Genes encode

the information to build the proteins and enzymes that

determine all characteristics of an individual. Genetic

information from both father and mother are mixed at the

time of reproduction to form a new individual.

Natural selection changes the frequency of genetic

information within a population, but it can not produce new

50F. H. C. Crick and J. D. Watson, "Molecular Structure

of Nucleic Acids. A Structure for Deoxyribose Nucleic
Acid," Nature 171 (1953): 737-738.

 184

genes: mutation provides a way. Mutation is a random

change in an organism's genes. The mechanisms that provoke

mutations are many, such as radiation and cosmic rays.

While it is unlikely that a random mutation will improve an

organism that is well-adapted to the environment, in the

long run mutation provides a way through which genetic

information evolves.

Genetic algorithms in a computer emulate the way

organisms reproduce and evolve in nature. It has been only

recently that researches have started to simulate

biological structures in software.51 Fortunately, genetic

algorithms need not to have into account as many variables

as exist in real life. Whereas nature shows tremendous

flexibility, the purpose of a computer algorithm is

basically to find a specific answer to a specific problem.

A genetic algorithm must implement three basic

ingredients: competition, survival, and reproduction.52 The

process involves four basic steps:

1. Initialization: A starting population of random

"solutions" (called chromosomes) is created. Each

51S. R. Ladd, C++ Simulations and Cellular Automata

(New York: M&T Books, 1995), 192.

52Ibid., 193.

 185

bit of information which forms the chromosomes is

known as an allele.

2. Fitness testing: Each chromosome in the population

is assigned a fitness value based upon its

evaluation against the problem.

3. Reproduction: Chromosomes are selected from the

population to became parents of new solutions.

Chromosomes with higher fitness values are more

likely to be chosen. Reproduction is achieved by

mixing information from parents chromosomes.

Mutation can be introduced to the new solutions.

4. Next generation: A new generation of solutions is

created. The process iterates back to step 2 until

a population of solutions is created which satisfies

the original problem.

Steps 2 and 3 are crucial. The reproductive success

of chromosomes is directly linked to their fitness value.

Chromosomes with a higher fitness value have a higher

probability to be chosen as parents. This is a stochastic

process; the outcome of a genetic algorithm is based on

probability.

 The most common technique for reproduction in a genetic

algorithm is known as crossover. Crossover combines the

 186

information of both parents by randomly selecting a point

(or several if the crossover is multiple) at which pieces

of both parents chromosomes are combined to form an

offspring:

Father chromosome Mother chromosome Offspring

abd|bcbag bdd|cbabc abd|cbabc

The simbol "|" denotes the point of crossover. Multiple

cross over would be as follows:

Father chromosome Mother chromosome Offspring

ab|db|cb|ag bd|dc|ba|bc ab|dc|cb|bc

Mutation can and should be part of the reproduction

process. It is introduced in the newly formed offspring by

randomly changing one of its alleles. The primary purpose

of mutation is to introduce variation into the population.

However, it should be used judiciously: too little or no

mutation limits diversity on populations, which end up not

evolving at all; too much mutation, on the other hand,

destroys the value of selection by fitness.

 Genetic algorithms take full meaning in algorithmic

music when one considers alleles as musical events and

 187

chromosomes formed by alleles as event spaces. By using a

genetic algorithm on event sets (which can be predefined or

generated by other algorithmic means,) the evolution of the

event sets can be modeled according to a predefined scheme

(the problem to be solved) decided by the composer.

Genetic algorithms turn out to be a great way to create

sets of variations on a given event set. They have been

successfully applied to both sound synthesis53 and

composition.54

The following examples illustrate how genetic

algorithms can be used in music composition.

 For simplicity and clarity, we will use only small

population consisting of 10 individuals (chromosomes) per

generation. Each "couple" will be allowed only one

offspring. In addition, chromosomes (event spaces) are

limited to 4 alleles (events): A, B, C, D. The total

number of possible chromosomes is then 44 = 256. These

restrictions are imposed only for demonstration purposes.

A truly functional example would use a much larger set of

alleles and longer chromosomes. Our limited example,

53Beauchamp, Horner, and Haken, "Genetic Algorithms and

Their Application to FM Matching Synthesis," 17-29.

54Goldberg and Horner, "Genetic Algorithms and

Computer-Assisted Music Composition," 479-482.

 188

however, is sufficient to demonstrate the power of this

technique.

 Our "alleles" are defined as follows:

A: , B: , C: , D:

Our genetic algorithm has the following

characteristics:

1. Initialization: A starting population of ten four-

allele chromosomes will be generated randomly. A

possible chromosome may be, for instance, ABBC.

2. One-point crossover reproduction technique will be

employed.

3. The probability of mutation in offspring is set to

0.10 (one chance in ten.)

4. The fitness value is assigned according to the

following scheme:

4.1 Chromosomes consisting of four different

alleles have the highest fitness value (0.30.)

4.2 Chromosomes which contain alleles A and B are

assigned a fitness value of 0.20.

 189

4.3 Chromosomes consisting of four identical

alleles are assigned the lowest fitness value

(0.05.)

4.4 Chromosomes containing three identical alleles

are assigned a fitness value of 0.08.

4.5 Chromosomes containing two identical alleles

are assigned a fitness value of 0.10.

4.6 Other possible combinations are assigned a

fitness value of 0.12.

The purpose of this fitness scheme is to promote

populations (or sets of event spaces, musically speaking)

that are very varied (containing chromosomes with different

alleles.)

The genetic algorithms performs as follows:

1. Each chromosome in the initial population is

evaluated according to the fitness scheme above

and assigned a fitness value.

2. Ten couples of chromosomes from the current

generation are selected stochastically according

to their fitness values. Parents with a higher

fitness value will be more likely to be selected.

 190

3. Each couple reproduces to generate a single

offspring. The point of crossover is generated

randomly.

4. Chance of mutation is applied stochastically to

each offspring.

5. Each offspring is evaluated against the fitness

scheme and assigned a fitness value. This is

generation 1.

6. The process is iterated from step 2 until we get a

population that satisfies our fitness scheme.

This genetic algorithm was applied to our event sets

of four-allele chromosomes, creating 10 generations with

the following results:

Generation 0 (randomly generated):

BCAB CDBC ACAC ABDC ACCB ADAB ACCB CADB CADB BBDB

Generation Chromosomes

1 ABDB ADAC ACCB BBDB ABDC CDBB CADB BCAC ADAC ABDC

2 BCAC CADB ABDB CADB CDBC CADC ABDC ABDB ABDC ABDC

3 ABDC ABDC ABDC CDBB ABDB CADC ABDC CADB ABDC BCAB
4 ABDC ABDC ABDC ABDB ABDC CADC CADB ABDB CADC CADC
5 CADB CADC ABDC ABDB ABDC ABDB ABDC CADC ABDC ABDC
6 ABDC CADC ABDC ABDC CADC CADB CADC ABDB CADC ABDC
7 CADB ABDB CADC ABDC ABDA ABDC ABDC ABDC CADB ABDC
8 ABDB CADC ABDB ABDC CADC ABDB CADC ABDC ABDB ABDC
9 ABDC ABDB ABDC CADB ADDC ABDB CADC CADC ABDC ABDC

 191

Note that because the genetic information and

population were very limited (only four alleles per

chromosome, and ten individuals per generation,) variation

in individuals is severely limited too. Too little genetic

variety and small populations cause inbreeding, just as in

real life. However, these examples are sufficient to show

how a genetic algorithm works.

 What follows is a musical transcription of generations

0, 4 and 9:

Musical Example 45. Generation 0

 192

Musical Example 46. Generation 4

Musical Example 47. Generation 9

Each measure represents a chromosome. Observe how

generations evolve according to our fitness testing. For

this example, chromosomes with a larger number of different

 193

alleles had more chance of surviving. For instance,

chromosomes ACAC and BBDB in the initial population did not

have a very high probability of reproducing and died.

However, by generation 10 the population is dominated by

chromosome ABDC, which has the highest fitness value.

 Changing the fitness scheme allows us to create

different variations on populations. As an example, we

will now use the following fitness scheme on the same types

of chromosomes.

1. Chromosomes which contain allele A two or more times get

a fitness value of 0.30.

2. All other combinations get a value of 0.10.

Since allele A in our musical event space is a rest,

we want to promote sequences in which silence is a dominant

factor.

 The generated populations are as follows:

Generation 0 (randomly generated):

CAAA DAAB BACB BACB CCDD DAAC BCBB BDDC BCBB CADC

 194

Generation Chromosomes

1 BCBD CADB DAAB CAAB CCDC BACB CAAB BDDB CCDB CCDB

2 CAAB CCDB CAAB CCDB CCDB CCDB DAAB BACB BDDB DAAB

3 CCDB CCDB DAAB DAAB CAAB BACB CAAB DAAB CCDB CCDB
4 CAAB DAAB BACB DAAB CAAB CCDB CCDB CAAB BACB CAAB
5 BACB BACA DAAB CAAB DAAB DAAB DAAB CAAB CCDB DAAB
6 CAAB DAAB CAAB DAAB BACA DAAB DAAB DAAB DAAB CAAB
7 DAAB CAAB CAAB DAAB DAAB CAAB BAAB CAAB CAAB CAAD
8 DAAB CAAB CAAB DAAB CAAD CAAB CAAC DAAB CAAC CAAB
9 CAAB CAAC CAAC CAAC CAAB DAAB CAAB CAAD CAAD CAAB

The musical transcription of generations 0, 4 and 9

follow:

Musical Example 48. Generation 0

 195

Musical Example 49. Generation 4

Musical Example 50. Generation 9

It is evident how the music evolves according to our

determined scheme. Once again, because of our limited

 196

resources, the population became very inbred by generation

ten.

 The true power of genetic algorithms only manifests

itself when we deal with large populations of chromosomes,

in which the genetic information (the variety of alleles)

is large, too. Musically, this means larger event spaces

with many members.

 197

L-systems

L-systems belong to a branch of mathematics known as

"formal grammars." They were first studied in 1968 by

Aristid Lindenmayer——hence their name——as the basis for an

axiomatic theory of development and as a tool for a

realistic modeling of living organisms.55 L-systems can be

categorized in two basic types: deterministic context-free

and context-sensitive. The basic formulation of a

deterministic, context-free L-grammar is as follows:

G = {A, P, α}

where A is the alphabet of the system (the set of all

symbols, including the empty symbol or null, ε,) P is the

finite set of substitution rules. A substitution rule (i,

j) ⊂ P is symbolized as i → j, where i ⊂ A and j ⊂ A; i is

called the predecessor of the substitution rule and j the

successor of the substitution rule. α, α ⊂ A, is the

axiom of the system, which can not be the null symbol ε.

The substitution rules are applied to the axiom

55Lindenmayer, "Mathematical Models for Cellular

Interactions," 280.

 198

recursively, thus generating new sets of symbols——called

production strings. The number of times the rules are

applied to the subsequent production strings is known as

the recursion level.

This process is best illustrated by a concrete example:

variables: X, Y
Axiom: X

Substitution Rules:
X→Y, Y→XY

Production strings (recursion level: 7)
(0) X (Axiom)
(1) Y
(2) YX
(3) YXY
(4) XYYXY
(5) YXYXYYXY
(6) XYYXYYXYXYYXY
(7) YXYXYYXYXYYXYYXYXYYXY

Counting the number of symbols in each production

string yields the following number series:

1,1,2,3,5,8,13,21...

which is the well-known Fibonacci series.

Context-sensitive L-systems include stochastic and

hierarchical grammars, and parametric extensions. In these

types of implementations the substitution rules take into

account the state of surrounding, neighboring symbols when

they are applied. This allows for a much more realistic

and flexible modeling of organisms.

 199

Stochastic techniques were introduced in L-systems to

emulate Natures' non-deterministic, random growth patterns.

This implementation of L-systems maps a set of

probabilities {p1, p2, p3, ... pn} with a set of substitution

rules {P1, P2, P3, ... Pn}, including a symbol s, s ⊂ A, as

the predecessor. For example,

P1: s →(1/4) a
 →(3/4) b

means the symbol s has .25 (25%) probability of being

substituted by a and .75 (75%) probability of being

substituted by b. The sum of probabilities for any given

symbol should always equal 1. Markovian processes can be

represented by stochastic grammars. For instance, the same

probability matrix for the Markov process discussed in the

section Markov Chains (page 69) can be represented by the

following stochastic grammar:

 200

P1: Event 1 → (1) Event 2 P6: Event 6 → (.66) Event 5
P2: Event 2 → (.45) Event 1 → (.34) Event 6

 → (.55) Event 2 P7: Event 7 → (.20) Event 2
P3: Event 3 → (.28) Event 2 → (.70) Event 6

 → (.16) Event 3 → (.10) Event 7
 → (.28) Event 5 P8: Event 8 → (.25) Event 1
 → (.28) Event 8 → (.75) Event 9

P4: Event 4 → (.16) Event 1 P9: Event 9 → (1) Event 10
 → (.52) Event 4 P10: Event 10 → (.70) Event 8
 → (.16) Event 6 → (.30) Event 9
 → (.16) Event 9

P5: Event 5 → (.50) Event 6
 → (.50) Event 7

The selection of the axiom α is arbitrary and can be

decided stochastically as well.

 Parametric extensions involve the association of

numerical parameters and mathematical expressions to the

process of applying the substitution rules to symbols.

This allows the incorporation of conditional statements

that determine the application of a substitution rule over

another based on numerical parameters. For instance:

P1: a: x < 0 , a → b
 x = 0 , a → c
 x > 0 , a → d

the symbol a is replaced by b if parameter x is less than

0, by c if x is 0, or by d if x is greater than 0. The

following example generates the famous Fibonacci series:

P1: F(i, j) → F(j, i+j)

 201

α: F(1,1)

Production string: F(1,1)→F(1,2)→F(2,3)→F(3,5)→ F(5,8)...

 The formulation of hierarchical grammars is similar to

that of deterministic, context-free grammars, with the key

difference that the successors of substitution rules,

instead of being symbols, may be entire grammars, with

their corresponding sets of symbols and production rules.

The use of hierarchical grammars, together with stochastic

and parametric techniques allows the representation of very

complex structures.

 Because of their recursive nature——a task perfectly

suited to the computer——L-systems were extensively studied

by computer scientists soon after Lindenmayer proposed

them, although mainly from the abstract mathematical point

of view of formal grammar theory. However, the true power

of L-systems manifests when a specific meaning is assigned

to the symbols in the production strings.

The first concrete application of L-systems was in the

field of computer graphics, as an aid in the representation

of a wide variety of fractals and the in simulation of

plant growth.56

56Lindenmayer and Prusinkiewicz, The Algorithmic Beauty

of Plants.

 202

 The graphical interpretation of L-systems borrows the

concept of "turtle graphics" from the LOGO programming

language.57 LOGO (based on the LISP programming language)

was developed at the MIT and first appeared in 1967. LOGO

was primarily designed as a learning tool. Turtle graphics

(also known as turtle geometry58) became the most popular of

LOGO environments. Turtle graphics is the computer screen

version of a small robot that can move around on the floor

according to directives sent to it from a computer. Turtle

graphics in the computer screen are used to draw lines,

shapes, pictures, etc.

The state of a turtle is represented mathematically by

three numbers (i, j, α,) where (i, j) is the position of

the turtle in the plane (in Cartesian coordinates,) and α

is the angle determining the direction of the turtle.

The most basic implementation of turtle geometry in the

computer screen has the following elements:

57The LOGO Foundation; available from

http://el.www.media.mit.edu/logo-foundation/index.html;
Internet; accessed 17 November 2000.

58H. Abelson and A. diSessa, Turtle Geometry. The
Computer as a Medium for Exploring Mathematics (Cambridge,
MA: The MIT Press, 1986).

 203

• Angle α: the angle determining the turtle's

direction.

• Angle increment ν.

• Step size δ: the distance (usually in screen pixels)

the turtle travels in the screen when executing a

drawing command.

• The Forward command (F): instructs the turtle to

move forward a step of length δ. The position of

the turtle changes to from (i, j) to (i', j'), where

i' = i + δ*cos(ν) and j' = j + δ*sin(ν). A segment

is drawn between coordinates (i, j) and (i', j').

• f: Like the F command, it moves the turtle to the

new position (i', j'), but without drawing a line.

• +: Changes the state of the turtle to (i, j, α+ν).

• -: Changes the state of the turtle to (i, j, α-ν).

Assuming an initial state (i0, j0, α), where ν and δ

are constant, then the picture set of lines drawn by the

turtle according to a production string S is called the

turtle interpretation of S. To illustrate this process an

example follows:

 204

Axiom: F
Basic Angle α: 90°
Angle Increment ν: 23°

Substitution Rules:

F=FF-[-F+F+F]+[+F-F-F]

Graphical Representation

(Recursion Level 1) (Recursion Level 2)

(Recursion Level 3) (Recursion Level 4)

Recursion level zero starts with the axiom as the

current production string. Each successive iteration

produces longer and more complicated production strings,

which are then read sequentially as set of drawing commands

to produce the image.

The production strings corresponding to the recursion

levels in the above example have 8, 172, 1,388, and 11,116

symbols, respectively. It is evident the resemblance these

graphics have with plants. They also manifest fractal

structure and self-similarity at all scales.

 205

Hierarchical, stochastic, and parametric L-systems have

become an indispensable tool for modeling the complexity of

plant morphology as closely as possible.

 A musical interpretation of L-systems consists in

assigning musical meaning to the symbols in the production

strings.

The following discussion is based on David Sharp's

program LMUSe59, which interprets L-system symbols as

musical parameters.

LMUSe, written for MS-DOS and Java, implements both

context-free and context-sensitive as well as stochastic

models of L-systems. LMUSe is a three-dimensional

implementation of L-systems. In LMUSe, the turtle's state

consists of the turtle's spatial position (i, j, and k

coordinates,) a forward vector (fi, fj, fz) that holds the

direction the turtle is facing, an up vector (ui, uj, uz)

that holds the direction the "top" of the turtle's head is

pointing to, and a left vector (li, lj, lz) that points to

the direction to the turtle's left.

The turtle's state also holds the current length (δ,)

line thickness, and basic turning angle (α.)

59LMUSe Ver. 0.7b, Released 24 December 1995, David

Sharp; Available from
http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.ht
ml; Internet.

 206

In addition to the basic commands F, f, +, and -.

LMUSe implements many others that affect the state and

direction of the turtle. Here is a summary of LMUSe's

direction and movement commands:

Direction commands:

Command Effect
+ Turn left around up vector
+(x) Turn x degrees left around up vector
- Turn right around up vector
-(x) Turn x degrees right around up vector
& Pitch down around left vector
&(x) Pitch x degrees down around left vector
^ Pitch up around left vector
^(x) Pitch x degrees up around left vector
< Roll counterclockwise around forward vector
<(x) Roll x degrees left around forward vector
> Roll clockwise around forward vector
>(x) Roll x degrees clockwise around forward vector
| Turn 180 degrees around up vector
% Roll 180 degrees around i vector
$ Roll until horizontal
~ Turn/pitch/roll in a random direction
~(x) Turn/pitch/roll in random direction to a

maximum of x degrees

Movement/Play commands:

Command Effect
F Draw full length (δ) forward (Play)
F(x) Draw x length forward (Play)
f Move forward full length (Rest)
f(x) Move forward x (Rest)
Z Draw half length forward (Play)
Z(x) Draw x length forward (Play)
z Move forward half length (Rest)
z(x) Move forward x (Rest)
g Move forward full length (Rest)
g(x) Move forward x (Rest)
. Do not move

 207

Increment/Decrement commands:

Command Effect

" Increment length (δ) (times 1.1)
' Decrement length (times 1/1.1)
"(x) Multiply length (times x)
'(x) Multiply length (times 1/x)
; Increment angle (α) (times 1.1)
: Decrement angle (times 1/1.1)
:(x) Multiply angle (times x)
;(x) Multiply angle (times 1/x)
? Increment thickness (times 1.4)
! Decrement thickness (times 1/1.4)
?(x) Multiply thickness (times x)
!(x) Multiply thickness (times 1/x)

 In addition to these commands LMUSe implements a

"state stack" which serves as a kind of memory device

preserving the turtle's state at any given time. The stack

is a necessary structure so that the turtle can go back to

a previous state, thus allowing for branching structures.

Musically, the stack plays a key role for creating

polyphonic textures. The stack commands are as follows:

Command Effect
[Push current state but not event time
] Pop current state but not event time
{ Push current state and time
} Pop current state and time
\ Push event time
/ Pop event time

 In LMUSe, pitch, duration and volume (dynamics) can

be mapped independently to the components of the position,

forward, up, and left vectors as well as to the values of

 208

the line-thickness, state-length (δ), and draw length

(length affected by modifiers.) LMUSe also implements

commands specific to musical parameters only:

Command Effect
t(x) Transpose up (+x) or down (-x) by x semitones
t Do not transpose
d(x) Multiply note durations by x
d Multiply note durations by 1.0(cancels d(x))
v(x) Multiply note velocities (dynamics) by x
v Multiply note velocities by 1.0 (cancels

v(x))
Stack commands Effect
T(x) Push pitch transposition multiplier x onto

pitch transposition stack
T Pop transposition amount from pitch

transposition stack
D(x) Push duration multiplier x onto the duration

multiplier stack
D Pop duration multiplier from duration

multiplier stack
V(x) Push velocity multiplier x onto the velocity

multiplier stack
V Pop velocity multiplier from velocity

multiplier stack

 Pitch is mapped from predefined scales, which can be

determined by the composer. Durations are mapped from a

continuos scale, thus allowing very complex rhythms. MIDI

velocities (dynamics) are also mapped from a continuous

scale.

 To illustrate the whole process an example follows.

 209

Basic Parameters:

Recursion Level 5
Basic Angle 23°
Axiom X
Substitution rules X=F[+X]F[-X]+<&X

F=F{F}
Line Thickness 50

Mapping scheme:

Parameter Mapped to
Pitch State Position (i component)
Duration Drawn length
Dynamic Forward vector (fi component)
Scale Chromatic
Instrumentation 2 Flutes, Oboe, Clarinet, Cello

Production string to be mapped (recursion level 5):

F{F}{F{F}}{F{F}{F{F}}}{F{F}{F{F}}{F{F}{F{F}}}}[+F{F}{F{F}}{F{F}{F{F}}}[+F{F}{F{F}}[
+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-
F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-
X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}{F{F}{F{F}}}[-
F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}{F{F}{F{F}}}{F{F}{F{F}}{F{F}{F{F}}}}[-
F{F}{F{F}}{F{F}{F{F}}}[+F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}{F{F}{F{F}}}[-F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}{F{F}{F{F}}}[+F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}{F{F}{F{F}}}[-F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-
X]+<&X]+<&F[+X]F[-X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}{F{F}}[+F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]F{F}{F{F}}[-F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-
X]+<&X]+<&F{F}[+F[+X]F[-X]+<&X]F{F}[-F[+X]F[-X]+<&X]+<&F[+X]F[-X]+<&X

 210

 The graphical representation of the above production

string is as follows:

(front) (side) (back)

Figure 31. L-system graphical rendition.

 Three different viewpoints are shown in order to

appreciate the three-dimensional structure. Note the self-

similar branching.

 The musical rendition of this production string,

according to our mapping scheme is as follows:

 211

Musical Example 51. Music from L-systems

 212

Musical Example 51 (continued)

 Note how the five levels of branching in the

graphical rendition are mapped to five-voice polyphony.

The first level of branching is mapped to the cello, the

second to the oboe, the third to the flute II, the fourth

to the clarinet and the fifth to the flute I. The choice

of instruments was the composer's (this writer) decision.

The rhythmic structure was kept simple because duration was

 213

mapped to a parameter (drawn length) that remained constant

in the production string. Consecutively equal pitches are

tied.

 It is remarkable how the structure of the graphical

rendition is preserved also in the musical mapping. For

instance, note how the graphical interpretation has three

main structures (labeled 1, 2, and 3):

Figure 32. Structure of L-system model.

 Each of these structures are constituted, in turn, of

three sub-structures which are, in fact, scaled down copies

of the whole. This process of structures within structures

continues until the fifth level of recursion.

 The three main structures correspond exactly to mm.

 214

1-10, 11-20, and 21-30 in the score, respectively. The

second level of structure is also evident in the musical

transcription. Each of the three main sections can also be

structured into three subsections. The following examples

show the three sub-structures of the first section (mm. 1-

10.)

(sub-structure 1; mm. 1-3 and first half of m. 4)

(sub-structure 2; second half of m. 4, mm. 5-6 and first

half of m. 7)

 215

(sub-structure 3; second half of m. 7 and mm. 8-10)

 An even closer inspection of these sub-structures

reveals yet smaller layers of structure, which go down

almost to the note-to-note level. The self-similarity of

these structures (both in the graphical image and in the

musical rendering) are not exact, but only approximate.

For this particular example, this is a consequence of the

substitution rules and angle chosen. In a more elaborate

example, statistical self-similarity can be achieved on a

much higher level by using stochastic rules. Statistical

self-similarity plays an important role in the musical

rendition of L-systems, because it yields more variation

and makes the music less monotonous and expected.

 L-systems are a vast field for musical

experimentation. S. Mason and M. Saffle have studied their

application to music composition.60 Some composers, such as

Gary Lee Nelson in his Summer Song for solo flute, have

60S. Mason and M. Saffle, "L-Systems, Melodies and

Musical Structure," Leonardo Music Journal 4 (1994): 53-58.

 216

already utilized L-systems in their work. By manipulating

production rules and mapping schemes, the composer is given

an almost inexhaustible source for musical inspiration.

 217

CHAPTER IV

Software and computer resources for

algorithmic composition.

The following are software programs, many available in

the Internet, that implement most of the algorithmic

procedures discussed in previous chapters. The great

majority of these programs write MIDI files from the

algorithmic processes they perform, which can be later

loaded in notation and sequencer programs for further

refinement of the musical material. MIDI (an acronym for

Musical Instrument Digital Interface) is a communications

protocol of the music industry that allows instruments and

sequencers (or computers running sequencer software) to

communicate with each other to play and record music. Each

MIDI interface has 16 multitimbral channels to which all

MIDI information (pitch, duration, dynamic, instrument,

etc.) is directed. In addition, each channel is

polyphonic, the number of voices depending on the quality

of the MIDI board. A MIDI file is a computer file format

that stores MIDI information (pitches, tempo, durations,

 218

instruments, etc.) in a very compact manner. These files

can be loaded into music notation or sequencing programs

for manipulation and editing.

FractMus 2000

Author: Gustavo Diaz-Jerez.

Freeware.

Platform: Windows

Availability: http://www.geocities.com/fractmus

MIDI file support: YES

Description:

This program uses twelve algorithms from chaotic

dynamics (Logistic map, Gingerbread man attractor, Hènon

attractor, Lorenz attractor, Hopalong and Martin

attractors,) noise (1/f noise,) cellular automata (Wolfram

Cellular Automata) and number theory (Morse-Thue sequence,

Earthworm sequence, 3n+1 numbers.) It also includes a

linear random number generator which can be useful for

stochastic processes. Algorithms can be assigned to all

MIDI voices independently. All musical parameters can be

controlled by the user (scales, durations, dynamics,

instruments, etc.,) which allow a wide variety of mappings.

Independent sections (events,) each including their own set

 219

of algorithms, musical parameters and mappings, can be

defined within the program.

A Musical Generator

Author: MuSoft Builders.

Shareware.

Platform: Windows

Availability: http://www.musoft-builders.com

MIDI file support: YES

Description:

Musical material is drawn from a great number of

sources, including chaotic maps (Hopalong, Lorenz, Martin,

Gingerbread man, Henon, and Polar attractors); fractals

(Mandelbrot, Julia, Barnsley, Lambda, Newton, and Spider

sets); noise (white, Brownian, fractional Brownian);

Lindenmayer L-systems, mathematical constants (such as π and

e); images, text, and numerical data provided by the user

as well as mathematical functions defined by the user.

Algorithms can be assigned independently to each MIDI

voice. Only one event is allowed per composition (one set

of algorithms mapped to musical parameters.)

 220

Art Song and MusicLab I - Music from Chaos

Author: David Strohbeen.

Shareware.

Platform: Windows

Availability: http://www.fractalmusiclab.com

MIDI file support: YES

Description:

 Strange attractors from chaotic dynamics using Iterated

Function Systems (fractals) and Quadratic Equations as well

as images provided by the user. The user has control over

all musical parameters, such as durations, dynamics, range

of pitches, etc. Parameters can be changed in real time

while playing. In addition, new functions can be defined

by the user within the program.

Gingerbread

Author: Phil Thompson.

Freeware.

Platform: Windows

Availability: http://www.organised-

chaos.com/oc/ginger/ginger.html

MIDI file support: YES

 221

Description:

 This program maps Mandelbrot and Julia Set fractals

functions to musical parameters. Each MIDI voice has its

own graphical window where the user can manipulate and zoom

the fractal image. The user can then click on a particular

section of the image from where the music is then

generated. The program allows the composer complete

control of musical parameters such as scales, dynamics,

note durations, tempo, etc.

Mandelbrot music program

Author: Yo Kubota.

Freeware.

Platform: Windows

Availability: http://www.fin.ne.jp/~yokubota/

MIDI file support: YES

Description:

 Based in the Mandelbrot set exclusively. The program

maps iteration values to user defined musical parameters.

 222

Chaos von Eschenbach

Freeware.

Platform: Windows

Availability: http://www.cisnet.or.jp/home/magari/

MIDI file support: YES

Description:

The Mandelbrot set, Julia sets, white noise and

logistic equation. Wide variety of mappings available.

FMusic

Author: David H. Singer.

Freeware.

Platform: Windows

Availability: http://members.aol.com/dsinger594/caman

MIDI file support: YES

Description:

 This program maps Lindenmayer L-Systems and one-

dimensional cellular automata to musical parameters defined

by the user. It generates five-voice polyphony only. The

user has complete control on how the mapping is performed.

 223

Tangent and QuasiFractalComposer

Author: Paul Whally.

Shareware/Freeware.

Platform: Windows

Availability: http://www.randomtunes.com

MIDI file support: YES

Description:

 Stochastic and deterministic methods. Parameters for

these processes are decided by the user. Instrumentation,

scales, note durations, dynamics, and other musical

parameters can also be set by the user.

Lorenz

Author: Jose Navarro.

Shareware.

Platform: Windows

Availability: http://globalia.net/janc/

MIDI file support: YES

Description:

 This program employs the Lorenz attractor function to

generate sequences.

 224

CAMUS and CAMUS 3D

Author: E. Miranda, Kenny McAlpine and Stuart Hoggar

(CAMUS,) Glasgow University, Centre for Music Technology

(CAMUS 3D.)

Freeware.

Platform: Windows

Availability: http://www.maths.gla.ac.uk/~km/dsysmus.htm

MIDI file support: YES

Description:

 Two- and three-dimensional cellular automata.

MusiNum – The music in the numbers.

Author: Lars Kindermann.

Freeware.

Platform: Windows

Availability: http://www.forwiss.uni-

erlangen.de/~kinderma/musinum

MIDI file support: YES

Description:

Morse-Thue number sequence and numerical data provided

by the user.

 225

Make Prime Music

Author: Armand Turpel.

Freeware.

Platform: MS-DOS

Availability: http://www2.vo.lu/homepages/armand/index.html

MIDI file support: YES

Description:

 Prime number series. Three different mappings of the

series are allowed. Four-part counterpoint is generated.

Genetic Spectrum Modeling Program

Author: Ray Jurgens.

Freeware.

Platform: MS-DOS

Availability: http://autoinfo.smartlink.net/ray/

MIDI file support: YES

Description:

 This program combines cellular automata, genetic

algorithms and 1/f noise to generate fractal melodies. The

user has control over the scales used, number of cells (for

cellular automata processes,) number of generations to run,

different probability settings such as mutation rate, etc.

The program randomly generates a series of notes that are

completely uncorrelated. The series of notes represent a

 226

group of cells that obey Cellular Automata rules. Each

generation is genetically modified to turn the cells into

a specific spectral shape which mimics 1/f noise. This

process involves random mutation of the cells. This

program generates only one voice per set of parameters.

The Well Tempered Fractal

Author: Robert Greenhouse.

Shareware.

Platform: MS-DOS

Availability: http://www-ks.rus.uni-

stuttgart.de/people/schulz/fmusic/wtf

MIDI file support: YES, but non-standard

Description:

 Chaotic attractors (Hopalong, KAM torus, Mira,

Chebychev functions, Julia maps, etc.) The user controls

musical parameters such as scale, range of pitches,

durations, etc.

LMuse

Author: David Sharp.

 227

Freeware.

Platform: MS-DOS, Java (All platforms)

Availability:

http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.ht

ml

MIDI file support: YES

Description:

 Lindenmayer L-Systems. The program generates a

graphical representation of the l-system rule set from

which the music is derived. The user can define many

different types of mapping. One composition per rule set

is generated. The user can only decide the scale from

which the notes are drawn. Other parameters are decided by

the program according to the l-system rule set.

LoShuMusic and FibonacciBlues

Shareware.

Platform: Macintosh

Availability: ftp://mirror.apple.com/mirrors/Info-

Mac.Archive/art/fibonacci-blues-02.hqx and

ftp://mirror.apple.com/mirrors/Info-Mac.Archive/art/loshu-

music-02.hqx

MIDI file support: YES

 228

Description:

 Fibonacci number sequence and aleatoric (random)

procedures.

SoftStep

Author: Algorithmic Arts.

Commercial.

Platform: Windows

Availability: http://www.algoart.com/software/index.htm

MIDI file support: YES

Description:

 Fractals (Mandelbrot and Julia sets,) chaotic

attractors (Mira, Martin, Henon, Chebychev, Hopalong,

etc.,) stochastic processes, number-theory, user defined

numerical data, etc.

Symbolic Composer

Author: Tonality Systems.

Commercial.

Platform: Macintosh

Availability: http://symcom.hypermart.net

MIDI file support: YES

Description:

 229

 Stochastic processes, chaotic maps, fractals, number-

theory, etc. Many algorithmic processes not included

within the program can be implemented (programmed) using

its own proprietary language.

Random Phase Music Generator

Author: Tak-Shing Chan.

Freeware.

Platform: Linux.

Availability:

http://www.engr.newpaltz.edu/~chan12/phase.html

MIDI file support: YES

Description:

 Music is generated through phasing of randomly

generated patterns——the process of looping the same pattern

at slightly different speeds——, so they will slowly shift

out of synchronization. The user has control over musical

parameters such as scales, note durations, tempo, as well

as the length of the repeating pattern.

 230

Csound

Freeware.

Platform: All

Availability: http://mitpress.mit.edu/e-

books/csound/fpage/getCs/getCs.html

MIDI file support: YES

Description:

 Csound is a open computer language dedicated to music

composition and sound design. It is so versatile that it

allows the implementation (programming) of any algorithmic

process one can think. In addition to the possibility of

programming user-defined algorithms, there are hundreds of

third-party plug-ins (finished programs) available to

everyone. These include stochastic processes, fractals,

number-theory, etc.

Silence

Author: Michael Gogins

Freeware.

Platform: All

Availability: http://www.pipeline.com/~gogins/

MIDI file support: YES

Description:

 231

 Lindenmayer L-systems, iterated function systems,

chaotic attractors. This programs requires the

installation of the CSound program.

AC Toolbox

Author: Paul Berg

Freeware.

Platform: Windows

Availability: http://www.koncon.nl/ACToolbox/

MIDI file support: YES

Description:

 Creation of musical event spaces through stochastic

functions, chaotic systems, recursion, etc. This program

also generates CSound and Opcode MAX files.

Common Music

Author: Rick Taube

Freeware.

Platform: Mac, DOS, Windows, SGI.

Availability: http://www-

ccrma.stanford.edu/CCRMA/Software/cm/cm.html

MIDI file support: YES

Description:

 232

 Common Music is an object-oriented music composition

environment. Many algorithmic procedures can be

implemented in Common Music: stochastic processes, chaotic

systems, number theory, etc.

Nyquist

Freeware.

Platform: Mac, Windows, Amiga.

Availability:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/musi

c.software.html

MIDI file support: YES

Description:

 Nyquist is a sound synthesis and composition language.

All kinds of algorithmic processes can be implemented in

Nyquist.

 233

KeyIt

Freeware.

Platform: Windows, Linux.

Availability: http://thompsonresidence.com/keykit/

MIDI file support: YES

Description:

 KeyIt is a programming language and graphical user

interface for MIDI. The user can implement many

algorithmic processes, including stochastic processes,

fractals, chaotic maps, etc.

ArborRhythms

Author: Alec Rogers

Shareware.

Platform: Windows

Availability: http://www.arborrhythms.com

MIDI file support: YES

Description:

 Random processes and numerical algorithms.

 234

Real Time Composition Library

Author: Karlheinz Essl

Freeware.

Platform: Mac.

Availability: http://www.essl.at/works/rtc.html

MIDI file support: YES

Description:

 RTC-Lib is a collection of plug-ins for Opcode's MAX

system. It implements algorithmic procedures such as

stochastic processes, numerical functions, etc.

The Hierarchical Music Specification Language

Author: Phil Burk, Larry Polansky and David Rosenboom

Commercial.

Platform: Mac.

Availability: http://www.softsynth.com/hmsl/

MIDI file support: YES

Description:

 HMSL is a programming language for experimental music

composition. It allows the user to implement custom

algorithmic processes such as stochastic, fractal,

numerical, etc.

 235

MAX

Author: Miller Puckette, ported by D. Zicarelli.

Commercial, Opcode Systems, Inc., IRCAM, and Cycling '74.

Platform: Mac.

Availability: http://www.opcode.com/products/max/

MIDI file support: YES

Description:

 MAX is programming environment for music. Its object-

oriented programming environment can create an infinite

variety of customized applications. Any imaginable

algorithmic process can be implemented in MAX.

Cmix and RTcmix (Real Time Cmix)

Author: Paul Lansky, Lance Graf, Dave Madole, Brad Garton,

Doug Scott, and Eric Lyon.

Freeware.

Platform: IRIX (Silicon Graphics,) Linux.

Availability: http://music.columbia.edu/cmix/

MIDI file support: YES

Description:

 Cmix is a computer language designed for sound

synthesis as well as music composition. It is basically a

library of C routines. RTcmix is the "real time" version

of Cmix, where control of instruments can be done in real

 236

time. Any algorithmic procedure can be implemented using

the RTcmix language.

Rubato

Author: Chris Tham

Freeware.

Platform: MS-DOS.

Availability:

http://members.value.com.au/christie/rub_full.html

MIDI file support: YES

Description:

 Rubato is a programming, notation, and performing

environment for music. It allows the implementation of

algorithmic procedures.

LScore

Author: Senast Andrad:

Freeware.

Platform: All

Availability: http://listen.to/algo-comp

MIDI file support: YES

Description:

 LScore is an implementation of L-systems for Csound.

Requires the installation of the CSound package.

 237

The above list, although exhaustive at the time of this

writing, is by no means complete. Every day new programs

and updates of existing ones become available in the

Internet. Most of the URLs provided for the above programs

contain links to related sites of interest. They should be

consulted from time to time for new programs and updates of

existing ones. Some of these URLs may change in the

future. In this case, it is generally sufficient to search

the program with one of the standard Internet search

engines (Hotbot, Lycos, Altavista, etc.) with the program's

name as the search query.

 238

CHAPTER V

Source Code Listings.

The following are ANSI C and C++ routines that

implement specific routines valuable for algorithmic

composition.

Random Number Generator

The following source code implements a linear random

number generator function. It has a period greater than

1018. It is useful for many algorithmic processes that

require strings of random numbers. The function RanDev()

returns a pseudo-random number between 0 and 1. The

variable "Seed" value should be initialized——using for

instance the time() function, Seed = time(NULL)——every time

the function is called.

/*** Start of code ***/

const long IM1 = 2147483563L;
const long IM2 = 2147483399L;
const long IMM1 = IM1 - 1L;
const long IA1 = 40014L;
const long IA2 = 40692L;
const long IQ1 = 53668L;

 239

const long IQ2 = 52774L;
const long IR1 = 12211L;
const long IR2 = 3791L;
const long NTAB = 32L;
const long NDIV = 1L+IMM1/long(NTAB);

const float RNMX = 1.0f - 0.0000001f;
const float AM = 1.0f/2147483563.0f;
long Seed;

float RanDev(); /* function prototype */

/* Returns a psuedo-random number between 0 and 1 every

time it is called
*/

float RanDev()
{
 long j,k;
 static long idum2 = 123456789l;
 static long iy = 0l;
 static long iv[32L];
 float temp;

 if (Seed<=0L)
 {
 if(-Seed<1L)
 Seed = 1L;
 else
 Seed = -Seed;

 idum2 = Seed;

 for(j = NTAB+7; j>=0; --j)
 {
 k = Seed/IQ1;
 Seed = IA1*(Seed-k*IQ1) - k * IR1;

 if(Seed<0L)
 Seed += IM1;
 if(j<NTAB)
 iv[size_t(j)] = Seed;
 }

 iy = iv[0];
 }

 240

 k = Seed/IQ1;

 Seed = IA1*(Seed-k*IQ1)-k*IR1;

 if(Seed<0L)
 Seed +=IM1;

 k = idum2/IQ2;

 idum2 = IA2*(idum2-k*IQ2)-k*IR2;

 if(idum2<0L)
 idum2 +=IM2;

 j = iy/NDIV;
 iy = iv[size_t(j)] - idum2;
 iv[size_t(j)] = Seed;

 if(iy<1L)
 iy += IMM1;

 temp = AM*float(iy);

 if(temp>RNMX)
 return RNMX;
 else
 return temp;
}

/********* end of RanDev() function code *********/

 241

Gaussian Random Number Generator

The following source code implements a Gaussian pseudo-

random number generator. When called, the function

gaussrand() returns pseudo-random numbers whose probability

distribution is Gaussian:

/******* Start of code ***********/

#include <stdlib.h>
#include <math.h>

double gaussrand();

double gaussrand()
{
 static double V1, V2, S;
 static int phase = 0;
 double X;

 if(phase == 0) {
 do {
 double U1 = (double)rand() / RAND_MAX;
 double U2 = (double)rand() / RAND_MAX;

 V1 = 2 * U1 - 1;
 V2 = 2 * U2 - 1;
 S = V1 * V1 + V2 * V2;
 } while(S >= 1 || S == 0);

 X = V1 * sqrt(-2 * log(S) / S);
 } else
 X = V2 * sqrt(-2 * log(S) / S);

 phase = 1 - phase;

 return X;
}

 242

1/f Noise

The following C++ class implements the Voss algorithm

for the generation of 1/f noise.1 It is invaluable for

using 1/f noise in algorithmic composition.

Once an object of the class PinkNumber is created,

calling the member function GetNextValue() returns values

that resemble the spectral density of 1/f noise.

/******* Start of code *********/

#include <iostream>
#include <stdlib.h>
class PinkNumber
{
private:
 int max_key;
 int key;
 unsigned int white_values[5];
 unsigned int range;
public:
 PinkNumber(unsigned int range = 128)
 {
 max_key = 0x1f; // Five bits set
 this->range = range;
 key = 0;
 for (int i = 0; i < 5; i++)
 white_values[i] = rand() % (range/5);
 }
 int GetNextValue()
 {
 int last_key = key;
 unsigned int sum;

1An improved version of this algorithm——not included

here because of its length——can be found at
http://www.firstpr.com.au/dsp/pink-
noise/phil_burk_19990905_patest_pink.c; Internet. Accessed
February 10, 2001.

 243

 key++;
 if (key > max_key)
 key = 0;
 /* Exclusive-Or previous value with current
value. This gives a list of bits that have
changed. */

 int diff = last_key ^ key;
 sum = 0;
 for (int i = 0; i < 5; i++)
 {
 // If bit changed get new random number for
corresponding
 // white_value
 if (diff & (1 << i))
 white_values[i] = rand() % (range/5);
 sum += white_values[i];
 }
 return sum;
 }
};

/****** end of code *******/

 244

APPENDIX

This appendix is a description of the mapping process

and an analysis of the music generated from The Game of

Life, a two-dimensional cellular automaton described in the

section Two-dimensional Cellular Automata in CHAPTER III.

The cellular automaton will evolve in a square matrix

of 40 by 40 cells. The matrix has a toroidal geometry,

that is, cells in the top row neighbor cells in the bottom

row, and cells in the rightmost column neighbor cells in

the leftmost column. The initial cell configuration

(generation 0) is as follows:

Figure 1. Initial cell configuration

 245

This particular cell configuration was chosen because

it demonstrates clearly pattern propagation and other

characteristics of the cellular automaton. It contains two

gliders (top left and bottom left, see Fig. 1) and a line

of ten cells (middle right,) which is a parent (or

predecessor) of a well-known object called the

pentadecathlon. The pentadecathlon is a period-15

oscillator:

Figure 2. Pentadecathlon (period 15)

Other objects which will be important in the analysis

are the block, loaf, and toad:

Figure 3. Block (stable or still life)

 246

Figure 4. Loaf (stable)

Figure 5. Toad (period-2 oscillator)

Three hundred generations in total were computed and

mapped. The system achieves a stable, unchanging state

after generation 289.

What follows are snapshots of the evolution of the

cellular automaton every five generations.

 247

Figure 6. Evolution of the Automaton. Generations 0-145

 248

Figure 6 (Continued.) Generations 150-299

 The two initial gliders, moving toward each other

(generation 0,) eventually collide and get destroyed

(generation 75,) disrupting the pentadecathlon in the

 249

process, which gets destroyed as well (generation 80.)

From this point the automaton continues to evolve somehow

chaotically. At about generation 125 a block and a loaf

are created in the middle right of the matrix (see Fig. 6.)

These two stable cell configurations stay undisrupted until

the end (generation 299.) From generation 125, cell

density increases, reaching a maximum at generation 170.

At about generation 160, a new glider is created in the

lower left corner of the matrix, and starts to move

diagonally. From generation 212 the automaton stabilizes

with three blocks, a toad, a loaf, and the moving glider.

The glider moves towards the toad, colliding with it at

generation 279. This interaction destroys both the glider

and the toad, leaving the system with a stable

configuration (three blocks and a loaf, generation 289.)

The evolution of the automaton was mapped to a

polyphonic ensemble of ten instruments: wind quintet

(flute, oboe, clarinet in B-flat, bassoon, and French

horn,) string quartet (two violins, viola, and

violoncello,) and harp.

Each generation of the automaton was mapped——using the

normalized mapping method——onto event sets of durations,

dynamics, and scales.

 250

The mapping process is based upon cell density in the

current generation (the number of cells in state 1.) The

mapped scale, duration, and dynamic in the current

generation are assigned to all instruments globally.

The durations event set is as follows:

Durations: index value (normalized mapping)

0 16th
1 16th
2 8th
3 quarter
4 dotted quarter

The dynamics event set is as follows:

Dynamics: index value (normalized mapping)

0 p
1 mf
2 p
3 f
4 p
5 mf
6 p
7 ff

The arrangement of dynamic values employs the numerical

fractal sequence 12131214..., where 1 is p, 2 is mf, 3 is

f, and 4 is ff.

Polyphony is achieved by assigning 4 rows of the matrix

to every instrument, sequentially from row 0 to row 39.

 251

The flute is assigned rows 0-3, the oboe rows 4-7, and

so on, as follows:

 Instrument Assigned Rows

 Flute 0-3
 Oboe 4-7
 Clarinet 8-11
 Violin I 12-15
 Violin II 16-19
 Viola 20-23
 Violoncello 24-27
 French Horn 28-31
 Bassoon 32-35
 Harp 36-39

graphically:

Figure 7. Polyphonic arrangement of rows

 252

In every generation of the automaton, the cell

configuration of each row is mapped to a pitch and assigned

to its corresponding instrument. Consequently, every

generation produces four pitches per instrument. The pitch

event set is the actual scale previously mapped from the

cell density of the current generation. The set of scales

is as follows:

Index Scale Index Scale

0 Dorian 8 Dorian
1 Acoustic 9 Acoustic
2 Dorian 10 Dorian
3 Scale3* 11 Scale3
4 Dorian 12 Dorian
5 Acoustic 13 Acoustic
6 Dorian 14 Dorian
7 Acoustic 15 Lydian

*The scale3 mode is the Locrian mode but with a lowered

third degree:

{0, 1, 2, 5, 6, 8, 10}

The order of scales is based on the fractal sequence:

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5...

where 1 represents the Dorian Greek mode, 2 and 4 the

Acoustic scale, 3 the Scale3, and 5 the Lydian mode.

 253

The pitch is computed as follows. A number n is

generated from each row, through the following operation:

Figure 8. Formula for computing the pitch

where si is the state of the cell at position i (ranging

from 0, the leftmost cell in the row, to 39, the rightmost

cell in the row,) and φ is the golden mean constant

1.618033...

Next, a modulo operation is performed between the

integral part of n and the number of notes of the scale

previously decided:

pitch index in scale = [n] mod number of notes in the scale

This yields a number between 0 and the number of notes in

the scale minus one. This number will be the index of the

pitch in the mapped scale.

The last step is to decide the starting note of the

scale. This pitch is mapped independently for every

instrument from the cell density of the current generation,

using the following table of values:

 254

Index of normalized cell density (0-
7)

0 1 2 3 4 5 6 7
Instrument Scale starting note event sets

(pitches shown as MIDI note numbers)
Flute 60 62 63 64 71 76 81 86
Oboe 60 62 63 64 59 64 69 74
Clarinet 60 62 51 76 71 52 57 62
Violin I 72 62 75 76 71 76 81 86
Violin II 60 62 63 64 59 64 69 74
Viola 48 50 51 52 59 52 57 62
Violoncello 36 50 51 40 59 52 45 38
Horn 48 50 51 52 59 52 57 62
Bassoon 48 38 51 52 47 52 57 62
Harp 84 74 63 76 83 64 57 38

Pitches are represented as MIDI note numbers. MIDI

note 60 is middle C (C4,) 61 is the C-sharp above, 59 is the

B below, and so forth. From the scale, pitch index, and

scale starting note, the specific pitch is drawn and

assigned to its corresponding instrument. For example, if

the scale is the Major scale, the pitch index is 4 (event

number 5 in the set,) and the start note is, say, 71 (B4,)

the corresponding pitch would be F#5, that is, the 5th pitch

of a major scale starting on B4.

If a row contains no cells in state 1, it is mapped to

a rest. In addition, consecutive equal pitches are tied.

The choice of instrumentation, scales, range of

instruments, dynamics and durations were all decided by

this writer.

 255

In sum, each generation of the automaton generates four

pitches per instrument. Duration, dynamic and scales are

global in every generation (the same for all instruments)

and are mapped based on the cell density of the current

generation. Pitches are mapped independently for every

instrument, based on the cell configuration of the four

rows assigned to them. To further clarify this process, a

detailed explanation of the mapping of generation 0 (see

Fig. 6) follows.

The maximum cell density of the system is 83, reached

at generation 170. This was computed beforehand in order

to apply the normalized mapping method.

First, we compute the global parameters: scale,

duration and dynamic.

Cell density in generation 0 is 20. Our scale event

set has 16 members (ordered from 0 to 15):

Event No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Scale 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5

where 1 represents the Dorian Greek mode, 2 and 4 the

Acoustic scale, 3 the Scale3 mode, and 5 the Lydian mode.

Next, we apply the formula for the normalized mapping,

 256

where "value" is the current generation's cell density, 20,

"minval" is the minimum possible density, 0, and "maxval"

is the maximum density reached, 83. Since minval is 0 in

this case, the formula reduces to

Event No. = [(current density/maximum density)*16]

that is,

Event No. = [(20/83)*16] = 3

Event No. 3 is scale No. 3: the Scale3 mode (see table

above.)

 The dynamic is mapped from the following event set,

Event No. 0 1 2 3 4 5 6 7
Dynamic 1 2 1 3 1 2 1 4

where 1 is p, 2 is mf, 3 is f, and 4 is ff. This event set

has 8 members, thus

Event No. = [(20/83)*8] = 1

 257

Event No. 1 is dynamic No. 2, that is, mf.

The duration is mapped from the following event set:

Event No. 0 1 2 3 4
Dynamic 16th 16th 8th quarter dotted quarter

Applying the formula yields (this event set has 5 members):

Event No. = [(20/83)*5] = 1 = 16th note values

The global parameters, therefore, Scale3, sixteenth note

values, and a mf dynamic intensity.

Next, we compute the pitch from each of the four rows

assigned to every instrument. The flute rows have the

following cell configuration:

Applying the pitch formula (see Fig. 8) to each of the

four rows produces the following results (note that the

fourth row has no cells in it, and therefore it is mapped

to a rest):

2.61803, 3.61803, 4.236063, rest

 258

Next, we perform a modulo 7 operation on the integral

part of the above values (since Scale3 has 7 notes,)

yielding the following results:

2, 3, 4, rest

Lastly, we get the starting note of the scale, mapped

from the following table of values:

Index of normalized cell density (0-
7)

 Event
No.

0 1 2 3 4 5 6 7
Instrument Scale starting note event sets

(pitches shown as MIDI note numbers)
Flute 60 62 63 64 71 76 81 86

Event No. = [(20/83)*8] = 1 = MIDI Note 62 = D4

Therefore, the starting pitch for the mapped scale

(Scale3) is D4. The scale from which the pitches are drawn

is, thus

D4, D#4, E4, G4, G#4, A#4, C5

The indexes of the mapped pitches are 2, 3, 4, and a

rest, which correspond to E4, G4, G#4, and rest. Putting

 259

everything together (dynamic, note value, and pitches)

yields the following passage for the flute in Generation 0:

The same process is then applied to the rest of the

instruments.

Applying this mapping scheme to all instruments in all

300 generations, produces the following score:














Flute

Oboe

Clarinet

Bassoon

French Horn

Harp

Violin I

Violin II

Viola

cello













Generation No./Value
mf

0 x

   
1 e
f

   
p

2 x

   
3 q

   
4 x

        
f
7 e

  
p
8 x

     
f

    

                

    
    

f
   

p

      
    

  
   

 
   

  
            

 


     
 


    

        

                                  
                            
    

5

Fl.

Ob.

Bssn.

Hr.

Vl. I

Vl. II

Vla.












p

 
f

  
p

      
18 q


19 x


22 e



                
f

  
p

                f       

                                        

   

     

     

       
                                     

                 

260

                



9

Ob.

Cl.

Bssn.

Fr. Hrn.

Vl. I

Vl. II

Vla.









 p
23 x

      
f p

  
f    p

        
33 q


34 x





     


     

  
    

 


f  


p

  
       

  
                         

                                       

        

                                         
                                     

13

Cl.

Fr. Hrn.

Vl. I

Vl. II

Vla.

cllo.







  f
37 e

   
 p

38 x 
   

f

 


p  
f

 


p      

 

f

  p 
48 q


                                      

          
    


  

    
      

                                       
                                   

                              
 

17

Cl.

Vl. I

Vl. II

Vla.

cllo.






 
49 x 52 e

f p
53 x

f 
p f p



             
      

         
      

  
f

  
p   

                                                   
                                                

 
                

   

261

                      
  





21

Vl. I

Vl. II

Vla.






63 q


64 x

     f

67 e


p
68 x

f p f p f

76 e

p

77 x

                                                      
                                                  

26

Vl. I

Vl. II

Vla.






78 q


79 x

    
f


p

 
f
85 e       

p  
f      

p     

    
                                      

                                          

32

Vl. I

Vl. II

Vla.

cllo.






f

    
     p

95 x

         
mf

         
p

  
mf

   
p

     

                                 
     

                                                
          

36

Fr. Hrn.

Vl. I

Vl. II

Vla.

cllo.





 mf p mf p

  f
112 e

   
113 x

  
114 e

     
116 x

 
p
117 e

   
f

   
mf
119 q


                   

         

                                        

                
    

    

        

                  
                                   

  
  



41

Fr. Hrn.

Vl. II

Vla.

cllo.






  

120 x
f

121 e

    

122 x

    
p

                    

                                                 

                                           

                   

262

                        









45

Bssn.

Fr. Hrn.

Vl. II

Vla.

cllo.







  f
137 e

p

138 x


f 143 e

   
p

   

                                        

                                           
     


          


   


                   

                 
            

           
  

50

Bssn.

Fr. Hrn.

Hr.

Vl. II

Vla.

cllo.








 mf

147 q

  
148 e
p

      
150 q

   
151 e

 
152 q

    
mf   

p   mf   
p
156 e

   


                                  

            

 

          

                                      
                                  
    

            
 

  
                 

58

Fl.

Bssn.

Fr. Hrn.

Hr.

Vl. II

Vla.

cllo.









 

mf

159 q

    

 

  
p 


165 q .

 

 


                             



                                 



  

         


  
                

            

                                    

                           

        
        

263

                





66

Fl.

Ob.

Bssn.

Fr. Hrn.

Hr.

Vl. II

Vla.

cllo.












  

166 q

  


mf   
p

168 q .

 
   

  mf

169 q

   

170 q .

ff  

  


  


  




                
                  

   
      

                              

             
       

                 
 

             
         

     


                          

                
   

             

74

Fl.

Ob.

Bssn.

Fr. Hrn.

Hr.

Vl. II

Vla.

cllo.











  
 

 



173 q

mf

  


p

174 q .

  
  mf

175 q

 


 
p

178 e


f

                           
   

                             

                                 

                   
  

   
                    

     


         
                    

                                 


                    

264

             
    



82

Fl.

Bssn.

Fr. Hrn.

Hr.

Vl. II

Vla.

cllo.













180 x


183 e

        
p  

f

  
p 

f

          

                                 

                    
      

                

      
    




 
    


    


  

     
 

                                              

                      
       

              

 

                  
  

   
             

88

Fl.

Ob.

Fr. Hrn.

Vl. II

Vla.

cllo.









  
194 x

   
p

       
197 e
f

 
p
198 x

  
f

  
200 e

   
201 x

  
202 e

  
203 x

  
204 e

           

                     


        

                                       

                                                      

      

    


   


   


    


                      

       
         

     

265

                      



93

Fl.

Ob.

Cl.

Bssn.

Fr. Hrn.

Vl. II

Vla.

cllo.









       
p
210 x

f  
                 

p

                          

             

             

                               

                                                    

               

      


     


      


     


  

          
       

                       

97

Ob.

Cl.

Fr. Hrn.

Vl. I

Vl. II

Vla.

cllo.









                  

     
  





 
   


  

   

      


     


  



  


 

                                    

             

                                                               

    

     


      


     


      


     


      


     


  

                     

266

                          



101

Cl.

Fr. Hrn.

Vl. I

Vl. II

Vla.

cllo.







   
    


    


   

                                    


    

         
    

                    
       

     

                                                            

    

     


      


     


      


     


      


     


  

                                                

105

Fr. Hrn.

Vl. I

Vl. II

Vla.

cllo.





                                    

        
     

    

                                                         

    

     


           


       


     


       

         

                     

267

                          



109

Fr. Hrn.

Vl. II

Vla.

cllo.





                        
f

 
p

          

                                                

    
     


      

                               

                                             

113

Fr. Hrn.

Vl. II

Vla.

cllo.





          
mf

                          

                                                    

                               

   
       

268

 



 269

Duration and dynamic changes are marked at the top of

systems in the score. Duration changes are boxed along

with the generation number were they occur. Since each

generation produces four identical rhythmic values, these

markers can be used to locate any particular generation by

simply counting groups of four values from the marked

generation.

The generated scales in each generation are as follows:

Generation Scale Generation Scale Generation Scale Generation Scale
0
1

2-9
10
11
12

13-14
15-16
17-24

25
26
27

28-29
30-31
32-39

40
41
42

43-44
45-46
47-54

55
56
57

58-59
60-61
62-69

scale3
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic

70
71
72

73-74
75

76-79
80
81

82-83
84-87
88-91

92
93-94

95
96-97
98-100

101
102

103-104
105
106
107
108
109

110-112
113-120

121

dorian
acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian
scale3
dorian
scale3
dorian
scale3
dorian
scale3

acoustic
dorian

acoustic
dorian

acoustic

122-123
124

125-131
132
133

134-136
137

138-141
142-144

145
146-148
149-152
153-154

155
156-157

158
159-161
162-163
164-168

169
170
171
172
173
174

175-176
177-178

dorian
acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian
scale3
dorian

acoustic
dorian
scale3
dorian
scale3
lydian
dorian
lydian
scale3

acoustic
scale3
dorian

179
180-184

185
186-187

188
189

190-191
192-194
195-196

197
198

199-203
204
205
206

207-209
210
211

212-278
279
280
281
282

283-288
289-299

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian

acoustic
dorian
scale3

 270

 What follows is an analysis of the generated score and

an explanation of how it relates to the structure of the

cellular automaton.

The first 23 measures in the score correspond to the

first 70 generations of the automaton. The two gliders at

generation 0 start to move diagonally in opposite direction

toward each other until they coalesce at about generation

70. Since they propagate through the matrix, their

structure is mapped to several instruments. The glider at

the top of the matrix in generation 0 moves through the

rows assigned to the flute (mm. 1-5,) oboe (mm. 3-10,)

clarinet (mm. 9-15,) and violin I (mm. 13 and following.)

Simultaneously, the second glider at the bottom of the

matrix moves through the rows assigned to the harp (mm. 1-

5,) bassoon (mm. 4-10,) horn (mm. 9-15,) and cello (mm. 14

and following.) At the same time, the oscillating

pentadecathlon affects the rows assigned to violin I,

violin II, and viola. The pentadecathlon is a non-

propagating, period-15 oscillator. Its cell structure is

musically transcribed as a repeating passage between violin

I, violin II, and viola (mm. 1-6, 6-11, 11-15, 16-18.)

From m. 18 (generation 52,) although the pentadecathlon is

still undisrupted, the two gliders have already entered the

rows assigned to violin I, violin II and viola, thus

 271

generating different pitches. From mm. 16-37 (generations

47-111,) the automaton evolves in the rows assigned to the

string quartet. There is an increase in cell density from

generation 85 to 95, thus the longer values in mm. 28 to

33. From generation 97 to 111 a block stays undisrupted in

the two middle rows assigned to the violin I (see figure

6.) This transcribes musically to the pitches of mm. 34-

37. Although the block is a stable structure, the pitches

generated from it change because the scales and scale

start-note, which are mapped to the overall cell density,

change within this passage as well.

From m. 37 (generation 112,) cells start to occupy the

rows assigned to other instruments. The horn enters at m.

37, then the bassoon (m. 49, generation 145,) harp (m. 54,

generation 153,) flute (m. 61, generation 161,) oboe (m.

70, generation 169,) etc.

From generation 123, a block and loaf are created and

remain undisrupted until the end (see Fig. 6, middle right

of the matrix.) These configurations occupy all four rows

assigned to the violin II and the first of the viola (see

Fig. 6, generations 125 and following.) This creates a

four-note pattern that repeats in the violin II from m. 43

to the end of the piece (see score.) The pitches change

because the scales (as well as the scale start-note) from

 272

which they are drawn, are mapped to the overall cell

density and change as well; however, the intervalic contour

of the pattern is always the same. From generation 143 the

cell density of the automaton starts to increase, reaching

a maximum at generation 170. This transcribes musically as

longer note values, just as decided in the mapping scheme

(mm. 48-71.) From generation 170, cell density decreases

until the end, reaching a minimum at generation 289, the

point were the automaton achieves an unchanging state.

Musically, note values start to get shorter (mm. 81 and

following.)

At generation 157 a glider is created in the lower

right part of the matrix. This glider starts to travel

through it until it gets destroyed at generation 279,

occupying in its journey the rows assigned to the horn,

bassoon, harp, flute, oboe, clarinet, violin I, violin II,

and viola (see Fig. 6, generations 160-280.) The effect of

the glider is more evident in the music from generation 173

(m. 75,) since the cell density has started to decrease.

At this point the glider passes through the rows assigned

to the harp, then the flute (generation 185, m. 83,) oboe

(generation 201, m. 90,) clarinet (generation 217, m. 96,)

violin I (generation 233, m. 100,) violin II (generation

249, m. 104,) and viola (generation 265, m. 109.) From

 273

generation 212 (m. 95) the automaton contains only four

types of objects: the moving glider, the block and loaf——

which remain since generation 123——, in the rows of violin

I and viola a toad (a period-2 oscillator,) in the rows of

the cello, and two more blocks in the rows of the horn (see

Fig. 6, generations 210 and following.) These structures

yield orderly patterns in the above instruments (see mm. 95

and following,) only to be disrupted when the glider passes

through their assigned rows. At generation 279 the glider

hits the toad and both get destroyed, leaving the system

unchanged from generation 289 to the end, creating a

repeating texture between the horn, violin II, and viola

(mm. 114-116)

 The overall dynamical behavior of the automaton is

also transcribed to the music through the mapping process.

It yields a recognizable "form" in the music.

This dynamical behavior may be broadly structured into

four sections. The first section, which goes from

generation 0 to 75 (mm. 1-24,) corresponds to the evolution

of the two gliders and the pentadecathlon. These two

gliders move throughout the matrix, creating "duos" between

the instruments as they pass through their assigned rows.

At the same time, a patterned texture between violin I,

 274

violin II, and viola is created by the evolution of the

pentadecathlon.

The second section, more unpredictable and chaotic,

corresponds to generations 75-210 (mm. 24-82.) Within this

section, cell density starts to increases, and hence

instrumental texture. We may think of this as a kind of

developmental section, with instruments slowly being

incorporated to the texture, and reaching a fortissimo

climax at generation 170 (m. 71.) Incidentally, this

climax occurs at the golden section of the piece! (116 mm.

x 0.618033 = m. 71.) However, this is only an unexpected

(and unprepared) coincidence derived from the particular

initial cell configuration, matrix size, and number of

mapped generations.

From generation 170 cell density starts to decrease,

yielding a thinner instrumental texture. The third section

includes generations 212 to 279 (mm. 95-113.) Here, the

system is stabilized with a moving glider, three blocks, a

loaf, and a toad. The moving glider yields "solos" from

the instruments as it passes through their assigned rows,

against a patterned texture between the horn, violin II,

viola and cello, derived from the blocks, loaf, and toad.

Finally, from generation 279 to the end (mm. 114-116,)

the music settles to a repeating pattern between horn,

 275

violin II, and viola, determined by the remaining three

blocks and loaf.

 The particular scale, duration, and dynamic event sets

chosen for the mapping process dictate the modal "feeling"

as well as the relatively simple rhythmic complexity of the

generated music. These event sets were chosen only for the

sake of simplicity and for demonstration purposes.

Different, more elaborate event sets, such as increasing

the number of scales, perhaps including microtonality or

even absolute frequency; continuous duration and dynamic

values (not quantized,) etc., would undoubtedly affect the

character of the generated music. However, the underlying

musical structure would still be the same, since it is

yielded by the structure and evolution of the automaton.

Furthermore, different starting cell configurations

will generate a different evolution of the automaton and

hence, different musical structures. Other configurations

may lead to static and unchanging structures, highly

dynamical and orderly, or even chaotic and unpredictable.

This incorporates in the generated music elements of

pattern, variation, and development, elements which are,

this writer believes, an essential part of music.

276

BIBLIOGRAPHY

Abelson, H. and A. diSessa. Turtle Geometry. The Computer

as a Medium for Exploring Mathematics. Cambridge, MA:
The MIT Press, 1986.

Anderson, J. T. and C. S. Ogilvy. Excursions in Number

Theory. New York: Dover, 1988. 139-140.

Barnsley, M. Fractals Everywhere. New York: Academic

Press, 1988.

Beauchamp, J., A. Horner, and L. Haken. "Genetic

Algorithms and Their Application to FM Matching
Synthesis." Computer Music Journal 17(4) (1993): 17-
29.

Bidlack, R. "Chaotic Systems as Simple (but Complex)
 Compositional Algorithms." Computer Music Journal

16(3) (1992): 33-47.

Biles, J. "GenJam: A Genetic Algorithm for Generating Jazz

Solos." In Proceedings of the 1994 International
Computer Music Conference. San Francisco:
International Computer Music Association, 1994. 131-
137.

Boethius, A. "Fundamentals of Music." In Strunk's Source

Readings in Music History. Ed. O. Strunk. New York:
Norton, 1998. 137-143.

Bolognesi, T. "Automatic Composition: Experiments with

Self-similar Music." Computer Music Journal 7(1)
(1983):25-36.

Boon, J. P. and O. Decroly. "Dynamical Systems Theory for

Music Dynamics." Chaos 5(3) (1995): 501-508.

277

Boulanger, R., ed. The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal Processing,
and Programming. Cambridge: The MIT press, 2000.

Boulez, P. Boulez on Music Today. S. Bradshaw and R.

Benett, trans. Cambridge: Harvard Univ. Press, 1971.

Briggs, J. Fractals: the Patterns of Chaos: a new

Aesthetic of Art, Science and Nature. New York : Simon
and Schuster, 1992.

Briggs, J. and F. D. Peat. Turbulent Mirror. New York:

Harper and Row, 1989.

Cage, John. Silence. Middletown, Conn.: Wesleyan Univ.

Press, 1961.

Cassiodorus, F. "Fundamentals of Scared and Secular

Learning." In Strunk's Source Readings in Music
History. Ed. O. Strunk. New York: Norton, 1998. 143-
148.

Casti, J. L. Complexification. New York: Harper Collins,

1994.

Clawson, C. C. Mathematical Mysteries: the Beauty and

Magic of Numbers. New York: Plenum Press, 1996.

Crick, F.H.C. and J.D. Watson. "Molecular Structure of

Nucleic Acids. A Structure for Deoxyribose Nucleic
Acid." Nature 171 (1953): 737-738.

Darwin C. On the Origin of Species. Cambridge, MA:

Harvard University Press, 1964.

Dewdney, A. K. "Computer Recreations." Scientific

American (September 1986): 78-80.

Diaz-Jerez, Gustavo. "Fractals and Music." Electronic

Musician (October 1999): 108-113.

Di Scipio, A. "Composition by Exploration of Non-Linear

Dynamical Systems." In Proceedings of the 1990
International Computer Music Conference. San
Francisco: International Computer Music Association,
1990.

278

Dodge, C. "Musical Fractals." Byte 11(6) (1986):185-196.

__________. "Profile: A Musical Fractal." Computer Music
 Journal 12(3) (1988):10-14.

Erickson, R. Sound Structure in Music. Berkeley: Univ. of

California Press, 1975.

Fichet, L. Les theories scientifiques de la musique.

Paris: Librairie philosophique J. Vrin, 1996.

Fitch, J. and J. Leach. "Nature, Music, and Algorithmic

Composition." Computer Music Journal 19(2) (1995): 23-
33.

Gardner, M. "White and Brown Music, Fractal Curves and 1/f
Fluctuations." Scientific American 238(4) (1978): 16-
31.

__________. "Mathematical Games: the Fantastic
Combinations of John Conway's new Solitary Game
'Life'." Scientific American 223 (April 1970): 120-
123.

Glass, L. and D. Kaplan. Understanding Nonlinear Dynamics.

New York: Springer, 1995.

Gleick, J. Chaos. New York: Penguin Books, 1987.

Gogins, M. "Iterated Function Systems Music." Computer

Music Journal 15(1) (1991): 40-48.

Goldberg, D. and A. Horner. "Genetic Algorithms and

Computer-Assisted Music Composition." In Proceedings
of the 1991 International Computer Music Conference.
San Francisco: International Computer Music
Association, 1991. 476-482.

Hénon, M. "A two-dimensional Mapping with a Strange

Attractor." Communications in Mathematical Physics 50
(1976): 69-77.

Hiller, L. and L. M. Isaacson, eds. Experimental Music;

Composition with an Electronic Computer. New York:
McGraw-Hill, 1959.

279

Horowitz, D. "Generating Rhythms with Genetic Algorithms."
In Proceedings of the 1994 International Computer Music
Conference. San Francisco: International Computer
Music Association, 1994. 142-143.

Howat, R. Debussy in Proportion: a Musical Analysis. New

York: Cambridge Univ. Press, 1983.

Hunt, A., R. Kirk, and R. Orton. "Musical Applications of

a Cellular Automata Workstation." In Proceedings of
the 1991 International Computer Music Conference. San
Francisco: International Computer Music Association,
1991. 165-168.

Inokuchi, S., H. Katayose, and Y. Nagashima.

"Deterministic Chaos, Iterative Models, Dynamical
Systems and Their Application in Algorithmic
Composition." In Proceedings of the 1993 International
Computer Music Conference. San Francisco:
International Computer Music Association, 1993. 194-
197.

Jones, K. "Compositional Applications of Stochastic

Processes." Computer Music Journal 5(2) (1981): 45-61.

Kendall, G. "Composition from a Geometrical Model: Five-

leaf Rose." Computer Music Journal 5(4) (1981): 66-73.

Koza, J.R. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. Cambridge,
MA: The MIT Press, 1992.

Kurepa, A. and R. Waschka, "Using Fractals in Timbre

Construction: an Exploratory Study." Proceedings of
the 1989 International Computer Music Conference. Eds.
David Butler and Thomas Wells. San Francisco:
International Computer Music Association, 1989. 332-
335.

Ladd, S. R. C++ Simulations and Cellular Automata. New

York: M&T Books, 1995.

Lagarias, J. "The 3x+1 Problem and its Generalizations."

American Mathematical Monthly 92 (1985): 3-23.

Langton, C. "Self-Reproduction in Cellular Automata."

Physica D 10 (1984): 135-144.

280

Lincoln, Harry B., ed. The Computer and Music. Ithaca:
Cornell University Press, 1970.

Lindenmayer, A. "Mathematical Models for Cellular

Interactions in Development, Parts I-II." Journal of
Theoretical Biology 18 (1968): 280-315.

Lindenmayer, A. and P. Prusinkiewicz. The Algorithmic

Beauty of Plants. New York: Springer, 1990.

Lindgren, K. and M. G. Nordahl. "Universal Computation in

Simple One-dimensional Cellular Automata." Complex
Systems 4 (1990): 299-318.

Little, D. C. "Composing With Chaos; Applications of a New

Science for Music." Interface 22(1) (1993): 23-51.

Lorenz, E. N. "Deterministic Nonperiodic Flow." Journal

of the Atmospheric Sciences 20 (1963): 130-141.

Loy, G. "Composing with computers – a Survey of some

Compositional Formalisms and Music Programming
Languages." In Current Directions in Computer Music
Research. Eds. M. Mathews and J. R. Pierce. Cambridge:
MIT Press, 1989. 292– 396.

Ludwig, F. "Die 50 Beispiele Coussemakers aus der

Handschrift von Montpellier." SIMG 5 (1903-4): 177-
224.

Mandelbrot, B. The Fractal Geometry of Nature. San

Francisco: W.H. Freeman, 1982.

Mason, S. and M. Saffle. "L-Systems, Melodies and Musical

Structure." Leonardo Music Journal 4 (1994): 53-58.

May, R. "Simple Mathematical Models with very Complicated

Dynamics." Nature 261 (1976): 459-467.

McCauley, J. L. Chaos, Dynamics and Fractals. New York:

Cambridge University Press, 1993.

Millen, D. "Cellular Automata Music." In Proceedings of

the 1990 International Computer Music Conference. San
Francisco: International Computer Music Association,
1990. 314-316.

281

Miranda, E. "Cellular Automata Music: An Interdisciplinary
Project." Interface 22 (1993): 3-21.

__________. "Music Composition Using Cellular Automata."

Languages of Design 2 (1994): 105-117.

Morse, M. "Recurrent Geodesics on a Surface of Negative

Curvature." Trans. Amer. Math. Soc. 22 (1921): 84-110.

New Harvard Dictionary of Music. Ed. Don Randel. S.v.

"Arithmetic and harmonic mean." Cambridge, MA: Harvard
Univ. Press, 1986.

__________. Ed. Don Randel. S.v. "Pythagorean hammers."

Cambridge, MA: Harvard Univ. Press, 1986.

__________. Ed. Don Randel. S.v. "Pythagorean scale."

Cambridge, MA: Harvard Univ. Press, 1986.

Ott, E. Chaos in Dynamical Systems. New York: Cambridge

University Press, 1993.

Parshall, K. H. "The Art of Algebra from Al-khwarizmi to

Viète: a Study in the Natural Selection of Ideas."
History of Science (June 1988): 129-164.

Peak, D. Chaos Under Control. New York: Freeman and Co,

1994.

Peitgen, Heintz-Otto, ed. Chaos and Fractals: New

Frontiers of Science. New York: Springer, 1992.

Peitgen, H-O. and D. Saupe, eds. The Science of Fractal

Images. New York: Springer, 1988.

Penrose, R. The Emperor's New Mind: Concerning Computers,

Minds, and the Laws of Physics. New York: Oxford Univ.
Press, 1989.

Pickover, C. A. Computers, Pattern, Chaos, and Beauty:

Graphics from an Unseen World. New York: St. Martin's
Press, 1990.

__________. "Million-Point Sculptures." Computer Graphics

Forum 10(4) (1991): 333-336.

282

Poincaré, H. Science and Hypothesis. New York: Dover,
1952.

Pressing, J. "Nonlinear Maps as Generators of Musical

Design." Computer Music Journal 12(2) (1988): 35-46.

Roads, C., ed. Composers and the Computer. Los Altos, CA:

William Kaufmann, Inc., 1985.

Schillinger, J. The Schillinger System of Musical

Composition. New York: Da Capo Press, 1978.

__________. The Mathematical Basis of the Arts. New York:

Philosophical Library, 1948.

Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an

Infinite Paradise. New York: Freeman and Co, 1991.

Schwanauer, S, and D. A. Levitt, eds. Machine Models of

Music. Cambridge, Massachusetts: The MIT Press, 1993.

Smith, E. Liner notes to W. A. Mozart, A musical dice

game. Phillips Complete Mozart Edition—Rarities and
Surprises 422 545-2, 1991.

Truax, B. "Chaotic Non-Linear Systems and Digital

Synthesis: An Exploratory Study." In Proceedings of
the 1990 International Computer Music Conference. Ed.
Stephen Arnold. San Francisco: International Computer
Music Association, 1990. 100-103.

Varèse, E. "The Liberation of Sound." In Strunk's Source

Readings in Music History. Ed. O. Strunk. New York:
Norton, 1998. 1339-1346.

Vetterling, W. T., ed. Numerical Recipes in C. New York:

Cambridge Univ. Press, 1997.

Von Neumann, J. Theory of Self-Reproducing Automata.

Champain, IL: University of Illinois Press, 1966.

Voss, R.F. and J. Clarke. "1/f noise in music and speech."

Nature 258 (1975): 317-318.

__________. "'1/f noise' in Music: Music from 1/f Noise"

Journal of the Acoustic Society of America 63 (1978):
258-263.

283

Williams, P. G. Chaos Theory Tamed. Washington DC:
Joseph Henry Press, 1997.

Waldrop, M. Complexity: the Emerging Science at the Edge

of Order and Chaos. London: Penguin Books, 1993.

Weaver, W. Lady Luck: The theory of Probability. New

York: Dover, 1982.

Wolfram, S., ed. Theory and Applications of Cellular

Automata. Singapore: World Scientific, 1986.

__________. "Universality and Complexity in Cellular

Automata." Physica D 10 (1984): 1-35.

Xenakis, Iannis. Formalized Music; Thought and Mathematics

in Music. New York: Pendragon Press, 1992.

Zarlino, G. Institutioni harmoniche. Trans. G. Tomlinson.

Ridgewood, N.J.: Gregg Press, 1966.

 284

Gustavo Diaz-Jerez

1970 Born 27 February in Tenerife, Spain.
1984-88 Attended High School in Tenerife, Spain.
1988-92 Attended Manhattan School of Music, major in

piano.
1992-94 Attended Manhattan School of Music, major in

piano.
1993 Winner of the Manhattan School of Music Concerto

Competition.
1993 2nd Prize winner in the Maria Canals International

Piano Competition (Barcelona.)
1994 B.M. and M.M., Manhattan School of Music
1994 Manhattan School of Music's "Harold Bauer" Award.
1994-98 Attended Manhattan School of Music, major in

piano.
1996 2nd Prize winner in the Viña del Mar International

Piano Competition (Chile.)
1997 1st Prize winner in the Palm Beach International

Piano Competition.
1998 Laureate Prize in the XIII Santander

International Piano Competition (Spain.)
1999 Article: "Fractals and Music," Electronic

Musician (October 1999): 108-113.
2001 D.M.A., Manhattan School of Music.

