
CONSEQUENCES OF CAUCHY’S THEOREM

KEITH CONRAD

In this handout, we meet some basic consequences of Cauchy’s theorem in group theory.
These consequences do not depend on the proof of Cauchy’s theorem, but only on the
conclusion of the theorem.

1. Quick Applications

Theorem 1.1. For a finite group G and a prime p, |G| is a power of p if and only if all
elements of G have p-power order.

What is special about prime powers for this theorem is that factors of a power of p are
again powers of p.

Proof. If |G| is a power of p, then the order of any element of G is a power of p since the
order of any element divides the size of the group.

Conversely, assume all elements of G have p-power order. To show |G| is a power of p,
suppose it is not, so |G| is divisible by a prime q 6= p. Then, by Cauchy, G has an element
of order q, and that’s a contradiction of our assumption. �

Theorem 1.2. If all non-identity elements of G have the same order, this order is a prime
p and |G| is a power of p.

Proof. If |G| has two prime factors, say p and q, then G contains elements of orders p and
q by Cauchy, which contradicts the hypothesis. Thus |G| has only one prime factor, say
|G| = pm for a prime p. The orders of a non-identity element could be {p, p2, . . . , pm}.
However, by Cauchy some g ∈ G has order p, so the hypothesis tells us every non-identity
element of G has order p. �

Example 1.3. Abelian groups fitting the hypothesis of Theorem 1.2 are easy to write
down, e.g, (Z/(p))n where p is any prime. Every non-zero element has order p. For a
nonabelian example, consider the Heisenberg group over Z/(p) when p is an odd prime.
Every non-identity element has order p. Can you find a nonabelian example when p = 2?

Corollary 1.4. The size of any finite field is a prime power.

Proof. Let F be a finite field. Its size is at least 2 (since 1 6= 0 in F ). We are going to think
about F as an additive group.

Any two non-zero elements a and b in F have the same additive order, since the function
f(x) = (b/a)x is additive and invertible and sends a to f(a) = b. Thus |F | is a prime power
by Theorem 1.2. �

Theorem 1.5. Let G be a finite group and k ∈ Z. The function f(x) = xk on G is a
bijection if and only if (k, |G|) = 1.

When G is nonabelian, the kth power map is usually not a homomorphism. Nevertheless,
one can ask if it is a bijection or not.
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Proof. Set n = |G|. First assume (k, n) = 1. Then we can solve k` ≡ 1 mod n. Writing
k` = 1 + nm, every x ∈ G satisfies xk` = xxnm = x. This shows the function x 7→ xk on G
has inverse function x 7→ x`, since (xk)` = x and (x`)k = x for x ∈ G. In particular, since
the kth power map on G admits an inverse function it is a bijection. Notice we did not use
Cauchy’s theorem for this direction.

Now assume (k, n) > 1. We will show the k-th power map on G is not a bijection. Since
k and n have a non-trivial common factor, they have a common prime factor, say p. Since
p | n, Cauchy’s theorem says G has an element of order p, say g. Then, since p | k, we have

gk = (gp)k/p = ek/p = e. (Why does it matter that k/p is an integer?) Thus the kth power
map is not a bijection, since it is not one-to-one: g and e both have kth power e. �

Example 1.6. Check that cubing on D7 is a bijection while squaring is not, and raising to
the 5-th power is a bijection on A4.

2. Decomposing Abelian Groups

As a more involved application of Cauchy’s theorem, we describe how to decompose any
finite abelian group into subgroups of prime power size.

Theorem 2.1. Let G be finite abelian with |G| = ab, where (a, b) = 1. Then G is isomorphic
to a direct product A×B, where |A| = a and |B| = b.

Proof. If either a or b is 1, the result is clear: take A or B to be the trivial group.
Since |G| = ab, every g ∈ G satisfies gab = e. For any m ≥ 1 the elements g satisfying

gm = e form a subgroup. Set

A = {g ∈ G : ga = e}, B = {g ∈ G : gb = e}.
These are both subgroups of G. (Note A is not the set of a-th powers in G. It is the
elements whose a-th power is the identity.)

We now show G = AB, i.e., every element of G is the product of an element of A and
an element of B. By Bezout, the relative primality of a and b lets us write

1 = ar + bs

for some r and s in Z. Therefore any g ∈ G can be written as

g = gar+bs = (gr)a(gs)b.

Notice (gr)a ∈ B since ((gr)a)b = (gr)ab = e, and similarly (gs)b ∈ A. Therefore, re-ordering
the terms as

g = (gs)b(gr)a

exhibits any g ∈ G as the product of something in A and something in B, so G = AB.
Now we show G is isomorphic to the direct product A × B. Let f : A × B → G by

multiplication: f(x, y) = xy. This is a homomorphism, since

f((x, y)(x′, y′)) = f(xx′, yy′) = xx′yy′ = (xy)(x′y′) = f(x, y)f(x′, y′).

Note we used commutativity in the third equation. The previous paragraph showed G =
AB, so f is onto. To see f is one-to-one, we check the kernel is trivial. Suppose f(x, y) = e.
Then xy = e, so x = y−1. This equation shows x and y lie in A ∩ B. The intersection
A∩B is trivial, since every element of A has order dividing a, every element of B has order
dividing b, and (a, b) = 1. Thus x and y are trivial, so (x, y) = (e, e) is the identity element
of A×B. That proves f has trivial kernel.



CONSEQUENCES OF CAUCHY’S THEOREM 3

Now that we know f is an isomorphism of A × B with G, we can show |A| = a and
|B| = b. Because f is a bijection, |A×B| = |G|, so

(2.1) |A||B| = ab.

We now show (|A|, b) = 1. For this we bring in (at last!) Cauchy’s theorem. If (|A|, b) 6= 1
then some prime p dividing b will divide |A|. Then Cauchy tells us A has an element of
order p. But every element of A has order dividing a, and p does not divide a (since p | b
and (a, b) = 1). Thus (|A|, b) = 1. Similarly, (|B|, a) = 1. From (2.1), |A| | ab, so in fact
|A| | a. Arguing similarly, |B| | b. Therefore, by (2.1), |A| = a and |B| = b. �

Corollary 2.2. Any finite abelian group is isomorphic to a direct product of finite abelian
groups with prime-power size.

Proof. Let G be a finite abelian group, with size n = pe11 · · · perr . We can suppose n > 1
and each ei is non-zero. Taking a = pe11 and b = n/a, we have (a, b) = 1, so Theorem 2.1
tells us G is isomorphic to a direct product A × B, where |A| = a = pe11 and |B| = n/a.
By induction on the size of the finite abelian group, B is isomorphic to a direct product of
groups of size pe22 , . . . , p

er
r . �

3. Groups of Size pq

The rest of this handout provides a deeper application of Cauchy’s theorem. We will
classify, up to isomorphism, all groups having size pq, where p and q are different primes.

Theorem 3.1. Let p and q be distinct primes, with p < q. If q 6≡ 1 mod p, then all groups
of size pq are cyclic. In particular, all groups of size pq are isomorphic. If q ≡ 1 mod p,
then up to isomorphism there are two groups of size pq.

Example 3.2. Any group of size 15 is cyclic.

Example 3.3. When p = 2 and q = 3, we already know two non-isomorphic groups of size
6: Z/(6) and S3. The first is abelian and the second is not. Theorem 3.1 says any group
of size 6 is isomorphic to one of these. Here is a table listing four examples each of abelian
and nonabelian groups of order 6. The groups in each column are isomorphic to each other.

Abelian Nonabelian
Z/(6) S3

Z/(2)× Z/(3) D3

(Z/(9))× Aff(Z/(3))
µ6 GL2(Z/(2))

Our proof of Theorem 3.1 will use the following lemma.

Lemma 3.4. Let G be a group of size pq, where p and q are prime with p < q. There is
only one subgroup of G with size q.

Notice the hypotheses are not symmetric in p and q; the lemma is about subgroups with
the larger prime order.

Proof. By Cauchy, there is a subgroup of G with size q. This subgroup has prime size and
therefore is cyclic. Write it as 〈g〉.

In order to show 〈g〉 is the only subgroup with size q, assume otherwise. Then there is
some h ∈ G having order q such that h 6∈ 〈g〉. The only power of h which lies in 〈g〉 is the
identity: if hi = gj and i 6≡ 0 mod q, then raising both sides to the inverse of i modulo q
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shows h itself is a power of g, which is not the case. Thus if hi ∈ 〈g〉 then i ≡ 0 mod q, so
hi = e.

Consider the left cosets of 〈g〉 represented by powers of h:

(3.1) 〈g〉, h〈g〉, h2〈g〉, · · · , hq−1〈g〉.
There are q cosets in this list. The total number of different left 〈g〉-cosets is [G : 〈g〉] =

(pq)/q = p. Since p < q, two of the cosets in (3.1) must be equal, say hi〈g〉 = hi
′〈g〉 with

0 ≤ i < i′ ≤ q − 1. Then hi
′−i ∈ 〈g〉, so we have a power of h other than the identity equal

to a power of g. This contradicts the previous paragraph, so h can’t exist. That is, every
element of G with order q lies in 〈g〉, so 〈g〉 is the only subgroup with order q. �

Example 3.5. Consider the group D5, of size 10. Here q = 5. There is one subgroup of
size 5: the rotations.

Now we are ready to prove part of Theorem 3.1.

Theorem 3.6. Let p, q be primes where p < q. Any abelian group of size pq is cyclic. If
q 6≡ 1 mod p, any group of size pq is abelian, and thus is cyclic.

Examples satisfying the condition q 6≡ 1 mod p are 15 = 3 · 5, 35 = 5 · 7, 33, 65, 77, and
95. Any group with these sizes is cyclic.

Proof. Let |G| = pq. By Cauchy’s theorem, G has an element a of order p and an element
b of order q. If G is abelian then ab has order pq, so G is cyclic.

The rest of the proof is devoted to showing that, when q 6≡ 1 mod p, a and b must
commute even if we don’t assume in advance that G is abelian, so again we get that ab has
order pq and G is cyclic.

Write the desired condition ab = ba as: aba−1 = b. This is what we will show. Since
aba−1 is a conjugate of b, it has order q. Thus, by Lemma 3.4, aba−1 is a power of b, say

aba−1 = bk

for some integer k. By induction, amba−m = bk
m

for all m ≥ 1. Taking m = p gives

b = bk
p
.

Since b has order q, this equality implies kp ≡ 1 mod q, so k mod q has order either 1 or p
in (Z/(q))×, a group of size q − 1. If the order is p, then p | (q − 1), so q ≡ 1 mod p. But
q 6≡ 1 mod p by hypothesis (aha). Thus the order of k in (Z/(q))× is 1, so k ≡ 1 mod q and

aba−1 = bk = b1 = b,

which means ab = ba. �

So far we have proved Theorem 3.1 for q 6≡ 1 mod p and partially if q ≡ 1 mod p. It
remains to look at nonabelian groups of size pq for primes p < q if q ≡ 1 mod p.

There is always a nonabelian group of size pq. Here is one, constructed as a subgroup of
the affine group Aff(Z/(q)):

(3.2) Ap,q =

{(
x y
0 1

)
∈ Aff(Z/(q)) : xp ≡ 1 mod q

}
.

The reader can check this is a subgroup of Aff(Z/(q)). To count its size, note there are q
choices for y, since we imposed no constraints on y. How many choices are there for x?
Since x ∈ (Z/(q))× and p | (q − 1), Cauchy’s theorem tells us there is an element of order
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p in (Z/(q))×, and thus its powers give at least p solutions to xp = 1 in Z/(q). There can
be no more than p solutions (see Theorem A.1), so there are exactly p solutions. Thus, the
solutions to xp = 1 in (Z/(q))× are a cyclic group of size p. Therefore |Ap,q| = pq.

The group Ap,q is nonabelian, since the matrices ( 1 1
0 1 ) and ( x 0

0 1 ) don’t commute, where
x is any element of order p in (Z/(q))×.

Example 3.7. When p = 3 and q = 7, q ≡ 1 mod p. The solutions to x3 ≡ 1 mod 7 are 1,
2, and 4, so a nonabelian group of order 21 is

A3,7 =

{(
x y
0 1

)
: x ≡ 1, 2, 4 mod 7, y ∈ Z/(7)

}
.

Now we are ready to complete the proof of Theorem 3.1 with an analysis of the nonabelian
case when q ≡ 1 mod p.

Theorem 3.8. Let p and q be primes with p < q and q ≡ 1 mod p. Up to isomorphism,
the group Ap,q in (3.2) is the only nonabelian group of size pq.

Proof. Let G be a nonabelian group with size pq. By Cauchy, there is a ∈ G with order p
and b ∈ G with order q. If a and b commute, then ab has order pq, so G is cyclic. Since G
is nonabelian, a and b do not commute. Since 〈a, b〉 has subgroups of size p and q, 〈a, b〉 is
divisible by pq, so 〈a, b〉 = G.

By Lemma 3.4, all elements of order q in G are powers of b, so aba−1 = bt for some t.
We have t 6≡ 1 mod q, as otherwise aba−1 = b, which would imply ab = ba, but a and b do
not commute.

For any k ≥ 0, conjugating b by a a total of k times gives

(3.3) akba−k = bt
k
.

Taking k = p, b = bt
p
, so tp ≡ 1 mod q. Therefore t has order p in (Z/(q))×. Moreover,

raising both sides of (3.3) to an arbitrary integer power ` yields

akb`a−k = b`t
k
,

so

(3.4) akb` = b`t
k
ak.

This means any (non-negative) power of a to the left of a power of b can be placed on the
right side at the cost of changing the exponent of b. Thus,

(3.5) G = 〈a, b〉 = {bnam : m,n ≥ 0}.

Now we look at the group Ap,q in (3.2). The upper left entry of a matrix in this group is
an element of (Z/(q))× with order dividing p. Because the solutions to xp = 1 in (Z/(q))×

are a subgroup of size p and t has order p in (Z/(q))×, these solutions are exactly the powers
of t. Therefore a typical matrix in Ap,q has the following form, where m,n ≥ 0:(

tm n
0 1

)
=

(
1 n
0 1

)(
tm 0
0 1

)
=

(
1 1
0 1

)n(
t 0
0 1

)m

.
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This suggests, since ( 1 1
0 1 ) has order q (like b)and ( t 0

0 1 ) has order p (like a), the following
function f : Ap,q → G:

f

(
tm n
0 1

)
= bnam.

This function f is well-defined, since m and n in ( tm n
0 1 ) only matter modulo p and q,

respectively.
To check f is an isomorphism, we must show it is a homomorphism (f(AB) = f(A)f(B)

for any A and B in Ap,q), one-to-one, and onto.

For the homomorphism property, pick A = ( tm n
0 1 ) and B = ( tm

′
n′

0 1
) in Ap,q. Then

f(AB) = f

((
tm n
0 1

)(
tm

′
n′

0 1

))
= f

(
tm+m′

tmn′ + n
0 1

)
= bt

mn′+nam+m′

= bnbt
mn′

amam
′

= bnambn
′
am

′
by (3.4)

= f(A)f(B).

The reason f is onto is (3.5), which shows every element of G is a value of f .
That f : Ap,q → G is one-to-one is now automatic since f is onto and |Ap,q| = |G|. So

there is nothing more we need to do, but for the sake of illustrating technique we will check
f is one-to-one directly by showing its kernel is trivial. If f( tm n

0 1 ) = 1 then bnam = 1, so

am = b−n ∈ 〈a〉 ∩ 〈b〉.

This intersection is trivial since 〈a〉 and 〈b〉 have relatively prime sizes, so am = 1 and
bn = 1. Thus p | m and q | n, so ( tm n

0 1 ) = ( 1 0
0 1 ), which shows f has a trivial kernel. �

Corollary 3.9. For any odd prime q, any group of order 2q is either cyclic or dihedral: it
is isomorphic to Z/(2q) or to Dq.

Proof. Taking p = 2 in Theorem 3.8, the subgroup Ap,q of Aff(Z/(q)) is one of the matrix
models for Dq. �

Remark 3.10. Recalling the convention that D2 = Z/(2)×Z/(2), Corollary 3.9 is true at
q = 2 since any group of order 4 is isomorphic to Z/(4) or Z/(2)×Z/(2). So Corollary 3.9
is valid for all primes q.

Appendix A. Root Counting

We prove here a result on polynomials used to count the size of the group Ap,q in (3.2).

Theorem A.1. Let f(x) be a non-constant polynomial with coefficients in Z/(p), of degree
d. Then f(x) has at most d roots in Z/(p).

To prove Theorem A.1, we use a lemma connecting roots and linear factors.

Lemma A.2. Let f(x) be a non-constant polynomial with coefficients in Z/(p). For a in
Z/(p), f(a) = 0 if and only if x− a is a factor of f(x).
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Example A.3. When the coefficients are Z/(5) the polynomial f(x) = x3−2 has f(3) = 0
and x3 − 2 = (x− 3)(x2 + 3x− 1).

Proof. If x − a is a factor of f(x), then f(x) = (x − a)h(x). Substituting a for x shows
f(a) = 0.

Conversely, suppose f(a) = 0. Write the polynomial as

(A.1) f(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0,

where cj ∈ Z/(p) and cn 6= 0. Then

(A.2) 0 = cna
n + cn−1a

n−1 + · · ·+ c1a+ c0.

Subtracting (A.2) from (A.1), the terms c0 cancel and we get

(A.3) f(x) = cn(xn − an) + cn−1(x
n−1 − an−1) + · · ·+ c1(x− a).

Since

xj − aj = (x− a)(xj−1 + axj−2 + · · ·+ aixj−1−i + · · ·+ aj−2x+ aj−1),

each term on the right side of (A.3) has an x− a in it. Factor it out of each term in (A.3)
and obtain f(x) = (x− a)g(x) where g(x) is a polynomial with coefficients in Z/(p). �

Now we prove Theorem A.1.

Proof. We induct on the degree d of f(x). Note d ≥ 1.
A polynomial of degree 1 has the form f(x) = ax + b, where a and b are in Z/(p) and

a 6= 0. This has exactly one root in Z/(p), namely −b/a, and thus at most one root in
Z/(p). That settles the theorem for d = 1.

Now assume the theorem is true for all polynomials with coefficients in Z/(p) of degree
d. We verify the theorem for all polynomials with coefficients in Z/(p) of degree d+ 1.

A polynomial of degree d+ 1 is

(A.4) f(x) = cd+1x
d+1 + cdx

d + · · ·+ c1x+ c0,

where cj ∈ Z/(p) and cd+1 6= 0. If f(x) has no roots in Z/(p), then we’re done, since
0 ≤ d+ 1. If f(x) has a root in Z/(p), say r, then Lemma A.2 tells us f(x) = (x− r)g(x),
where g(x) is a polynomial with coefficients in Z/(p) of degree d. We can therefore apply
the inductive hypothesis to g(x) and conclude that g(x) has at most d roots in Z/(p). Since
f(a) = (a− r)g(a) for all a ∈ Z/(p) and a product of numbers in Z/(p) is 0 only when one
of the factors is 0 (this would be false if our modulus were composite rather than prime!),
we see that each root of f(x) in Z/(p) is either r or is a root of g(x). Thus, f(x) has at most
d+ 1 roots in Z/(p). As f(x) was an arbitrary polynomial of degree d+ 1 with coefficients
in Z/(p), we are done with the inductive step. �
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