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Abstract

This note considers the effect of different Darcy numbers on the onset of natural convection in a horizontal, fluid-saturated porous layer with
uniform internal heating. It is assumed that the two bounding surfaces are maintained at constant but equal temperatures and that the fluid and
porous matrix are in local thermal equilibrium. Linear stability theory is applied to the problem, and numerical solutions obtained using compact
fourth order finite differences are presented for all Darcy numbers between Da = 0 (Darcian porous medium) and Da → ∞ (the clear fluid limit).
The numerical work is supplemented by an asymptotic analysis for small values Da.
© 2007 Elsevier Masson SAS. All rights reserved.
1. Introduction

Natural convection has been a subject of intensive research
in porous media in view of its wide range of application in many
engineering and technological areas. Applications include high
performance insulation for buildings and cold storage, the insu-
lation of high temperature gas-cooled reactor vessels, the bury-
ing of drums containing heat-generating chemicals in the earth,
regenerative heat exchangers containing porous materials and
exothermic chemical reactions in packed-bed reactors.

Many authors have considered the conditions for instability
in a porous layer heated either from below or by means of in-
ternal volumetric heat generation. Horton and Rogers [1] and
Lapwood [2] were the first to establish analytically the critical
Rayleigh number for onset of convection in a fluid-saturated
porous layer heated from below without internal heat gener-
ation. Their analysis has since been extended substantially to
include other types of modeling of porous media, and to moder-
ately and strongly nonlinear situations. The reviews by Rees [3]
and Tyvand [4] may be consulted for further details.
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Gasser and Kazimi [5] conducted a comprehensive study of
the onset of thermal convection in a horizontal porous layer us-
ing a linear stability analysis of the basic nonlinear temperature
distribution which is caused by both internal heat generation
and heating from below. Therefore two Rayleigh numbers ap-
pear, one corresponding to internal heating, the other to the
external temperature gradient. They determined how the criti-
cal internal Rayleigh number varies with the size of the external
Rayleigh number and vice versa. When the external Rayleigh
number is zero, then the internal Rayleigh number is approxi-
mately 470. Rudraiah et al. [6] studied the same problem sub-
sequently using trial functions to solve the linearised stability
equations. In a short work, Selimos and Poulikakos [7] ex-
tended the analyses of [5] and [6] by including a second diffus-
ing component and by adopting the Darcy–Brinkman momen-
tum equations. A comprehensive set of results are given in [7]
for a small selection of values of the Darcy number. Vasseur
and Robillard [8] considered convection in a layer with unequal
but constant heat fluxes imposed on the boundaries. On sub-
tracting out the mean temperature rise, they obtained a stability
problem similar to that of Gasser and Kazimi [5] except that the
disturbance temperatures satisfy Neumann rather than Dirichlet
boundary conditions. Further work has appeared in the litera-
ture detailing nonlinear effects, the effect of different boundary
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Nomenclature

C specific heat
Da Darcy number (Eq. (6))
g gravity
k wavenumber of disturbance
K permeability
L depth of the convection layer
P pressure
q ′′′ rate of heat generation
Ra Darcy–Rayleigh number (Eq. (6))
t time
T temperature
u,v horizontal and vertical velocity
x, y horizontal and vertical Cartesian coordinate

Greek symbols

α diffusivity
β coefficient of cubical expansion
ρ density
σ heat capacity ratio

μ dynamic viscosity
μe effective viscosity
ν kinetic viscosity
ε porosity
ψ streamfunction
Ψ streamfunction disturbance
θ scaled temperature
Θ temperature disturbance
λ amplification rate of disturbance

Superscripts and subscripts

̂ dimensional
basic basic state
PM porous media
f fluid
s solid
0 wall temperature
. k-derivative
′ y-derivative
conditions and flow within finite cavities; the reader is referred
to Nield and Bejan [9] for further discussion.

On the other hand, for layers filled with a clear fluid, Spar-
row et al. [10] performed an analytical study of the thermal
instability of an internally heated fluid layer both with and with-
out heating from below. They showed that with increasing heat
generation rate the fluid becomes more prone to instability, that
is, the critical Rayleigh number decreases. Takashima [11] ap-
plied linear stability theory to the problem of the stability of
natural convection that occurs in an inclined fluid layer with
uniformly distributed internal heat sources and with constant
and equal boundary temperatures. The marginal stability crite-
ria for different ranges of Prandtl number and angles of inclina-
tion are reported.

The purpose of this short note is to determine how the critical
Rayleigh number and the corresponding wavenumber vary with
Darcy number for an internally heated porous layer. As such
it gives the full transition between convection when Darcy’s
law applies and when the full Navier–Stokes equations apply.
Comparison is then made between our results and those for the
Darcy-flow and clear fluid limits. We provide a highly accurate
set of numerical results and supplement this with an asymptotic
theory for small values of the Darcy number.

2. Governing equations and basic solution

We consider an infinite porous layer confined between two
parallel rigid plates which are separated by a distance L, as
depicted in Fig. 1. It is assumed that the fluid layer is heated
internally by a uniform heat sources of strength q ′′′ and the two
bounding surfaces are each maintained at the constant temper-
ature T0. The governing equations of motion of fluid in a ho-
mogeneous and isotropic porous medium follow the Brinkman
Fig. 1. Definition sketch of the horizontal porous layer with the coordinate sys-
tem.

model, and, subject to the Boussinesq approximation, the full
two-dimensional governing equations take the form,

∂û

∂x̂
+ ∂v̂

∂ŷ
= 0 (1a)

μ

K
û = −∂P̂

∂x̂
+ μe

(
∂2û

∂x̂2
+ ∂2û

∂ŷ2

)
(1b)

μ

K
v̂ = −∂P̂

∂ŷ
+ μe

(
∂2v̂

∂x̂2
+ ∂2v̂

∂ŷ2

)
+ ρgβ(T − T0) (1c)

(ρC)PM
∂T

∂t̂
+ (ρC)f

(
û

∂T

∂x̂
+ v̂

∂T

∂ŷ

)

= kPM

(
∂2T

∂x̂2
+ ∂2T

∂ŷ2

)
+ q ′′′ (1d)

where x and y are the horizontal and vertical coordinates and u

and v are the corresponding velocity components. All the other
terms have their usual meaning for porous medium convection,



1022 A. Nouri-Borujerdi et al. / International Journal of Thermal Sciences 47 (2008) 1020–1025
and are given in the Nomenclature. The appropriate boundary
conditions are,

û = v̂ = T = 0 on ŷ = ±L

2
(2)

Here we have taken fixed temperature boundary and no-slip
boundary conditions. Other choices of boundary condition have
been made in the published literature, including having one
surface cooled with the other insulated and/or stress free con-
ditions. Our choice of thermal conditions means that the upper
half of the layer is unstably stratified, and we have an exam-
ple of penetrative convection, where disturbances may penetrate
into the lower, stably stratified region below.

Eqs. (1a–d) may be nondimensionalised using the following
substitutions,

t̂ = L2σ

αPM
t, (x̂, ŷ) = L(x, y), (û, v̂) = αPM

L
(u, v)

P̂ = αPMμ

K
P, T = T0 + q ′′′L2

kPM
θ (3)

where

σ = (ρC)PM

(ρC)f
, αPM = kPM

(ρC)f

kPM = εkf + (1 − ε)ks, q ′′′ = εq ′′′
f + (1 − ε)q ′′′

s (4)

These transformations yield the following system of equa-
tions,

∂u

∂x
+ ∂v

∂y
= 0 (5a)

u = −∂P

∂x
+ Da

(
∂2u

∂x2
+ ∂2u

∂y2

)
(5b)

v = −∂P

∂y
+ Da

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ Ra θ (5c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= ∂2θ

∂x2
+ ∂2θ

∂y2
+ 1 (5d)

In above equations the nondimensional parameters, Da, and Ra
are defined according to,

Da = μeK

μL2
and Ra = gβKq ′′′L3

ναPMkPM
(6)

The boundary conditions are now,

u = v = θ = 0 on y = ±1

2
(7)

From the continuity equation, (5a), a streamfunction ψ may be
defined according to,

u = −∂ψ

∂y
and v = ∂ψ

∂x
(8)

After the elimination of the pressure P between Eqs. (5b)
and (5c), Eqs. (5a–d) reduce to the system,

−Da

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+ ∂4ψ

∂y4

)
+ ∂2ψ

∂x2
+ ∂2ψ

∂y2
= Ra

∂θ

∂x

(9a)

∂θ + ∂ψ ∂θ − ∂ψ ∂θ = ∂2θ

2
+ ∂2θ

2
+ 1 (9b)
∂t ∂x ∂y ∂y ∂x ∂x ∂y
which are to be solved subject to the boundary conditions,

ψ = ψy = θ = 0 on y = ±1

2
(10)

The basic steady state now consists of no flow and the following
parabolic temperature profile,

θbasic = −1

2
y2 + 1

8
(11)

3. Linear stability theory

We may assess the stability characteristics of the evolving
basic state using a straightforward perturbation theory. There-
fore we set,

ψ = Ψ (y)eλt coskx and

θ = θbasic(y) + Θ(y)eλt sin kx (12)

where Ψ and Θ are both of a sufficiently small amplitude that
nonlinear terms may be neglected. The value, k, is the hori-
zontal wavenumber of the disturbances. We assume that the
principle of exchange of stabilities applies (see, for example,
Drazin and Reid [12], and the discussion in Appendix A), in-
dicating that the onset of convection is stationary, or, in other
words, that neither travelling nor standing waves appear. There-
fore the following system of linearised disturbance equations
are obtained,

−Da(Ψ IV − 2k2Ψ ′′ + k4Ψ ) + Ψ ′′ − k2Ψ = Ra kΘ (13a)

Θ ′′ − k2Θ + kΨ θ ′
basic = 0 (13b)

and this system is subject to the boundary conditions,

Ψ = Ψ ′ = Θ = 0 on y = ±1

2
. (14)

In Eqs. (13a,b) primes denote differentiation with respect to y.
These equations cannot be solved analytically and therefore nu-
merical methods must be employed.

4. Numerical simulations

Eqs. (13a,b) form an ordinary differential eigenvalue prob-
lem for Ra as a function of Da and the wavenumber, k. When
Da = 0 we recover the Darcy-flow case considered by Gasser
and Kazimi [5]. In this paper we solve the full system (13)
using a direct method related closely to the one described
in Rees [13]. Eqs. (13a,b) were reduced to a set of three
second-order equations by introducing a vorticity-like variable,
and then discretised using fourth order compact differences
(Spotz [14]) on a uniform grid in the y-direction. The zero nor-
mal flow, tangential flow and temperature conditions provide a
sufficient number of boundary conditions for these equations.
However, the eigenvalue, Ra, also needs to be found, and this
requires one more condition; this is provided by the following
normalization condition,

Θ ′ = 1 on y = 1
(15)
2
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The resulting discretised system is then solved using a standard
multidimensional Newton–Raphson iteration technique. The it-
eration matrix takes a block tridiagonal form where there is one
further column and row of nonzero blocks, and therefore the
block-Thomas algorithm was modified to account for these ex-
tra blocks; see Eq. (11) in Rees [13] where the full procedure is
described in more detail.

Numerical experiments indicate that the neutral stability
curves always have the same qualitative form, namely that
there is one minimum value of Ra at a critical value of k with
monotonic growth towards infinity as k → 0 and as k → ∞.
Therefore we concentrate solely on these critical values, since
such a minimum value of Ra signifies the point above which
we may expect convection to take place in an infinite layer. This
minimization was achieved by insisting that ∂Ra/∂k = 0 and by
supplementing Eqs. (13a,b) with their derivatives with respect
to k. If we define the variables,

Ψ̇ = ∂Ψ

∂k
and Θ̇ = ∂Θ

∂k
(16)

then differentiation of Eqs. (13a,b) with respect to k yields the
following system,

−Da(Ψ̇ IV − 2k2Ψ̇ ′′ + k4Ψ̇ ) + Ψ̇ ′′ − k2Ψ̇ − Ra kΘ̇

= Da(−4kΨ ′′ + 4k3Ψ ) + 2kΨ + RaΘ (17a)

Θ̇ ′′ − k2Θ̇ + kΨ̇ θ ′
basic = 2kΘ − Ψ θ ′

basic (17b)

subject to the boundary conditions,

Ψ̇ = Θ̇ = 0 on y = ±1

2
(18)

As the wave number is now a second eigenvalue, we need to im-
pose a second normalization condition that Θ̇ ′( 1

2 ) = 1, although
any other value of this derivative yields precisely the same val-
ues of Ra and k. This new extended system now consists of six
second order equations and two normalisation conditions. The
block matrices which appear in the Newton–Raphson iteration
matrix are now 6 × 6.

There is now only one parameter to vary, namely Da, and
solutions are presented for the range, 10−6 � Da � 102. Uni-
form grids were used in the computation and 200 intervals in
the range −0.5 � y � 0.5 were used as a basic grid. Grid re-
finement was then used and the accuracy was improved further
using Richardson’s extrapolation technique to obtain over 10
significant figures of accuracy, even for values of the Darcy
number as small as 10−6.

Figs. (2a) and (2b) show the respective streamlines and
isotherms of the disturbance shapes, Ψ coskx and Θ sin kx, for
Da = 0.1. Each frame displays contours corresponding to 20
equally-spaced subintervals between their respective maxima
and minima. The streamlines and isotherms are displayed in
(x, y) space. Given that it is only the top half of the layer that
is unstably stratified, the disturbance temperature field is con-
centrated within this half with a pair of weak cells in the lower
half. The streamlines also display a bias towards the upper half
of the channel.

Fig. 3 shows normalized profiles of −Ψ ′, which is related
to the horizontal fluid velocity, in order to see how these pro-
files vary with the value of Da. When Da is relatively large,
(a)

(b)

Fig. 2. Disturbance streamlines and isotherms corresponding to the Da = 0.1 in
the (x, y)-plane: (a) streamlines, (b) isotherms.

Fig. 3. Variation of a normalized horizontal velocity, −Ψ ′ with y for different
values of Da.

which corresponds to the clear fluid limit, the velocity profile
varies relatively slowly across the cavity. At such large val-
ues of Da, the maximum absolute velocity occurs at y = 0.35,
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Fig. 4. Variation of critical Rayleigh number with Log10Da for 10−6 �
Da � 102. Values are presented in terms of the porous Rayleigh number, Ra,
and the clear fluid Rayleigh number Ra/Da. Dashed lines correspond to the
small-Da solution given by Eq. (19a).

which is well within the upper half of the layer. However, as
Da decreases towards zero, the position at which the maximum
velocity occurs rises towards the upper surface. A very distinct
boundary layer is formed at this upper surface within which
the velocity changes rapidly to zero; a similar though weaker
boundary layer is formed at the lower surface. It may be shown
using a straightforward order-of-magnitude argument that the
boundary layers are of thickness O(Da−1/2). A detailed asymp-
totic analysis of this phenomenon as it applies to Darcy–Bénard
convection was given by Rees [13], and we shall present the re-
sults of a similar analysis below.

The respective variations in the critical values of Ra and k

with Da are shown in Figs. 4 and 5. Fig. 4 shows the crit-
ical Rayleigh number in two forms, Ra, the porous medium
Rayleigh number, and Ra/Da, the clear fluid Rayleigh num-
ber. The transition between the porous medium limit and the
clear fluid limit is smooth with Ra increasing monotonically
and Ra/Da decreasing monotonically. With regard to the for-
mer, it is to be expected that Ra should rise because viscous
effects, as mediated by the Brinkman terms, increase in severity
as Da increases. On the other hand, the variation of the criti-
cal wavenumber is not monotonic, a property it shares with the
Darcy–Bénard problem (see [13]), but there is little overall vari-
ation.

The approach to the Darcy limit is seen clearly in these fig-
ures, where the dashed curves represent a small-Da asymptotic
analysis. This analysis follows precisely the one described in
detail in Rees [13] for the Darcy–Bénard problem, except that
numerical solutions were required to solve the various ordinary
differential equations which arise. We find that
Fig. 5. Variation of critical wavenumber, k, with Log10Da for 10−6 �
Da � 102. The dashed line corresponds to the small-Da solution given by
Eq. (19b).

Rac = 471.384663(1 + 3Da1/2 + 70.6226324Da + · · ·) (19a)

kc = 4.67518897(1 + Da1/2 + · · ·) (19b)

where our computed data is correct to more than 10 significant
figures. We note that the value, Ra ∼ 469, which may be de-
rived from the data presented in Gasser and Kazimi [5], is close
to the leading term in (19a), but it was obtained using a small
number of terms in a Galerkin expansion. We see from Fig. 5
that the above expression for kc is accurate only for Da < 10−4.
However, Fig. 4 shows that Eq. (19a) is very accurate indeed for
the whole range of values of Da, even though it is the result of
a small-Da analysis. In particular, when Da is large, (19a) gives
Rac/Da ∼ 33290.43, which is very close indeed to the results of
both Sparrow et al. [4] and Takashima [7], Rac/Da = 37325.17,
an error of only 12%. Indeed, if we were to make an ad hoc
modification to (19a) by taking the large-Da value of Ra into
account:

Rac = 471.384663(1 + 3Da1/2 + 79.1820Da) (20)

then this formula is in error by less than 1% over the whole
range of Da values, with the largest error occurring at Da ∼ 0.1.
Eq. (20) may therefore be treated as a good correlation.

5. Conclusion

In this short paper we have determined how the presence
of the Brinkman terms affects the onset criterion for the sta-
bility of natural convection in a horizontal porous layer with
uniform heat generation and the standard no-slip boundary con-
ditions. A smooth monotonic variation in the critical Rayleigh
is found, with the porous and clear fluid limits being reproduced
very accurately. The variation in the critical wavenumber, k,
is not large, but it is not monotonic. In terms of the critical
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porous Rayleigh number, we may neglect the Brinkman terms
and safely use Darcy’s law when Da < 10−3.5. On the other
hand, Da > 1 reproduces the clear fluid limit with a high de-
gree of accuracy. However, the formula given in (20) may be
used over the whole range of Da with less than 1% error.
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Appendix A

If we were to replace ψ and θ in Eqs. (13) by Ψ eλt and
Θeλt , where λ is the exponential growth rate of disturbances,
then Eqs. (13a) and (13b) become,

Ψ ′′ − k2Ψ = Ra kΘ (A.1a)

Θ ′′ − k2Θ = kyΨ + λΘ (A.1b)

When Da = 0 the appropriate boundary conditions are that

Ψ = Θ = 0 on y = ±1

2
(A.1c)

We note that these boundary conditions, when combined with
Eq. (A.1a), yield the fact that Ψ ′′ = 0 on the boundaries. Our
intention here is to show that λ takes only real values, so that
the Principle of Exchange of Stabilities applies.

We may eliminate Θ from Eqs. (A.1) to give,

Ψ ′′′′ − 2k2Ψ ′′ + (k4 − Ra k2)Ψ = λ(Ψ ′′ − k2Ψ ) (A.2a)

which is subject to the boundary conditions,

Ψ = Ψ ′′ = 0 on y = ±1

2
(A.2b)

On taking Ψ to be complex in general, we may multiply
Eq. (A.2a) by Ψ̄ and perform a sufficient number of integra-
tions by parts to obtain the following,

1/2∫
−1/2

[
Ψ ′′Ψ̄ ′′ + 2k2Ψ ′Ψ̄ ′ + (k4 − Ra k2)Ψ Ψ̄

]
dy
= −λ

1/2∫
−1/2

[
Ψ ′Ψ̄ ′ + k2Ψ Ψ̄

]
dy (A.3)

All the integrals in Eq. (A.3) are strictly real, and therefore λ

must take real values. Therefore critical values of Ra corre-
spond only to zero values of λ, and the Principle of Exchange
of Stabilities applies to the Darcy case.

It is possible to extend this analysis easily to the more gen-
eral Darcy–Brinkman case given by Eqs. (13), but only for
stress-free boundary conditions (also see the discussion of Her-
ron [15] and cited references). Therefore we shall assume that
the Principle of Exchange of Stabilities is valid.
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