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Semi-Logarithmic Number Systems
Jean-Michel Muller, Member, IEEE, Alexandre Scherbyna, and Arnaud Tisserand

Abstract —We present a new class of number systems, called Semi-Logarithmic Number Systems, that constitute a family of various
compromises between floating-point and logarithmic number systems. This allows trade between the speed of the arithmetic operations
and the size of the required tables. We give arithmetic algorithms (addition/subtraction, multiplication, division) for the Semi-Logarithmic
Number Systems, and we compare these number systems to the classical floating-point or logarithmic number systems.

Index Terms —Logarithmic number systems, floating-point arithmetic.

——————————   ✦   ——————————

1 INTRODUCTION

HE floating-point number system [6] is widely used for
representing real numbers in computers, but many

other number systems have been proposed. Among them,
one can cite: the logarithmic and sign-logarithm number
systems [9], [15], [14], [17], [8], [3], [10], the level-index
number system [13], [20], [21], some rational number sys-
tems [11], and some modifications of the floating-point
number system [22], [12]. Those systems have been de-
signed to achieve various goals, e.g., to avoid overflows
and underflows, to improve the accuracy, or to accelerate
some computations. For instance, the sign-logarithm num-
ber system, introduced by Swartzlander and Alexpoulos
[15], was designed in order to accelerate the multiplications.
As pointed out by the authors, “it cannot replace conventional
arithmetic units in general purpose computers; rather it is in-
tended to enhance the implementation of special-purpose proces-
sors for specialized applications.” That number system is inter-
esting for problems where the required precision is rela-
tively low, and where the ratio of multiplies (or divides, or
square roots) to adds is relatively high. Roughly speaking,
in such systems, the numbers are represented by their ra-
dix-2 logarithms written in fixed-point representation. The
multiplications and divisions are performed by adding or
subtracting the logarithms, and the additions and subtrac-
tions are performed using tables for the functions log2(1 + 2x)
and log2(1 - 2x), since:
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The major drawback of the Logarithmic Number System
arises when a high level of accuracy is required. If the com-
putations are performed with n-bit numbers, then a
straightforward implementation requires a table containing
2n elements. Interpolation techniques allow the use of

smaller tables (see [16], [2], [8]), so that 32-bit logarithmic
number systems become feasible with current VLSI tech-
nologies. Our purpose in this paper is to present a new
number system that allows the use of even smaller tables.
That number system will be a sort of compromise between
the logarithmic and the floating-point number systems.
More exactly, we show a family of number systems,
parameterized by a number k, and the systems obtained for
the two extremal values of k are the floating-point and the
logarithmic number systems. With some of these number
systems, multiplication and division will be almost as easy
to perform as in the logarithmic number system, whereas
addition and subtraction will require smaller tables.

2 THE SEMI-LOGARITHMIC NUMBER SYSTEMS

Let k be an integer, let x be a real number different from 0,
and define ek,x as the multiple of 2-k satisfying

2 2
2e ek x k x
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.   (1)

We immediately find
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Define mk,x as:

m
x

k x ek x, ,
=

2
.

If sx is the sign of x, we obviously have

x s mx k x
ek x= ¥ ¥,

,2 ,

where ek,x is a k-bit approximation of log2|x| and mk,x is a
multiplicative correction factor.

From (1) we deduce:

1
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2
1

2£ = <m
x

k x ek x
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.

Now, let us bound the value 2
1

2k . This value is equal to e k
ln 2

2 .
One can easily show that, for a Œ (0, 1),

1 +a > 2a.
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Using this result with a = 1/2k, we get

2 1
1

2

1

2k

k£ +               (3)

for k ≥ 0. As a consequence, 1 1 1
2

£ < +mk x k, . This leads to

the following two definitions. The difference between the
two is the “normalization” of mk,x: The bound on mk,x re-
quired by the “general form” is easier to check.

DEFINITION 1 (Canonical Form). Let k be a positive integer.
Every nonzero real number x is represented in the Ca-
nonical form of the Semi-Logarithmic Number System
(SLNS for short) of Parameter k by three values sx, mk,x,
and ek,x satisfying:

• sx = ±1
• ek,x is a multiple of 2-k

• 1 2
1

2£ <mk x
k

,

• x s mx k x
ek x= ¥ ¥,

,2

DEFINITION 2 (General Form). Let k be a positive integer. Every
nonzero real number x is represented in the General form
of the SLNS of Parameter k by three values sx, mk,x, and ek,x
satisfying:

• sx = ±1
• ek,x is a multiple of 2-k

• 1 £ mk,x < 1 + 2-k

• x s mx k x
ek x= ¥ ¥,

,2

The canonical form is a kind of floating-point represen-
tation, with exponents that are multiples of 2-k, and a corre-
sponding “normalized” mantissa.

The representation of x with n mantissa bits in the semi-
logarithmic number system of parameter k will be constituted
by sx, ek,x, and an n-fractional bit rounding of mk,x. In prac-
tice, since 1 £ mk,x < 1 + 2-k, mk,x has a binary representation
of the form:

1 0000 000. �
	 
� ��

�

 ���� ����

k

n

 zeros

 bits

xxxx xx

Since the first k + 1 bits of mk,x are known in advance, there
is no need to store them (this is similar to the hidden bit con-
vention of some radix-2 floating point systems [6]). Exactly as
for normalized floating point representations, a special repre-
sentation must be chosen for zero. In the following, k is con-
sidered implicit, and we write “mx” and “ex” instead of “mk,x”
and “ek,x.” Some points need to be emphasized:

• If k = 0, then the semi-logarithmic system of order k is
reduced to a n-bit mantissa floating-point system.

• If k ≥ n, then the semi-logarithmic system of order k is
reduced to a logarithmic number system.

• The canonical form is a nonredundant representation. In
that form, comparisons are easily performed: If the
format of the representation is, from left to right, con-
stituted by the sign, the exponent—which is a multiple
of 2-k—and then the mantissa, then comparisons are
performed exactly as if we were comparing integers.

• The general form is a redundant representation. For
instance, if k = 1, then 2  has two possible repre-

sentations, namely 1.0000000º ¥ 20.1—the exponent
and mantissa are written in radix-2—and
1.011010100000100111º ¥ 20.0. Although the compari-
sons are slightly more difficult to perform with the
general form—this is due to the redundancy—we will
prefer that form, because the condition “1 £ mk,x < 1 +

2-k” is easier to check than the condition

“1 2
1

2£ <mk x
k

, ,” and because the general form leads
to simpler arithmetic algorithms. Anyway, the con-
version from the general form to the canonical form is
easily performed: Assume s mx x

ex¥ ¥ 2  is in general

form. Compare mx with rk

k
=

-
22 . If mx < rk, then the

number is already represented in canonical form. If

mx ≥ rk, then add 2-k to ex and divide mx by rk. The
obtained result will be the representation of x in ca-
nonical form.

So, the parameter k makes it possible to choose various
compromises between the floating-point number system
and the logarithmic number system.

Exactly as in floating-point arithmetic, there are various
possible rounding modes. For instance, if we define =(x) as
the number obtained by rounding mx (in canonical form) to
zero, then we get:
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Similarly, we can define rounding towards ±• and
rounding to the nearest.

3 THE SLNS VIEWED AS A “M IXED-BASE
LOGARITHMIC SYSTEM”

When implementing a logarithmic number system, one has
to choose the base (or radix) of the system. In the introduc-
tion, we assumed base two (i.e., a number is represented by
its base-2 logarithm). Another “natural” choice is base e.
Both systems have pros and cons. The main advantage of
base two is that multiplying a fixed-point number by an
integer power of two reduces to a shift (assuming that this
number is represented in radix-2). This may save memory
and time when performing additions or conversions. The
main advantage of base e lies in the fact that, if e is small,

exp(e) < 1 + e.

To sum up, if x is an integer 2x is easily computed, and if x
is very small, ex is easily computed.

As pointed out by one of the referees, the semi-
logarithmic number systems can be viewed as a “mixed-
base” logarithmic number system that uses both bases: 2
and e. Let
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x
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where ex is very small (less than 2-k) and ex is a multiple of
2-k. We have

x ex
e e e ex x x x x x x= + ¥ ª = =+ + ¢1 2 2 2 22

e
e e e2 7 0 5ln ,

where ¢ =e ex x ln( )2 . Therefore, the SLNS can be viewed as
a mix-up of two logarithmic number systems, a base-2 sys-
tem for ex and a base-e system for ex. We will see later that
this makes it possible to take benefit from the presented
above advantages of both bases.

4 BASIC ARITHMETIC ALGORITHMS

Now, let us present basic algorithms for multiplication,
division, addition, subtraction, and comparison. We must
notice that, as soon as k is larger than n

2 2+ , these algo-
rithms—and, especially, the multiplication and division
algorithms—become very simple.

4.1 Multiplication

Assume we want to multiply s mx x
ex¥ ¥ 2  by s my y

ey¥ ¥ 2 ,

where these values are represented in the Semi-Logarithmic
Number System of parameter k (general form). Algorithm 4.1
describes the multiplication method.

PROOF OF THE ALGORITHM.
From

a =
- ¥log *2 2
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,
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If m ¥ 2a < 1, then (since m/m* ≥ 1):

2 2 12 1- - -
£ ¥ <

k
m a ,

therefore,

1 2 2 1 22< ¥ ¥ £ +
- -m

k ka .

4.2 Division

Assume we want to divide s mx x
ex¥ ¥ 2  by s my y

ey¥ ¥ 2 ,

where these values are represented in the Semi-
Logarithmic Number System of parameter k (general
form). This can be done as described in Algorithm 4.2. The
proof of this algorithm is very similar to the proof of the
multiplication algorithm.

Algorithm 4.1. SLNS multiplication.

Algorithm 4.2. SLNS division.
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4.3 Addition and Subtraction

Assume we want to compute ( ) ( )s m s mx x
e

y y
e

x y¥ ¥ ± ¥ ¥2 2 ,

where these values are represented in the Semi-Logarithmic
Number System of parameter k (general form). Exactly as in
floating-point arithmetic, the basic method consists of
“aligning” the mantissas (i.e., rewriting both numbers with
the same exponent), adding the aligned mantissas and re-
normalizing the result. Algorithm 4.3 describes the addi-
tion/subtraction method.

Provided that k > n/2 + 2, the only “large multiplication”
that appears in the arithmetic algorithms is the calculation
of �m m= ¥ 2a  of the addition/subtraction algorithm (this is
a multiplication of two n-bit integers). It is possible to avoid
this n ¥ n multiplication by slightly modifying the algo-

rithm: If, instead of only returning a and 2a, the table used

also returns 2-a, then one can compute �m  as (m - 2-a) ¥ 2a + 1.

It is easy to show that m - 2-a < 2-(k-1), therefore, the multi-

plication (m - 2-a) ¥ 2a is the multiplication of an n - k + 1-
bit number by an n-bit number. If k > n/2, this leads to a
significant reduction in the size of the required multiplier
and the time of computation. Moreover, this method does
not increase the required amount of memory: We only need

n - k + 1 bits of 2-a (since its k - 1 most significant bits are
zeroed when they are added to m), and we only need, at

most, n - k + 1 bits of 2a, since the influence of its less sig-
nificant bits is negligible.

The addition/subtraction algorithm is the only algo-
rithm that requires the use of a large table (containing 2k+1

values). This should be compared to the 2n values that are
required when implementing a Logarithmic Number Sys-
tem without interpolations. Of course, the use of interpola-
tion techniques can result in substantially smaller tables,
but the tables required by the SLNS can be interpolated as
well. If a table with 2k+1 elements cannot be implemented,

one can use two tables with 2
1

2 1k + +
 elements, and decom-

pose the computation of �m  in two steps:

• Define j k= +1
2 . In the first step, look up, in a table

with (j + 1) address bits (with m1, m2, º, mj+1 as ad-

dress bits), the values a1 and 2 1a  satisfying:

a1

2 1 2 11 2

2
=

- ¥+log . m m mj
k

k

�4 9

and compute m m( )1 2 1= ¥ a . One can show that m(1) is

between 1 and 1 + 2-j+1.

• Look up, in a table with (j + 1) address bits (with mj
( )1 ,

m mj k+ +1
1

1
( ) , ,�  as address bits), the values a2 and 2 2a

satisfying:

a 2

2
1

1
1

1
11 000 0 2

2
=

- ¥ 
! 

#
$#+ +log . � m m mj j k

k

k

0 5 0 5 0 54 9

and compute �
( )m M= ¥1 2 2a  and �e e= - -a a1 2 . If

�m ≥ 1, then �m  is the mantissa of the result, while �e  is

its exponent. If �m < 1, then multiply �m  by 22-k
 and

subtract 2-k from the new computed value �e : This
gives the mantissa and the exponent of the result.

If tables of size 2
1

2 1k + +
 are still too large, then both previous

steps can be decomposed again.
If we view the Semi-Logarithmic Number System as a

mixed-base logarithmic number system (see Section 3), that
is, if we write:

x s e

y s e

x
e

y
e

x x

y y

= ¥ ¥

= ¥ ¥

2

2

e

e

,

with ex, ey < 2-k, then the algorithm uses (we assume ex ≥ ey):

x y e e

e

e

e e e

e
y x

e e

e
y x

e e e e

x x y x y x

x x y x

x x y x y x
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��
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- -

2 1 2

2 1 1 2

2 1 1 2 2

e e e

e

e

e e

e e

4 9

4 9 4 9 4 9integer part fractional part
.

In this last approximation, the fact that we use two dif-
ferent bases is essential: Using radix-2 allows us to reduce

Algorithm 4.3. SLNS addition/subtraction.
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the multiplication by 2
integer part( )e ey x-

 to a mere shift. Only

the multiplication by 2
fractional part( )e ey x-

 requires a table.

Using radix e allows us to approximate e y xe e-
 by 1 + ey - ex.

4.4 Comparisons

Assume we want to compare x s mx x
ex= ¥ ¥ 2  and

y s my y
ey= ¥ ¥ 2 , where these values are represented in the

Semi-Logarithmic Number System of parameter k (general
form). We assume that x and y are positive (if their signs
are different, then the comparison is straightforward, and if
both numbers are negative, the required modification of the
algorithm is obvious). We also assume that ex ≥ ey (if this is
not true, exchange x and y). The comparison can be done as
follows:

• If ex - ey > 2-k, then x > y.
• If ex = ey, then x ≥ y if and only if mx ≥ my.

• If ex - ey = 2-k, then multiply my by the precomputed

value 2 2- k
—if k > n/2, then this multiplication can be

reduced to an addition—this gives a value my
* . Then,

x ≥ y if and only if m mx y≥ * .

4.5 Conversions
4.5.1 From the Floating-Point Representation to the

SLNS Representation
Let x be a positive number (dealing with the signs is obvious),
represented in binary floating-point as Mx

Ex¥ 2 , that is,

• x Mx
Ex= ¥ 2 ,

• 1 £ Mx < 2,
• Ex is an integer.

We want to convert x to the SLNS system of parameter k
(general form), i.e., to find mx and ex satisfying:

• x mx
ex= ¥ 2 ,

• 1 £ mx < 1 + 2-k,
• ex has k fractional bits.

Assume that the binary representation of Mx is 1.M1M2 º Mn,
and define

M M M Mx k
*

+= 1 1 2 1. � .

The conversion is similar to the last two steps of the addi-
tion algorithm:

1) Look up the values a and 2a defined below (in the ta-
ble with (k + 1) address bits already required by the
addition algorithm, with M1, M2, º, Mk+1 as address
bits):

a =
- ¥*log2 2

2

Mx
k

k

4 9
.

2) Compute �m Mx= ¥ 2a  and �e Ex= - a . If �m ≥ 1, then
�m  is the mantissa of the result, while �e  is its expo-

nent. If �m < 1, then multiply �m  by 22-k
 and subtract

2-k from the new computed value �e : This gives the

mantissa and the exponent of the result—if k > n/2 + 2,
this last multiplication can be reduced to an addition.

4.5.2 From the SLNS Representation to the Floating-
Point Representation

Let x be represented in the SLNS system of parameter k by
mx and ex. We want to find the mantissa Mx (1 £ Mx < 2) and
the (integer) exponent Ex of the binary floating-point repre-
sentation of x. This can be done as follows:

1) Define e ef x= frac( ), look up for 2
e f  in a table with k

address bits (or compute it) ;

2) Multiply mx by 2
e f  (this is the multiplication of an n - k-

bit number by a k-bit number), this gives a number
M*. Define E* = Îex˚ ;

3) M* is between one and 2 1 21 2- --
+

k k( ) . If M* < 2, then

Mx = M* and Ex = E*. If M* ≥ 2 (this case is very un-
likely to occur, since the upper bound on M* is very
close to two), then Mx is obtained by shifting M* by

one position to the right, and Ex is equal to E* + 1.

5 STATIC ACCURACY OF THE SEMI-LOGARITHMIC
NUMBER SYSTEM

In this section, we evaluate the Maximum Relative Repre-
sentation Error (MRRE) and the Average Relative Repre-
sentation Error (ARRE) [5] of the semi-logarithmic number
systems. We assume that numbers are represented in the
canonical form (since the general form is redundant, it is
much more difficult to define the representation errors of
that form). We perform the computations for the case of the
“rounding-to-zero” mode. In the other cases, the computa-
tions are very similar. For the evaluation of the average
errors, we assume Hamming’s logarithmic distribution of
numbers [7], [4], [18], [19]. That is, we assume the density
function

P x x x0 5 = £ <
1

2 1 2ln ,   where  .

We will compare the SLNS of parameters k and n with

• a floating-point system with n mantissa bits (the first
“1” is not included);

• an LNS with n bits in the fractional part of the fixed-
point representation.

5.1 Maximum Relative Representation Error (MRRE)
Assume x is between one and two. We have:

x x
x

x

x

x

n

x

n

x
k k

k k

-
=

-

¥
 

!
 
 

#
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#
#

¥
=0 5
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2

2
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2 2
2 22

2
log
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.

Let us define Dc as the domain where Î2k log2 x˚/2k

equals c. That is, Dc
c c k

= + -
[ , )2 2 2 . In that domain, x x

x
-=( )  is

equal to
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From this, we deduce:
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Let us estimate m = -�
�

�
�Œ +
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[ , )x

x x
c c k

n

c

n

c
2 2

2
2

2
21 2

. From

x c c k
Œ +[ , )2 2 1 2 , we easily deduce 2 2 2 2 2n c n nx

k
Œ + -

[ , ) . The

upper bound 2 2n k+ -
 is approximately equal to 2n + 2n-kln 2.

Therefore:

• If n > k, then the interval [ , )2 2 2n n k+ -
 contains at least

two integers, hence, m = 1. This gives

MRRE
xc

x

c

n
n

k
c c k

ª =
= Œ

�
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+
max max
, , ,

,
0 1 2 1

2 2 1 2

2

2
2

�

.

• If n = k (i.e., if we actually use the logarithmic number
system), then m < ln 2. This gives MRRE < 2-n ln(2).

As a consequence, the floating-point system and the
semi-logarithmic system (with k < n) lead to the same value
of the MRRE, while the radix-2 logarithmic number system
has a slightly better MRRE, that is 2-n ln(2). The lack of con-
tinuity between the cases k < n and k = n (LNS) may seem
strange. It is due to the difference in the value of m.

5.2 Average Relative Representation Error (ARRE)
We want to evaluate

ARRE x
x x

x dx= ¥
-

I
1

21

2

ln
=0 5

. (5)

Using the domain Dc defined in the previous section, we
find1:

1. To get this, we replace 2
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c
x x-�
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proximation is valid if 2
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 is small compared to 2

n
. In practice, this holds as

soon as k is less than n - 3.
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The extremal possible values for c are 0 (for x = 1) and 1 (for
x = 2). This gives (by defining i as c ¥ 2k):
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using 2 1 2 22-
ª + -k k ln . This approximation is not valid

for small values of k (say, for k £ 1). For k = 0 (i.e., for the
floating-point representation), the ARRE is equal to
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For the radix-2 logarithmic number system, the ARRE is
equal to 2-n-1 ln(2). Table 1 sums up the different values of
the maximum and average relative representation error for
various cases. An immediate conclusion from this table is
that, although the floating-point and the logarithmic num-
ber systems are slightly better than the semi-logarithmic
number systems, all these systems lead to approximately
the same accuracy: The ratio of the ARRE of the SLNS sys-
tem to the ARRE of the logarithmic system is 1/ln(2) < 1.4.
This corresponds to log2 (1/ln(2)) < 1/2 bit of accuracy.

6 CONCLUSION

We have proposed a new class of number systems, called
semi-logarithmic number systems. They constitute a compro-
mise between the floating point and the logarithmic num-
ber systems: If the parameter k is larger than n/2 + 2, mul-
tiplication and division are almost as easily performed as in
the logarithmic number systems, whereas addition and
subtraction require much smaller tables. For instance, with
n = 23, k = 15, and j = 9, we would require a small 24 kb

TABLE 1
ARRE AND MRRE OF THE SEMI-LOGARITHMIC NUMBER SYSTEMS

FOR DIFFERENT VALUES OF k

Rounding to zero Rounding to nearest

MRRE ARRE MRRE ARRE

Floating Point 2
-n

0.36 ¥ 2
-n

2
-n-1

0.36 ¥ 2
-n-1

SLNS (k ≥ 2) 2
-n

0.5 ¥ 2
-n

2
-n-1

0.5 ¥ 2
-n-1

Logarithmic 0.69 ¥ 2
-n

0.35 ¥ 2
-n

0.69 ¥ 2
-n-1

0.35 ¥ 2
-n-1
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ROM. The best value for k must result from a compromise:
If k is large, the tables required for addition may become
huge and, if k is small, the algorithms become complicated.
Values of k slightly larger than n/2 are probably the best
choice. Although the semi-logarithmic number systems are
slightly less accurate than the floating-point and the loga-
rithmic number systems, the difference is very small (roughly
speaking, 1/2 bit of accuracy). The domain of application of
the semi-logarithmic number systems is the same as that of
the logarithmic number systems: Special purpose processors
for solving problems where the ratio of multiplies (or di-
vides, or square roots) to adds is relatively high.
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