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Abstract: In this study we present the theoretical analysis of Inverse weibull distribution. 
This paper presents the flexibility of the Inverse weibull distribution that approaches to 
different distributions. Here we compare the relevant parameters such as shape, scale 
parameters by using simulation analysis. Here we present the relationship between shape 
parameter and other properties such as mean, median, mode, variance, coefficient of 
variation, coefficient of skewness and coefficient of kurtosis models are shown 
graphically and mathematically presented.  
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1. Introduction 
The Inverse Weibull distribution is 
another life time probability distribution 
which can be used in the reliability 
engineering discipline. The Inverse 
Weibull distribution can be used to 
model a variety of failure characteristics 
such as infant mortality, useful life and 
wear-out periods. The Inverse Weibull 
distribution can also be used to 
determine the cost effectiveness and 
maintenance periods of reliability 
centered maintenance activities. This 
paper focuses on the theoretical analysis 
of Inverse weibull distribution to model 
in which some operational time has 
already been accumulated for the 
equipment of interest. This paper present 
the relationship between shape 
parameter and other properties such as 
mean, median, mode, var, c.v, c.s, c.k 
models are shown graphically and 

mathematically presented. Liu (1997) 
explain in his work if the item consists of 
many parts, and each part has the same 
failure time distribution, and the item 
falls when the weakest part fails, then 
the Weibull distribution be an acceptable 
model of that failure mode (Nelson 1982). 
Similarly the Inverse Weibull 
distribution will be suitable for modeling 
when there are these types of 
applications of mechanical or electrical 
components lying in the life testing 
experiment.  

2. Inverse Weibull Models 
Analysis 
2.1 Probability density function 

The Inverse Weibull probability 
distribution has three parameters ηβ ,  

and . It can be used to represent the 0t
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failure probability density function 
(PDF) and is defined as 
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Where β  is the shape parameter 
representing the different patterns of the 
inverse Weibull PDF that approaches to 
different distributions and is positive, η  
is a scale parameter representing the 
characteristic life at which 36.78% of the 
population can be expected to have 

failed and is also positive,  is a 
location parameter sometimes called a 
guarantee time, failure-free time or 

minimum life, the value of  has a real 
number. 

0t
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Fig2.1 The Inverse Weibull PDF 

The Inverse Weibull distribution is said 

to be two-parameter when . The 
pdf of the Inverse Weibull distribution as 
given in (2.1) becomes identical with the 
pdf of Inverse Rayleigh distribution 
for

00 =t

2=β , and for 1=β  it coincides with 
that of Inverse Exponential distribution. 
Some works has already been done on 
Inverse Rayleigh distribution by Voda 
(1972), Gharraph (1993), and Mukarjee 
& Mait (1996) and some distributional 
properties of Inverse Weibull 
distribution have been studied by Aleem 
and Pasha (2003). Since the restrictions 

in (2.1) on the values of ηβ , and  are 
always the same for the Inverse Weibull 
distribution. Fig. 2.1 shows the diverse 
shape of the Inverse Weibull PDF 
with

0t

β  (= 0.5, 1, 2, 3), 1=η   and the 

value of 00 =t . It is important to note 
that figures 2.1 to 2.5 are all based on 

the assumption that . 00 =t

2.2 Cumulative Distribution Function 

The cumulative distribution function 
(CDF) of the Inverse Weibull 

distribution is denoted by  and is 
defined as 
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 When the CDF of the Inverse Weibull 
distribution has zero value then it 

represents no failure components by .  0t

 
Fig. 2.2 The Inverse Weibull CDF 

In the Inverse Weibull CDF  is called 

minimum life. When 

0t

η+= 0tt  

then
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0 )( etFInw and for 1=η  

then = 0.367879, it 
represents the characteristic life’ or 
‘characteristic value. Fig. 2.2 shows the 
special case of Inverse Weibull CDF 

1
0 )1( −=+ etFInw
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with  = 0 and for the value of 0t 1=η  
and β  (=0.5, 1, 2, 3). It is clear from the 
Fig. 2.2 that all curves intersect at the 
point of (1, 0.367879), the characteristic 
point for the Inverse Weibull CDF. The 
CDF of the Inverse Weibull as given in 
(2.2) becomes identical with the CDF of 
Inverse Rayleigh distribution for 2=β , 
and for 1=β it coincides with that of 
Inverse Exponential distribution. For the 
standard form of the CDF of the Inverse 
Weibull as given in (2.2) becomes when 

3=β  and when 5.0=β  then its shape 
will approximately equal to the inverse 
Gamma distribution.  
2.3 Reliability Function 

The reliability function (RF) of the 
Inverse Weibull distribution is denoted 

by also known as the survivor 

function and is defined as  
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Fig. 2.3 The Inverse Weibull RF 

It is important to note 

that . Fig. 2.3 shows 

the Inverse Weibull RF with = 0, 

1)()( =+ tFtR InwInw

0t
1=η  and β  (=0.5, 1, 2, 3). It is clear 

that all curves intersect at the point of (1, 
0.632) the characteristic point for the 

Inverse Weibull RF. When β  = 1, the 
distribution is the same as the inverse 
exponential distribution for a constant 
RF. When 2=β , it is known as the 
inverse Rayleigh distribution for the RF.  
2.4 Hazard Function 

The hazard function (HF) of the Inverse 
Weibull distribution also known as 
instantaneous failure rate denoted by 

and is defined as  )(thInw )(/)( tRtf InwInw
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It is important to note that the units for 

are the probability of failure per 
unit of time, distance or cycles.  

)(thInw

 
Fig. 2.4 The Inverse Weibull HF 

When β  = 1, the distribution is the 
same as the Inverse exponential 
distribution for a constant HF so the 
inverse exponential distribution is a 
special case of the Inverse Weibull 
distribution and the Inverse Weibull 
distribution can be treated as a 
generalization of the inverse exponential 
distribution. When β  < 1, the HF is 
continually decreasing which represents 
early failures. When β  > 1, the HF is 
continually increasing which represents 
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wear-out failures. In particular, 
when 2=β , it is known as the inverse 
Rayleigh distribution. So the Inverse 
Weibull distribution is a very flexible 
distribution. Fig. 2.4 shows the Inverse 

Weibull HF with  = 0,0t 1=η  and β  
(=0.5, 1, 2, 3,). 
2.5 Cumulative Hazard Function 

The Cumulative hazard function (CHF) 
of the Inverse Weibull distribution is 

denoted by and is defined as  )(tH Inw
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It is important to note that the units for 

are the cumulative probability of 
failure per unit of time, distance or 
cycles.  

)(tH Inw

 
Fig. 2.5 The Inverse Weibull CHF 

When β  = 1, the distribution is the 
same as the Inverse exponential 
distribution for a constant CHF. When 
β  < 1, CHF is continually decreasing 
which represents early failures. When β  
> 1, CHF is continually increasing which 
represents wear-out failures. In 
particular, when 2=β , it is known as 
the inverse Rayleigh distribution. Fig. 

2.5 shows the Inverse Weibull CHF with 

 = 0, 0t 1=η  and β  (=0.5, 1, 2, 3,). 

The relationship between the CDF and 
CHF can also be defined as 

( ))(1)( tHExptF InwInw −−=        or         
( ))(1ln)( tFtH InwInw −−=         (2.6) 

Here we see that     

, and  are expressed 
in closed form solutions and these 
models can be solved directly from the 
equations. This is an important 
advantage of the Inverse Weibull 
distribution for modeling RF and HF 
function. 

),(),( tFtf InwInw

)(tRInw )(thInw )(tH Inw

3. Inverse Weibull Models and 
Simulation Analysis 
Here every Inverse Weibull model is in a 
form of simulation analysis. The 
simulation analysis of the Inverse 
Weibull models is a mathematical 
process of a real system and then 
conducting computer-based experiments 
with these Inverse weibull models to 
describe, explain and predicting the 
patterns of the real system over extended 
periods of real time. Other important 
properties of the Inverse Weibull 
distribution are summarized as follows. 
Note that figures 3.1 to 3.7 are all based 

on the assumption that . Here we 
compare the relevant parameters such as 
shape, scale parameters by using 
simulation analysis. Here we present the 
relationship between shape parameter 
and other properties such as mean, 
median, mode, var, c.v, c.s, c.k models 
are shown graphically and 
mathematically presented.    

00 =t

3.1 Mean Life 

  

WSEAS TRANSACTIONS on MATHEMATICS M. Shuaib Khan, G.R Pasha, Ahmed Hesham Pasha 

ISSN: 1109-2769
33

Issue 2, Volume 7, February 2008



The mean life of the Inverse Weibull 
distribution also known as mean-time-to-

failure ( ) and is defined as InwMTTF

⎟⎟
⎠

⎞
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⎝
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−Γ+= −

β
η β 11/1

0tMean Inw

     (3.1) 

From our calculation it is clear that there 
is no mean life when 10 ≤≤ β . Note that 
the maximum value of the Mean/η  = 

⎟⎟
⎠

⎞
⎜⎜
⎝
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−Γ
β
11

≅ 10.50587because =10.50

587. Since 
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 has the maximum 
value when ≅β  1.1 can be determined. 
Here the Gamma functions which can be 
calculated with Lanczos’ approximate 
formula (Lanczos 1964). The 
relationship between β  and the mean 
life/η  is shown in Fig. 3.1.Tables of the 
gamma function can be found in 
(Bohoris 1994, Kececioglu 1991). For 
the convenience of display we substitute 

this function in this notation kγ . 
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Fig 3.1 β  vs mean life/η  

3.2 Median Life 

The median life or the  percentile of 
the Inverse Weibull distribution is 
defined as 

th50

βη
1

0 )2ln(
−

−+= tMedianInw      (3.2) 

This is the life by which 50% of the 
units will be expected to have failed, and 
so it is also the life at which 50% of the 
units would be expected to still survive. 
The maximum value of median life is for 
β =0.1 we obtain 39.06118.The 
relationship between β  and median 
life/η  is shown in Fig. 3.2. Taking the 
first derivative of eq. 3.2 and equating it 
to 0, an extremely small value can be 
obtained as when ∞→β then median 
life/η →1. The value of β  and median 
life/η  have a positive proportion. 
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Fig. 3.2 β vs median life/η  

3.3 Mode Life 
The mode life of the Inverse Weibull 
distribution is defined as 

β
β

β
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     (3.3) 

The relationship between β  and the 
mode life/η  is shown in Fig 3.3. We 
obtain the minimum value of mode life 
is 3.86E-11 for β =0.1 and obtain the 
maximum value of mode life is 
0.997563465 for β =20. The Mode 
life/η  becomes asymptotic to 1 
as ∞→β . Again β  and mode life/η   
have a positive proportion when β  > 0. 
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Fig. 3.3 β  vs mode life/η  

3.4 Variance Life 
The variance life of the Inverse Weibull 
distribution is defined as 

( )2
12

/2 )(γγη β −= −
InwVAR      (3.4) 
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Fig3.4 β  vs variance/  2η

From our calculations it is clear that 
there is no variance life when 20 ≤≤ β . 
We obtain the maximum value of 
variance life is 17.59895 for β =2.1. The 
relationship between β  and the 

variance/ life is shown in Fig 3.4. It is 
clear that the larger the value of

2η
β  the 

smaller the value of variance life/ . 
The relationship between 

2η
β  and the 

variance/ life shows that it becomes 
asymptotic to 0 as

2η
∞→β . The Inverse 

Weibull distribution standard deviation 
SDInw is the measure of spread, and can 
be obtained by taking the square root of 

the . InwVAR

3.5 Coefficient of Variation 
The coefficient of variation CVInw is 

defined as   )/( 0tMTTFSD InwInw −

12
1

2 −=
γ
γ

InwCV
        (3.5) 
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Fig. 3.5 β  vs CVInw 

From our calculation it is clear that there 
is no CVInw life when 20 ≤≤ β . We 
obtain the maximum value of CVInw 
life is 2.476739 for β =2.1. The 
relationship between β  and CVInw is 
shown in Fig 3.5, the larger the value 
of β  the smaller the value of the CVInw. 

3.6 Coefficient of Skewness 

The coefficient of skewness  is 

defined as

InwCS

/))(( 3TETE − ( )2
3

2))(( TETE −  

( )2
3
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12
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     (3.6) 

Where  is the quantity used to 
measure the skewness of the Inverse 

Weibull distribution, If < 0 then 

InwCS

InwCS
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the PDF of the Inverse Weibull 
distribution is skewed to the left when 

(Mean < Median < Mode), if  = 0 
then the PDF of the Inverse Weibull 
distribution shape is symmetrical (Mean 
= Median = Mode) as in the Normal 

distribution, and if  > 0 then the 
PDF of the Inverse Weibull distribution 
is skewed to the right when (Mean > 
Median > Mode). The relationship 

between 

InwCS

InwCS

β  and  is shown in Fig. 
3.6. From our calculations it is clear that 

there is no  life when

InwCS

InwCS 30 ≤≤ β . 
We obtain the maximum value of 

life is 40.58428 for InwCS β =3.1. 
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Fig. 3.6 β  vs  InwCS

3.7 Coefficient of Kurtosis 

The coefficient of kurtosis  is 
defined as  

InwCK

/))(( 4TETE − ( )22))(( TETE −

( )22
12

4
1

2
12134 364

γγ

γγγγγγ

−

−+−
=InwCK

(3.6) 

Where  the quantity is used to 
measure the kurtosis or peaked ness of 

the distribution. If  = 3 it represent 
the peaked ness of the Normal 
distribution. The Inverse Weibull PDF 
shape is more peaked than the Normal 

PDF when the value of > 3. The 
Inverse Weibull PDF shape is flatter 
than the Normal PDF when the value of 

<3. The relationship between 

InwCK

InwCK

InwCK

InwCK β  

and  is shown in Fig. 3.7. From 
our calculation it is clear that there is no 

 life when

InwCK

InwCK 40 ≤≤ β . It is 
important to note that we obtain the 

maximum value of life is 
529.5914 at 

InwCK
β =4.1. 
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Fig 3.7 β  vs  InwCK

These Properties mean, median, mode, 

SDInw, VARInw,  

and  are frequently used to 
measure the life of system or process. It 
is important to note that VARInw, 
CVInw, CSInw and CKInw are 
independent of to and CVInw, CSInw 
and CKInw are not dependent on

)(),(),( thtRtF InwInwInw

)(tH Inw

η . It is 
worth mentioning that when η = 1 and 

 = 0, the distribution is sometimes 
called the standard Inverse Weibull 
distribution under the relationship 
between 

0t

β  and these properties. 

4. Area of applications of the 
Inverse Weibull distribution 
In the life testing experiment reliability 
is the probability that a device, system, 
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or process will perform its prescribed 
duty without failure for a given time 
when operated correctly in a specified 
environment. Reliability is used to find 
the life span of mechanical and electrical 
components while survival is the 
probability used to find the life span of 
biological events associated with the 
human study. The Inverse Weibull 
distribution model can be used in 
reliability analysis. It can be successful 
in modeling life for many devices and 
variables such as relays, ball bearings, 
electron tubes, capacitors, germanium 
transistors, photo-con due Live cells, 
motors, automotive radiators, regulators, 
generators, turbine blades, fatigue in 
textiles, corrosion resistance, leakage of 
dry batteries, return of products after-
shipment, marketing life expectancy of 
drugs, the number of downtimes per 
shift, solids subjected to fatigue stresses 
etc. 

5. Summary and conclusions 
In this study we have seen that the 
Inverse Weibull distribution is the 
flexible distribution model that 
approaches to different distributions 
when its shape parameter changes. The 
comparative comprehensive study of the 
reliability modeling is predicted from 
hazard analysis. The Properties 

of , , ,
mean, median, mode, SDInw, VARInw, 
CVInw, CSInw and CKInw can be used 
to measure life data. When 

)(),(),( tRtFtf InwInwInw )(thInw )(tH Inw

β  = 1, the 
distribution is the same as the inverse 
exponential distribution for a constant 
hazard function so the inverse 
exponential distribution is a special case 
of the Inverse Weibull distribution and 
the Inverse Weibull distribution can be 
treated as a generalization of the inverse 
exponential distribution. When β  < 1, 
the hazard function is continually 

decreasing which represents early 
failures and follow the inverse gamma 
distribution. When β  > 1, the hazard 
function is continually increasing which 
represents wear-out failures. In 
particular, when 2=β , it is known as 
the inverse Rayleigh distribution.  So it 
concludes that the Inverse Weibull 
distribution is a very flexible reliability 
model that approaches to different 
distributions. 
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