Making and Using a Hypsometer

A hypsometer can be constructed using a piece of cardboard (such as an index card), a drinking straw, some string, a small washer, and tape.

1. On the 5×8 index card make marks $1 / 4$ inch apart; be consistent in your measurements.
2. Tape a piece of string at corner A.
3. Tie a washer on the loose end of the string.
4. Tape a drinking straw along one side of the index card from points A to D.

The Hypsometer can be used to gather information by following the directions below:

1. Segment RG represents the object you are going to measure. Point D is the location of your eye when you position the hypsometer. Point H is the location of your feet.
2. Hold the hypsometer, viewing through point D and looking-up with point A directed towards the top of the object (point R). Point D on both drawings are the same point!
3. Hold the string down tight to the index card so that you can note the distance from points B to Z. Mark this distance in the appropriate column on the Data Table.
4. When marking the distance, in the Data Table, from points A to B should be the same for all your objects measured.
5. Using the tape measure, measure the distance from points G to H. Enter that distance in the appropriate column of the Data Table.
6. Measure the distance from points D to H . Enter that distance in the appropriate column of the Data Table.

Data Table						
Name of Object	Length of AB	Length of BZ	Length of GH	Length of DH	(Length of QR	Height of object RG = DH + QR

* These columns will be calculated in the classroom.

Completing the calculations:

1. Upon returning to the classroom you will need your Data Table, scratch paper, a pencil, and a calculator.
2. Use the following formula to calculate the value of QR :

$$
\begin{array}{cr}
\mathrm{BZ} & \mathrm{AB} \\
------ \\
\mathrm{QR} & \mathrm{GH}
\end{array}
$$

3. Calculate the height of the object (RG) by adding DH and QR.
